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Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

8 Introduction: Expanders, in theory and in practice (1 of 2)

Expander graphs, also called expanders, are remarkable structures that are widely-used in TCS and
discrete mathematics. They have a wide range of applications:

• They reduce the need for randomness and are useful for derandomizing randomized algorithms—
so, if random bits are a valuable resource and thus you want to derandomized some of the
randomized algorithms we discussed before, then this is a good place to start.

• They can be used to find good error-correcting codes that are efficiently encodable and
decodable—roughly the reason is that they spread things out.

• They can be used to provide a new proof of the so-called PCP theorem, which provides a new
characterization of the complexity class NP, and applications to the hardness of approximate
computation.

• They are a useful concept in data analysis applications, since expanders look random, or are
empirically quasi-random, and it is often the case that the data, especially when viewed at
large, look pretty noisy.

For such useful things, it is somewhat surprising that (although they are very well-known in com-
puter science and TCS in particular due to their algorithmic and complexity connections) expanders
are almost unknown outside computer science. This is unfortunate since:

• The world is just a bigger place when you know about expanders.

• Expanders have a number of initially counterintuitive properties, like they are very sparse
and very well-connected, that are typical of a lot of data and thus that are good to have an
intuition about.

• They are “extremal” in many ways, so they are a good limiting case if you want to see how
far you can push your ideas/algorithms to work.

• Expanders are the structures that are “most unlike” low-dimensional spaces—so if you don’t
know about them then your understanding of the mathematical structures that can be used
to describe data, as well as of possible ways that data can look will be rather limited, e.g.,
you might think that curved low-dimensional spaces are good ideas.
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Related to the comment about expanders having extremal properties, if you know how your algo-
rithm behaves on, say, expanders, hypercubes (which are similar and different in interesting ways),
trees (which we won’t get to as much, but will mention), and low-dimensional spaces, they you
probably have a pretty good idea of how it will behave on your data. That is very different than
knowing how it will behave in any one of those places, which doesn’t give you much insight into how
it will behave more generally; this extremal property is used mostly by TCS people for algorithm
development, but it can be invaluable for understanding how/when your algorithm works and when
it doesn’t on your non-worst-case data.

We will talk about expander graphs. One issue is that we can define expanders both for degree-
homogeneous graphs as well as for degree-heterogeneous graphs; and, although many of the basic
ideas are similar in the two cases, there are some important differences between the two cases. After
defining them (which can be done via expansion/conductance or the leading nontrivial eigenvalue
of the combinatorial/normalized Laplacian), we will focus on the following aspects of expanders
and expander-like graphs.

• Expanders are graphs that are very well-connected.

• Expanders are graphs that are sparse versions/approximations of a complete graph.

• Expanders are graphs on which diffusions and random walks mix rapidly.

• Expanders are the metric spaces that are least like low-dimensional Euclidean spaces.

Along the way, we might have a chance to mention a few other things, e.g.: how big λ2 could
be with Ramanujan graphs and Wigner’s semicircle result; trivial ways with dmax to extend the
Cheeger Inequality to degree-heterogeneous graphs, as well as non-trivial ways with the normalized
Laplacian; pseudorandom graphs, converses, and the Expander Mixing Lemma; and maybe others.

Before beginning with some definitions, we should note that we can’t draw a meaningful/interpretable
picture of an expander, which is unfortunate since people like to visualize things. The reason for that
is that there are no good “cuts” in an expander—relatedly, they embed poorly in low-dimensional
spaces, which is what you are doing when you visualize on a two-dimensional piece of paper. The
remedy for this is to compute all sorts of other things to try to get a non-visual intuition about
how they behave.

8.1 A first definition of expanders

Let’s start by working with d-regular graphs—we’ll relax this regularity assumption later. But many
of the most extremal properties of expanders hold for degree-regular graphs, so we will consider
them first.

Definition 1. A graph G = (V,E) is d-regular if all vertices have the same degree d, i.e., each
vertex is incident to exactly d edges.

Also, it will be useful to have the following notion of the set of edges between two sets S and T (or
from S to T ), both of which are subsets of the vertex set (which may or may not be the complement
of each other).
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Definition 2. For S, T ⊂ V , denote

E(S, T ) = {(u, v) ∈ E| u ∈ S, v ∈ T}.

Given this notation, we can define the expansion of a graph. (This is slightly different from other
definitions I have given.)

Definition 3. The expansion or edge expansion ratio of a graph G is

h(G) = min
S:|S|≤n

2

E(S, S̄)

|S|

Note that this is slightly different (just in terms of the scaling) than the edge expansion of G which
we defined before as:

φ (G) = min
S⊂V :|S|≤ |V |

2

E
(
S, S̄

)
d|S|

.

We’ll use this today, since I’ll be following a proof from HLW, and they use this, and following
their notation should make it easier. There should be no surprises, except just be aware that there
is a factor of d difference from what you might expect.

(As an aside, recall that there are a number of extensions of this basic idea to measure other or
more fine versions of this how well connected is a graph:

• Different notions of boundary—e.g., vertex expansion.

• Consider size-resolved minimum—in Markov chains and how good communities are as a
function of size.

• Different denominators, which measure different notions of the “size” of a set S:

– Sparsity or cut ratio: min E(S,S̄)
|S|·|S̄| —this is equivalent to expansion in a certain sense that

we will get to.

– Conductance or NCut—this is identical for d-regular graphs but is more useful in practice
and gives tighter bounds in theory if there is degree heterogeneity.

We won’t deal with these immediately, but we will get back to some later. This ends the aside.)

In either case above, the expansion is a measure to quantify how well-connected is the graph. Given
this, informally we call a d-regular graph G an expander if h(G) ≥ ε where ε is a constant. More
precisely, let’s define an expander:

Definition 4. A graph G is a (d, ε)-expander if it is d-regular and h(G) ≥ ε, where ε is a constant,
independent of n.

Alternatively, sometimes expansion is defined in terms of a sequence of graphs:

Definition 5. A sequence of d-regular graphs {Gi}i∈Z+ is a family of expander graphs if ∃ε > 0
s.t. h(Gi) ≥ ε,∀i.

If we have done the normalization correctly, then h(G) ∈ [0, d] and φ(G) ∈ [0, 1], where large means
more expander-like and small means that there are good partitions. So, think of the constant ε as
d/10 (and it would be 1/10, if we used φ(G) normalization). Of course, there is a theory/practice
issue here, e.g., sometimes you are given a single graph and sometimes it can be hard to tell a
moderately large constant from a factor of log(n); we will return to these issues later.
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8.2 Alternative definition via eigenvalues

Although expanders can be a little tricky and counterintuitive, there are a number of ways to deal
with them. One of those ways, but certainly not the only way, is to compute eigenvectors and
eigenvalues associated with matrices related to the graph. For example, if we compute the second
eigenvalue of the Laplacian, then we have Cheeger’s Inequality, which says that if the graph G is
an expander, then we have a (non-tight, due to the quadratic approximation) bound on the second
eigenvalue, and vice versa. That is, one way to test if a graph is an expander is to compute that
eigenvalue and check.

Of central interest to a lot of things is λLAP2 , which is the Fiedler value or second smallest eigenvalue
of the Laplacian. Two things to note:

• If we work with Adjacency matrices rather than Laplacians, then we are interested in how
far λADJ2 is from d.

• We often normalized things so as to interpret them in terms of a random walk, in which case
the top eigenvalue = 1 with the top eigenvector being the probability distribution. In that
case, we are interested in how far λ2 is from 1.

(Since I’m drawing notes from several different places, we’ll be a little inconsistent on what the
notation means, but we should be consistent within each class or section of class.)

Here is Cheeger’s Inequality, stated in terms of h(G) above.

• If 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the Laplacian (not normalized, i.e. D − A)
of a d-regular graph G, then:

λ2

2
≤ h(G) ≤

√
2dλ2

The
√
d in the upper bound is due to our scaling.

Alternatively, here is Cheeger’s Inequality, stated in terms of h(G) for an Adjacency Matrix.

• If d = µ1 ≥ µ2 ≥ . . . ≥ µn are the eigenvalues of the Adjacency Matrix A(G) of d-regular
graph G, then:

d− µ2

2
≤ h(G) ≤

√
2d(d− µ2)

Therefore, the expansion of the graph is related to its spectral gap (d − µ2). Thus, we can define
a graph to be an expander if µ2 ≤ d− ε or λ2 ≥ ε where λ2 is the second eigenvalue of the matrix
L(G) = D − A(G) where D is the diagonal degree matrix. Slightly more formally, here is the
alternate definition of expanders:

Definition 6. A sequence of d-regular graphs {Gn}n ∈ N is a family of expander graphs if |λADJi | ≤
d− ε, i.e. if all the eigenvalues of A are bounded away from d

Remark. The last requirement can be written as λLAP2 ≥ c,∀n, i.e., that all the eigenvalues of
the Laplacian bounded below and away from c > 0.

In terms of the edge expansion φ(G) we defined last time, this definition would become the following.
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Definition 7. A family of constant-degree expanders is a family of graphs {Gn}n∈N s.t. each
graph in Gn is d-regular graph on n vertices and such that there exists an absolute constant φ∗,
independent of n, s.t. φ(Gn) ≥ φ∗, for all n.

8.3 Expanders and Non-expanders

A clique or a complete graph is an expander, if we relax the requirement that the d-regular graph
have a fixed d, independent of n. Moreover, Gn,p (the random graph), for p & log(n)

n is also an
expander, with d growing only weakly with n. (We may show that later.) Of greatest interest—at
least for theoretical considerations—is the case that d is a constant independent of n.

8.3.1 Very sparse expanders

In this case, the idea of an expander, i.e., an extremely sparse and extremely well-connected graph
is nice; but do they exist? It wasn’t obvious until someone proved it, but the answer is YES. In
fact, a typical d-regular graph is an expander with high probability under certain random graph
models. Here is a theorem that we will not prove.

Theorem 1. Fix d ∈ Z+ ≥ 3. Then, a randomly chosen d-regular graph is an expander w.h.p.

Remark. Clearly, the above theorem is false if d = 1 (in which case we get a bunch of edges) or if
d = 2 (in which case we get a bunch of cycles); but it holds even for d = 3.

Remark. The point of comparison for this should be if d & log(n)
n . In this case, “measure

concentration” in the asymptotic regime, and so it is plausible (and can be proved to be true)
that the graph has no good partitions. To understand this, recall that one common random graph
model is the Erdos-Renyi Gn,p model, where there are n vertices and edges are chosen to exist with
probability p. (We will probably describe this ER model as well as some of its basic properties later;
at a minimum, we will revisit it when we talk about stochastic blockmodels.) The related Gn,m
model is another common model where graphs with n vertices and m edges are chosen uniformly
at random. An important fact is that if we set p such that there are on average m edges, then
Gn,m is very similar (in strong senses of the word) to Gn,p—if p ≥ log n/n. (That is the basis for
the oft-made observation that Gn,m and Gn,p are “the same.”) However, for the above definition
of expanders, we require in addition that d is a constant. Importantly, in that regime, the graphs
are sparse enough that measure hasn’t concentrated, and they are not the same. In particular, if
p = 3/n, Gn,p usually generates a graph that is not connected (and there are other properties that
we might return to later). However, (by the above theorem) Gn,m with corresponding parameters
usually yields a connected graph with very high expansion. We can think of randomized expander
construction as a version of Gn,m, further constrained to d-regular graphs.

Remark. There are explicit deterministic constructions for expanders—they have algorithmic
applications. That is an FYI, but for what we will be doing that won’t matter much. Moreover,
later we will see that the basic idea is still useful even when we aren’t satisfying the basic definition
of expanders given above, e.g., when there is degree heterogeneity, when a graph has good small
but no good large cuts, etc.
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8.3.2 Some non-expanders

It might not be clear how big is big and how small is small—in particular, how big can h (or λ)
be. Relatedly, how “connected” can a graph be? To answer this, let’s consider a few graphs.

• Path graph. (For a path graph, µ1 = Θ(1/n2). If we remove 1 edge, then we can cut the
graph into two 50-50 pieces.

• Two-dimensional
√
n ×
√
n grid. (For a

√
n ×
√
n grid, µ1 = Θ(1/n).) Here, you can’t

disconnect the graph by removing 1 edge, and the removal of a constant number of edges can
only remove a constant number of vertices from the graph. But, it is possible to remove

√
n

of the edge, i.e., an O( 1√
n

) fraction of the total, and split the graph into two 50-50 pieces.

• For a 3D grid, µ1 = Θ(1/n2/3).

• A k-dimensional hypercube is still better connected. But it is possible to remove a very small
fraction of the edges (the edges of a dimension cut, which are 1

k = 1
log(n) fraction of the total)

and split half the vertices from the other half.

• For a binary tree, e.g., a complete binary tree on n vertices, µ1 = Θ(1/n).

• For a Kn−Kn dumbbell, (two expanders or complete graphs joined by an edge) µ1 = Θ(1/n).

• For a ring on n vertices, µ1 = Θ(1/n).

• Clique. Here, to remove a p fraction of the vertices from the rest, you must remove ≥ p(1−p)
fraction of the edges. That is, it is very well connected. (While can take a complete graph to
be the “gold standard” for connectivity, it does, however, have the problem that it is dense;
thus, we will be interested in sparse versions of a complete that are similarly well-connected.)

• For an expander, µ1 = Θ(1).

Remark. A basic question to ask is whether, say, µ1 ∼ Θ(poly(1/n)) is “good” or “bad,” say,
in some applied sense? The answer is that it can be either: it can be bad, if you are interested
in connectivity, e.g., a network where nodes are communication devices or computers and edges
correspond to an available link; or it can be good, either for algorithmic reasons if e.g. you are
interested in divide and conquer algorithms, or for statistical reasons since this can be used to
quantify conditional independence and inference.

Remark. Recall the quadratic relationship between d − λ2 and h. If d − λ2 is Θ(1), then that
is not much difference (a topic which will return to later), but if it is Θ(1/n) or Θ(1/n2) then
it makes a big difference. A consequence of this is that by TCS standards, spectral partitioning
does a reasonably-good job partitioning expanders (basically since the quadratic of a constant is
a constant), while everyone else would wonder why it makes sense to partition expanders; while
by TCS standards, spectral partitioning does not do well in general, since it has a worst-case
approximation factor that depends on n, while everyone else would say that it does pretty well on
their data sets.
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8.3.3 How large can the spectral gap be?

A question of interest is: how large can the spectral gap be? The answer here depends on the
relationship between n, the number of nodes in the graph and d, the degree of each node (assumed
to be the same for now.) In particular, the answer is different if d is fixed as n grows or if d grows
with n as n grows. As as extreme example of the latter case, consider the complete graph Kn on
n vertices, in which case d = n − 1. The adjacency matrix of Kn is AKn = J − I, where J is the
all-ones matrix, and where I = In is the diagonal identity matrix. The spectrum of the adjacency
matrix of Kn is {n − 1,−1, . . . ,−1}, and λ = 1. More interesting for us here is the case that d is
fixed and n is large, in which case n � d, in which case we have the following theorem (which is
due to Alon and Boppana).

Theorem 2 (Alon-Boppana). Denoting λ = max(|µ2|, |µn|), we have, for every d-regular graph:

λ ≥ 2
√
d− 1− on(1)

So, the eigengap d−µ2 is not larger than d− 2
√
d− 1. For those familiar with Wigner’s semicircle

law, note the similar form.

The next question is: How tight is this? In fact, it is pretty close to tight in the following sense:
there exists constructions of graphs, called Ramanujan graphs, where the second eigenvalue of L(G)
is λ1(G) = d− 2

√
d− 1, and so the tightness is achieved. Note also that this is of the same scale as

Wigner’s semicircle law; the precise statements are somewhat different, but the connection should
not be surprising.

8.4 Why is d fixed?

A question that arises is why is d fixed in the definition, since there is often degree variability in
practice. Basically that is since it makes things harder, and so it is significant that expanders exist
even then. Moreover, for certain theoretical issues that is important. But, in practice the idea of
an expander is still useful, and so we go into that here.

We can define expanders: i.t.o. boundary expansion; or i.t.o. λ2. The intuition is that it is
well-connected and then get lots of nice properties:

• Well-connected, so random walks converge fast.

• Quasi-random, meaning that it is empirically random (although in a fairly weak sense).

Here are several things to note:

• Most theorems in graph theory go through to weighted graphs, if you are willing to have factors
like wmax

wmin
—that is a problem if there is very significant degree heterogeneity or heterogeneity

in weights, as is common. So in that case many of those results are less interesting.

• In many applications the data are extremely sparse, like a constant number of edges on
average (although there may be a big variance).

• There are several realms of d, since it might not be obvious what is big and what is small:
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– d = n: complete (or nearly complete) graph.

– d = Ω(polylog(n)): still dense, certainly in a theoretical sense, as this is basically the
asymptotic region.

– d = Θ(polylog(n)): still sufficiently dense that measure concentrates, i.e., enough con-
centration for applications; Harr measure is uniform, and there are no “outliers”

– d = Θ(1): In this regime things are very sparse, Gnm 6= Gnp, so you have a situation
where the graph has a giant component but isn’t fully connected; so 3-regular random
graphs are different than Gnp with p = 3

n .

You should think in terms of d = Θ(polylog(n)) at most, although often can’t tell O(log n)
versus a big constant, and comparing trivial statistics can hide what you want.

• The main properties we will show will generalize to degree variability. In particular:

– High expansion → high conductance.

– Random walks converge to “uniform” distribution → random walks converge to a dis-
tribution that is uniform over the edges, meaning proportional to the degree of a node.

– Expander Mixing Property → Discrepancy and Empirical Quasi-randomness

So, for theoretical applications, we need d = Θ(1); but for data applications, think i.t.o. a graph
being expander-like, i.e., think of some of the things we are discussing as being relevant for the
properties of that data graph, if: (1) it has good conductance properties; and (2) it is empirically
quasi-random. This happens when data are extremely sparse and pretty noisy, both of which they
often are.

8.5 Expanders are graphs that are very well-connected

Here, we will describe several results that quantify the idea that expanders are graphs that are very
well-connected.

8.5.1 Robustness of the largest component to the removal of edges

Here is an example of a lemma characterizing how constant-degree graphs with constant expansion
are very sparse graphs with extremely good connectivity properties. In words, what the following
lemma says is that the removal of k edges cannot cause more that O

(
k
d

)
vertices to be disconnected

from the rest. (Note that it is always possible to disconnect k
d vertices after removing k edges, so

the connectivity of an expander is the best possible.)

Lemma 1. Let G = (V,E) be a regular graph with expansion φ. Then, after an ε < φ fraction of
the edges are adversarially removed, the graph has a connected component that has at least 1− ε

2φ
fraction of the vertices.

Proof: Let d be the degree of G. Let E′ ⊆ E be an arbitrary subset of ≤ ε|E| = εd |V |2 edges. Let
C1, . . . , Cm be the connected components of the graph (V,E�E′), ordered s.t.

|C1| ≥ |C2| ≥ · · · |Cm|.
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In this case, we want to prove that

|C1| ≥ |V |
(

1− 2ε

φ

)
To do this, note that

|E′| ≥ 1

2

∑
ij

E (Ci, Cj) =
1

2

∑
i

E (Ci, V�Ci) .

So, if |C1| ≤ |V |2 , then

|E′| ≥ 1

2

∑
i

dφ|Ci| =
1

2
dφ|V |,

which is a contradiction if φ > ε. On the other hand, if |C1| ≥ |V |
2 , then let’s define S to be

S = C2 ∪ . . . ∪ Cm. Then, we have

|E′| ≥ E(C1, S) ≥ dφ|S|,

which implies that

|S| ≤ ε

2φ
|V |,

and so |C1 ≥
(

1− ε
2φ

)
|V |, from which the lemma follows.

�

8.5.2 Relatedly, expanders exhibit quasi-randomness

In addition to being well-connected in the above sense (and other senses), expanders also “look
random” in certain senses.

One direction For example, here I will discuss connections with something I will call “empirical
quasi-randomness.” It is a particular notion of things looking random that will be useful for what
we will discuss. Basically, it says that the number of edges between any two subsets of nodes is
very close to the expected value, which is what you would see in a random graph. Somewhat more
precisely, it says that when λ below is small, then the graph has the following quasi-randomness
property: for every two disjoint sets of vertices, S and T , the number of edges between S and T is
close to d

n |S| · |T |, i.e., what we would expect a random graph with the same average degree d to
have. (Of course, this could also hide other structures of potential interest, as we will discuss later,
but it is a reasonable notion of “looking random” in the large scale.) Here, I will do it in terms of
expansion—we can generalize it and do it with conductance and discrepancy, and we may do that
later.

We will start with the following theorem, called the “Expander Mixing Lemma,” which shows that
if the spectral gap is large, then the number of edges between two subsets of the graph vertices
can be approximated by the same number for a random graph, i.e., what would be expected on
average, so it looks empirically random. Note that d

n |S| · |T | is the average value of the number of

edges between the two sets of nodes in a random graph; also, note that λ
√
|S| · |T | is an “additive”

scale factor, which might be very large, e.g., too large for the following lemma to give an interesting
bound, in particular when one of S or T is very small.
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Theorem 3 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph, with |V | = n
and λ = max(|µ2|, |µn|), where µi is the i-th largest eigenvalue of the (non-normalized) Adjacency
Matrix. Then, for all S, T ⊆ V , we have the following:∣∣∣∣|E(S, T )| − d

n
|S| · |T |

∣∣∣∣ ≤ λ√|S| · |T |.
Proof. Define χS and χT to be the characteristic vectors of S and T . Then, if {vj}nj=1 are orthonor-

mal eigenvectors of AG, with v1 = 1√
n

(1, . . . , 1), then we can write the expansion of χS and χT in

terms of those eigenvalues as: χS =
∑

i αivi and χT =
∑

j βjvj . Thus,

|E(S, T )| = χTSAχT

=

(∑
i

αivi

)
A

∑
j

βjvj


=

(∑
i

αivi

)∑
j

µjβjvj


=

∑
i

µiαiβi since the vi’s are orthonormal.

Thus,

|E(S, T )| =
∑

µiαiβi

= µ1α1β1 +
∑
i≥2

µiαiβi

= d
|S|.|T |
n

+
∑
i≥1

µiαiβi,

where the last inequality is because, α1 = 〈χS ,
−→
1√
n
〉 = |S|√

n
and (similarly) β1 = |T |√

n
, and µ1 = d.

Hence, ∣∣∣∣|E(S, T )| − d

n
|S| · |T |

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

µiαiβi

∣∣∣∣∣
≤

∑
i≥2

|µiαiβi|

≤ λ
∑
i≥1

|αi||βi|

≤ λ||α||2||β||2 = λ||χS ||2||χT ||2 = λ
√
|S| · |T |

Other direction There is also a partial converse to this result:
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Theorem 4 (Bilu and Linial). Let G be a d-regular graph, and suppose that∣∣∣∣E(S, T )− d

n
|S| · |T |

∣∣∣∣ ≤ ρ√|S| · |T |
holds ∀ disjoint S,T and for some ρ > 0. Then

λ ≤ O
(
ρ

(
1 + log(

d

ρ
)

))

8.5.3 Some extra comments

We have been describing these results in terms of regular and unweighted graphs for simplicity,
especially of analysis since the statements of the theorems don’t change much under generalization.
Important to note: these results can be generalized to weighted graphs with irregular number
of edges per nodes using discrepancy. Informally, think of these characterizations as intuitively
defining what the interesting properties of an expander are for real data, or what an expander is
more generally, or what it means for a data set to look expander-like.

Although we won’t worry too much about those issues, it is important to note that for certain,
mostly algorithmic and theoretical applications, the fact that d = Θ(1), etc. are very important.

8.6 Expanders are graphs that are sparse versions/approximations of a com-
plete graph

To quantify the idea that constant-degree expanders are sparse approximations to the complete
graph, we need two steps:

1. first, a way to say that two graphs are close; and

2. second, a way to show that, with respect to that closeness measure, expanders and the
complete graph are close.

8.6.1 A metric of closeness between two graphs

For the first step, we will view a graph as a Laplacian and vice versa, and we will consider the
partial order over PSD matrices. In particular, recall that for a symmetric matrix A, we can write

A � 0

to mean that
A ∈ PSD

(and, relatedly, A � 0 to mean that it is PD). In this case, we can write A � B to mean that
A−B � 0. Note that � is a partial order. Unlike the real numbers, where every pair is comparable,
for symmetric matrices, some are and some are not. But for pairs to which it does apply, it acts
like a full order, in that, e.g.,

A � B and B � C implies A � C
A � B implies that A+ C � B + C,
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for symmetric matrices A, B, and C.

By viewing a graph as its Laplacian, we can use this to define an inequality over graphs. In
particular, for graphs G and H, we can write

G � H to mean that LG � LH .

In particular, from our previous results, we know that if G = (V,E) is a graph and H = (V, F )
is a subgraph of G, then LG � LH . This follows since the Laplacian of a graph is the sum of the
Laplacians of its edges: i.e., since F ⊆ E, we have

LG =
∑
einE

Le =
∑
e∈F

Le +
∑

einE�F

Le �
∑
e∈F

Le = LH ,

which follows since
∑

e∈E�F Le � 0.

That last expression uses the additive property of the order; now let’s look at the multiplicative
property that is also respected by that order.

If we have a graph G = (V,E) and a graph H = (V,E′), let’s define the graph c · H to be the
same as the graph H, except that every edge is multiplied by c. Then, we can prove relationships
between graphs such as the following.

Lemma 2. If G and H are graphs s.t.
G � c ·H

then, for all k we have that
λk(G) ≥ cλk(H).

Proof: The proof is by the min-max Courant-Fischer variational characterization. We won’t do it
in detail. See DS, 09/10/12.

�

From this, we can prove more general relationships, e.g., bounds if edges are removed or rewieghted.
In particular, the following two lemmas are almost corollaries of Lemma 2.

Lemma 3. If G is a graph and H is obtained by adding an edge to G or increasing the weight of
an edge in G, then, for all i, we have that λi(G) ≤ λi(H).

Lemma 4. If G = (V,E,W1) is a graph and H = (V,E,W2) is a graph that differs from G only
in its weights, then

G � min
e∈E

w1(e)

w2(e)
H.

Given the above discussion, we can use this to define the notion that two graphs approximate
each other, basically by saying that they are close if their Laplacian quadratic forms are close. In
particular, here is the definition.

Definition 8. Let G and H be graphs. We say that H is a c-approximation to H if

cH � G � 1

c
H.

As a special case, note that if c = 1 + ε, for some ε ∈ (0, 1), then we have that the two graphs are
very close.

12



8.6.2 Expanders and complete graphs are close in that metric

Given this notion of closeness between two graphs, we can now show that constant degree expanders
are sparse approximations of the complete graph. The following theorem is one formalization of
this idea. This establishes the closeness; and, since constant-degree expanders are very sparse, this
result shows that they are sparse approximations of the complete graph. (We note in passing that
it is know more generally that every graph can be approximated by a complete graph; this graph
sparsification problem is of interest in many areas, and we might return to it.)

Theorem 5. For every ε > 0, there exists a d > 0 such that for all sufficiently large n, there is a
d regular graph Gn that is a 1± ε approximation of the complete graph Kn

Proof: Recall that a constant-degree expander is a d-regular graph whose Adjacency Matrix eigen-
values satisfy

|αi| ≤ εd, (1)

for all i ≥ 2, for some ε < 1. We will show that graphs satisfying this condition also satisfy the
condition of Def. 8 (with c = 1 + ε) to be a good approximation of the complete graph.

To do so, recall that
(1− ε)H � G � (1 + ε)H

means that
(1− ε)xTLHx ≤ xTLGx ≤ (1 + ε)xTLHx.

Let G be the Adjacency Matrix of the graph whose eigenvalues satisfy Eqn. (1). Given this, recall
that the Laplacian eigenvalues satisfy λi = d− αi, and so all of the non-zero eigenvalues of LG are
in the interval between (1− ε) d and (1 + ε) d. I.e., for all x s.t. x ⊥ ~1, we have that

(1− ε)xTx ≤ xTLGx ≤ (1 + ε)xTx.

(This follows from Courant-Fischer or by expanding x is an eigenvalue basis.)

On the other hand, for the complete graph Kn, we know that all vectors x that are ⊥ ~1 satisfy

xTLKnx = nxTx.

So, let H be the graph

H =
d

n
Kn,

from which it follows that
xTLHx = dxTx.

Thus, the graph G is an ε-approximation of the graph H, from which the theorem follows.
�

For completeness, consider G−H and let’s look at its norm to see that it is small. First note that

(1− ε)H � G � (1 + ε)H implies that − εH � G−H � εH.

Since G and H are symmetric, and all of the eigenvalues of εH are either 0 or d, this tells us that

‖LG − LH‖2 ≤ εd.
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8.7 Expanders are graphs on which diffusions and random walks mix rapidly

We will have more to say about different types of diffusions and random walks later, so for now we
will only work with one variant and establish one simple variant of the idea that random walks on
expander graphs mix or equilibrate quickly to their equilibrium distribution.

Let G = (V,E,W ) be a weighted graph, and we want to understand something about how random
walks behave on G. One might expect that if, e.g., the graph was a dumbbell graph, then random
walks that started in the one half would take a very long time to reach the other half; on the
other hand, one might hope that if there are no such bottlenecks, e.g., bottlenecks revealed by the
expansion of second eigenvalue, than random walks would mix relatively quickly.

To see this, let pt ∈ Rn, where n is the number of nodes in the graph, be a probability distribution
at time t. This is just some probability distribution over the nodes, e.g., it could be a discrete
Dirac δ-function, i.e., the indicator of a node, at time t = 0; it could be the uniform distribution;
or it could be something else. Given this distribution at time t, the transition rule that governs the
distribution at time t+ 1 is:

• To go to pt+1, move to a neighbor with probability ∼ the weight of the edge. (In the case of
unweighted graphs, this means that move to each neighbor with equal probability.) That is,
to get to pt+1 from pt, sum over neighbors

pt+1(u) =
∑

v:(u,v)∈E

W (u, v)

d(v)
pt(v)

where d(v) =
∑

uW (u, v) is the weighted degree of v.

As a technical point, there are going to be bottlenecks, and so we will often consider a “lazy”
random walk, which removed that trivial bottleneck that the graph is bipartite thus not mixing
(i.e. the stationary distribution doesn’t exist) and only increases the mixing time by a factor of
two (intuitively, on expectation in two steps in the “lazy” walk we walk one step as in the simple
random walk)—which doesn’t matter in theory, since there we are interested in polynomial versus
exponential times, and in practice the issues might be easy to diagnose or can be dealt with in less
aggressive ways. Plus it’s nicer in theory, since then things are SPSD.

By making a random walk “lazy,” we mean the following: Let

pt+1(u) =
1

2
pt(u) +

1

2

∑
v:(u,v)∈E

W (u, v)

d(v)
pt(v).

That is, pt+1 = 1
2

(
I +AD−1

)
pt, and so the transition matrix WG = AGD

−1
G is replaced with

WG = 1
2

(
I +AGD

−1
G

)
—this is an asymmetric matrix that is similar in some sense to the normalized

Laplacian.

Then, after t steps, we are basically considering W t
G, in the sense that

p0 → pt = Wpt−1 = W 2pt−2 = · · · = W tpt.

Fact. Regardless of the initial distribution, the lazy random walk converges to π(i) = d(i)∑
j d(j) ,

which is the right eigenvector of W with eigenvalue 1.
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Fact. If 1 = ω1 ≥ ω2 ≥ · · ·ωn ≥ 0 are eigenvalues of W , with π(i) = d(i)∑
j d(j) , then ω2 governs the

rate of convergence to the stationary distribution.

There are a number of ways to formalize this “rate of mixing” result, depending on the norm used
and other things. In particular, a very good way is with the total variation distance, which is
defined as:

‖p− q‖TV D = max
S⊆V

{∑
v∈S

pv −
∑
v∈S

qv

}
=

1

2
‖p− q‖1.

(There are other measures if you are interested in mixing rates of Markov chains.) But the basic
point is that if 1 − ω2 is large, i.e., you are an expander, then a random walk converges fast. For
example:

Theorem 6. Assume G = (V,E) with |V | = n is d-regular, A is the adjacency matrix of G, and
Â = 1

dA is the transition matrix of a random walk on G, i.e., the normalized Adjacency Matrix.

Also, assume λ = max(|µ2|, |µn|) = αd (recall µi is the i-th largest eigenvalue of A, not Â). Then

||Âtp− u||1 ≤
√
nαt,

where u is the stationary distribution of the random walk, which is the uniform distribution in the
undirected d-regular graph, and p is an arbitrary initial distribution on V .

In particular, if t ≥ c
1−α log

(
n
ε

)
, for some absolute constant c independent of n, then ‖u−Âtp‖ ≤ ε.

Proof. Let us define the matrix Ĵ = 1
n
~1~1>, where, as before, ~1 is the all ones vector of length n.

Note that, for any probability vector p, we have

Ĵp =
1

n
~1~1>p

=
1

n
~1 · 1

= u.

Now, since Â = 1
dA we have µ̂i = µi/d, where µ̂i denotes the ith largest eigenvalue of Â, and the

eigenvectors of Â are equal to those of A. Hence, we have∥∥Ât − Ĵ∥∥
2

= max
w:‖w‖2≤1

‖(Ât − Ĵ)w‖2

= σmax

(
Ât − Ĵ

)
= σmax

(
n∑
i=1

µ̂tiviv
>
i −

1

n
~1~1>

)
(a)
= σmax

(
n∑
i=2

µ̂tiviv
>
i

)
= max{|µ̂t2|, |µ̂tn|}
= αt,
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where (a) follows since v1 = 1√
n
~1 and µ̂1 = 1. Then,∥∥Âtp− u∥∥

1
≤
√
n
∥∥Âtp− u∥∥

2

≤
√
n
∥∥Âtp− Ĵp∥∥

2

≤
√
n
∥∥Ât − Ĵ∥∥

2

∥∥p∥∥
2

≤
√
nαt,

which concludes the proof.

This theorem shows that if the spectral gap is large (i.e. α is small), then we the walk mixes rapidly.

This is one example of a large body of work on rapidly mixing Markov chains. For example, there
are extensions of this to degree-heterogeneous graphs and all sorts of other thigns Later, we might
revisit this a little, when we see how tight this is; in particular, one issue that arises when we discuss
local and locally-biased spectral methods is that how quickly a random walk mixes depends on not
only the second eigenvalue but also on the size of the set achieving that minimum conductance
value.
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