
Stat260/CS294: Spectral Graph Methods Lecture 7 - 02/12/2015

Lecture: Spectral Methods for Partitioning Graphs (2 of 2)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

7 Proof of Cheeger’s Inequality

Here, we will prove the easy direction and the hard direction of Cheeger’s Inequality. Recall that
what we want to show is that

λ2
2
≤ φ(G) ≤

√
2λ2.

7.1 Proof of the easy direction of Cheeger’s Inequality

For the easy direction, recall that what we want to prove is that

λ2 ≤ σ(G) ≤ 2φ(G).

To do this, we will show that the Rayleigh quotient is a relaxation of the sparsest cut problem.

Let’s start by restating the sparsest cut problem:

σ(G) = min
S⊂V :S 6=0,S 6=V

E
(
S, S̄

)
d
|V | |S| · |S̄|

= min
x∈{0,1}n�{~0,~1}

∑
{u,v}∈E |xu − xv|

d
n

∑
{u,v}∈V×V |xu − xv|

= min
x∈{0,1}n�{~0,~1}

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v}∈V×V |xu − xv|2

, (1)

where the last equality follows since xu and xv are Boolean values, which means that |xu − xv| is
also a Boolean value.

Next, recall that

λ2 = min
x∈Rn�{~0},x⊥~1

∑
{u,v}∈E |xu − xv|2

d
∑

v x
2
v

. (2)

Given that, we claim the following.

Claim 1.

λ2 = min
x∈Rn�Span{~1}

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

. (3)

1

Proof: Note that ∑
u,v

|xu − xv|2 =
∑
uv

x2u +
∑
uv

x2v − 2
∑
uv

xuxv

= 2n
∑
v

x2v − 2

(∑
v

xv

)2

.

Note that for all x ∈ Rn�{~0} s.t. x ⊥ ~1, we have that
∑

v xv = 0, so∑
v

x2v =
1

2n

∑
u,v

|xu − xv|2

=
1

n

∑
{u,v}

|xu − xv|2,

where the first sum is over unordered pairs u, v of nodes, and where the second sum of over ordered
pairs {u, v} (i.e. we double count (u, v) and (v, u) in first sum, but not in second sum). So,

min
x∈Rn�{~0},x⊥~1

∑
{u,v}∈E |xu − xv|2

d
∑

v x
2
v

= min
x∈Rn�{0},x⊥~1

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

.

Next, we need to remove the part along the all-ones vector, since the claim doesn’t have that.

To do so, let’s choose an x∗ that maximizes Eqn. (3). Observe the following. If we shift every
coordinate of that vector x∗ by the same constant, then we obtain another optimal solution, since
the shift will cancel in all the expressions in the numerator and denominator. (This works for any
shift, and we will choose a particular shift to get what we want.)

So, we can define x′ s.t. x′v = xv − 1
n

∑
u xu, and note that the entries of x′ sum to zero. Thus

x′ ⊥ ~1. Note we need x 6∈ Span(~1) to have x′ 6= ~0 So,

min
x∈Rn�{0},x⊥~1

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

= min
x∈Rn�Span{~1}

∑
{u,v}∈E |xu − xv|2

d
n

∑
{u,v} |xu − xv|2

.

This establishes the claim.
�

So, from Eqn. (1) and Eqn. (3), it follows that λ is a continuous relaxation of σ(G), and so
λ2 ≤ σ(G), from which the easy direction of Cheeger’s Inequality follows.

7.2 Some additional comments

Here are some things to note.

• There is nothing required or forced on us about the use of this relaxation, and in fact there
are other relaxations. We will get to them later. Some of them lead to traditional algorithms,
and one of them provides the basis for flow-based graph partitioning algorithms.

2

• Informally, this relaxation says that we can replace x ∈ {0, 1}n or x ∈ {−1, 1}n constraint
with the constraint that x satisfies this “on average.” By that, we mean that x in the relaxed
problem is on the unit ball, but any particular value of x might get distorted a lot, relative to
its “original” {0, 1} or {−1, 1} value. In particular, note that this is a very “global” constraint.
As we will see, that has some good features, e.g., many of the well-known good statistical
properties; but, as we will see, it has the consequence that any particular local pairwise metric
information gets distorted, and thus it doesn’t lead to the usual worst-case bounds that are
given only in terms of n the size of the graph (that are popular in TCS).

• While providing the “easy” direction, this lemma gives a quick low-degree polynomial time
(whatever time it takes to compute an exact or approximate leading nonrtivial eigenvector)
certificate that a given graph is expander-like, in the sense that for all cuts, at least a certain
number of edges cross it.

• There has been a lot of work in recent years using approaches like this one; I don’t know the
exact history in terms of who did it first, but it was explained by Trevisan very cleanly in
course notes he has had, and this and the proof of the other direction is taken from that. In
particular, he describes the randomized rounding method for the other direction. Spielman
has slightly different proofs. These proofs here are a combination of results from them.

• We could have proven this “easy direction” by just providing a test vector. E.g., a test vector
that is related to an indicator vector or a partition. We went with this approach to highlight
similarities and differences with flow-based methods in a week or two.

• The other reason to describe λ2 as a relaxation of σ(G) is that the proof of the other direction
that φ(G) ≤

√
2λ2 can be structured as a randomized rounding algorithm, i.e., given a real-

valued solution to Eqn. (3), find a similarly good solution to Eqn. (1). This is what we will
do next time.

7.3 A more general result for the hard direction

For the hard direction, recall that what we want to prove is that

φ(G) ≤
√

2λ2.

Here, we will state—and then we will prove—a more general result. For the proof, we will use the
randomized rounding method. The proof of this result is algorithmic/constructive, and it can be
seen as an analysis for the following algorithm.

VanillaSpectralPartitioning. Given as input a graph G = (V,E), a vector x ∈ Rn,

1. Sort the vertices of V in non-decreasing order of values of entries of x, i.e., let V = {v1, · · · , vn},
where xv1 ≤ · · · ≤ xvn .

2. Let i ∈ [n− 1] be s.t.

max{φ ({v1, · · · , vi}) , φ ({vi+1, · · · , vn})},

is minimal.

3. Output S = {v1, . . . , vi} and S̄ = {vi+1, . . . vn}.

3

This is called a “sweep cut,” since it involves sweeping over the input vector and looking at n
(rather than 2n partitions) to find a good partition.

We have formulated this algorithm as taking as input a graph G and any vector x. You might
be more familiar with the version that takes as input a graph G that first compute the leading
nontrivial eigenvector and then performs a sweep cut. We have formulated it the way we did for
two reasons.

• We will want to separate out the spectral partitioning question from the question about how to
compute the leading eigenvector or some approximation to it. For example, say that we don’t
run an iteration “forever,” i.e., to the asymptotic state to get an “exact” answer to machine
precision. Then we have a vector that only approximates the leading nontrivial eigenvector.
Can we still use that vector and get nontrivial results? There are several interesting results
here, and we will get back to this.

• We will want to separate out the issue of global eigenvector to something about the structure
of the relaxation. We will see that we can use this result to get local and locally-biased
partitions, using both optimization and random walk based idea. In particular, we will use
this to generalize to locally-biased spectral methods.

So, establishing the following lemma is sufficient for what we want.

Lemma 1. Let G = (V,E) be a d-regular graph, and let x ∈ Rn be s.t. x ⊥ ~1. Define

R(x) =

∑
{u,v}∈E |xu − xv|2

d
∑

v x
2
v

and let S be the side with less than |V |/2 nodes of the output cut of VanillaSpectralParti-
tioning. Then,

φ(S) ≤
√

2R(x)

Before proving this lemma, here are several things to note.

• If we apply this lemma to a vector x that is an eigenvector of λ2, then R(x) = λ2, and so we
have that φ(G) ≤ φ(S) ≤

√
2λ2, i.e., we have the difficult direction of Cheeger’s Inequality.

• On the other hand, any vector whose Rayleigh quotient is close to that of λ2 also gives a good
solution. This “rotational ambiguity” is the usual thing with eigenvectors, and it is different
than any approximation of the relatation to the original expansion IP. We get “goodness”
results for such a broad class of vectors to sweep over since we are measuring goodness rather
modestly: only in terms of objective function value. Clearly, the actual clusters might change
a lot and in general will be very different if we sweep over two vectors that are orthogonal to
each other.

• This result actually holds for vectors x more generally, i.e., vectors that have nothing to
do with the leading eigenvector/eigenvalue, as we will see below with locally-biased spectral
methods, where we will use it to get upper bounds on locally-biased variants of Cheeger’s
Inequality.

• In this case, in “eigenvector time,” we have found a set S with expansion s.t. φ(S) ≤
√
λ2 ≤

2
√
φ(G).

4

• This is not a constant-factor approximation, or any nontrivial approximation factor in terms
of n; and it is incomparable with other methods (e.g., flow-based methods) that do provide
such an approximation factor. It is, however, nontrivial in terms of an important structural
parameter of the graph. Moreover, it is efficient and useful in many machine learning and
data analysis applications.

• The above algorithm can be implemented in roughly O (|V | log |V |+ |E|) time, assuming
arithmetic operations and comparisons take constant time. This is since once we have com-
puted

E ({v1, . . . , vi}, {vi+1, . . . , vn}) ,

it only takes O(degree(vi+1)) time to compute

E ({v1, . . . , vi+1}, {vi+2, . . . , vn}) .

• As a theoretical point, there exists nearly linear time algorithm to find a vector x such that
R(x) ≈ λ2, and so by coupling this algorithm with the above algorithm we can find a cut

with expansion O
(√

φ(G)
)

in nearly-linear time. Not surprisingly, there is a lot of work on

providing good implementations for these nearly linear time algorithms. We will return to
some of these later.

• This quadratic factor is “tight,” in that there are graphs that are that bad; we will get to
these (rings or Guattery-Miller cockroach, depending on exactly how you ask this question)
graphs below.

7.4 Proof of the more general lemma implying the hard direction of Cheeger’s
Inequality

Note that λ2 is a relaxation of σ(G) and the lemma provides a rounding algorithtm for real vectors
that are a solution of the relaxation. So, we will view this in terms of a method from TCS known as
randomized rounding. This is a useful thing to know, and other methods, e.g., flow-based methods
that we will discuss soon, can also be analyzed in a similar manner.

For those who don’t know, here is the one-minute summary of randomized rounding.

• It is a method for designing and analyzing the quality of approximation algorithms.

• The idea is to use the probabilistic method to convert the optimal solution of a relaxation
of a problem into an approximately optimal solution of the original problem. (The proba-
bilistic method is a method from combinatorics to prove the existence of objects. It involves
randomly choosing objects from some specified class in some manner, i.e., according to some
probability distribution, and showing that the objects can be found with probability > 0,
which implies that the object exists. Note that it is an existential/non-constructive and not
algorithmic/constructive method.)

• The usual approach to use randomized rounding is the following.

– Formulate a problem as an integer program or integer linear program (IP/ILP).

– Compute the optimal fractional solution x to the LP relaxation of this IP.

5

– Round the fractional solution x of the LP to an integral solution x′ of the IP.

• Clearly, if the objective is a min, then cost(x) ≤ cost(x′). The goal is to show that cost(x′) is
not much more that cost(x).

• Generally, the method involves showing that, given any fractional solution x of the LP, w.p.
> 0 the randomized rounding procedure produces an integral solution x′ that approximated
x to some factor.

• Then, to be computationally efficient, one must show that x′ ≈ x w.h.p. (in which case the
algorithm can stay randomized) or one must use a method like the method of conditional
probabilities (to derandomize it).

Let’s simplify notation: let V = {1, . . . , n}; and so x1 ≤ x2 ≤ · · ·xn. In this case, the goal is to
show that there exists i ∈ [n] w.t.

φ ({1, . . . , i}) ≤
√

2R(x) and φ ({i+ 1, . . . , n}) ≤
√

2R(x).

We will prove the lemma by showing that there exists a distribution D over sets S of the form
{1, . . . , i} s.t.

ES∼D
{
E(S, S̄)

}
ES∼D

{
dmin{|S|, |S̄|}

} ≤√2R(x). (4)

Before establishing this, note that Eqn. (4) does not imply the lemma. Why? In general, it is the

case that E
{
X
Y

}
6= E{X}

E{Y } , but it suffices to establish something similar.

Fact. For random variables X and Y over the sample space, even though E
{
X
Y

}
6= E{X}

E{Y } , it is the
case that

P
{
X

Y
≤ E {X}
E {Y }

}
> 0,

provided that Y > 0 over the entire sample space.

But, by linearity of expectation, from Eqn. (4) it follows that

ES∼D

[
E(S, S̄)− d

√
2R(x) min{|S|, |S̄|}

]
≤ 0.

So, there exists a set S in the sample space s.t.

E(S, S̄)− d
√

2R(x) min{|S|, |S̄|} ≤ 0.

That is, for S and S̄, at least on of which has size ≤ n
2 ,

φ(S) ≤
√

2R(x),

from which the lemma will follow.

So, because of this, it will suffice to establish Eqn. (4). So, let’s do that.

Assume, WLOG, that xdn
2
e = 0, i.e., the median of the entires of x equals 0; and x21 +x2n = 1. This

is WLOG since, if x ⊥ ~1, then adding a fixed constant c to all entries of x can only decrease the

6

Rayleigh quotient:

R (x+ (c, . . . , c)) =

∑
{(u,v)}∈E |(xu + c)− (xv + c)|2

d
∑

v(xv + c)2

=

∑
{(u,v)}∈E |xu − xv|2

d
∑

v x
2
v − 2dc

∑
v xv + nc2

=

∑
{(u,v)}∈E |xu − xv|2

d
∑

v x
2
v + nc2

≤ R(x).

Also, multiplying all entries by fixed constant does not change the value of R(x), nor does it change
the property that x1 ≤ · · · ≤ xn.

We have made these choices since they will allow us to define a distribution D over sets S s.t.

ES∼D min
{
|S|, |S̄|

}
=
∑
i

x2i (5)

Define a distribution D over sets {1, . . . , i}, 1 ≤ i ≤ n − 1, as the outcome of the following
probabilistic process.

1. Choose a t ∈ [x1, xn] ∈ R with probability density function equal to f(t) = 2|t|, i.e., for
x1 ≤ a ≤ b ≤ xn, let

P [a ≤ t ≤ b] =

∫ b

a
2|t|dt =

{
|a2 − b2| if a and b have the same sign
a2 + b2 if a and b have different signs

,

2. Let S = {u : xi ≤ t}

From this definition

• The probability that an element i ≤ n
2 belongs to the smaller of the sets S, S̄ equals the

probability of i ∈ S and |S| ≤ |S̄|, which equals the probability that the threshold t is in the
range [xi, 0], which equals x2i .

• The probability that an element i > n
2 belongs to the smaller of the sets S, S̄ equals the

probability of i ∈ S̄ and |S| ≥ |S̄|, which equals the probability that the threshold t is in the
range [0, xi], which equals x2i .

So, Eqn. (5) follows from linearity of expectation.

Next, we want to estimate the expected number of edges between S and S̄, i.e.,

E
[
E
(
S, S̄

)]
=

∑
(i,j)∈E

P
[
edge (i, j) is cut by (S, S̄)

]
.

To estimate this, note that the event that the edge (i, j) is cut by the partition (S, S̄) happens
when t falls in between xi and xj . So,

7

• if xi and xj have the same sign, then

P
[
edge (i, j) is cut by (S, S̄)

]
= |x2i − x2j |

• if xi and xj have the different signs, then

P
[
edge (i, j) is cut by (S, S̄)

]
= x2i + x2j

The following expression is an upper bound that covers both cases:

P
[
edge (i, j) is cut by (S, S̄)

]
≤ |xi − xj | · (|xi|+ |xj |) .

Plugging into the expressions for the expected number of cut edges, and applying the Cauchy-
Schwatrz inequality gives

EE
(
S, S̄

)
≤

∑
(i,j)∈E

|xi − xj | (|xi|+ |xj |)

≤
√ ∑

(i,j)∈E

(xi − xj)2
√ ∑

(i,j)∈E

(|xi|+ |xj |)2

Finally, to deal with the expression
∑

(ij)∈E (|xi|+ |xj |)2, recall that (a+ b)2 ≤ 2a2 + 2b2. Thus,∑
(ij)∈E

(|xi|+ |xj |)2 ≤
∑

(ij)∈E

2x2i + 2x2j = 2d
∑
i

x2i .

Putting all of the pieces together, we have that

E
[
E
(
S, S̄

)]
E
[
dmin{|S|, |S̄|}

] ≤
√∑

(ij)∈E (xi − xj)2
√

2d
∑

i x
2
i

d
∑

i x
2
i

=
√

2R(x),

from which the result follows.

8

