
Stat260/CS294: Spectral Graph Methods Lecture 11 - 02/26/2015

Lecture: Flow-based Methods for Partitioning Graphs (2 of 2)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

11 Flow-based methods, continued

Recall from last time that we are looking at flow-based graph partitioning algorithm. Last time, we
covered the basics of flow-based methods, and we showed how they are very different than spectral
methods. This time, we will discuss flow-based graph partitioning from an embedding perspective.
We will see that flow-based algorithms implicitly embed the data in a metric space, but one that is
very different than the place where spectral-based algorithms embed the data. Thus, not only do
they run different steps operationally and get incomparable quality of approximation bounds, but
also they implicitly put the data in a very different place—thus “explaining” many of the empirical
results that are empirically observed.

(BTW, I have made some comments that spectral methods can scale up to much larger input graphs
by using diffusion and random walk ideas, a topic we will get back to later. For the moment, let
me just note that the way flow is used is not immediately relevant for such “massive” data. For
example, the running time of a typical flow-based algorithm will be O(n2), since it involves a multi-
commodity variant of flow; single commodity variants of flow-based algorithms run in O(n3/2) time;
and more recent work has focused on using Laplacian solver ideas to do even better, i.e., to run
in time that is nearly-linear in the size of the input. There is a lot of interest, mostly from within
TCS so far, in this area; and these fast solvers hold the promise to make these methods applicable
to much larger graphs. I’m hoping to return to some of these Laplacian solver topics at the end of
the semester, and I’m also planning on giving at least give a brief introduction to some of the ideas
about how to couple spectral methods later.)

11.1 Review some things about `1 and `2

Let’s review a few things about `1 and `2 and related topics.

Definition 1. The `p-norm on Rk is ||x||p =
(∑k

i=1 |xi|
)1/p

. A finite metric space (X, ρ) is

realized in `kp if ∃f : X → Rk s.t. ρ(x, y) = ||f(x) − f(y)||2, and it is an `p-metric if it can be

realized by `kp for some k. The metric induced by `p is: d(x, y) = ||x− y||p, ∀x, y ∈ `p.

For flow-based methods, we will be most interested in `1, while for spectral-based methods, we are
interested in `2. The `p norm (except for p =∞, which we won’t discuss here) is usually of at most
more theoretical interest.

1

The spaces `1 and `2 are very different. (Think `1 regression, i.e., least absolute deviations, versus
`2 regression, i.e., least-squares regression; or think `1 regularized `2 regression, i.e., the lasso, versus
`2 regularized `2 regression, i.e., ridge regression. These differences are often “explained” in terms
of differences between the unit ball in the `1 norm versus the unit ball in the `2 norm, with the
former being “pointy” and the latter being “smooth.” In particular, note that in those situations
`1 often has some sort of connection with sparsity and sparse solutions.)

Here is a comparison between `1 and `2 with respect to the spectral/flow algorithms for the graph
partitioning problem we have been considering.

• `2 norm:

– Good for dimension reduction.

– Efficient polynomial time algorithm to compute embedding of any finite metric space.

– Connections to low-dimensional manifolds, diffusions, etc.

• `1 norm:

– No good for dimension reduction.

– NP-hard to compute the optimal embedding.

– Connections to partitions/cuts, multicommodity flow, etc.

The following is a fundamental result in the area that is also central to understanding why flow-
based graph partitioning algorithms work.

Theorem 1 (Bourgain). Every n-point metric space d admits an α-distortion embedding into `p,
∀p, with α = O(log n).

Proof idea. The proof is similar to but more general than the proof for the corresponding embedding
claim for `2. The idea is: to use the so-called Frechet embedding method, where the embedding is
given by the distance from points to carefully randomly chosen subsets of nodes.

Note that we saw the `2 version of this before. Note also that the original embedding had 2n

dimensions, but LLR proved that it can be done with O(log2 n) dimensions.

11.2 Connection between `1 metrics and cut metrics

First, recall what a metric is.

Definition 2. A metric is a function d : V × V → R s.t.: (1) d(x, y) = 0 if x = 0 (and sometimes
= 0 iff x = y); (2) d(x, y) = d(y, x); and (3) d(x, y) + d(x, z) ≤ d(x, y)

(Recall also that sometimes the word “metric” if one or more of those conditions is/are relaxed.)

Next, recall the definition of the “cut metric,” and recall that this is really not a metric but is
instead just a semi-metric.

2

Definition 3. Given G = (V,E) and a set S ⊂ V , δS is the “cut metric” for S if

δS(i, j) = |χS(i)− χS(j)|,

where

χS(i) =

{
0 if i ∈ S
1 otherwise.

Thus

δS(i, j) =

{
0 if i, j ∈ S, or i, j ∈ S̄
1 otherwise.

(That is, if δs(x, y) is the indicator of x and y being on different sides of S.)

There are important connection between `1 metrics and Cut metrics. In particular:

• There exists a representation of the `1 metrics as a conical combination of cut metrics.

• Cut metrics are the extreme rays of the `1 cone.

• For these reasons, instead of minimizing the ratio of linear functions over the convex cone,
we can minimize the ratio over the extreme rays of the convex cone. Minimum ratio function
over cone ⇐⇒ minimum over extreme rays.

We’ll spend most of today going over these results.

Fact: An n-point metric space can be associated with a vector in R(n2), with each coordinate
corresponding to a pair of vertices.

Fact: Given a metric d, we will refer to the corresponding vector as d̄. Then, αd̄ + (1 − α)d̄
′

is
a metric, ∀α ∈ [0, 1]. In addition, ∀α ≥ 0, ∀d̄, αd̄ is a metric. So, the set of all metrics forms a

convex cone in R(n2). In somewhat more detail, we have the following result:

Claim 1. The set of `1 metrics is a convex cone, i.e., if d1 and d2 ∈ `1 metrics, and if λ1, λ2 ∈ R+,
then λ1d1 + λ2d2 ∈ `1 metrics.

Proof. Recall that the line metric is an `1 metric. Let d(i)(x, y) = |xi − yi|, for x, y ∈ Rc. If d ∈ `1
metric, then it is the sum of line metrics.

Fact. The analogous result does not hold for `2.

Next, we have the following theorem:

Theorem 2. Let d be a finite `1 metric. Then, d can be written as

d =
∑
S⊂[n]

αSδS ,

for some constant αS and cut metrics δS. That is,

CUTn = {d : d =
∑
S⊆V

αSδS , α ≥ 0}

= Positive cone generated by cut metrics

= All n-point subsets of Rn, under the `1 norm.

3

Proof. Consider any metric d ∈ CUTn. Then, ∀S with αS > 0, we have a dimension, and in that
dimension, we can put {

αS if x ∈ S̄
0 if x ∈ S.

So, CUTn ⊆ `1 Metrics.

For the other direction, consider a set of n points from Rn. Take one dimension d and sort the
points in increasing values along that dimension. Say that we get v1, . . . , vk as the set of distinct
values; then define k − 1 cut metrics: Si = {x : xd < vi+1}, and let αi = vi+1 − vi, i.e., k − 1 coeff.
So, along this dimension, we have that

|xd − yd| =
k∑
i=1

αiδSi ,

But, one can construct cut metrics for every dimension. So, we have cut metrics in CUTn, ∀
n-point metrics `1; thus, `1 ⊆ CUT .

11.3 Relating this to a graph partitioning objective

Why is this result above useful? The usefulness of this characterization is that we are going to
want to to optimize functions, and rather than optimize functions over all cut metrics, i.e., over
the extreme rays, we will optimize over the full convex cone, i.e., over `1 metrics.

This leads us to the following lemma:

Lemma 1. Let C ⊂ Rn be a convex cone, and let f, g : Rn,+ → R+ be linear functions. And
assume that minx∈C

f(x)
g(x) exists. Then

min
x∈C

f(x)

g(x)
= min

x in extreme rays of C

f(x)

g(x)
.

Proof. Let x0 be the optimum. Since x0 ∈ C, we have that x0 =
∑

i aiyi, where ai ∈ R+ and
yi ∈ extreme rays of C. Thus,

f(x0)

g(x0)
=
f(
∑

i aiyi)

g(
∑

i aiyi)
=

∑
i f(aiyi)∑
i g(aiyi)

≥ f(ajyj)

g(ajyj)
where j is the min value

=
f(yi)

g(yi)
,

where the first and third line follow by linearity, and where the second line follows since∑
i αi∑
i βi
≥ min

j

αj
βj

in general.

4

To see the connections of all of this to sparsest cut problem, recall that given a graph G = (V,E)
we define the conductance hG and sparsity φG as follows:

hG := min
S⊆V

E(S, S̄)

min{|S|, |S̄|}

φG := min
S⊆V

E(S, S̄)
1
n |S||S̄|

,

and also that:
hG ≤ φG ≤ 2hG.

(This normalization might be different than what we had a few classes ago.)

Given this, we can write sparsest cut as the following optimization problem:

Lemma 2. Solving

φG = min
S⊆V

E(S, S̄)
1
n |S||S̄|

is equivalent to solving:

min
∑

(ij)∈E

dij

s.t.
∑
ij∈V

dij = 1

d ∈ `1metric

Proof. Let δS = the cut metric for S. Then,

|E(S, S̄)|
|S| · |S̄|

=

∑
ij∈E δS(i, j)∑
∀ij δS(i, j)

So,

φG = min
S

∑
ij∈E δS(i, j)∑
∀ij δS(i, j)

Since `1-metrics are linear combinations of cut metrics, and cut metrics are extreme rays of `1 from
the above lemma, this ratio is minimized at one of the extreme rays of the cone. So,

φG = min
d∈`1

∑
ij∈E dS(ij)∑
∀ij dS(ij)

.

Since this is invariant to scaling, WLOG we can assume
∑
∀ij dij = 1; and we get the lemma.

11.4 Turning this into an algorithm

It is important to note that the above formulation is still intractable—we have just changed the
notation/characterization. But, the new notation/characterization suggests that we might be able
to relax (optimize the same objective function over a larger set) the optimization problem—as we
did with spectral, if you recall.

5

So, the relaxation we will consider is the following: relax the requirement that d ∈ `1 Metric to
d ∈ Any Metric. We can do this by adding 3

(
n
3

)
triangle inequalities to get the following LP:

λ∗ = min
∑
ij∈E

dij

s.t.
∑
∀ij∈V

dij = 1

dij ≥ 0

dij = dji

dij ≤ dik + djk ∀i, j, k triples

(Obviously, since there are a lot of constraints, a naive solution won’t be good for big data, but we
will see that we can be a bit smarter.) Clearly,

λ∗ ≤ φ∗ = Solution with d ∈ `1 Metric constraint

(basically since we are minimizing over a larger set). So, our goal is to show that we don’t loose
too much, i.e., that:

φ∗ ≤ O(log n)λ∗.

Here is the Algorithm. Given as input a graph G, do the following:

• Solve the above LP to get a metric/distance d : V × V → R+.

• Use the (constructive) Bourgain embedding result to embed d into an `1 metric (with, of
course an associated O(log n) distortion).

• Round the `1 metric (the solution) to get a cut.

– For each dimension/direction, covert the `1 embedding/metric along that to a cut metric
representation.

– Choose the best.

Of course, this is what is going on under the hood—if you were actually going to do it on systems
of any size you would use something more specialized, like specialized flow or push-relabel code.

Here are several things to note.

• If we have `1 embedding with distortion factor ξ then can approximate the cut up to ξ.

• Everything above is polynomial time, as we will show in the next theorem.

• In practice, we can solve this with specialized code to solve the dual of corresponding multi-
commodity flow.

• Recall that one can “localize” spectral by running random walks from a seed node. Flow is
hard to localize, but recall the Improve algorithm, but which is still Õ(n3/2).

• We can combine spectral and flow, as we will discuss, in various ways.

6

Theorem 3. The algorithm above is a polynomial time algorithm to provide an O(log n) approxi-
mation to the sparsest cut problem.

Proof. First, note that solving the LP is a polynomial time computation to get a metric d∗. Then,
note that the Bourgain embedding lemma is constructive. Finding an embedding of d∗ to d ∈
`
O(log2 n)
1 with distortion O(log n). So, we can write d as a linear combination of O(n log2 n) cut

metrics d =
∑

S∈S αSδS , where |S| = O(n log2 n). Note:

min
S∈S

∑
ij∈E δS(ij)∑
∀ij δS(ij)

≤
∑

ij∈E dij∑
∀ij dij

≤ O(log n)

∑
ij∈E d

∗
ij∑

∀ij d
∗
ij

,

where the first inequality follows since d is in the cone of cut metrics, and where the second
inequality follows from Bourgain’s theorem. But,∑

ij∈E d
∗
ij∑

∀ij d
∗
ij

= min
d
′ is metric

∑
ij∈E d

′
ij∑

∀ij d
′
ij

≤ min
∀S

∑
ij∈E dS(ij)∑
∀ij dS(ij)

,

where the equality follows from the LP solution and the inequality follows since LP is a relaxation
of a cut metric. Thus,

min
S∈S

∑
ij∈E δS(ij)∑
∀ij δS(ij)

≤ O(log n) min
∀S

∑
ij∈E dS(ij)∑
∀ij dS(ij)

.

This establishes the theorem.

So, we can also approximate the value of the objective—how do we actually find a cut from this?
(Note that sometimes in the theory of approximation algorithms you don’t get anything more than
an approximation to the optimal number, but that is somewhat dissatisfying if you want you use
the output of the approximation algorithm for some downstream data application.)

To see this:

• Any `1 metric can be written as a conic combination of cut metrics—in our case, with
O(n logn) nonzeros—dσ =

∑
S αSδS .

• So, pick the best cut from among the ones with nonzero α in the cut decomposition of dσ.

11.5 Summary of where we are

Above we showed that

φG = min
S⊂V

E(S, S̄)

|S||S̄|
= min

∑
ij∈E

dij

s.t.
∑
ij∈V

dij = 1

d ∈ `1 metric

7

can be approximated by relaxing it to

min
∑
ij∈E

dij

s.t.
∑
ij∈V

dij = 1

d ∈ Metric

This relaxation is different than the relaxation associated with spectral, where we showed that

φ = min
x∈{0,1}V

Aij |xi − xj |2
1
n

∑
ij |xi − xj |2

can be relaxed to

d− λ2 = min
x⊥~1

Aij(xi − xj)2
1
n

∑
ij(xi − xj)2

which can be solved with the second eigenvector of the Laplacian.

Note that these two relaxations are very different and incomparable, in the sense that one is not
uniformly better than the other. This is related to them succeeding and failing in different places,
and it is related to them parametrizing problems differently, and it can be used to diagnose the
properties of how each class of algorithms performs on real data. Later, we will show how to
generalize this previous flow-based result and combine it with spectral.

Here are several questions that the above discussion raises.

• What else can you relax to?

• In particular, can we relax to something else and improve the O(log n) factor?

• Can we combine these two incomparable ideas to get better bounds in worst-case and/or in
practice?

• Can we combine these ideas to develop algorithms that smooth or regularize better in appli-
cations for different classes of graphs?

• Can we use these ideas to do better learning, e.g., semi-supervised learning on graphs?

We will address some of these questions later in the term, as there is a lot of interest in these and
related questions.

8

