
Stat260/CS294: Spectral Graph Methods Lecture 24 - 04/21/2015

Lecture: Some Statistical Inference Issues (3 of 3)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

24 Stochastic blockmodels

Today, we will finish up talking about statistical inference issues by discussing them in the context
of stochastic blockmodels. These are different models of data generation than we discussed in the
last few classes, and they illustrate somewhat different issues.

24.1 Introduction to stochastic block modeling

As opposed to working with expansion or conductance—or some other “edge counting” objective
like cut value, modularity, etc.—the stochastic block model (SBM) is an example of a so-called
probabilistic or generative model. Generative models are a popular way to encode assumptions
about the way that latent/unknown parameters interact to create edges (ij) Then, they assign a
probability value for each edges (ij) in a network. There are several advantages to this approach.

• It makes the assumptions about the world/data explicit. This is as opposed to encoding
them into an objective and/or approximation algorithm—we saw several examples of reverse
engineering the implicit properties of approximation algorithms.

• The parameters can sometimes be interpreted with respect to hypotheses about the network
structure.

• It allows us to use likelihood scores, to compare different parameterizations or different models.

• It allows us to estimate missing structures based on partial observations of graph structure.

There are also several disadvantages to this approach. The most obvious is the following.

• One must fit the model to the data, and fitting the model can be complicated and/or com-
putationally expensive.

• As a result of this, various approximation algorithms are used to fit the parameters. This
in turn leads to the question of what is the effect of those approximations versus what is
the effect of the original hypothesized model? (I.e., we are back in the other case of reverse
engineering the implicit statistical properties underlying approximation algorithms, except
here it is in the approximation algorithm to estimate the parameters of a generative model.)
This problem is particularly acute for sparse and noisy data, as is common.
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Like other generative models, SBMs define a probability distribution over graphs, P [G|Θ], where
Θ is a set of parameters that govern probabilities under the model. Given a specific Θ, we can then
draw or generate a graph G from the distribution by flipping appropriately-biased coins. Note that
inference is the reverse task: given a graph G, either just given to us or generated synthetically by a
model, we want to recover the model, i.e., we want to find the specific values of Θ that generated it.

The simpled version of a SBM is specified by the following.

• A positive integer k, a scalar value denoting the the number of blocks.

• A vector ~z ∈ Rn, where zi gives the group index of vertex i.

• A matrix M ∈ Rk×k, a stochastic block matrix, where Mij gives the probability that a vertex
of type i links to a vertex of type j.

Then, one generates edge (ij) with probability Mzizj . That is, edges are not identically distributed,
but they are conditionally independent, i.e., conditioned on their types, all edges are independent,
and for a given pair of types (ij), edges are i.i.d.

Observe that the SBM has a relatively large number of parameters,
(
k
2

)
, even after we have chosen

the labeling on the vertices. This has plusses and minuses.

• Plus: it allows one the flexibility to model lots of possible structures and reproduce lots of
quantities of interest.

• Minus: it means that there is a lot of flexibility, thus making the possibility of overfitting
more likely.

Here are some simple examples of SBMs.

• If k = 1 and Mij = p, for all i, j, then we recover the vanilla ER model.

• Assortative networks, if Mii > Mij , for i 6= j.

• Disassortative networks, if Mii < Mij , for i 6= j.

24.2 Warming up with the simplest SBM

To illustrate some of the points we will make in a simple context, consider the ER model.

• If, say, p = 1
2 and the graph G has more than a handful of nodes, then it will be very easy

to estimate p, i.e., to estimate the parameter vector Θ of this simple SBM, basically since
measure concentration will occur very quickly and the empirical estimate of p we obtain
by counting the number of edges will be very close to its expected value, i.e., to p. More
generally, if n is large and p & log(n)

n , then measure will still concentrate, i.e., the empirical
and expected values of p will be close, and we will be able to estimate p well. (This is related

to the well-known observation that if p & log(n)
n , then Gnp and Gnm are very similar, for

appropriately chosen values of p and m.)
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• If, on the other hand, say, p = 3
n , then this is not true. In this regime, measure has not

concentrated for most statistics of interest: the graph is not even fully connected; the giant
component has nodes of degree almost O (log(n)); and the giant component has small sets

of nodes of size Θ (log(n)) that have conductance O
(

1
log(n)

)
. (Contrast all of these the a

3-regular random graph, which: is fully connected, is degree-homogeneous, and is a very
good expander.)

In these cases when measure concentration fails to occur, e.g., due to exogenously-specified degree
heterogeneity or due to extreme sparsity, then one will have difficulty with recovering parameters
of hypothesized models. More generally, similar problems arise, and the challenge will be to show
that one can reconstruct the model under as broad a range of parameters as possible.

24.3 A result for a spectral algorithm for the simplest nontrivial SBM

Let’s go into detail on the following simple SBM (which is the simplest aside from ER).

• Choose a partition of the vertics, call them V 1 and V 2, and WLOG let V 1 = {1, . . . , n2 } and
V 2 = {n2 + 1, . . . , n}.

• Then, choose probabilities p > q and place edges between vertices i and j with probability

P [(ij) ∈ E] =

{
q if i ∈ V 1 and j ∈ V 2 of i ∈ V 2 and j ∈ V 1

p otherwise
,

In addition to being the “second simplest” SBM, this is also a simple example of a planted partition
model, which is commonly studied in TCS and related areas.

Here is a fact:
E
[
number of edges crossing bw V 1 and V 2

]
= q|V 1||V 2|.

In addition, if p is sufficiently larger than q, then every other partition has more edges. This is the
basis of recovering the model. Of course, if p is only slightly but not sufficiently larger than q, then
there might be fluctuational effects such that it is difficult to find this from the empirical graph.
This is analogous to having difficulty with recovering p from very sparse ER, as we discussed.

Within the SBM framework, the most important inferential task is recovering cluster membership of
nodes from a single observation of a graph (i.e., the two clusters in this simple planted partition form
of the SBM). There are a variety of procedures to do this, and here we will describe spectral methods.

In particular, we will follow a simple analysis motivated by McSherry’s analysis, as described by
Spielman, that will provide a “positive” result for sufficiently dense matrices where p and q are
sufficiently far apart. Then, we will discuss this model more generally, with an emphasis on how
to deal with very low-degree nodes that lead to measure concentration problems. In particular,
we will focus on a form of regularized spectral clustering, as done by Qin and Rohe in their
paper “Regularized spectral clustering under the degree-corrected stochastic blockmodel.” This
has connections with what we have done with the Laplacian over the last few weeks.

To start, let M be the population adjacency matrix, i.e., the hypothesized matrix, as described
above. That is,

M =

(
p~1~1T q~1~1T

q~1~1T p~1~1T

)
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Then, let A be the empirical adjacency matrix, i.e., the actual matrix that is generated by flipping
coins and on which we will perform computations. This is generated as follows: let Aij = 1 w.p.
Mij and s.t. Aij = Aji. So, the basic goal is going to be to recover clusters in M by looking at
information in A.

Let’s look at the eigenvectors. First, since M~1 = n
2 (p+ q)~1, we have

µ1 =
n

2
(p+ q)

w1 = ~1,

where µ1 and w1 are the leading eigenvalue and eigenvector, respectively. Then, since the second
eigenvector (of M) is constant on each cluster, we have that Mw2 = µ2w2, where

µ2 =
n

2
(p− q)

w2 =

{
1√
n

if i ∈ V 1

− 1√
n

if i ∈ V 2
.

In that case, here is a simple algorithm for finding the planted bisection.

1. Compute v2, the eigenvector of second largest eigenvalue of A.

2. Set S = {i : v2(i) ≥ 0}

3. Guess that S is one side of the bisection and that S̄ is the other side.

We will show that under not unreasonable assumptions on p, q, and S, then by running this
algorithm one gets the hypothesized cluster mostly right.

Why is this?

The basic idea is that A is a perturbed version of M , and so by perturbation theory the eigenvectors
of A should look like the eigenvectors of M .

Let’s define R = A − M . We are going to view R as a random matrix that depends on the
noise/randomness in the coin flipping process. Since matrix perturbation theory bounds depend on
(among other things) the norm of the perturbation, the goal is to bound the probability that ‖R‖2
is large. There are several methods from random matrix theory that give results of this general
form, and one or the other is appropriate, depending on the exact statement that one wants to
prove. For example, if you are familiar with Wigner’s semi-circle law, it is of this general form.
More recently, Furedi-Komlos got another version; as did Krivelevich and Vu; and Vu. Here we
state a result due to Vu.

Theorem 1. With probability tending to one, if p ≥ c log
4(n)
n , for a constant c, then

‖R‖2 ≤ 3
√
pn.

The key question in theorems like this is the value of p. Here, one has that p ' log(n)
n , meaning that

one can get pretty sparse (relative to p = 1) but not extremely sparse (relative to p = 1
n or p = 3

n).
If one wants stronger results (e.g., not just mis-classifying only a constant fraction of the vertices,
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which we will do below, but instead that one predicts correctly for all but a small fraction of the
vertices), then one needs p to be larger and the graph to be denser. As with the ER example, the
reason for this is that we need to establish concentration of appropriate estimators.

Let’s go onto perturbation theory for eigenvectors. Let α1 ≥ α2 ≥ · · ·αn be the eigenvalues of A,
and let µ1 > µ2 > µ3 = · · ·µn = 0 be the eigenvalues of M .

Here is a fact from matrix perturbation theory that we mentioned before: for all i,

|αi − µi| ≤ ‖A−M‖2 = ‖R‖2.

The following two claims are easy to establish.

Claim 1. If ‖R‖2 < n
4 (p− q), then

n

4
(p− q) < α2 <

3n

4
(p− q)

Claim 2. If, in addition, q > p
3 , then 3n

4 (p− q) < α1.

From these results, we have a separation, and so we can view α2 as a perturbation of µ2. The
question is: can we view v2 as a perturbation of w2? The answer is Yes. Here is a statement of
this result.

Theorem 2. Let A, M be symmetric matrices, and let R = M − A. Let α1 ≥ · · · ≥ αn be
the eigenvectors of A, with v1, · · · , vn the corresponding eigenvectors. Let µ1 ≥ · · · ≥ µn be the
eigenvectors of M , with w1, · · · , wn the corresponding eigenvectors. Let θi be the angle between vi
and wi. Then,

sin θi ≤
2‖R‖2

minj 6=i |αi − αj |

sin θi ≤
2‖R‖2

minj 6=i |µi − µj |

Proof. WLOG, we can assume µi = 0, since the matrices M − µiI and A − αiI have the same
eigenvectors as M and A, and M − µiI has the ith eigenvalue being 0. Since the theorem is
vacuous if µi has multiplicities, we can assume unit multiplicity, and that wi is a unit vector in the
null space of M . Due to the assumption that µi = 0, we have that |αi| ≤ ‖R‖2.

Then, expand vi in an eigenbasis of M : vi =
∑

j cjwj , where cj = wTj vi. Let δ = minj |µj |. Then
observe that

‖Mvi‖22 =
∑
j

c2jµ
2
j ≥

∑
j 6=i

c2jδ
2 = δ2

∑
j 6=i

c2j = δ2
(
1− c2i

)
= δ2 sin2 θi

and also that
‖Mvi‖ ≤ ‖Avi‖+ ‖Rvi‖ = αi + ‖Rvi‖ ≤ 2‖R‖2.

So, from this it follows that sin θi ≤ 2‖R‖2
δ .
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This is essentially a version of the Davis-Kahan result we saw before. Note that it says that the
amount by which eigenvectors are perturbed depends on how close are other eigenvalues, which is
what we would expect.

Next, we use this for partitioning the simple SBM. We want to show that not too many vertices
are mis-classified.

Theorem 3. Given the two-class SBM defined above, assume that p ≥ c log
4(n)
n and that q > p/3.

If one runs the spectral algorithm described above, then at most a constant fraction of the vertices
are misclassified.

Proof. Consider the vector ~δ = v2 − w2. For all i ∈ V that are misclassified by v2, we have that
|δ(i)| ≥ 1√

n
. So, if v2 misclassified k vertices, then ‖δ‖ ≥

√
k/n. Since u and v are unit vectors, we

have the crude bound that ‖δ‖ ≤
√

2 sin θ2.

Next, we can combine this with the perturbation theory result above. Since q > p/3, we have that

minj 6=2 |µ2 − µi| = n
2 (p− q); and since p ≥ c log

4(n)
n , we have that ‖R‖ ≤ 3

√
pn. Then,

sin θ2 ≤
3
√
pn

n
2 (p− q)

=
6
√
p

√
n(p− q)

.

So, the number k of mis-classified vertices satisfies
√

k
n ≤

6
√
p√

n(p−q) , and thus k ≤ 36p
(p−q)2 .

So, in particular, if p and q are both constant, then we expect to misclassify at most a constant
fraction of the vertices. E.g., if p = 1

2 and q = p − 12√
n

, then 36p
(p−q)2 = n

8 , and so only a constant

fraction of the vertices are misclassified.

This analysis is a very simple result, and it has been extended in various ways.

• The Ng et al. algorithm we discussed before computes k vectors and then does k means,
making similar gap assumptions.

• Extensions to have more than two blocks, blocks that are not the same size, etc.

• Extensions to include degree variability, as well as homophily and other empirically-observed
properties of networks.

The general form of the analysis we have described goes through to these cases, under the following
types of assumptions.

• The matrix is dense enough. Depending on the types of recovery guarantees that are hoped
for, this could mean that Ω(n) of the edges are present for each node, or perhaps Ω(polylog(n))
edges for each node.

• The degree heterogeneity is not too severe. Depending on the precise algorithm that is run,
this can manifest itself by placing an upper bound on the degree of the highest degree node
and/or placing a lower bound on the degree of the lowest degree node.

• The number of clusters is fixed, say as a function of n, and each of the clusters is not too
small, say a constant fraction of the nodes.
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Importantly, none of these simplifying assumptions are true for most “real world” graphs. As such,
there has been a lot of recent work focusing on dealing with these issues and making algorithms
for SBMs work under broader assumptions. Next, we will consider one such extension.

24.4 Regularized spectral clustering for SBMs

Here, we will consider a version of the degree-corrected SBM, and we will consider doing a form of
regularized spectral clustering (RSC) for it.

Recall the definition of the basic SBM.

Definition 1. Given nodes V = [n], let z : [n] → [k] be a partition of the n nodes into k blocks,
i.e., zi is the block membership of the ith node. Let B ∈ [0, 1]k×k. Then, under the SBD, we have
that the probability of an edge between i and j is

Pij = Bzizj , for all i, j ∈ {1, . . . , n}.

In particular, this means that, given z, the edges are independent.

Many real-world graphs have substantial degree heterogeneity, and thus it is common to in corporate
this into generative models. Here is the extension of the SBM to the Degree-corrected stochastic
block model (DC-SBM), which introduces additional parameters θi, for i ∈ [n], to control the
node degree.

Definition 2. Given the same setup as for the SBM, specify also additional parameters θi, for
i ∈ [n]. Then, under the DC-SBM, the probability of an edge between i and j is

Pij = θiθjBzizj ,

where θiθjBzizj ∈ [0, 1], for all i, j ∈ [n].

Note: to make the DC-SBM identifiable (i.e., so that it is possible in principle to learn the true
model parameters, say given an infinite number of observations, which is clearly a condition that
is needed for inference), one can impose the constraint that

∑
i θiδzi,r = 1, for each block r. (This

condition says that
∑

i θi = 1 within each block.) In this case Bst, for s 6= t, is the expected number
of links between block s and block t; and Bst, for s = t, is the expected number of links within
block s.

Let’s say that A ∈ {0, 1}n×n is the adjacency matrix; L = D−1/2AD−1/2. In addition, let A = E [A]
be the population matrix, under the DC-SBM. Then, one can express A as A = ΘZBZTΘ, where
Θ ∈ Rn×n = diag(θi), and where Z ∈ {0, 1}n×k is a membership matrix with Zit = 1 iff node i is
in block t, i.e., if zi = t.

We are going to be interested in very sparse matrices, for which the minimum node degree is very
small, in which case a vanilla algorithm will fail to recover the SBM blocks. Thus, we will need to
introduce a regularized version of the Laplacian. Here is the definition.

Definition 3. Let τ > 0. The regularized graph Laplacian is Lτ = D
−1/2
τ AD

−1/2
τ ∈ Rn×n, with

Dτ = D + τI, for τ > 0.
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This is defined for the empirical data; but given this, we can define the corresponding popula-
tion quantities:

Dii =
∑
j

Aij

Dτ = D + τI

L = D−1/2AD−1/2

Lτ = D−1/2τ AD−1/2τ

Two things to note.

• Under the DC-SBM, if the model is identifiable, then one should be able to determine the
partition from A (which we don’t have direct access to, given the empirical data).

• One also wants to determine the partition from the empirical data A, under broader assump-
tions than before, in particular under smaller minimum degree.

Here is a description of the basic algorithm of Qin and Rohe. Basically, it is the Ng et al. algorithm
that we described before, except that we apply it to the regularized graph Laplacian, i.e., it involves
finding the leading eigenvectors of Lτ and then clustering in the low dimensional space.

Given as input an Adjacency Matrix A, the number of clusters k, and the regularizer τ ≥ 0.

1. Compute Lτ .

2. Compute the matrix Xτ = [Xτ
1 , . . . , X

τ
k ] ∈ Rn×k, the orthogonal matrix consisting of the k

largest eigenvectors of Lτ .

3. Compute the matrix X∗τ ∈ Rn×k by normalizing each row of Xτ to have unit length, i.e.,
project each row of Xτ onto the unit sphere in Rk, i.e., X∗,τij = Xτ

ij/
∑

j X
τ,2
ij .

4. Run k means on the rows of X∗τ to create k non-overlapping clusters V1, . . . , Vk.

5. Output V1, . . . , Vk; node i is assigned to cluster r if the ith tow of X∗τ is assigned to V .

There are a number of empirical/theoretical tradeoffs in determining the best value for τ , but one
can think of τ as being the average node degree.

There are several things one can show here.

First, one can show that Lτ is close to Lτ .

Theorem 4. Let G be the random graph with P [edge bw ij] = Pij. Let δ = miniDii be the minimum
expected degree of G. If δ + τ > O (log(n)), then with constant probability

‖Lτ − Lτ‖ ≤ O(1)

√
log(n)

δ + τ
.

Remark. Previous results required that the minimum degree δ ≥ O(log(n)), so this result gener-
alizes these to allow δ to be much smaller, assuming the regularization parameter τ is large enough.
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Importantly, typical real networks do not satisfy the condition that δ ≥ O(log(n)), and RSC is
most interesting when this condition fails. So, we can apply this result in here to graph with small
node degrees.

Remark. The form of Lτ is similar to many of the results we have discussed, and one can
imagine implementing RSC (and obtaining this theorem as well as those given below) by computing
approximations such as what we have discussed. So far as I know, that has not been done.

Second, one can bound the difference between the empirical and population eigenvectors. For this,
one needs an additional concept.

• Given an n× k matrix A, the statistical leverage scores of A are the diagonal elements of the
projection matrix onto the span of A.

In particular, if the n × k matrix U is an orthogonal matrix for the column span of A, then the
leverage scores of A are the Euclidean norms of the rows of U . For a “tall” matrix A, the ith

leverage score has an interpretation in terms of the leverage or influence that the ith row of an A
has on the least-squares fit problem defined by A. In the following, we will use an extension of the
leverage scores, defined relative to the best rank-k approximation the the matrix.

Theorem 5. Let Xτ and Xτ be in Rn×k contain the top k eigenvectors of Lτ and Lτ , respectively.
Let

ξ = min
i
{min{‖Xi

τ‖2, ‖X iτ‖2}}.

Let X∗τ and X ∗τ be the row normalized versions of Xτ and Xτ . Assume that
√

k log(n)
δ+τ ≤ O(λk) and

δ + τ > O(log(n)). Then, with constant probability,

‖Xτ −XτO‖F ≤ O

(
1

λk

√
k log(n)δ + τ

)
‖X∗τ −X ∗τ O‖F ≤ O

(
1

ξλk

√
k log(n)δ + τ

)
,

where O is a rotation matrix.

Note that the smallest leverage score enters the second expression but not the first expression. That
is, it does not enter the bounds on the empirical quantities, but it does enter into the bounds for
the population quantities.

We can use these results to derive misclassification rate for RSC. The basic idea for the misclassifi-
cation rate is to run k-means on the rows of X∗τ and also on the rows of X ∗τ . Then, one can say that
a node on the empirical data is clustered correctly if it is closer to the centroid of the corresponding
cluster on the population data. This basic idea needs to be modified to take into account the fact
that if any λi are equal, then only the subspace spanned by the eigenvectors is identifiable, so we
consider this up to a rotation O.

Definition 4. If CiO is closer to Ci than any other Cj, then we say that the node is correctly
clustered; and we define the misclassified nodes to be

M =
{
i : ∃j 6= i s.t. ‖CiOT − Ci‖2 > ‖CiOT − Cj

}
.
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Third, one can bound the misclassification rate of the RCS classifier with the following theorem.

Theorem 6. With constant probability, the misclassification rate is

|M|
n
≤ c k log(n)

nξ2(δ + τ)λ2k
.

Here too the smallest leverage score determines the overall quality.

Remark. This is the first result that explicitly relates leverage scores to the statistical performance
of a spectral clustering algorithm. This is a large topic, but to get a slightly better sense of it,

recall that the leverage scores of Lτ are ‖X iτ‖22 =
θτi∑

j θ
τ
j δzjzi

. So, in particular, if a node i has a

small expected degree, then θτi is small and ‖X iτ‖2 is small. Since ξ appears in the denominator
of the above theorems, this leads to a worse bound for the statistical claims in these theorems. In
particular, the problem arises due to projecting Xi

τ onto the unit sphere, i.e., while large-leverage
nodes don’t cause a problem, errors for small-leverage rows can be amplified—this didn’t arise
when we were just making claims about the empirical data, e.g., the first claim of Theorem ??,
but when considering statistical performance, e.g., the second claim of Theorem ?? or the claim of
Theorem ??, for nodes with small leverage score it amplifies noisy measurements.
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