Stat260/CS294: Spectral Graph Methods Lecture 16 - 03/17/2015

Lecture: Modeling graphs with electrical networks

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

16 Electrical network approach to graphs

So far, we have been adopting the usual approach to spectral graph theory: understand graphs via
the eigenvectors and eigenvalues of associated matrices. For example, given a graph G = (V, E), we
defined an adjacency matrix A and considered the eigensystem Av = Av, and we also defined the
Laplacian matrix L = D— A and considered the Laplacian quadratic form l’TL{L‘—Z(i er(Ti —z;)%
There are other ways to think about spectral graph methods that, while related, are different in
important ways. In particular, one can draw from physical intuition and define physical-based
models from the graph G, and one can also consider more directly vectors that are obtained from
various diffusions and random walks on G. We will do the former today, and we will do the latter
next time.

16.1 A physical model for a graph

In many physical systems, one has the idea that there is an equilibrium state and that the system
goes back to that equilibrium state when disturbed. When the system is very near equilibrium, the
force pushing it back to the equilibrium state is quadratic in the displacement from equilibrium,
one can often define a potential energy that in linear in the displacement from equilibrium, and
then the equilibrium state is the minimum of that potential energy function.

In this context, let’s think about the edges of a graph G = (V, F) as physical “springs,” in which
case the weights on the edges correspond to a spring constant k. Then, the force, as a function
of the displacement = from equilibrium, is F'(x) = kx, and the corresponding potential energy is
U(z) = %ksz. In this case, i.e., if the graph is viewed as a spring network, then if we nail down
some of the vertices and then let the rest settle to an equilibrium position, then we are interested
in finding the minimum of the potential energy

Z (z; — z;)* = 27 La,
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subject to the constraints on the nodes we have nailed down. In this case, the energy is minimized
when the non-fixed vertices have values equal to



i.e., when the value on any node equals is the average of the values on its neighbors. (This is the
so-called harmonic property which is very important, e.g., in harmonic analysis.)

As we have mentioned previously and will go into in more detail below, eigenvectors can be unstable
things, and having some physical intuition can only help; so let’s go a little deeper into these
connections.

First, recall that the standard/weighted geodesic graph metric defines a distance d(a,b) between
vertices a and b as the length of the minimum-length path, i.e., number of edges or the sum of
weights over edges, on the minimum-length path connecting a and b. (This is the “usual” notion
of distance/metric on the nodes of a graph, but it will be different than distances/metrics implied
by spectral methods and by what we will discuss today.)

Here, we will model a graph G = (V, E) as an electrical circuit. (By this, we mean a circuit that
arises in electromagnetism and electrical engineering.) This will allow us to use physical analogues,
and it will allow us to get more robust proofs for several results. In addition, it allow us to define
another notion of distance that is closer to diffusions.

As background, here are some physical facts from electromagnetism that we would like to mimic
and that we would like our model to incorporate.

e A basic direct current electrical circuit consists of a battery and one or more circuit elements
connected by wires. Although there are other circuit elements that are possible, here we will
only consider the use of resistors. A battery consists of two distinct vertices, call them {a, b},
one of which is the source, the other of which is the sink. (Although we use the same terms,
“source” and “sink,” as we used with flow-based methods, the sources and since here will obey
different rules.) A resistor between two points a and b, i.e., between two nodes in G, has
an associated (undirected and symmetric) quantity r4, called a resistance (and an associated
conductance ¢y, = %) Also, there is a current Yy, and a potential difference V,, between
nodes a and b.

Initially, we can define the resistance between two nodes that are connected by an edge to depend
(typically inversely) on the weight of that edge, but we want to extend the idea of resistance to
a resistance between any two nodes. To do so, an important notion is that of effective resistance,
which is the following. Given a collection of resistors between nodes a and b, they can be replaced
with a single effective resistor with some other resistance. Here is how the value of that effective
resistance is determined.

e If ¢ and b have a node ¢ between them, i.e., the resistors are in series, and there are resistances
r1 = R, and 7o = Ry, then the effective resistance between a and b is given by Ry, = 71 +72.

e If a and b have no nodes between them but they are connected by two edges with resistances
r1 and 79, i.e., the resistors are in parallel, then the effective resistance between a and b is

given by Ry, = L.
TR

e These rules can be applied recursively.

From this it should be clear that the number of paths as well as their lengths contribute to the
effective resistance. In particular, having k parallel edges/paths leads to an effective resistance that
is decreased by %; and adding the first additional edge between two nodes has a big impact on the



effective resistance, but subsequent edges have less of an effect. Note that this is vaguely similar to
the way diffusions and random walks behave, and distances/metrics they might imply, as opposed
to geodesic paths/distances defined above, but there is no formal connection (yet!).

Let a voltage source be connected between vertices a and b, and let Y > 0 be the net current out
of source a and into course b. Here we define two basic rules that our resistor networks must obey.

Definition 1. The Kirchhoff current law states that the current Y;; between vertices i and j (where
Yi; = —Yji) satisfies

Y 1=a
Y V=4 =Y  i=b :
FEN(3) free otherwise

where N (i) refers to the nodes that are neighbors of node i.
Definition 2. The Kirchhoff circuit/potential law states that for every cycle C in the network,

Y YijRi;j =0.

(ij)eC
From Definition 2, it follows that there is a so-called potential function on the vertices/nodes of
the graph. This is known as Ohm’s Law.

Definition 3. Ohm’s Law states that, to any vertez i in the vertex set of G, there is an associated
potential, call it Vi, such that for all edges (ij) € E in the graph

YiiRij =V; = V.

Given this potential function, we can define the effective resistance between any two nodes in G,
i.e., between two nodes that are not necessarily connected by an edge.

Definition 4. Given two nodes, a and b, in G, the effective resistance is Ry, = %

Fact. Given a graph G with edge resistances R;j, and given some source-sink pair (a,b), the
effective resistance exists, it is unique, and (although we have defined it in terms of a current) it
does not depend on the net current.

16.2 Some properties of resistor networks

Although we have started with this physical motivation, there is a close connection between resistor
networks and what we have been discussing so far this semester.

To see this, let’s start with the following definition, which is a special case of the Moore-Penrose
pseudoinverse.

Definition 5. The Laplacian pseudoinverse is the unique matrix satisfying:

1. LYT=0; and

2 Forallw L 1: Ltw=wvst Lv=wandv L 1.



Given this, we have the following theorem. Note that here we take the resistances on edges to be
the inverse of the weights on those edges, which is probably the most common choice.

Theorem 1. Assume that the resistances of the edges of G = (V, E) are given by R;; = u%” Then,
the effective resistance between any two nodes a and b is given by:

Ry = (eq— eb)T LT (eq — €p)
= Lj,—2L +L}.

Proof. The idea of the proof is that, given a graph, edge resistances, and net current, there always
exists currents Y and potentials V' satisfying Kirchhoff’s current and potential laws; in addition,
the vector of potentials is unique up to a constant, and the currents are unique. I'll omit the details
of this since it is part of HW2. d

Since the effective resistance between any two nodes is well-defined, we can define the total effective
resistance of the graph. (This is sometimes called the Kirchhoff index.)

Definition 6. The total effective resistance is R = Z%:l R;;.

Before proceeding, think for a minute about why one might be interested in such a thing. Below,
we will show that the effective resistance is a distance; and so the total effective resistance is the
sum of the distances between all pairs of points in the metric space. Informally, this can be used
to measure the total “size” or “capacity” of a graph. We used a similar thing (but for the geodesic
distance) when we showed that expander graphs had a © (log(n)) duality gap. In that case, we did
this, essentially, by exploiting the fact that there was a lot of flow to route and since most pairs of
nodes were distance O (log(n)) apart in the geodesic distance.

The quantity R can be expressed exactly in terms of the Laplacian eigenvalues (all of them, and
not just the first one or first few). Here is the theorem (that we won’t prove).

Theorem 2. Let \; be the Laplacian eigenvalues. Then, R =nY " | /\%

Of course, we can get a (weak) bound on R using just the leading nontrivial Laplacian eigenvalue.

Corollary 1.

n o~ Rtot < n(n —1)

A2 A2

Next, we show that the effective resistance is a distance function. For this reason, it is sometimes
called the resistance distance.

Theorem 3. The effective resistance R is a metric.

Proof. We will establish the three properties of a metric.

First, from the above theorem, R;; = 0 <= i = j. The reason for this is since e; — e; is in
the null space of L™ (which is the span(1)) iff i = j. Since the pseudoinverse of L has eigenvalues
0, Ay %, ..., A\, 1, it is PSD, and so R;; > 0.

Second, since the pseudoinverse is symmetric, we have that R;; = Rj;.
So, the only nontrivial thing is to show the triangle inequality holds.

To do so, we show two claims.



1 at a

Claim 1. Let Y, be the vector e, — e, = -1 at b and let Vo = LTYy,. Then,
0 elsewhere,

Vab(a) > Vab(c) > Vab(b); fOT all c.

Proof. Recall that V,; is the induced potential when we have 1 Amp going in @ and 1 Amp coming
out of b. For every vertex ¢, other than a and b, the total flow is 0, which means ). R%DC(Vab(a:) -

M where Cy. = Ri is the conductance between

zre YTe xC

Vap(c)) = 0, and it is easy to see Vy(c) =
x,c. Vg(c) has a value equal to the weighted average of values of V,;(x) at its neighbors. We can
use this to prove the claim by contradiction. Assume that there exists a ¢ s.t. Vgp(c) > Vgp(a). If
there are several such nodes, then let ¢ be the node s.t. Vgp(c) is the largest. In this case, Vy(c) is
larger than the values at its neighbors. This is a contradiction, since V, is a weighted average of the
potentials at its neighbors. The proof of the other half of the claim is similar. (also Vyp(a) > Vip(b)
as Vap(a) — Vap(b) = Rap > 0) O

Claim 2. Reff(a, b) + Reff(b, c) > Reff(a,c)
Proof. Let Y, and Y. be the external current from sending one unit of current from a — b and

b — ¢, respectively. Note that Y. = Yy, + Y. Define the voltages V,, = LYy, Vie = LY}, and
Ve = LY. By linearity, V,. = V,p, + Vie. Thus, it follows that

Reff (a7 C) = YQY(;VULC = YaI;Vab + YaY;%C'
By Claim 1, it follows that
VEVay = Vap(a) — Vap(e) < Vap(a) — Vap(b) = Resp(a,b).

Similarly, Y,LVie < Resp(b,c). This establishes the claim. O
The theorem follows from these two claims. O
Here are some things to note regarding the resistance distance.

e R.;s is non-increasing function of edge weights.
e R.rs does not increase when edges are added.

e R strictly decreases when edges are added and weights are increased.

Note that these observations are essentially claims about the distance properties of two graphs, call
them G and G’, when one graph is constructed from the other graph by making changes to one or
more edges.

We have said that both geodesic distances and resistances distances are legitimate notions of dis-
tances between the nodes on a graph. One might wonder about the relationship between them. In
the same way that there are different norms for vectors in R™, e.g., the ¢1, {2, and {,, and those
norms have characteristic sizes with respect to each other, so too we can talk about the relative
sizes of different distances on nodes of a graph. Here is a theorem relating the resistance distance
with the geodesic distance.



Theorem 4. For R.;s and the geodesic distance d:

1. Reyg(a,b) = d(a,b) iff there exists only one path between a and b.
2. Repp(a,b) < d(a,b) otherwise.

Proof. If there is only one path P between a and b, then Y;; = Y, for all ij on this path (by
Kirchhoff current law), and V; — V; = Y R;;. It follows that

Vo — Vi Vi-V;
Rab: aY b: Z % = Z ‘/ij:dab'
(ij)eP (ij)eP

If a path between a and b is added, so that now there are multiple paths between a and b, this new
path might use part of the path P. If it does, then call that part of the path P;; consider the rest
of P, and call the shorter of these P, and the larger Ps.

Observe that the current through each edge of P; is Y; and, in addition, that the current through
each edge of P, and Ps is the same for each edge in the path, call them Y5 and Y3, respectively.
Due to Kirchhoff current law and Kirchhoff circuit/potential law, we have that Yo + Y3 = Y and
also that Y5, Y3 > 0, from which it follows that Y < Y. Finally,

Va - V;)
A

L oy VY V-V,

-yt Ty
(ij)ePy (ij)EP2

L oy VY V-V,

R Vi cub P Wi
(ij)ePy (ij)EP2

= D By+ ) Ry
(if)eP (if)€P,

= d(a,b)

The result follows since R.ry doesn’t increase when edges are added. O

In a graph that is a tree, there is a unique path between any two vertices, and so we have the
following result.

Claim 3. The metrics Reyy and d are the same in a tree. That is, on a tree, Reys(a,b) = d(a,b),
for all nodes a and b.
Fact. R.;; can be used to bound several quantities of interest, in particular the commute time,

the cover time, etc. We won’t go into detail on this.

Here is how R.f; behaves in some simple examples.

e Complete graph K,,. Of all graphs, this has the minimum Rz‘}tf: chtf(Kn) =n—1.

e Path graph P,. Among connected graphs, the path graph has the maximum R : Ré%c (P,) =
tn—1)n(n+1).

e Star S,. Among trees, this has the minimum Réjff: Réjff(Sn) =(n—1)>2



16.3 Extensions to infinite graphs

All of what we have been describing so far is for finite graphs. Many problems of interest have to do
with infinite graphs. Perhaps the most basic is whether random walks are recurrent. In addition to
being of interest in its own right, considering this question on infinite graphs should provide some
intuition for how random walked based spectral methods perform on the finite graphs we have been
considering.

Definition 7. A random walk is recurrent if the walker passes through every point with probability
1, or equivalently if the walker returns to the starting point with probability 1. Otherwise, the
random walk is transient.

Note that—if we were to be precise—then we would have to define this for a single node, be precise
about which of those two notions we are considering, etc. It turns out that those two notions are
equivalent and that a random walk is recurrent for one node iff it is recurrent for any node in the
graphs. We’ll not go into these details here.

For irreducible, aperiodic random walks on finite graphs, this discussion is of less interest, since
a random walk will eventually touch every node with probability proportional to its degree; but
consider three of the simplest infinite graphs: Z, Z?, and Z3. Informally, as the dimension increases,
there are more neighbors for each node and more space to get lost in, and so it should be harder
to return to the starting node. Making this precise, i.e., proving whether a random walk on these
graphs is recurrent is a standard problem, one version of which appears on HW2.

The basic idea for this that you need to use is to use something called Rayleigh’s Monotonicity Law
as well as the procedures of shorting and cutting. Rayleigh’s Monotonicity Law is a version of the
result we described before, which says that R.;s between two points a and b varies monotonically
with individual resistances. Then, given this, one can use this to do two things to a graph G:

e Shorting vertices u and v: this is “electrical vertex identification.”

e (Clutting edges between u and v: this is “electrical edge deletion.”

Both of these procedures involve constructing a new graph G’ from the original graph G (so that
we can analyze G’ and make claims about ). Here are the things you need to know about shorting
and cutting:

e Shorting a network can only decrease Ry ;.

e Cutting a network can only increase Rcy;.

For Z2, if you short in “Manhattan circles” around the origin, then this only decreases R, rf» and
you can show that R,y = oo on the shorted graph, and thus R, = oo on the original 72. For 73,
if you cut in a rather complex way, then you can show that R.f; < co on the cut graph, meaning
that R.fs < oo on the original Z3. This, coupled with the following theorem, establish the result
random walks on Z? are recurrent, but random walks on Z? are transient.

Theorem 5. A network is recurrent iff Reys = oo.

Using these ideas to prove the recurrence claims is left for HW2: getting the result for Z is straight-
forward; getting it for Z2 is more involved but should be possible; and getting it for Z3 is fairly
tricky—Ilook it up on the web, but it is left as extra credit.



