
Stat260/CS294: Spectral Graph Methods Lecture 12 - 03/03/2015

Lecture: Some Practical Considerations (1 of 4)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

12 How spectral clustering is typically done in practice

Today, we will shift gears. So far, we have gone over the theory of graph partitioning, including
spectral (and non-spectral) methods, focusing on why and when they work. Now, we will describe
a little about how and where these methods are used. In particular, for the next few classes, we
will talk somewhat informally about some practical issues, e.g., how spectral clustering is done in
practice, how people construct graphs to analyze their data, connections with linear and kernel
dimensionality reduction methods. Rather than aiming to be comprehensive, the goal will be to
provide illustrative examples (to place these results in a broader context and also to help people
define the scope of their projects). Then, after that, we will get back to some theoretical questions
making precise the how and where. In particular, we will then shift to talk about how diffusions
and random walks provide a robust notion of an eigenvector and how they can be used to extend
many of the vanilla spectral methods we have been discussing to very non-vanilla settings. This
will then lead to how we can use spectral graph methods for other related problems like manifold
modeling, stochastic blockmodeling, Laplacian solvers, etc.

Today, we will follow the von Luxburg review. This review was written from a machine learning
perspective, and in many ways it is a very good overview of spectral clustering methods; but beware:
it also makes some claims (e.g., about the quality-of-approximation guarantees that can be proven
about the output of spectral graph methods) that—given what we have covered so far—you should
immediately see are not correct.

12.1 Motivation and general approach

The motivation here is two-fold.

• Clustering is an extremely common method for what is often called exploratory data analysis.
For example, it is very common for a person, when confronted with a new data set, to try to
get a first view of the data by identifying subsets of it that have similar behavior or properties.

• Spectral clustering methods in particular are a very popular class of clustering methods. They
are usually very simple to implement with standard linear algebra libraries; and they often
outperform other methods such as k-means, hierarchical clustering, etc.

The first thing to note regarding general approaches is that Section 2 of the von Luxburg review
starts by saying “Given a set of data points x1, . . . , xn and some notion of similarity sij ≥ 0 between

1

all pairs of data points xi and xj ...” That is, the data are vectors. Thus, any graphs that might
be constructed by algorithms are constructed from primary data that are vectors and are useful as
intermediate steps only. This will have several obvious and non-obvious consequences. This is a
very common way to view the data (and thus spectral graph methods), especially in areas such as
statistics, machine learning, and areas that are not computer science algorithms. That perspective
is not good or bad per se, but it is worth emphasizing that difference. In particular, the approach
we will now discuss will be very different than what we have been discussing so far, which is more
common in CS and TCS and where the data were a graph G = (V,E), e.g., the single web graph out
there, and thus in some sense a single data point. Many of the differences between more algorithmic
and more machine learning or statistical approaches can be understood in terms of this difference.
We will revisit it later when we talk about manifold modeling, stochastic blockmodeling, Laplacian
solvers, and related topics.

12.2 Constructing graphs from data

If the data are vectors with associated similarity information, then an obvious thing to do is to
represent that data as a graph G = (V,E), where each vertex v ∈ V is associated with a data
point xi an edge e = (vivj) ∈ E is defined if sij is larger than some threshold. Here, the threshold
could perhaps equals zero, and the edges might be weighted by sij . In this case, an obvious idea
to cluster the vector data is to cluster the nodes of the corresponding graph.

Now, let’s consider how to specify the similarity information sij . There are many ways to construct
a similarity graph, given the vectors {xi}ni=1 data points as well as pairwise similarity (or distance)
information sij (of dij). Here we describe several of the most popular.

• ε-NN graphs. Here, we connect all pairs of points with distance dij ≤ ε. Since the distance
“scale” is set (by ≤ ε), it is common not to including the weights. The justification is that,
in certainly idealized situations, including weights would not incorporate more information.

• k-NN graphs. Here, we connect vertex i with vertex j if vi is among the k-NN of vi,
where NNs are given by the distance dij . Note that this is a directed graph. There are two
common ways to make it undirected. First, ignore directions; and second, include an edge if
(vi connects to vj AND vj connects to vi) or if (vi connects to vj OR vj connects to vi). In
either of those cases, the number of edges doesn’t equal k; sometimes people filter it back to
exactly k edges per node and sometimes not. In either case, weights are typically included.

• Fully-connected weighted graphs. Here, we connect all points with a positive similarity
to each other. Often, we want the similarity function to represent local neighborhoods, and
so sij is either transformed into another form or constructed to represent this. A popular
choice is the Gaussian similarity kernel

s(xi, xj) = exp

(
1

2σ2
‖xi − xj‖22

)
,

where σ is a parameter that, informally, acts like a width. This gives a matrix that has a
number of nice properties, e.g., it is positive and it is SPSD, and so it is good for MLers who
like kernel-based methods. Moreover, it has a strong mathematical basis, e.g., in scientific
computing. (Of course, people sometimes use this sij = s(xi, xj) information to construct
ε-NN or k-NN graphs.)

2

Note that in describing those various ways to construct a graph from the vector data, we are
already starting to see a bunch of knobs that can be played with, and this is typical of these graph
construction methods.

Here are some comments about that graph construction approach.

• Choosing the similarity function is basically an art. One of the criteria is that typically one is
not interested in resolving differences that are large, i.e., between moderately large and very
large distances, since the goal is simply to ensure that those points are not close and/or since
(for domain-specific reasons) that is the least reliable similarity information.

• Sometimes this approach is of interest in semi-supervised and transductive learning. In this
case, one often has a lot of unlabeled data and only a little bit of labeled data; and one wants
to use the unlabeled data to help define some sort of geometry to act as a prior to maximize
the usefulness of the labeled data in making predictions for the unlabeled data. Although this
is often thought of as defining a non-linear manifold, you should think of it at using unlabeled
data to specify a data-dependent model class to learn with respect to. (That makes sense
especially if the labeled and unlabeled data come from the same distribution, since in that
case looking at the unlabeled data is a kin to looking at more training data.) As we will see,
these methods often have an interpretation in terms of a kernel, and so they are used to learn
linear functions in implicitly-defined feature spaces anyway.

• k-NN, ε-NN, and fully-connected weighted graphs are all the same in certain very idealized
situations, but they can be very different in practice. k-NN often homogenizes more, which
people often like, and/or it connects points of different “size scales,” which people often
find useful.

• Choosing k, ε, and σ large can easily “short circuit” nice local structure, unless (and sometimes
even if) the local structure is extremely nice (e.g., one-dimensional). This essentially injects
large-scale noise and expander-like structure; and in that case one should expect very different
properties of the constructed graph (and thus very different results when one runs algorithms).

• The fully-connected weighted graph case goes from being a rank-one complete graph to being
a diagonal matrix, as one varies σ. An important question (that is rarely studied) is how does
that graph look like as one does a “filtration” from no edges to a complete graph.

• Informally, it is often thought that mutual-k-NN is between ε-NN and k-NN: it connects
points within regions of constant density, but it doesn’t connect regions of very different
density. (For ε-NN, points on different scales don’t get connected.) In particular, this means
that it is good for connecting clusters of different densities.

• If one uses a fully-connected graph and then sparsifies it, it is often hoped that the “funda-
mental structure” is revealed and is nontrivial. This is true in some case, some of which we
will return to later, but it is also very non-robust.

• As a rule of thumb, people often choose parameters s.t. ε-NN and k-NN graphs are at least
“connected.” While this seems reasonable, there is an important question of whether it
homogenizes too much, in particular if there are interesting heterogeneities in the graph.

3

12.3 Connections between different Laplacian and random walk matrices

Recall the combinatorial or non-normalized Laplacian

L = D −W,

and the normalized Laplacian

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2.

There is also a random walk matrix that we will get to more detail on in a few classes and that for
today we will call the (somewhat non-standard name) random walk Laplacian

Lrw = D−1L = I −D−1W = D−1/2LsymD
1/2.

Here is a lemma connecting them.

Lemma 1. Given the above definitions of L, Lsym, and Lrw, we have the following.

1. For all x ∈ Rn,

xTLsymx =
1

2

∑
ij

Wij

(
xi√
di
− xj√

dj

)2

.

2. λ is an eigenvalue of Lrw with eigenvector u iff λ is an eigenvalue of Lsym with eigenvector
w = D1/2u

3. λ is an eigenvalue of Lrw with eigenvector u iff λ and u solve the generalized eigenvalue
problem Lu = λDu.

4. 0 is an eigenvalue of Lrw with eigenvector ~1 iff 0 is an eigenvalue of Lsym with eigenvector
D1/2~1

5. Lsym and Lrw are PSD and have n non-negative real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λn.

Hopefully none of these claims are surprising by now, but they do make explicit some of the
connections between different vectors and different things that could be computed, e.g., one might
solve the generalized eigenvalue problem Lu = λDu or run a random walk to approximate u and
then from that rescale it to get a vector for Lsym.

12.4 Using constructed data graphs

Spectral clustering, as it is often used in practice, often involves first computing several eigenvectors
(or running some sort of procedures that compute some sort of approximate eigenvectors) and then
performing k-means in a low-dimensional space defined by them. Here are several things to note.

• This is harder to analyze than the vanilla spectral clustering we have so far been considering.
The reason is that one must analyze the k means algorithm also. In this context, k-means is
essentially used as a rounding algorithm.

4

• A partial justification of this is provided by the theoretical result on using the leading k
eigenvectors that you considered on the first homework.

• A partial justification is also given by a result we will get to below that shows that it works
in very idealized situations.

We can use different Laplacians in different ways, as well as different clustering, k-means, etc.
algorithms in different ways to get spectral-like clustering algorithms. Here, we describe 3 canonical
algorithms (that use L, Lrw, and Lsym) to give an example of several related approaches.

Assume that we have n points, x1, . . . , xn, that we measure pairwise similarities sij = s(xi, xj)
with symmetric nonnegative similarity function, and that we denote the similarity matrix by S =
(Sij)i,j=1,...,n. The following algorithm, let’s call it PopularSpectralClustering, takes as input

a similarity matrix S ∈ Rn×n and a positive integer k ∈ Z+ which is the number of clusters; and it
returns k clusters. It does the following steps.

1. Construct a similarity graph (e.g., with ε-NN, k-NN, fully-connected graph, etc.)

2. Compute the unnormalized Laplacian L = D −A.

3. • If (use L)
then compute the first k eigenvectors u1, . . . , uk of L,

• else if (use Lrw)
then compute first k generalized eigenvectors u1, . . . , uk of the generalized eigenvalue
problem Lu = λDu. (Note by the above that these are eigenvectors of Lrw.)

• else if (use Lsym)
then compute the first k eigenvectors u1, . . . , uk of Lsym.

4. Let U ∈ Rn×k be the matrix containing the vevtors u1, . . . , uk as columns.

5. • If (use Lsym)

then uij ← uij/
(∑

k u
2
ik

)1/2
, i.e., normalize U row-wise.

6. For i = {1, . . . , n}, let yi ∈ Rk be a vector containing the ith row of U .

7. Cluster points (yi)i∈[n] in Rk with a k-means algorithm into clusters, call them C1, . . . , Ck.

8. Return: clusters A1, . . . , Ak, with Ai = {j : yj ∈ Ci}.

Here are some comments about the PopularSpectralClustering algorithm.

• The first step is to construct a graph, and we discussed above that there are a lot of knobs.
In particular, the PopularSpectralClustering algorithm is not “well-specified” or “well-
defined,” in the sense that the algorithms we have been talking about thus far are. It might
be better to think of this as an algorithmic approach, with several knobs that can be played
with, that comes with suggestive but weaker theory than what we have been describing so far.

• k-means is often used in the last step, but it is not necessary, and it is not particularly
principled (although it is often reasonable if the data tend to cluster well in the space defined
by U). Other methods have been used but are less popular, presumably since k-means is

5

good enough and there are enough knobs earlier in the pipeline that the last step isn’t the
bottleneck to getting good results. Ultimately, to get quality-of-approximation guarantees for
an algorithm like this, you need to resort to a Cheeger-like bound or a heuristic justification
or weaker theory that provides justification in idealized cases.

• In this context, k-means is essentially a rounding step to take a continuous embedding, pro-
vided by the continuous vectors {yi}, where yi ∈ Rk, and put them into one of k discrete
values. This is analogous to what the sweep cut did. But we will also see that this embedding,
given by {yi}ni=1 can be used for all sorts of other things.

• Remark: If one considers the k-means objective function, written as an IP and then relaxes
it (from having the constraint that each data point goes into one of k clusters, written as
an orthogonal matrix with one nonzero per column, to being a general orthogonal matrix),
then you get an objective function, the solution to which can be computed by computing a
truncated SVD, i.e., the top k singular vectors. This provides a 2-approximation to the k-
means objective. There are better approximation algorithms for the k-means objective, when
measured by the quality-of-approximation, but this does provide an interesting connection.

• The rescaling done in the “If (use Lsym) then” is typical of many spectral algorithms, and
it can be the source of confusion. (Note that the rescaling is done with respect to (PU)ii =(
UUT

)
ii

, i.e., the statistical leverage scores of U , and this means that more “outlying” points
get down-weighted.) From what we have discussed before, it should not be surprising that
we need to do this to get the “right” vector to work with, e.g., for the Cheeger theory we
talked about before to be as tight as possible. On the other hand, if you are approaching this
from the perspective of engineering an algorithm that returns clusters when you expect them,
it can seem somewhat ad hoc. There are many other similar ad hoc and seemingly ad hoc
decisions that are made when engineering implementations of spectral graph methods, and
this lead to a large proliferation of spectral-based methods, many of which are very similar
“under the hood.”

All of these algorithms take the input data xi ∈ Rn and change the representation in a lossy way to
get data points yi ∈ Rk. Because of the properties of the Laplacian (some of which we have been
discussing, and some of which we will get back to), this often enhances the cluster properties of
the data.

In idealized cases, this approach works as expected, as the following example provides. Say that
we sample data points from R from four equally-spaced Gaussians, and from that we construct
a NN graph. (Depending on the rbf width of that graph, we might have an essentially complete
graph or an essentially disconnected graph, but let’s say we choose parameters as the pedagogical
example suggests.) Then λ1 = 0; λ2, λ3, and λ4 are small; and λ5 and up are larger. In addition,
v1 is flat; and higher eigenfunctions are sinusoids of increasing frequency. The first few eigenvectors
can be used to split the data into the four natural clusters (they can be chosen to be worse linear
combinations, but they can be chosen to split the clusters as the pedagogical example suggests).
But this idealized case is chosen to be “almost disconnected,” and so it shouldn’t be surprising that
the eigenvectors can be chosen to be almost cluster indicator vectors. Two things: the situation
gets much messier for real data, if you consider more eigenvectors; and the situation gets much
messier for real data, if the clusters are, say, 2D or 3D with realistic noise.

6

12.5 Connections with graph cuts and other objectives

Here, we will briefly relate what we have been discussing today with what we discussed over the last
month. In particular, we describe the graph cut point of view to this spectral clustering algorithm.
I’ll follow the notation of the von Luxburg review, so you can go back to that, even though this is
very different than what we used before. The point here is not to be detailed/precise, but instead
to remind you what we have been covering in another notation that is common, especially in ML,
and also to derive an objective that we haven’t covered but that is a popular one to which to add
constraints.

To make connections with the PopularSpectralClustering algorithm and MinCut, RatioCut,
and NormalizedCut, recall that

RatioCut(A1, . . . , Ak) =
1

2

k∑
i=1

W
(
Ai, Āi

)
|Ai|

=
k∑

i=1

cut
(
Ai, Āi

)
|Ai|

,

where cut(A1, . . . , Ak) = 1
2

∑k
i=1

(
Ai, Āi

)
.

First, let’s consider the case k = 2 (which is what we discussed before). In this case, we want to
solve the following problem:

min
A⊂V

RatioCut
(
A, Ā

)
. (1)

Given A ⊂ V , we can define a function f = (f1, . . . , fn)T ∈ Rn s.t.

fi =

{ √
|Ā|/|A| if vi ∈ A
−
√
|A|/|Ā| if vi ∈ Ā

. (2)

In this case, we can write Eqn. (1) as follows:

min
A⊂V

fTLf

s.t. f ⊥ ~1
f defined as in Eqn. (2)

‖f‖ =
√
n.

In this case, we can relax this objective to obtain

min
A⊂V

fTLf

s.t. f ⊥ ~1
‖f‖ =

√
n,

which can then be solved by computing the leading eigenvectors of L.

Next, let’s consider the case k > 2 (which is more common in practice). In this case, given a partition
of the vertex set V into k sets Ai, . . . , Ak, we can define k indicator vectors hj = (hij , . . . , hnj)

T by

hij =

{
1/
√
|Aj | vi ∈ Aj , i ∈ [n], j ∈ [k]

0 otherwise
. (3)

7

Then, we can set the matrix H ∈ Rn×k as the matrix containing those k indicator vectors as
columns, and observe that HTH = I, i.e., H is an orthogonal matrix (but a rather special one,
since it has only one nonzero per row).

We note the following observation; this is a particular way to write the RatioCut problem as a
Trace problem that appears in many places.

Claim 1. RatioCut(A1, . . . , Ak) = Tr(HTLH)

Proof. Observe that

hTi Lhi =
cut
(
Ai, Āi

)
|Ai|

and also that
hTi Lhi =

(
HTLH

)
ii
.

Thus, we can write

RatioCut (A1, . . . , Ak) =
k∑

i=1

hiLhi =
k∑

i=1

(
HTLH

)
ii

= Tr
(
HTLH

)
.

So, we can write the problem of

min RatioCut (A1, . . . , Ak)

as follows:

min
A1,...,Ak

Tr
(
HTLH

)
s.t. HTH = I

H defined as in Eqn. (3).

We can relax this by letting the entries of H be arbitrary elements of R (stil subject to the overall
orthogonality constraint on H) to get

min
H∈Rn×k

Tr
(
HTLH

)
s.t. HTH = I,

and the solution to this is obtained by computing the first k eigenvectors of L.

Of course, similar derivations could be provided for the NormalizedCut objective, in which case we
get similar results, except that we deal with degree weights, degree-weighted constraints, etc. In
particular, for k > 2, if we define indicator vectors hj = (hij , . . . , hnj)

T by

hij =

{
1/
√

Vol(Aj) vi ∈ Aj , i ∈ [n], j ∈ [k]
0 otherwise

. (4)

8

then the problem of minimizing NormalizedCut is

min
A1,...,Ak

Tr
(
HTLH

)
s.t. HTDH = I

H defined as in Eqn. (4),

and if we let T = D1/2H, then the spectral relaxation is

min
T∈Rn×k

Tr
(
T TD−1/2LD−1/2T

)
s.t. T TT = I,

and the solution T to this trace minimization problem is given by the leading eigenvectors of Lsym.
Then H = D−1/2T , in which case H consists of the first k eigenvectors of Lrw, or the first k
generalized eigenvectors of Lu = λDu.

Trace optimization problems of this general for arise in many related applications. For example:

• One often uses this objective as a starting point, e.g., to add sparsity or other constraints, as
in one variation of “sparse PCA.”

• Some of the methods we will discuss next time, i.e., LE/LLE/etc. do something very similar
but from a different motivation, and this provides other ways to model the data.

• As noted above, the k-means objective can actually be written as an objective with a similar
constraint matrix, i.e., if H is the cluster indicator vector for the points, then HTH = I and
H has one non-zero per row. If we relax that constraint to be any othogonal matrix such that
HTH = I, then we get an objective function, the solution to which is the truncated SVD;
and this provides a 2 approximation to the k-means problem.

9

