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Lecture: Spectral Methods for Partitioning Graphs (1 of 2)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

6 Introduction to spectral partitioning and Cheeger’s Inequality

Today and next time, we will cover what is known as spectral graph partitioning, and in particular
we will discuss and prove Cheeger’s Inequality. This result is central to all of spectral graph theory
as well as a wide range of other related spectral graph methods. (For example, the isoperimetric
“capacity control” that it provides underlies a lot of classification, etc. methods in machine learn-
ing that are not explicitly formulated as partitioning problem.) Cheeger’s Inequality relates the
quality of the cluster found with spectral graph partitioning to the best possible (but intractable to
compute) cluster, formulated in terms of the combinatorial objectives of expansion/conductance.
Before describing it, we will cover a few things to relate what we have done in the last few classes
with how similar results are sometimes presented elsewhere.

6.1 Other ways to define the Laplacian

Recall that L = D−A is the graph Laplacian, or we could work with the normalized Laplacian, in
which case L = I−D−1/2AD−1/2. While these definition might not make it obvious, the Laplacian
actually has several very intuitive properties (that could alternatively be used as definitions). Here,
we go over two of these.

6.1.1 As a sum of simpler Laplacians

Again, let’s consider d-regular graphs. (Much of the theory is easier for this case, and expanders
are more extremal in this case; but the theory goes through to degree-heterogeneous graphs, and
this will be more natural in many applications, and so we will get back to this later.)

Recall the definition of the Adjacency Matrix of an unweighted graph G = (V,E):

Aij =

{
1 if (ij) ∈ E
0 otherwise

,

In this case, we can define the Laplacian as L = D−A or the normalized Laplacian as L = I− 1
dA.

Here is an alternate definition for the Laplacian L = D − A. Let G12 be a graph on two vertices
with one edge between those two vertices, and define

LG12 =

(
1 −1
−1 1

)
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Then, given a graph on n vertices with just one edge between vertex u and v, we can define L to
be the all-zeros matrix, except for the intersection between the uth and vth column and row, where
we define that intersection to be

LGuv =

(
1 −1
−1 1

)
.

Then, for a general graph G = (V,E), one we can define

LG =
∑

(u,v)∈E

LGuv .

This provides a simpler way to think about the Laplacian and in particular changes in the Laplacian,
e.g., when one adds or removes edges. In addition, note also that this generalizes in a natural way
to
∑

(u,v)∈E wuvLGuv if the graph G = (V,E,W ) is weighted.

Fact. This is identical to the definition L = D −A. It is simple to prove this.

From this characterization, several things follow easily. For example,

xTLx =
∑

(u,v)∈E

wuv (xu − xv)2 ,

from which it follows that if v is an eigenvector of L with eigenvalue λ, then vTLv = λvT v ≥ 0.
This means that every eigenvalue is nonnegative, i.e., L is SPSD.

6.1.2 In terms of discrete derivatives

Here are some notes that I didn’t cover in class that relate the Laplacian matrix to a discrete notion
of a derivative.

In classical vector analysis, the Laplace operator is a differential operator given by the divergence
of the gradient of a function in Euclidean space. It is denoted:

∇ · ∇ or ∇2 or 4

In the cartesian coordinate system, it takes the form:

∇ =

(
∂

∂x1
, · · · , ∂

∂xn

)
,

and so

4f =
n∑
i=1

∂2f

∂x2
i

.

This expression arises in the analysis of differential equations of many physical phenomena, e.g.,
electromagnetic/gravitational potentials, diffusion equations for heat/fluid flow, wave propagation,
quantum mechanics, etc.

The discrete Laplacian is defined in an analogous manner. To do so, somewhat more pedantically,
let’s introduce a discrete analogue of the gradient and divergence operators in graphs.
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Given an undirected graph G = (V,E) (which for simplicity we take as unweighted), fix an arbitrary
orientation of the edges. Then, let K ∈ RV×E be the edge-incidence matrix of G, defined as

Kue =


+1 if edge e exits vertex u
−1 if edge e enters vertex u
0 otherwise

.

Then,

• define the gradient as follows: let f : V → R be a function on vertices, viewed as a row vector
indexed by V ; then K maps f → fK, a vector indexed by E, measures the change of f along
edges of the graph; and if e is an edge from u to v, then (fK)e = fu − fv.

• define the divergence as follows: let g : E → R be a function on edges, viewed as a col-
umn vector indexed by E; then K maps g → Kg, a vector indexed by V ; if we think
of g as describing flow, then its divergence at vertex is the net outbound flow: (Kg)v =∑

e exits v ge −
∑

e enters v gv

• define the Laplacian as follows: it should map f to KKT f , where f : V → R. So, L = LG =
KKT is the discrete Laplacian.

Note that it is easy to show that

Luv =


−1 if (u, v) ∈ E
deg(u) if u = v
0 otherwise

,

which is in agreement with the previous definition. Note also that

fLfT = fKKT f = ‖fK‖22 =
∑

(u,v)∈E

(fu − fv)2 ,

which we will later interpret as a smoothness condition for functions on the vertices of the graph.

6.2 Characterizing graph connectivity

Here, we provide a characterization in terms of eigenvalues of the Laplacian of whether or not a
graph is connected. Cheeger’s Inequality may be viewed as a “soft” version of this result.

6.2.1 A Perron-Frobenius style result for the Laplacian

What does the Laplacian tell us about the graph? A lot of things. Here is a start. This is a
Perron-Frobenius style result for the Laplacian.

Theorem 1. Let G be a d-regular undirected graph, let L = I − 1
dA be the normalized Laplacian;

and let λ1 ≤ λ2 ≤ · · · ≤ λn be the real eigenvalues, including multiplicity. Then:

1. λ1 = 0, and the associated eigenvector x1 =
~1√
n

=
(

1√
n
, . . . , 1√

n

)
.
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2. λ2 ≤ 2.

3. λk = 0 iff G has at least k connected components. (In particular, λ2 > 0 iff G is connected.)

4. λn = 2 iff at least one connected component is bipartite.

Proof: Note that if x ∈ Rn, then xTLx = 1
d

∑
(u,v)∈E (xu − xv)2 and also

λ1 = min
x∈Rn�{0}

xTLx

xTx
≥ 0.

Take ~1 = (1, . . . , 1), in which case ~1TL~1 = 0, and so 0 is the smallest eigenvalue, and ~1 is one of
the eigenvectors in the eigenspace of this eigenvalue. This proves part 1.

We also have the following formulation of λk by Courant-Fischer:

λk = min
S⊆Rn

dim(S)=k

max
x∈S�{~0}

xTAx

xTx

∑
(u,v)∈E (xu − xv)2

d
∑

u x
2
u

So, if λk = 0, then ∃ a k-dimensional subspace S such that ∀x ∈ S, we have
∑

(u,v)∈E (xu − xv)2 = 0.
But this means that ∀x ∈ S, we have xu = xv ∀ edges (u, v) ∈ E with positive weight, and so
xu = xv, for any u, v in the same connected component. This means that x ∈ S is constant
within each connected component of G. So, k = dim(S) ≤ Ξ, where Ξ is the number of connected
components.

Conversely, if G has ≥ k connected components, then we can let S be the space of vectors that are
constant on each component; and this S has dimension ≥ k. Furthermore, ∀x ∈ S, we have that∑

(u,v)∈E (xu − xv)2 = 0. Thus maxx∈Sk�{~0}
xTAx
xT x

= 0 for any dimension k subspace Sk of the S
we choose. Then it is clear from Courant-Fischer λk = 0 as any Sk provides an upperbound.

Finally, to study λn = 2, note that

λn = max
x∈Rn�{~0}

xTLx

xTx

This follows by using the variational characterization of the eigenvalues of −L and noting that −λn
is the smallest eigenvalue of −L. Then, observe that ∀x ∈ Rn, we have that

2− xTLx

xTx
=

∑
(u,v)∈E (xu + xv)

2

d
∑

u x
2
u

≥ 0,

from which it follows that λn ≤ 2 (also λk ≤ 2 for all k = 2, . . . , n).

In addition, if λn = 2, then ∃x 6= 0 s.t.
∑

(u,v)∈E (xu + xv)
2 = 0. This means that xu = −xv, for

all edges (u, v) ∈ E.

Let v be a vertex s.t. xv = a 6= 0. Define sets

A = {v : xv = a}
B = {v : xv = −a}
R = {v : xv 6= ±a}.
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Then, the set A∪B is disconnected from the rest of the graph, since otherwise an edge with an end-
point in A∪B and the other endpoint in R would give a positive contribution to

∑
ij Aij (xi + xj)

2.
Also, every edge incident on A has other endpoint in B, and vice versa. So A ∪ B is a bipartite
connected component (or a collection of connected components) of G, with bipartition A,B.

�

(Here is an aside. That proof was from Trevisan; Spielman has a somewhat easier proof, but it is
only for two components. I need to decide how much I want to emphasize the possibility of using k
eigenvectors for soft partitioning—I’m leaning toward it, since several students asked about it—and
if I do I should probably go with the version of here that mentions k components.) As an FYI,
here is Spielman’s proof of λ2 = 0 iff G is disconnected; or, equivalently, that

λ2 > 0⇔ G is connected.

Start with proving the first direction: if G is disconnected, then λ2 = 0. If G is disconnected, then
G is the union of (at least) 2 graphs, call then G1 and G2. Then, we can renumber the vertces so
that we can write the Laplacian of G as

LG =

(
LG1 0

0 LG2

)

So, LG has at least 2 orthogonal eigenvectors with eigenvalue 0, i.e.,

(
1
0

)
and

(
0
1

)
, where the

two vectors are given with the same renumbering as in the Laplacians. Conversely, if G is connected
and x is an eigenvector such that LGx = 0x, then, LGx = 0, and xTLGx =

∑
(ij)∈E (xi − xj)2 = 0.

So, for all (u, v) connected by an edge, we have that xu = xu. Apply this iteratively, from which it
follows that x is a constant vector, i.e., xu = xv, forall u, v. So, the eigenspace of eigenvalue 0 has
dimension 1. This is the end of the aside.)

6.2.2 Relationship with previous Perron-Frobenius results

Theorem 1 is an important result, and it has several important extensions and variations. In
particular, the “λ2 > 0 iff G is connected” result is a “hard” connectivity statement. We will be
interested in how this result can be extended to a “soft” connectivity, e.g., “λ2 is far from 0 iff
the graph is well-connected,” and the associated Cheeger Inequality. That will come soon enough.
First, however, we will describe how this result relates to the previous things we discussed in the last
several weeks, e.g., to the Perron-Frobenius result which was formulated in terms of non-negative
matrices.

To do so, here is a similar result, formulated slightly differently.

Lemma 1. Let AG be the Adjacency Matrix of a d regular graph, and recall that it has n real
eigenvalues α1 ≥ · · · ≥ αn and n associated orthogonal eigenvectors vi s.t. Avi = λivi. Then,

• α1 = d, with v1 = 1√
n

=
(

1√
n
, . . . , 1√

n

)
.

• αn ≥ −d.

• The graph is connected iff α1 > α2.
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• The graph is bipartite iff α1 = −αn, i.e., if αn = −d.

Lemma 1 has two changes, relative to Theorem 1.

• The first is that it is a statement about the Adjacency Matrix, rather than the Laplacian.

• The second is that it is stated in terms of a “scale,” i.e., the eigenvalues depend on d.

When we are dealing with degree-regular graphs, then A is trivially related to L = D−A (we will
see this below) and also trivially related to L = I − 1

dA (since this just rescales the previous L by
1/d). We could have removed the scale from Lemma 1 by multiplying the Adjacency Matrix by
1/d (in which case, e.g., the eigenvalues would be in [−1, 1], rather than [−d, d]), but it is more
common to remove the scale from the Laplacian. Indeed, if we had worked with L = D − A, then
we would have had the scale there too; we will see that below.

(When we are dealing with degree-heterogeneous graphs, the situation is more complicated. The
reason is basically since the eigenvectors of the Adjacency matrix and unnormalized Laplacian don’t
have to be related to the diagonal degree matrix D, which defined the weighted norm which relates
the normalized and unnormalized Laplacian. In the degree-heterogeneous case, working with the
normalized Laplacian will be more natural due to connections with random walks. That can be
interpreted as working with an unnormalized Laplacian, with an appropriate degree-weighted norm,
but then the trivial connection with the eigen-information of the Adjacency matrix is lost. We will
revisit this below too.)

In the above, A ∈ Rn×n is the Adjacency Matrix of an undirected graph G = (V,E). This will
provide the most direct connection with the Perro-Frobenius results we talked about last week.
Here are a few questions about the Adjacency Matrix.

• Question: Is it symmetric? Answer: Yes, so there are real eigenvalues and a full set of
orthonormal eigenvectors.

• Question: Is it positive? Answer: No, unless it is a complete graph. In the weighted case, it
could be positive, if there were all the edges but they had different weights; but in general it
is not positive, since some edges might be missing.

• Question: Is it nonnegative? Answer: Yes.

• Question: Is it irreducible? Answer: If no, i.e., if it is reducible, then

A =

(
A11 A12

0 A22

)
must also have A12 = 0 by symmetry, meaning that the graph is disconnected, in which case
we should think of it as two graphs. So, if the graph is connected then it is irreducible.

• Question: Is is aperiodic? Answer: If no, then since it must be symmetric, and so it must
look like

A =

(
0 A12

AT12 0

)
,

meaning that it is period equal to 2, and so the “second” large eigenvalue, i.e., the one on
the complex circle equal to a root of unity, is real and equal to −1.
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How do we know that the trivial eigenvector is uniform? Well, we know that there is only one
all-positive eigenvector. Let’s try the all-ones vector ~1. In this case, we get

A~1 = d~1,

which means that α1 = d and v1 =
~1√
n

=
(

1√
n
, . . . , 1√

n

)
. So, the graph is connected if α1 > α2,

and the graph is bipartite if α1 = −αn.

For the Laplacian L = D − A, there exists a close relationship between the spectrum of A and
L. (Recall, we are still considering the d-regular case.) To see this, let d = α1 ≥ . . . αn be
the eigenvalues of A with associated orthonormal eigenvectors v1, . . . , vn. (We know they are
orthonormal, since A is symmetric.) In addition, let 0 ≤ λ1 ≤ · · · ≤ λn be the eigenvalues of L.
(We know they are all real and in fact all positive from the above alternative definition.) Then,

αi = d− λi

and
AGvi = (dI − LG) vi = (d− λi) vi.

So, L “inherits” eigen-stuff from A. So, even though L isn’t positive or non-negative, we get Perron-
Frobenius style results for it, in addition to the results we get for it since it is a symmetric matrix.
In addition, if L→ D−1/2LD−1/2, then the eigenvalues of L become in [0, 2], and so on. This can
be viewed as changing variables y ← D−1/2x, and then defining Laplacian (above) and the Rayleigh
quotient in the degree-weighted dot product. (So, many of the results we will discuss today and
next time go through to degree-heterogeneous graphs, for this reason. But some of the results, in
particular the result having to do with expanders being least like low-dimensional Euclidean space,
do not.)

6.3 Statement of the basic Cheeger Inequality

We know the λ2 captures a “hard” notion of connectivity, since the above result in Theorem 1
states that λ2 = 0⇔ G is disconnected. Can we get a “soft” version of this?

To do so, let’s go back to d-regular graphs, and recall the definition.

Definition 1. Let G = (V,E) be a d-regular graph, and let
(
S, S̄

)
be a cut, i.e., a partition of the

vertex set. Then,

• the sparsity of S is: σ (S) =
E(S,S̄)
d

|V | |S|·|S̄|

• the edge expansion of S is: φ (S) =
E(S,S̄)
d|S|

This definition holds for sets of nodes S ⊂ V , and we can extend them to hold for the graph G.

Definition 2. Let G = (V,E) be a d-regular graph. Then,

• the sparsity of G is: σ (G) = minS⊂V :S 6=0,S 6=V σ (S).

• the edge expansion of G is: φ (G) = min
S⊂V :|S|≤ |V |

2

φ (S).
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For d-regular graphs, the graph partitioning problem is to find the sparsity or edge expansion of G.
Note that this means finding a number, i.e., the value of the objective function at the optimum,
but people often want to find the corresponding set of nodes, and algorithms can do that, but the
“quality of approximation” is that number.

Fact. For all d regular graphs G, and for all S ⊂ V s.t. |S| ≤ |V |2 , we have that

1

2
σ (S) ≤ φ (S) ≤ σ (S) .

Thus, since σ (S) = σ
(
S̄
)
, we have that

1

2
σ (G) ≤ φ (G) ≤ σ (G) .

BTW, this is what we mean when we say that these two objectives are “equivalent” or “almost
equivalent,” since that factor of 2 “doesn’t matter.” By this we mean:

• If one is interested in theory, then this factor of 2 is well below the guidance that theory can
provide. That is, this objective is intractable to compute exactly, and the only approximation
algorithms give quadratic or logarithmic (or square root of log) approximations. If they could
provide 1 ± ε approximations, then this would matter, but they can’t and they are much
coarser than this factor of 2.

• If one is interested in practice, then we can often do much better than this factor-of-2 im-
provement with various local improvement heuristics.

• In many cases, people actually write one and optimize the other.

• Typically in theory one is most interested in the number, i.e., the value of the objective, and
so we are ok by the above comment. On the other hand, typically in practice, one is interested
in using that vector to do things, e.g., make statements that the two clusters are close; but
that requires stronger assumptions to say nontrivial about the actual cluster.

Given all that, here is the basic statement of Cheeger’s inequality.

Theorem 2 (Cheeger’s Inequality). Recall that

λ2 = min
x:x⊥~1

max
x:x⊥~1

xTLx

xTx

where L = I − 1
dA. Then,

λ2

2
≤ φ(G) ≤

√
2λ2.

6.4 Comments on the basic Cheeger Inequality

Here are some notes about the basic Cheeter Inequality.

• This result “sandwiches” λ2 and φ close to each other on both sides. Clearly, from this result
it immediatly follows that

φ(G)2

2
≤ λ2 ≤ 2φ(G).
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• Later, we will see that φ(G) is large, i.e., is bounded away from 0, if the graph is well-
connected. In addition, other related things, e.g., that random walks will mix rapidly, will
also hold. So, this result says that λ2 is large if the graph is well-connected and small if the
graph is not well-connected. So, it is a soft version of the hard connectivity statement that
we had before.

• The inequality λ2
2 ≤ φ(G) is sometimes known as the “easy direction” of Cheeger’s Inequality.

The reason is that the proof is more straightforward and boils down to showing one of two
related things: that you can present a test vector, which is roughly the indicator vector for a
set of interest, and since λ2 is a min of a Rayleigh quotient, then it is lower than the Rayleigh
quotient of the test vector; or that the Rayleigh quotient is a relaxation of the sparsest cut
problem, i.e., it is minimizing the same objective over a larger set.

• The inequality φ(G) ≤
√

2λ2 is sometimes known as the “hard direction” of Cheeger’s Inequal-
ity. The reason is that the proof is constructive and is basically a vanilla spectral partitioning
algorithm. Again, there are two related proofs for the “hard” direction of Cheeger. One way
uses a notion of inequalities over graphs; the other way can be formulated as a randomized
rounding argument.

• Before dismissing the easy direction, note that it gives a polynomial-time certificate that a
graph is expander-like, i.e., that ∀ cuts (and there are 2n of them to check) at least a certain
number of edges cross that cut. (So the fact that is holds is actually pretty strong—we have
a polynomial-time computable certificate of having no sparse cuts, which you can imagine is
of interest since the naive way to check is to check everything.)

Before proceeding, a question came up in the class about whether the upper or lower bound was
more interesting or useful in applications. It really depend on on what you want.

• For example, if you are in a networking application where you are routing bits and you are
interested in making sure that your network is well-connected, then you are most interested
in the easy direction, since that gives you a quick-to-compute certificate that the graph is
well-connected and that your bits won’t get stuck in a bottleneck.

• Alternatively, if you want to run a divide and conquer algorithm or you want to do some sort
of statistical inference, both of which might require showing that you have clusters in your
graph that are well-separated from the rest of the data, then you might be more interested in
the hard direction which provides an upper bound on the intractable-to-compute expansion
and so is a certificate that there are some well-separated clusters.
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