
Stat260/CS294: Spectral Graph Methods Lecture 9 - 02/19/2015

Lecture: Expanders, in theory and in practice (2 of 2)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

9 Expanders, continued

Here, we will describe how expanders are the metric spaces that are least like low-dimensional
Euclidean spaces (or, for that matter, any-dimensional Euclidean spaces). Someone asked at the
end of the previous class about what would an expander “look like” if we were to draw it. The
point of these characterizations of expanders—that they don’t have good partitions, that they
embed poorly in low dimensional spaces, etc.—is that you can’t draw them to see what they look
like, or at least you can’t draw them in any particularly meaningful way. The reason is that if
you could draw them on the board or a two-dimensional piece of paper, then you would have an
embedding into two dimensions. Relatedly, you would have partitioned the expander into two parts,
i.e., those nodes on the left half of the page, and those nodes on the right half of the page. Any such
picture would have roughly as many edges crossing between the two halves as it had on either half,
meaning that it would be a non-interpretable mess. This is the reason that we are going through
this seemingly-circuitous characterizations of the properties of expanders—they are important, but
since they can’t be visualized, we can only characterize their properties and gain intuition about
their behavior via these indirect means.

9.1 Introduction to Metric Space Perspective on Expanders

To understand expanders from a metric space perspective, and in particular to understand how
they are the metric spaces that are least like low-dimensional Euclidean spaces, let’s back up a bit
to the seemingly-exotic subject of metric spaces (although in retrospect it will not seem so exotic
or be so surprising that it is relevant).

• Finite-dimensional Euclidean space, i.e., Rn, with n < ∞, is an example of a metric space
that is very nice but that is also quite nice/structured or limited.

• When you go to infinite-dimensional Hilbert spaces, things get much more complex; but ∞-
dimensional RKHS, as used in ML, are ∞-dimensional Hilbert spaces that are sufficiently
regularized that they inherit most of the nice properties of Rn.

• If we measure distances in Rn w.r.t. other norms, e.g., `1 or `∞, then we step outside the
domain of Hilbert spaces to the domain of Banach spaces or normed vector spaces.

• A graph G = (V,E) is completely characterized by its shortest path or geodesic metric; so the
metric space is the nodes, with the distance being the geodesic distance between the nodes.

1

Of course, you can modify this metric by adding nonnegative weights to edges like with some
nonlinear dimensionality reduction methods. Also, you can assign a vector to vertices and
thus view a graph geometrically. (We will get back to the question of whether there are other
distances that one can associate with a graph, e.g., resistance of diffusion based distances;
and we will ask what is the relationship between this and geodesic distance.)

• The data may not be obviously a matrix or a graph. Maybe you just have similarity/dissimilarity
information, e.g., between DNA sequences, protein sequences, or microarray expression levels.
Of course, you might want to relate these things to matrices or graphs in some way, as with
RKHS, but let’s deal with metrics first.

So, let’s talk aobut metric spaces more generally. The goal will be to understand how good/bad
things can be when we consider metric information about the data.

So, we start with a definition:

Definition 1. (X, d) is a metric space if

• d : X ×X → R+ (nonnegativity)

• d(x, y) = 0 iff x = y

• d(x, y) = d(y, x) (symmetric)

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

The idea is that there is a function over the set X that takes as input pairs of variables that
satisfies a generalization of what our intuition from Euclidean distances is: namely, nonnegativity,
the second condition above, symmetry, and the triangle inequality. Importantly, this metric does
not need to come from a dot product, and so although the intuition about distances from Euclidean
spaces is the motivation, it is significantly different and more general. Also, we should note that if
various conditions are satisfied, then various metric-like things are obtained:

• If the second condition above is relaxed, but the other conditions are satisfied, then we have
a psuedometric.

• If symmetry is relaxed, but the other conditions are satisfied, then we have a quasimetric.

• If the triangle inequality is relaxed , but the other conditions are satisfied, then we have a
semimetric.

We should note that those names are not completely standard, and to confuse matters further
sometimes the relaxed quantities are called metrics—for example, we will encounter the so-called
cut metric describing distances with respect to cuts in a graph, which is not really a metric since
the second condition above is not satisfied.

More generally, the distances can be from a Gram matrix, a kernel, or even allowing algorithms in
an infinite-dimensional space.

Some of these metrics can be a little counterintuitive, and so for a range of reasons it is useful
to ask how similar or different two metrics are, e.g., can we think of a metric as a tweak of a
low-dimensional space, in which case we might hope that some of our previous machinery might
apply. So, we have the following question:

2

Question 1. How well can a given metric space (X, d) be approximated by `2, where `2 is the
metric space (Rn, || · ||), where ∀x, y ∈ Rn, we have ||x− y||2 =

∑n
i=1(xi − yi)2.

The idea here is that we want to replace the metric d with something d′ that is “nicer,” while still
preserving distances—in that case, since a lot of algorithms use only distances, we can work with
d′ in the nicer place, and get results that are algorithmically and/or statistically better without
introducing too much error. That is, maybe it’s faster without too much loss, as we formulated it
before; or maybe it is better, in that the nicer place introduced some sort of smoothing. Of course,
we could ask this about metrics other than `2; we just start with that since we have been talking
about it.

There are a number of ways to compare metric spaces. Here we will start by defining a measure of
distortion between two metrics.

Definition 2. Given a metric space (X, d) and our old friend the metric space (Rn, `2), and a
mapping f: X → Rn:

• expansion(f) = maxx1,x2∈X
||f(x1)−f(x2)||2

d(x1,x2)

• contraction(f) = max d(x1,x2)
||f(x1)−f(x2)||

• distortion(f) = expansion(f) · contraction(f)

As usual, there are several things we can note:

• An embedding with distortion 1 is an isometry. This is very limiting for most applications
of interset, which is OK since it is also unnecessarily strong notion of similarity for most
applications of interest, so we will instead look for low-distortion embeddings.

• There is also interest in embedding into `1, which we will return to below when talking about
graph partitioning.

• There is also interest in embedding in other “nice” places, like trees, but we will not be talking
about that in this class.

• As a side comment, a Theorem of Dvoretzky says that any embedding into normed spaces,
`2 is the hardest. So, aside from being something we have already seen, this partially justifies
the use of `2 and the central role of `2 in embedding theory more generally.

Here, we should note that we have already seen one example (actually, several related examples)
of a low-distortion embedding. Here we will phrase the JL lemma that we saw before in our new
nomenclature.

Theorem 1 (JL Lemma). Let X be an n-point set in Euclidean space, i.e., X ⊂ `n2 , and fix

ε ∈ (0, 1]. Then ∃ a (1 + ε)-embedding of X into `k2, where k = O
(
logn
ε2

)
.

That is, Johnson-Lindenstrauss says that we can map xi → f(x) such that distance is within 1± ε
of the original.

3

A word of notation and some technical comments: For x ∈ Rd and p ∈ [1,∞), the `p norm of

x is defined as ||x||p =
(∑d

i=1 |xi|p
)1/p

. Let `dp denote the space Rd equipped with the `p norm.

Sometimes we are interested in embeddings into some space `dp, with p given but the dimension d
unrestricted, e.g., in some Euclidean space s.t. X embeds well. Talk about: `p = the space of all

sequences (x1, x2, . . .), with ||x||p < ∞, with ||x||p defined as ||x||p = (
∑∞

i=1 |xi|p)
1/p. In this case,

embedding into `p is shorthand for embedding into `dp for some d.

Here is an important theorem related to this and that we will return to later.

Theorem 2 (Bourgain). Every n-point metric space (X, d) can be embedded into Euclidean space
`2 with distortion ≤ O(log n).

Proof Idea. (The proof idea is nifty and used in other contexts, but we won’t use it much later,
except to point out how flow-based methods do something similar.) The basic idea is given (X, d),
map each point x → φ(x) in O(log2 n)-dimensional space with coordinates equal to the distance
to S ⊆ X where S is chosen randomly. That is, given (X, d), map every point x ∈ X to φ(x), an
O(log2 n)-dimensional vector, where coordinates in φ(·) correspond to subsets S ⊆ X, and s.t. the
s-th in φ(x) is d(x, S) = mins∈S d(x, s). Then, to define the map, specify a collection of subsets we
use selected carefully but randomly—select O(log n) subsets of size 1, O(log n) subsets of size 2, of
size 4, 8, . . ., n

2 . Using that, it works, i.e., that is the embedding.

Note that the dimension of the Euclidean space was originally O(log2 n), but it has been improved
to O(log n), which I think is tight. Note also that the proof is algorithmic in that it gives an efficient
randomized algorithm.

Several questions arise:

• Q: Is this bound tight? A: YES, on expanders.

• Q: Let c2(X, d) be the distortion of the embedding of X into `2; can we compute c2(X, d) for
a given metric? A: YES, with an SDP.

• Q: Are there metrics such that c2(X, d) � log n? A: YES, we saw it with JL, i.e., high-
dimensional Euclidean spaces, which might be trivial since we allow the dimension to float in
the embedding, but there are others we won’t get to.

9.1.1 Primal

The problem of whether a given metric space is γ-embeddable into `2 is polynomial time solvable.
Note: this does not specify the dimension, just whether there is some dimension; asking the same
question with dimension constraints or a fixed dimension is in general much harder. Here, the
condition that the distortion ≤ γ can be expressed as a system of linear inequalities in Gram
matrix correspond to vectors φ(x). So, the computation of c2(x) is an SDP—which is easy or hard,
depending on how you view SDPs—actually, given an input metric space (X, d) and an ε > 0, we
can determine c2(X, d) to relative error ≤ ε in poly(n, 1/ε) time.

Here is a basic theorem in the area:

4

Theorem 3 (LLR). ∃ a poly-time algorithm that, given as input a metric space (X, d), computes
c2(X, d), where c2(X, d) is the least possible distortion of any embedding of (X, d) into (Rn, `2).

Proof. The proof is from HLW, and it is based on semidefinite programming. Let (X, d) be the
metric space, let |X| = n, and let f : X → `2. WLOG, scale f s.t. contraction(f) = 1. Then,
distortion(f) ≤ γ iff

d(xi, xj)
2 ≤ ||f(xi)− f(xj)||2 ≤ γ2d(xi, xj)

2. (1)

Then, let ui = f(xi) be the i-th row of the embedding matrix U , and let Z = UUT . Note that
Z ∈ PSD, and conversely, if Z ∈ PSD, then Z = UUT , for some matrix U . Note also:

||f(xi)− f(xj)||2 = ||ui − uj ||2

= (ui − uj)T (ui − uj)
= uTi ui + uTj uj − 2uTi uj

= Zii + Zjj − 2Zij .

So, instead of finding a ui = f(xi) s.t. (1) holds, we can find a Z ∈ PSD s.t.

d(xi, xj)
2 ≤ Zii + Zjj − 2Zij ≤ γ2d(xi, xj)

2. (2)

Thus, c2 ≤ γ iff ∃Z ∈ SPSD s.t. (2) holds ∀ij. So, this is an optimization problem, and we can
solve this with simplex, interior point, ellipsoid, or whatever; and all the usual issues apply.

9.1.2 Dual

The above is a Primal version of the optimization problem. If we look at the corresponding Dual
problem, then this gives a characterization of c2(X, d) that is useful in proving lower bounds. (This
idea will also come up later in graph partitioning, and elsewhere.) To go from the Primal to the
Dual, we must take a nonnegative linear combination of constraints. So we must write Z ∈ PSD
in such a way, since that is the constraint causing a problem; the following lemma will do that.

Lemma 1. Z ∈ PSD iff
∑

ij qijzij ≥ 0,∀Q ∈ PSD.

Proof. First, we will consider rank 1 matrices; the general result will follow since general PSD
matrices are a linear combination of rank-1 PSD matrices of the form qqT , i.e., Q = qqT .

First, start with the ⇐ direction: for q ∈ Rn, let Q be PSD matrix s.t. Qij = qiqj ; then

qtZq =
∑
ij

qiZijqj =
∑
ij

Qijzij ≥ 0,

where the inequality follows since Q is PSD. Thus, Z ∈ PSD.

For the ⇒ direction: let Q be rank-1 PSD matrix; thus, it has the form Q = qqT or Qij = qiqj , for
q ∈ Rn. Then, ∑

ij

Qijzij =
∑
ij

qiZijqj ≥ 0,

where the inequality follows since A is PSD.

Thus, since Q ∈ PSD implies that Q =
∑

i qiq
T
i =

∑
i Ωi, with Ωi being a rank-i PSD matrix, the

lemma follows by working through things.

5

Now that we have this characterization of Z ∈ PSD in terms of a set of (nonnegative) linear
combination of constraints, we are ready to get out Dual problem which will give us the nice
characterization of c2(X, d).

Recall finding an embedding f(xi) = ui iff finding a matrix Z iff
∑

ij qijzij ≥ 0,∀Q ∈ SPSD. So,
the Primal constraints are:

I.
∑
qijzij ≥ 0 for all QεPSD

II. zii + zjj − 2zij ≥ d(xi, xj)
2

III. γ2d(xi, xj)
2 ≥ zii + zjj − 2zij ,

which hold ∀ij. Thus, we can get the following theorem.

Theorem 4 (LLR).

C2(X, d) = max
(PεPSD,P.1=0)

√√√√ ∑
Pij>0 Pijd(xi, xj)2

−
∑

(Pij<0) Pijd(xi, xj)2

Proof. The dual program is the statement that for γ < C2(X, d), thre must exist a non-negative
combination of the constraints of the primal problem that yields a contradiction.

So, we will assume γ < C2(x, d) and look for a contradiction, i.e., look for a linear combination of
constraints such that the primal gives a contradiction. Thus, the goal is to construct a nonnegative
linear combination of primal constraints to give a contradiction s.t. Q.Z =

∑
qijzij ≥ 0.

Recall that the cone of PSD matrices is convex.

The goal is to zero out the zij .

(I) above says that Q ·Z =
∑

ij qijzij ≥ 0. Note that since PSD cone is convex, a nonnegative linear
combination of the form

∑
k αk〈Q,Z〉 = P · z, for some P ∈ PSD. So, modifying first constraint

from the primal, you get

I’.
∑

ij PijZij = P · Z ≥ 0, for some PεPSD
To construct P , choose the elements such that you zero out zij in the following manner.

• If Pij > 0, multiply second constraint from primal by Pij/2, (i.e., the constraint d(xi, xj)
2 ≤

zii + zjj − 2zij)

• If Pij < 0, multiply third constraint from primal by −Pij/2, (i.e., the constraint zii +
zjj − 2zij ≤ γ2d(xi, xj)

2)

• If Pij = 0, multiply by 0 constraints involving zij .

This gives

Pij
2

(zii + zjj − 2zij) ≥
Pij
2
d(xi, xj)

2

−Pij
2
γ2d(xi, xj)

2 ≥ −Pij
2

(zii + zjj − 2zij)

from which it follows that you can modify the other constraints from primal to be:

6

II’.
∑

ij,Pij>0
Pij

2 (zii + zjj − 2zij) ≥
∑

ij,Pij>0
Pij

2 d(xi, xj)
2

III’.
∑

ij,Pij<0
Pij

2 (zii + zjj − 2zij) ≥
∑

ij,Pij<0
Pij

2 γ
2(d(xi, xj)

2)

If we add those two things, then we get,∑
i

Piizii +
∑

ij:Pij>0

Pij
2

(zii + zjj) +
∑
ij

Pij
2

(zii + zjj) ≥ RHS Sum,

and so ∑
i

Piizii +
∑

ij:Pij 6=0

Pij
2

(zii + zjj) ≥ RHS Sum,

and so, since we choose P s.t. P · ~1 = ~0, (i.e.
∑

j Pij = 0 for all i, and
∑

i Pij = 0 for all j by
symmetry) we have that

0 =
∑
i

Pii +
∑

j:Pij 6=0

Pij

 zij ≥ RHS =
∑

ij:Pij>0

Pij
2
d(xi, xj)

2 +
∑

ij:Pij<0

Pij
2
γ2d(xi, xj)

2

So, it follows that

0 ≥
∑

ij:Pij>0

Pijd(xi, xj)
2 +

∑
ij:Pij<0

γ2d(xi, xj)
2.

This last observation is FALSE if

γ2 <

∑
ij:Pij>0 Pijd(xi, xj)

2∑
ij:Pij<0(−Pij)d(xi, xj)2

and so the theorem follows.

(In brief, adding the second and third constraints above,

0 ≥
∑

ij,Pij>0 Pijd(xi, xj)
2 +

∑
ij,Pij<0 Pijγ

2(d(xi, xj)
2)

This will be false if you choose γ to be small—in particular, it will be false if γ2 ≤ top/bottom,
from which the theorem will follow.

9.2 Metric Embedding into `2

We will show that expanders embed poorly in `2—this is the basis for the claim that they are the
metric spaces that are least like low-dimensional spaces in a very strong sense.

It is easy to see that an expander can be embedded into `2 with distortion O(log n) (just note that
any graph can be embedded with distortion equal to its diameter)—in fact, any metric space can
be embedded with that distortion. We will show that this result is tight, and thus that expanders
are the worst.

The basic idea for showing that expanders embed poorly in `2 is: If G is a d-regular, ε-expander,
then λ2 of AG is < d − δ for δ = δ(d, ε) 6= δ(n). The vertices of a bounded degree graph can be

7

paired up s.t. every pair of vertices are a distance Ω(log n). We can then let B be a permutation
matrix for the pairing, and use the matrix P = dI −A+ δ

2(B − I).

Note: We can have a simpler proof, using the theorem of Bourgain that expanders don’t embed
well in `2, since we can embed in Rdiameter, and diameter(expander) = log n. But we go through
this here to avoid (too much) magic.

Start with the following definitions:

Definition 3. A Hamilton cycle in a graph G = (V,E) is a cycle that visits every vertex exactly
once (except for the start and end vertices).

Definition 4. A matching is a set of pairwise non-adjacent edges, i.e., no two edges share a
common vertex. A vertex is matched if it is incident to an edge. A perfect matching is a matching
that matched all the vertices of a graph.

The following theorem is the only piece of magic we will use here:

Theorem 5. A simple graph with n ≥ 3 edges is Hamiltonian if every vertex has degree ≥ n
2 .

Note that if every vertex has degree ≥ n
2 , then the graph is actually quite dense, and so from

Szemeredi-type results relating dense graphs to random graphs it might not be so surprising that
there is a lot of wiggle room.

Note: A cycle immediately gives a matching.

Thus, we have the following lemma:

Lemma 2. Let G = (V,E) be a d-regular graph, with |V | = n If H = (V,E′) is a graph with the
same vertex set as G, in which two vertices u and v are adjacent iff dG(u, v) ≥ blogk nc. Then, H
has a matching with n/2 edges.

Proof. Since G is a d-regular graph, hence for any vertex x ∈ V and any value r, it has ≤ kr

vertices y ∈ V can have dG(x, y) ≤ r, i.e., only that many vertices are within a distance r. If
r = blogk nc − 1, then ∃ ≤ n

2 vertices within distance r; that is, at least half of the nodes of G are
further than logk n − 2 from x; this means every node in H has at least degree n/2. So H has a
Hamilton cycle and thus a perfect matching, and by the above theorem the lemma follows.

Finally we get to the main theorem that says that expanders embed poorly in `2—note that this
is a particularly strong statement or notion of nonembedding, as by Bourgain we know any graph
(with the graph distance metric) can be embedded into `2 with distortion O(log n), so expander is
the worst case in this sense.

Theorem 6. Let d ≥ 3, and let ε > 0. If G = (V,E) is a (n, d)-regular graph with λ2(AG) ≤ d− ε
and |V | = n, then

C2(G) = Ω(log n)

where the constant inside the Ω depends on d, ε.

8

Proof. To prove the lower bound, we use the characterization from the last section that for the
minimum distortion in embedding a metric space (X, d) into l2, denoted by C2(X, d), is:

C2(X, d) = max
P∈PSD,P.−→1 =

−→
0

√√√√ ∑
pij>0 pijd(xi, xj)2

−
∑

pij<0 pijd(xi, xj)2
(3)

and we will find some P that is feasible that gives the LB.

Assume B is the adjacency matrix of the matching in H, whose existence is proved in the previous
lemma. Then, define

P = (dI −AG) +
ε

2
(B − I).

Then, we claim that P
−→
1 =

−→
0 . To see this, notice both (dI − AG) and I −B are Laplacians (not

normalized), as B is the adjacency matrix of a perfect matching (i.e. 1-regular graph). Next, we

claim that P ∈ PSD. This proof of this second claim is because, for any x ⊥ −→1 , we have

xT (dI −AG)x ≥ dxTx− xTAx ≥ (d− λ2)||x||2 ≥ ε||x||2

(by the assumption on λ2); and

xT (B − I)x =
∑

(i,j)∈B

2xixj −
∑
i

x2i

=
∑

(i,j)∈B

(2xixj − x2i − x2j) since ||x||2 =
∑

(i,j)∈B x
2
i + x2j

≥ −2
∑

(i,j)∈B

x2i + x2j

= −2||x||2

The last line is since ||x||2 =
∑

(i,j)∈B x
2
i + x2j and since B is a matching so each i shows up in the

sum exactly once.

So, we have that

xTPx = xT (dI −AG)x+ xT
ε

2
(B − I)x

≥ ε||x||2 − 2||x||2ε
2

= 0.

Next evaluate the numerator and the denominator.

−
∑
Pij<0

d(i, j)2Pij = dn

∑
Pij>0

d(i, j)2Pij ≥
ε

2
nblogd nc2

where the latter follows since the distances of edges in B are at least blogd nc. Thus, for this P , we
have that: √√√√ ∑

pij>0 pijd(xi, xj)2

−
∑

pij<0 pijd(xi, xj)2
≥
√

ε
2nblogk nc2

dn
∼ Θ(log n)

9

and thus, from (3), that C2 is at least this big, i.e., that:

C2(G) ≥ Ω(log n)

References

[1] N. Linial and A. Wigderson, ”Expander graphs and their applications”

10

