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Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

21 Strongly and weakly locally-biased graph partitioning

Last time we introduced an objective function (LocalSpectral) that looked like the usual global
spectral partitioning problem, except that it had a locality constraint, and we showed that its
solution is of the form of a PPR vector. Today, we will do two things.

• We will introduce a locally-biased graph partitioning problem, we show that the solution to
LocalSpectral can be used to compute approximate solutions to that problem.

• We describe the relationship between this problem and what the strongly-local spectral meth-
ods, e.g., the ACL push method, compute.

21.1 Locally-biased graph partitioning

We start with a definition.

Definition 1 (Locally-biased graph partitioning problem.). Given a graph G = (V,E), an input
node u ∈ V , a number k ∈ Z+, find a set of nodes T ⊂ V s.t.

φ(u, k) = min
T⊂V :u∈T,Vol(T )≤k

φ(T ),

i.e., find the best conductance set of nodes of volume not greater than k that contains the node u.

That is, rather than look for the best conductance cluster in the entire graph (which we considered
before), look instead for the best conductance cluster that contains a specified seed node and that
is not too large.

Before proceeding, let’s state a version of Cheeger’s Inequality that applies not just to the leading
nontrivial eigenvector of L but instead to any “test vector.”

Theorem 1. Let x ∈ Rn s.t. xTD~1 = 0. Then there exists a t ∈ [n] such that S ≡ SweepCutt(x) ≡
{i : xi ≥ t} satisfies xTLx

xTDx
≥ φ(S)2

8 .

Remark. This form of Cheeger’s Inequality provides additional flexibility in at least two ways.
First, if one has computed an approximate Fiedler vector, e.g., by running a random walk many

1



steps but not quite to the asymptotic state, then one can appeal to this result to show that Cheeger-
like guarantees hold for that vector, i.e., one can obtain a “quadratically-good” approximation to
the global conductance objective function using that vector. Alternatively, one can apply this to
any vector, e.g., a vector obtained by running a random walk just a few steps from a localized seed
node. This latter flexibility makes this form of Cheeger’s Inequality very useful for establishing
bounds with both strongly and weakly local spectral methods.

Let’s also recall the objective with which we are working; we call it LocalSpectral(G, s, κ) or Local-
Spectral. Here it is.

min xTLGx

s.t. xTDGx = 1

(xTDG1)2 = 0

(xTDGs)
2 ≥ κ

x ∈ Rn

Let’s start with our first result, which says that LocalSpectral is a relaxation of the intractable
combinatorial problem that is the locally-biased version of the global spectral paritioning problem
(in a manner analogous to how the global spectral partitioning problem is a relaxation of the
intractable problem of finding the best conductance partition in the entire graph). More precisely,
we can choose the seed set s and correlation parameter κ such that LocalSpectral(G, s, κ) is a
relaxation of the problem defined in Definition 1.

Theorem 2. For u ∈ V , LocalSpectral(G, v{u}, 1/k) is a relaxation of the problem of finding a
minimum conductance cut T in G which contains the vertex u and is of volume at most k. In
particular, λ(G, v{u}, 1/k) ≤ φ(u, k).

Proof. If we let x = vT in LocalSpectral(G, v{u}, 1/k), then vTTLGvT = φ(T ), vTTDG1 = 0, and

vTTDGvT = 1. Moreover, we have that

(vTTDGv{u})
2 =

du(2m− vol(T ))

vol(T )(2m− du)
≥ 1/k,

which establishes the lemma.

Next, let’s apply sweep cut rounding to get locally-biased cuts that are quadratically good, thus
establishing a locally-biased analogue of the hard direction of Cheeger’s Inequality for this problem.
In particular, we can apply Theorem 1 to the optimal solution for LocalSpectral(G, v{u}, 1/k) and
obtain a cut T whose conductance is quadratically close to the optimal value λ(G, v{u}, 1/k). By

Theorem 2, this implies that φ(T ) ≤ O(
√
φ(u, k)), which essentially establishes the following

theorem.

Theorem 3 (Finding a Cut). Given an unweighted graph G = (V,E), a vertex u ∈ V and a positive
integer k, we can find a cut in G of conductance at most O(

√
φ(u, k)) by computing a sweep cut of

the optimal vector for LocalSpectral(G, v{u}, 1/k).

Remark. What this theorem states is that we can perform a sweep cut over the vector that is
the solution to LocalSpectral(G, v{u}, 1/k) in order to obtain a locally-biased partition; and that
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this partition comes with quality-of-approximation guarantees analogous to that provided for the
global problem Spectral(G) by Cheeger’s inequality.

We can also use the optimal value of LocalSpectral to provide lower bounds on the conductance
value of other cuts, as a function of how well-correlated they are with the input seed vector s. In
particular, if the seed vector corresponds to a cut U , then we get lower bounds on the conductance
of other cuts T in terms of the correlation between U and T .

Theorem 4 (Cut Improvement). Let G be a graph and s ∈ Rn be such that sTDG1 = 0, where
DG is the degree matrix of G. In addition, let κ ≥ 0 be a correlation parameter. Then, for all sets

T ⊆ V such that κ′
def
= (sTDGvT )2, we have that

φ(T ) ≥
{
λ(G, s, κ) if κ ≤ κ′
κ′

κ · λ(G, s, κ) if κ′ ≤ κ.

In particular, if s = sU for some U ⊆ V, then note that κ′ = K(U, T ).

Proof. It follows from the results that we established in the last class that λ(G, s, κ) is the same
as the optimal value of SDPp(G, s, κ) which, by strong duality, is the same as the optimal value
of SDPd(G, s, κ). Let α?, β? be the optimal dual values to SDPd(G, s, κ). Then, from the dual
feasibility constraint LG − α?LKn − β?(DGs)(DGs)

T � 0, it follows that

sTTLGsT − α?sTTLKnsT − β?(sTDGsT )2 ≥ 0.

Notice that since sTTDG1 = 0, it follows that sTTLKnsT = sTTDGsT = 1. Further, since sTTLGsT =
φ(T ), we obtain, if κ ≤ κ′, that

φ(T ) ≥ α? + β?(sTDGsT )2 ≥ α? + β?κ = λ(G, s, κ).

If on the other hand, κ′ ≤ κ, then

φ(T ) ≥ α? + β?(sTDGsT )2 ≥ α? + β?κ ≥ κ′

κ
· (α? + β?κ) =

κ′

κ
· λ(G, s, κ).

Finally, observe that if s = sU for some U ⊆ V, then (sTUDGsT )2 = K(U, T ). Note that strong
duality was used here.

Remark. We call this result a “cut improvement” result since it is the spectral analogue of the
flow-based “cut improvement” algorithms we mentioned when doing flow-based graph partitioning.

• These flow-based cut improvement algorithms were originally used as a post-processing algo-
rithm to improve partitions found by other algorithms. For example, GGT, LR (Lang-Rao),
and AL (which we mentioned before).

• They provide guarantees of the form: for any cut
(
C, C̄

)
that is ε-correlated with the input

cut, the cut output by the cut improvement algorithm has conductance ≤ some function of
the conductance of

(
C, C̄

)
and ε.

• Theorem 4 shows that, while the cut value output by this spectral-based “improvement”
algorithm might not be improved, relative to the input, as they are often guaranteed to do
with flow-based cut-improvement algorithms, they do not decrease in quality too much, and
in addition one can make claims about the cut quality of “nearby” cuts.
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• Although we don’t have time to discuss it, these two operations can be viewed as building
blocks or “primitives” that can be combined in various ways to develop algorithms for other
problems, e.g., finding minimum conductance cuts.

21.2 Relationship between strongly and weakly local spectral methods

So far, we have described two different ways to think about local spectral algorithms.

• Operational. This approach provides an algorithm, and one can prove locally-biased Cheeger-
like guarantees. The exact statement of these results is quite complex, but the running time
of these methods is extremely fast since they don’t even need to touch all the nodes of a
big graph.

• Optimization. This approach provides a well-defined optimization objective, and one can
prove locally-biased Cheeger-like guarantees. The exact statement of these results is much
simpler, but the running time is only moderately fast, since it involves computing eigenvectors
or linear equations on sparse graphs, and this involves at least touching all the nodes of a
big graph.

An obvious question here is the following.

• Shat is the precise relationship between these two approaches?

We’ll answer this question by considering the weakly-local LocalSpectral optimization problem (that
we’ll call MOV below) and the PPR-based local spectral algorithm due to ACL (that we’ll call ACL
below). What we’ll show is roughly the following.

• We’ll show roughly that if MOV optimizes an `2 based penalty, then ACL optimizes an
`1-regularized version of that `2 penalty.

That’s interesting since `1 regularization is often introduced to enforce or encourage sparsity. Of
course, there is no `1 regularization in the statement of the strongly local spectral methods like
ACL, but clearly they enforce some sort of sparsity, since they don’t even touch most of the
nodes of a large graph. Thus, this result can be interpreted as providing an implicit regularization
characterization of a fast approximation algorithm.

21.3 Setup for implicit `1 regularization in strongly local spectral methods

Recall that L = D −A = BTCB, where B is the unweighted edge-incidence matrix. Then

‖Bx‖C,1 =
∑

(ij)∈E

C(ij)|xi − xj | = cut(S),

where S = {i : xi = 1}. In addition, we can obtain a spectral problem by changing ‖ · ‖1 → ‖ · ‖2
to get

‖Bx‖2C,2 =
∑

(ij)∈E

C(ij) (xi − xj)2
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Let’s consider a specific (s, t)-cut problem that is inspired by the AL FlowImprove procedure. To
do so, fix a set of vertices (like we did when we did the semi-supervised eigenvector construction),
and define a new graph that we will call the “localized cut graph.” Basically, this new graph will
be the original graph augmented with two additional nodes, call them s and t, that are connected
by weights to the nodes of the original graph. Here is the definition.

Definition 2 (localized cut graph). Let G = (V,E) be a graph, let S be a set of vertices, possibly
empty, let S̄ be the complement set, and let α be a non-negative constant. Then the localized cut
graph is the weighted, undirected graph with adjacency matrix:

AS =

 0 αdTS 0
αdS A αdS̄

0 αdT
S̄

0


where dS = DeS is a degree vector localized on the set S, A is the adjacency matrix of the original
graph G, and α ≥ 0 is a non-negative weight. Note that the first vertex is s and the last vertex is t.

We’ll use the α and S parameter to denote the matrices for the localized cut graph. For example,
the incidence matrix B(S) of the localized cut graph, which depends on the set S, is given by
the following.

B(S) =

 e −IS 0
0 B 0
0 −IS̄ e

 ,
where, recall, the variable IS are the columns of the identity matrix corresponding to vertices in S.
The edge-weights of the localized cut graph are given by the diagonal matrix C(α), which depends
on the value α.

Given this, recall that the 1-norm formulation of the LP for the min-s, t-cut problem, i.e., the
minimum weighted s, t cut in the flow graph, is given by the following.

min ‖Bx‖C(α),1

s.t. xs = 1, xt = 0, x ≥ 0.

Here is a theorem that shows that PageRank implicitly solves a 2-norm variation of the 1-norm
formulation of the s, t-cut problem.

Theorem 5. Let B(S) be the incidence matrix for the localized cut graph, and C(α) be the edge-
weight matrix. The PageRank vector z that solves

(αD + L)z = αv

with v = dS/vol(S) is a renormalized solution of the 2-norm cut computation:

min ‖B(S)x‖C(α),2 (1)

s.t. xs = 1, xt = 0.

Specifically, if x(α, S) is the solution of Prob. (1), then

x(α, S) =

 1
vol(S)z

0

 .
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Proof. The key idea is that the 2-norm problem corresponds with a quadratic objective, which
PageRank solves. The quadratic objective for the 2-norm approximate cut is:

‖B(S)x‖2C(α),2 = xTB(S)TC(α)B(S)x

= xT

 αvol(S) −αdTS 0
−αdS L+ αD −αdS̄

0 −αdS̄ αvol(S̄)

x.
If we apply the constraints that xs = 1 and xt = 0 and let xG be the free set of variables, then we
arrive at the unconstrained objective:

[
1 xTG 0

]  αvol(S) −αdTS 0
−αdS L+ αD −αdS̄

0 −αdS̄ αvol(S̄)

 1
xG
0


= xTG(L+ αD)xG − 2αxTGdS + αvol(S).

Here, the solution xG solves the linear system

(αD + L)xG = αdS .

The vector xG = vol(S)z, where z is the solution of the PageRank problem defined in the theorem,
which concludes the proof.

Theorem 5 essentially says that for each PR problem, there is a related cut/flow problem that
“gives rise” to it. One can also establish the reverse relationship that extracts a cut/flow problem
from any PageRank problem.

To show this, first note that the proof of Theorem 5 works since the edges we added had weights
proportional to the degree of the node, and hence the increase to the degree of the nodes was
proportional to their current degree. This causes the diagonal of the Laplacian matrix of the
localized cut graph to become αD+D. This idea forms the basis of our subsequent analysis. For a
general PageRank problem, however, we require a slightly more general definition of the localized
cut graph, which we call a PageRank cut graph. Here is the definition.

Definition 3. Let G = (V,E) be a graph, and let s ≥ 0 be a vector such that d − s ≥ 0. Let s
connect to each node in G with weights given by the vector αs, and let t connect to each node in
G with weights given by α(d− s). Then the PageRank cut graph is the weighted, undirected graph
with adjacency matrix:

A(s) =

 0 αsT 0
αs A α(d− s)
0 α(d− s)T 0

 .
We use B(s) to refer to the incidence matrix of this PageRank cut graph. Note that if s = dS , then
this is simply the original construction.

With this, we state the following theorem, which is a sort of converse to Theorem 5. The proof is
similar to that of Theorem 5 and so it is omitted.

Theorem 6. Consider any PageRank problem that fits the framework of

(I − βP T )x = (1− β)v.
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The PageRank vector z that solves
(αD + L)z = αv

is a renormalized solution of the 2-norm cut computation:

min ‖B(s)x‖C(α),2 (2)

xs = 1, xt = 0

with s = v. Specifically, if x(α, S) is the solution of the 2-norm cut, then

x(α, s) =

 1
z
0

 .
Two things are worth noting about this result.

• A corollary of this result is the following: if s = e, then the solution of a 2-norm cut is a
reweighted, renormalized solution of PageRank with v = e/n. That is, as a corollary of this
approach, the standard PageRank problem with v = e/n gives rise to a cut problem where s
connects to each node with weight α and t connects to each node v with weight α(dv − 1).

• This also holds for the semi-supervised learning results we discussed. In particular, e.g., the
procedure of Zhou et al. for semi-supervised learning on graphs solves the following:

(I − βD−1/2AD−1/2)−1Y.

(The other procedures solve a very similar problem.) This is exactly a PageRank equation
for a degree-based scaling of the labels, and thus the construction from Theorem 6 is directly
applicable.

21.4 Implicit `1 regularization in strongly local spectral methods

In light of these results, let’s now move onto the ACL procedure. We will show a connection between
it and an `1 regularized version of an `2 objective, as established in Theorem 6. In particular, we
will show that the ACL procedure for approximating a PPR vector exactly computes a hybrid
1-norm 2-norm variant of the min-cut problem. The balance between these two terms (the `2
term from Problem 2 and an additional `1 term) has the effect of producing sparse PageRank
solutions that also have sparse truncated residuals, and it also provides an interesting connection
with `1-regularized `2-regression problems.

We start by reviewing the ACL method and describing it in such a way to make these connections
easier to establish.

Consider the problem (I − βAD−1)x = (1 − β)v, where v = ei is localized onto a single node. In
addition to the PageRank parameter β, the procedure has two parameters: τ > 0 is a accuracy
parameter that determines when to stop, and 0 < ρ ≤ 1 is an additional approximation term
that we introduce. As τ → 0, the computed solution x goes to the PPR vector that is non-zero
everywhere. The value of ρ has been 1/2 in most previous implementations of the procedure; and
here we present a modified procedure that makes the effect of ρ explicit.
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1. x(1) = 0, r(1) = (1− β)ei, k = 1

2. while any rj > τdj (where dj is the degree of node j)

3. x(k+1) = x(k) + (rj − τdjρ)ej

4. r
(k+1)
i =


τdjρ i = j

r
(k)
i + β(rj − τdjρ)/dj i ∼ j
r

(k)
i otherwise

5. k ← k + 1

As we have noted previously, one of the important properties of this procedure is that the algorithm
maintains the invariant r = (1−β)v−(I−βAD−1)x throughout. For any 0 ≤ ρ ≤ 1, this algorithm
converges because the sum of entries in the residual always decreases monotonically. At the solution
we will have

0 ≤ r ≤ τd,

which provides an ∞-norm style worst-case approximation guarantee to the exact PageRank solu-
tion.

Consider the following theorem. In the same way that Theorem 6 establishes that a PageRank
vector can be interpreted as optimizing an `2 objective involving the edge-incidence matrix, the
following theorem establishes that, in the case that ρ = 1, the ACL procedure to approximate
this vector can be interpreted as solving an `1-regularized `2 objective. That is, in addition to
approximating the solution to the objective function that is optimized by the PPR, this algorithm
also exactly computes the solution to an `1 regularized version of the same objective.

Theorem 7. Fix a subset of vertices S. Let x be the output from the ACL procedure with ρ = 1,
0 < β < 1, v = dS/vol(S), and τ fixed. Set α = 1−β

β , κ = τvol(S)/β, and let zG be the solution on
graph vertices of the sparsity-regularized cut problem:

min 1
2‖B(s)z‖2C(α),2 + κ‖Dz‖1 (3)

s.t. zs = 1, zt = 0, z ≥ 0,

where z =

 1
zG
0

 as above. Then x = DzG/vol(S).

Proof. If we expand the objective function and apply the constraint zs = 1, zt = 0, then Prob. (3)
becomes:

min 1
2z
T
G(αD + L)zG − αzTGdS + α2vol(S) + κdT zG (4)

s.t. zG ≥ 0

Consider the optimality conditions of this quadratic problem (where s are the Lagrange multipliers):

0 = (αD + L)zG − αdS̄ + κd− s
s ≥ 0

zG ≥ 0

zTGs = 0.
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These are both necessary and sufficient because (αD + L) is positive definite. In addition, and for
the same reason, the solution is unique.

In the remainder of the proof, we demonstrate that vector x produced by the ACL method satisfies
these conditions. To do so, we first translate the optimality conditions to the equivalent PageRank
normalization:

0 = (I − βAD−1)DzG/vol(S)− (1− β)dS/vol(S) + βκ/vol(S)d− βs/vol(S)

s ≥ 0 zG ≥ 0 zTGs = 0.

When the ACL procedure finishes with β, ρ, and τ as in the theorem, the vectors x and r satisfy:

r = (1− β)v − (I − βAD−1)x

x ≥ 0

0 ≤ r ≤ τd = βκ/vol(S)d.

Thus, if we set s such that βs/vol(S) = βκ/vol(S)d − r, then we satisfy the first condition with
x = DzG/vol(S). All of these transformations preserve x ≥ 0 and zG ≥ 0. Also, because τd ≥ r,
we also have s ≥ 0. What remains to be shown is zTGs = 0.

Here, we show xT (τd− r) = 0, which is equivalent to the condition zTGs = 0 because the non-zero
structure of the vectors is identical. Orthogonal non-zero structure suffices because zGs = 0 is
equivalent to either xi = 0 or τdi − ri = 0 (or both) for all i. If xi 6= 0, then at some point in
the execution, the vertex i was chosen at the step rj > τdj . In that iteration, we set ri = τdi. If
any other step increments ri, we must revisit this step and set ri = τdi again. Then at a solution,
xi 6= 0 requires ri = τdi. For such a component, si = 0, using the definition above. For xi = 0, the
value of si is irrelevant, and thus, we have xT (τd− r) = 0.

Remark. Finally, a comment about ρ, which is set to 1 in this theorem but equals 1/2 in most
prior uses of the ACL push method. The proof of Theorem 7 makes the role of ρ clear. If ρ < 1,
then the output from ACL is not equivalent to the solution of Prob. (3), i.e., the renormalized
solution will not satisfy zTGs = 0; but setting ρ < 1, however, will compute a solution much more
rapidly. It is a nice open problem to get a clean statement of implicit regularization when ρ < 1.

9


