
Stat260/CS294: Spectral Graph Methods Lecture 25 - 04/23/2015

Lecture: Laplacian solvers (1 of 2)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

25 Overview

We have seen problems that can be written in the form of a system of linear equations with
Laplacian constraint matrices, i.e.,

Lx = b.

For example, we saw this with the various semi-supervised learning methods as well as with the
MOV weakly-local spectral method. In some cases, this arises in slightly modified form, e.g., as an
augmented/modified graph and/or if there are additional projections (e.g., the Zhou et al paper
on “Learning with labeled and unlabeled data on a directed graph,” that is related to the other
semi-supervised methods we discussed, does this explicitly). Today and next time we will discuss
how to solve linear equations of this form.

25.1 Basic statement and outline

While perhaps not obvious, solving linear equations of this form is a useful algorithmic primitive—
like divide-and-conquer and other such primitives—much more generally, and thus there has been
a lot of work on it in recent years.

Here is a more precise statement of the use of this problem as a primitive.

Definition 1. The Laplacian Primitive concerns systems of linear equations defined by Laplacian
constraint matrices:

• INPUT: a Laplacian L ∈ Rn×n, a vector b ∈ Rn such that
∑n

i=1 bi = 0, and a number ε > 0.

• OUTPUT: a vector x̃opt ∈ Rn such that ‖x̃opt − L†v‖L ≤ ‖L†b‖L, where for a vector z ∈ Rn
the L-norm is given by ‖z‖L = ‖zTLz‖2.

While we will focus on linear equations with Laplacian constraint matrices, most of the results in
this area hold for a slightly broader class of problems. In particular, they hold for any linear system
Ax = b, where A is an SDD (symmetric diagonally dominant) matrix (i.e., that the diagonal entry
of each row is larger, or not smaller, than the sum of the absolute values of the off-diagonal entries
in that row). The reason for this is that SDD systems are linear-time reducible to Laplacian linear
systems via a construction that only doubles the number of nonzero entries in the matrix.

1

As mentioned, the main reason for the interest in this topic is that, given a fast, e.g., nearly linear
time algorithm, for the Laplacian Primitive, defined above, one can obtain a fast algorithm for all
sorts of other basic graph problems. Here are several examples of such problems.

• Approximate Fiedler vectors.

• Electrical flows.

• Effective resistance computations.

• Semi-supervised learning for labeled data.

• Cover time of random walks.

• Max flow and min cut and other combinatorial problems.

Some of these problems we have discussed. While it might not be surprising that problems like
effective resistance computations and semi-supervised learning for labeled data can be solved with
this primitive, it should be surprising that max flow and min cut and other combinatorial problems
can be solved with this primitive. We won’t have time to discuss this in detail, but some of the
theoretically fastest algorithms for these problems are based on using this primitive.

Here is a statement of the basic result that led to interest in this area.

Theorem 1 (ST). There is a randomized algorithm for the Laplacian Primitive that runs in ex-

pected time O
(
m logO(1)(n) log (1/ε)

)
, where n is the number of nodes in L, m is the number of

nonzero entries in L, and ε is the precision parameter.

Although the basic algorithm of ST had something like the 50th power in the exponent of the
logarithm, it was a substantial theoretical breakthrough, and since then it has been improved
by KMP to only a single log, leading to algorithms that are practical or almost practical. Also,
although we won’t discuss it in detail, many of the local and locally-biased spectral methods we
have discussed arose out of this line of work in an effort to develop and/or improve this basic result.

At a high level, the basic algorithm is as follows.

1. Compute a sketch of the input by sparsifying the input graph.

2. Use the sketch to construct a solution, e.g., by solving the subproblem with any black box
solver or by using the sketch as a preconditioner for an iterative algorithm on the origi-
nal problem.

Thus, the basic idea of these methods is very simple; but to get the methods to work in the allotted
time, and in particular to work in nearly-linear time, is very complicated.

Today and next time, we will discuss these methods, including a simple but slow method in more
detail and a fast but complicated method in less detail.

• Today. We will describe a simple, non-iterative, but slow algorithm. This algorithm pro-
vides a very simple version of the two steps of the basic algorithm described above; and,
while slow, this algorithm highlights several basic ideas of the more sophisticated versions of
these methods.

2

• Next time. We will describe a fast algorithm provides a much more sophisticated imple-
mentation of the two steps of this basic algorithm. Importantly, it makes nontrivial use
of combinatorial ideas and couples the linear algebra with combinatorial preconditioning in
interesting ways.

25.2 A simple slow algorithm that highlights the basic ideas

Here, we describe in more detail a very simple algorithm to solve Laplacian-based linear systems. It
will be good to understand before we get to the fast but more complicated versions of the algorithm.

Recall that L = D −W = BTWB is our Laplacian, where B is the m× n edge-incidence matrix,
and where W is an m×m edge weight matrix. In particular, note that m > n (assume the graph
is connected to avoid trivial cases), and so the matrix B is a tall matrix.

Here is a restatement of the above problem.

Definition 2. Given as input a Laplacian matrix L ∈ Rn×n, a vector b ∈ Rn, compute

argminx∈Rn‖Lx− b‖2.

The minimal `2 norm xopt is given by xopt = L†b, where L† is the Moore-Penrose generalized inverse
of L.

We have reformulated this as a regression since it makes the proof below, which is based on RLA
(Randomized Linear Algebra) methods, cleaner.

The reader familiar with linear algebra might be concerned about the Moore-Penrose generalized
inverse since, e.g., it is typically not well-behaved with respect to perturbations in the data matrix.
Here, the situation is particularly simple: although L is rank-deficient, (1) it is invertible if we
work with vectors b ⊥ ~1, and (2) because this nullspace is particular simple, the pathologies that
typically arise with the Moore-Penrose generalized inverse do not arise here. So, it isn’t too far off
to think of this as the inverse.

Here is a simple algorithm to solve this problem. This algorithm takes as input L, b, and ε; and it
returns as output a vector x̃opt.

1. Form B and W , define Φ = W 1/2B ∈ Rm×n, let UΦ ∈ Rm×n be an orthogonal matrix
spanning the column space of Φ, and let (UΦ)(i) denote the ith row of UΦ.

2. Let pi, for i ∈ [n] such that
∑n

i=1 pi = 1 be given by

pi ≥ β
‖ (UΦ)(i) ‖22
‖UΦ‖2F

=
β

n
‖ (UΦ)(i) ‖

2
2 (1)

for some value of β ∈ (0, 1]. (Think of β = 1, which is a legitimate choice, but the additional
flexibility of allowing β ∈ (0, 1) will be important in the next class.)

A key aspect of this algorithm is that the sketch is formed by choosing elements of the Laplacian
with the probabilities in Eqn. (1); these quantities are known as the statistical leverage scores, and
they are of central interest in RLA. Here is a definition of these scores more generally.

3

Definition 3. Given a matrix A ∈ Rm×n, where m > n, the ith leverage score is

(PA)ii =
(
UAU

T
A

)
ii

= ‖ (UA)ii ‖
2
2,

i.e., it is equal to the diagonal element of the projection matrix onto the column span of A.

Here is a definition of a seemingly-unrelated notion that we talked about before.

Definition 4. Given G = (V,E), a connected, weighted, undirected graph with n nodes, m edges,
and corresponding weights we ≥ 0, for all e ∈ E, let L = BTWB. Then, the effective resistance Re
across edge e ∈ E are given by the diagonal elements of the matrix R = BL†B.

Here is a lemma relating these two quantities.

Lemma 1. Let Φ = W 1/2B denote the scaled edge-incidence matrix. If `i is the leverage score of
the ith row of Φ, then `i

wi
is the effective resistance of the ith edge.

Proof. Consider the matrix

P = W 1/2B
(
BTWB

)†
BTW 1/2 ∈ Rm×m,

and notice that P = W 1/2RW 1/2 is a rescaled version of R = BL†B, whose diagonal elements are
the effective resistances. Since Φ = W 1/2B, it follows that

P = Φ
(
ΦTΦ

)†
ΦT .

Let UΦ be an orthogonal matrix spanning the columns of Φ. Then, P = UΦU
T
Φ , and so

Pii =
(
UΦU

T
Φ

)
ii

= ‖ (UΦ)(i) ‖
2
2,

which establishes the lemma.

So, informally, we sparsify the graph by biasing our random sampling toward edges that are “im-
portant” or “influential” in the sense that they have large statistical leverage or effective resistance,
and then we use the sparsified graph to solve the subproblem.

Here is the main theorem for this algorithm.

Theorem 2. With constant probability, ‖xopt − x̃opt‖L ≤ ε‖xopt‖L.

Proof. The main idea of the proof is that we are forming a sketch of the Laplacian by randomly
sampling elements, which corresponds to randomly sampling rows of the edge-incidence matrix, and
that we need to ensure that the corresponding sketch of the edge-incidence matrix is a so-called
subspace-preserving embedding. If that holds, then the eigenvalues of the edge-incidence matrix
and it’s sketch are close, and thus the eigenvalues of the Laplacian are close, and thus the original
Laplacian and the sparsified Laplacian are “close,” in the sense that the quadratic form of one is
close to the quadratic form of the other.

Here are the details.

By definition,
‖xopt − x̃opt‖2L = (xopt − x̃opt)T L (xopt − x̃opt) .

4

Recall that L = BTWB, that xopt = L†b, and that x̃opt = L̃†b. So,

‖xopt − x̃opt‖2L = (xopt − x̃opt)T BTWB (xopt − x̃opt)
= ‖W 1/2B (xopt − x̃opt) ‖22

Let Φ ∈ Rm×n be defined as Φ = W 1/2B, and let its SVD be Φ = UΦΣΦV
T

Φ . Then

L = ΦTΦ = VΦΣ2
ΦV

T
Φ

and
xopt = L†b = VΦΣ−2

Φ V T
Φ b.

In addition
L̃ = ΦTSTSΦ = (SΦ)T (SΦ)

and also
x̃opt = L̃†b = (SΦ)† (SΦ)T † b =

(
SUΦΣΦV

T
Φ

)† (
SUΦΣΦV

T
Φ

)T †
b

By combining these expressions, we get that

‖xopt − x̃opt‖2L = ‖Φ (xopt − x̃opt) ‖22
= ‖UΦΣΦV

T
Φ

(
VΦΣ−2

Φ V T
Φ −

(
SUΦΣΦV

T
Φ

)† (
SUΦΣΦV

T
Φ

)T †)
b‖22

= ‖Σ−1
Φ V T

Φ b− ΣΦ

(
SUΦΣΦV

T
Φ

)† (
SUΦΣΦV

T
Φ

)T †
VΦb‖22

Next, we note the following:
E
[
‖UTΦSTSUΦ − I‖2

]
≤
√
ε,

where of course the expectation can be removed by standard methods. This follows from a result
of Rudelson-Vershynin, and it can also be obtained as a matrix concentration bound. This is a
key result in RLA, and it holds since we are sampling O

(
n
ε log

(
n
ε

))
rows from U according to the

leverage score sampling probabilities.

From standard matrix perturbation theory, it thus follows that∣∣σi (UTΦSTSUΦ

)
− 1
∣∣ =

∣∣σ2
i (SUΦ)− 1

∣∣ ≤ √ε.
So, in particular, the matrix SUΦ has the same rank as the matrix UΦ. (This is a so-called
subspace embedding, which is a key result in RLA; next time we will interpret it in terms of
graphic inequalities that we discussed before.)

In the rest of the proof, let’s condition on this random event being true.

Since SUΦ is full rank, it follows that

(SUΦΣΦ)† = Σ−1
Φ (SUΦ)† .

So, we have that

‖xopt − x̃opt‖2L = ‖Σ−1
Φ V T

Φ b− (SUΦ)† (SUΦ)T †Σ−1
Φ V T

Φ b‖22
= ‖Σ−1

Φ V T
Φ b− VΩΣ−2

Ω V T
Ω Σ−1

Φ V T
Φ b‖22,

5

where the second line follows if we define Ω = SUΦ and let its SVD be

Ω = SUΦ = UΩΣΩV
T

Ω .

Then, let Σ−1
Ω = I + E, for a diagonal error matrix E, and use that V T

Ω VΩ = VΩV
T

Ω = I to write

‖xopt − x̃opt‖2L = ‖Σ−1
Φ V T

Φ b− VΩ (I + E)V T
Ω Σ−1

Φ V T
Φ b‖22

= ‖VΩEV
T

Ω Σ−1
Φ V T

Φ b‖22
= ‖EV T

Ω Σ−1
Φ V T

Φ b‖22
≤ ‖EV T

Ω ‖22‖Σ−1
Φ V T

Φ b‖22
= ‖E‖22‖Σ−1

Φ V T
Φ b‖22

But, since we want to bound ‖E‖, note that

|Eii| =
∣∣σ−2
i (Ω)− 1

∣∣ =
∣∣σ−1
i (SUΦ)− 1

∣∣ .
So,

‖E‖2 = max
i

∣∣σ−2
i (SUΦ)− 1

∣∣ ≤ √ε.
So,

‖xopt − x̃opt‖2L ≤ ε‖Σ−1
Φ V T

Φ b‖22.

In addition, we can derive that

‖xopt‖2L = xToptLxopt

=
(
W 1/2Bxopt

)T (
W 1/2Bxopt

)
= ‖Φxopt‖22
= ‖UΦΣΦV

T
Φ VΦΣ−2

Φ V T
Φ b‖22

= ‖Σ−1
Φ V T

Φ b‖22.

So, it follows that
‖xopt − x̃opt‖2L ≤ ε‖xopt‖2L,

which establishes the main result.

Before concluding, here is where we stand. This is a very simple algorithm that highlights the basic
ideas of Laplacian-based solvers, but it is not fast. To make it fast, two things need to be done.

• We need to compute or approximate the leverage scores quickly. This step is very nontriv-
ial. The original algorithm of ST (that had the log50(n) term) involved using local random
walks (such as what we discussed before, and in fact the ACL algorithm was developed to
improve this step, relative to the original ST result) to construct well-balanced partitions
in nearly-linear time. Then, it was shown that one could use effective resistances; this was
discovered by SS independently of the RLA-based method outlined above, but it was also
noted that one could call the nearly linear time solver to approximate them. Then, it was
shown that one could relate it to spanning trees to construct combinatorial preconditioners.
If this step was done very carefully, then one obtains an algorithm that runs in nearly linear
time. In particular, though, one needs to go beyond the linear algebra to map closely to the
combinatorial properties of graphs, and in particular find low-stretch spanning trees.

6

• Instead of solving the subproblem on the sketch, we need to use the sketch to create a
preconditioner for the original problem and then solve a preconditioned version of the original
problem. This step is relatively straightforward, although it involves applying an iterative
algorithm that is less common than popular CG-based methods.

We will go through both of these in more detail next time.

7

