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Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

5 Overview of graph partitioning

The problem of graph partitioning or graph clustering refers to a general class of problems that
deals with the following task: given a graph G = (V,E), group the vertices of a graph into groups or
clusters or communities. (One might be interested in cases where this graph is weighted, directed,
etc., but for now let’s consider non-directed, possibly weighted, graphs. Dealing with weighted
graphs is straightforward, but extensions to directed graphs are more problematic.) The graphs
might be given or constructed, and there may or may not be extra information on the nodes/edges
that are available, but insofar as the black box algorithm that actually does the graph partitioning
is concerned, all there is is the information in the graph, i.e., the nodes and edges or weighted edges.
Thus, the graph partitioning algorithm takes into account the node and edge properties, and thus
it typically relies on some sort of “edge counting” metric to optimize. Typically, the goal is to
group nodes in such a manner that nodes within a cluster are more similar to each other than to
nodes in different clusters, e.g., more and/or better edges within clusters and relatively few edges
between clusters.

5.1 Some general comments

Two immediate questions arise.

• A first question is to settle on an objective that captures this bicriteria. There are several
ways to quantify this bicriteria which we will describe, but each tries to cut a data graph into
2 or more “good” or “nice” pieces.

• A second question to address is how to compute the optimal solution to that objective. In
some cases, it is “easy,” e.g., it is computable in low-degree polynomial time, while in other
cases it is “hard,” e.g., it is intractable in the sense that the corresponding decision problem
is NP-hard or NP-complete.

In the case of an intractable objective, people are often interested in computing some sort of
approximate solution to optimize the objective that has been decided upon. Alternatively, people
may run a procedure without a well-defined objective stated and decided upon beforehand, and in
some cases this procedure returns answers that are useful. Moreover, the procedures often bear some
sort of resemblance to the steps of algorithms that solve well-defined objectives exactly. Clearly,
there is potential interest in understanding the relationship between these two complementary

1



approaches: this will help people who run procedures know what they are optimizing; this can feed
back and help to develop statistically-principled and more-scalable procedures; and so on.

Here, we will focus on several different methods (i.e., classes of algorithms, e.g., “spectral graph
algorithms” as well as other classes of methods) that are very widespread in practice and that can
be analyzed to prove strong bounds on the quality of the partitions found. The methods are the
following.

1. Spectral-based methods. This could include either global or local methods, both of which
come with some sort of Cheeger Inequality.

2. Flow-based methods. These have connections with the min-cut/max-flow theorem, and they
can be viewed in terms of embeddings via their LP formulation, and here too there is a local
improvement version.

In addition, we will also probably consider methods that combine spectral and flow in various ways.
Note that most or all of the theoretically-principles methods people use have steps that boil down
to one of these. Of course, we will also make connections with methods such as local improvement
heuristics that are less theoretically-principled but that are often important in practice.

Before doing that, we should point out something that has been implicit in the discussion so
far. That is, while computer scientists (and in particular TCS) often draw a strong distinction
between problems and algorithms, researchers in other areas (in particular machine learning and
data analysis as well as quantitatively-inclined people in nearly every other applied area) often do
not. For the latter people, one might run some sort of procedure that solves something insofar
as, e.g., it finds clusters that are useful by a downstream metric. As you can imagine, there is a
proliferation of such methods. One of the questions we will address is when we can understand
those procedures in terms of the above theoretically-principled methods. In many cases, we can;
and that can help to understand when/why these algorithms work and when/why they don’t.

Also, while we will mostly focus on a particular objective (called expansion or conductance) that
probably is the combinatorial objective that most closely captures the bicriteria of being well-
connected intra-cluster and not well-connected inter-cluster, we will probably talk about some other
related methods. For example, finding dense subgraphs, and finding so-called good-modularity
partitions. Those are also of widespread interest; they will illustrate other ways that spectral
methods can be used; and understanding the relationship between those objectives and expan-
sion/conductance is important.

Before proceeding, a word of caution: For a given objective quantifying how “good” is a partition,
it is not the case that all graphs have good partitions—but all graph partitioning algorithms (as
will other algorithms) will return some answer, i.e., they will give you some output clustering. In
particular, there is a class of graphs called expanders that do not have good clusters with respect
to the so-called expansion/conductance objective function. (Many real data graphs have strong
expander-like properties.)

In this case, i.e., when there are no good clusters, the simple answer is just to say don’t do clustering.
Of course, it can sometimes in practice be difficult to tell if you are in that case. (For example,
with a thousand graphs and a thousand methods—that may or may not be related but that have
different knobs and so are at least minorly-different—you are bound to find things look like clusters,
and controlling false discovery, etc., is tricky in general but in particular for graph-based data.)
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Alternatively, especially in practice, you might have a graph that has both expander-like properties
and non-expander-like properties, e.g., in different parts of the graph. A toy example of this could
be given by the lollipop graph. In that case, it might be good to know how algorithms behave on
different classes of graphs and/or different parts of the graph.

Question (raised by this): Can we certify that there are no good clusters in a graph? Or certify
the nonexistence of hypothesized things more generally? We will get back to this later.

Let’s go back to finding an objective we want to consider.

As a general rule of thumb, when most people talk about clusters or communities (for some reason,
in network and especially in social graph applications clusters are often called communities—they
may have a different downstream, e.g., sociological motivation, but operationally they are typically
found with some sort of graph clustering algorithm) “desirable” or “good” clusters tend to have
the following properties:

1. Internally (intra) - well connected with other members of the cluster. Minimally, this means
that it should be connected—but it is a challenge to guarantee this in a statistically and
algorithmically meaningful manner. More generally, this might mean that it is “morally
connected”—e.g., that there are several paths between vertices in intra-clusters and that
these paths should be internal to the cluster. (Note: this takes advantage of the fact that
we can classify edges incident to v ∈ C as internal (connected to other members of C) and
external (connected to C̄).

2. Externally (inter) - relatively poor connections between members of a cluster and members
of a different cluster. For example, this might mean that there are very few edges with one
endpoint in one cluster and the other endpoint in the other cluster.

Note that this implies that we can classify edges, i.e., pairwise connections, incident to a vertex
v ∈ C into edges that are internal (connected to other members of C) and edges that are external
(connected to members of C̄). This technically is well-defined; and, informally, it makes sense, since
if we are modeling the data as a graph, then we are saying that things and pairwise relationships
between things are of primary importance.

So, we want a relatively dense or well-connected (very informally, those two notions are similar,
but they are often different when one focuses on a particular quantification of the informal notion)
induced subgraph with relatively few inter-connections between pieces. Here are extreme cases to
consider:

• Connected component, i.e., the “entire graph,” if the graph is connected, or one connected
component if the graph is not connected.

• Clique or maximal clique, i.e., complete subgraph or a maximal complete subgraph, i.e.,
subgraph in which no other vertices can be added without loss of the clique property.

But how do we quantify this more generally?

5.2 A first try with min-cuts

Here we will describe an objective that has been used to partition graphs. Although it is widely-used
for certain applications, it will have certain aspects that are undesirable for many other applications.
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In particular, we cover it for a few reasons: first, as a starter objective before we get to a better
objective; second, since the dual is related to a non-spectral way to partition graphs; and third,
although it doesn’t take into account the bi-criteria we have outlined, understanding it will be a
basis for a lot of the stuff later.

5.2.1 Min-cuts and the Min-cut problem

We start with the following definition.

Definition 1. Let G = (V,E) be a graph. A cut C = (S, T ) is a partition of the vertex set V of
G. An s-t-cut C = (S, T ) of G = (V,E) is a cut C s.t. s ∈ S and t ∈ T , where s, t ∈ V are
pre-specified source and sink vertices/nodes. A cut set is {(u, v) ∈ E : u ∈ S, v ∈ T}, i.e., the edges
with one endpoint on each side of the cut.

The above definition applies to both directed and undirected graphs. Notice in the directed case,
the cut set contains the edges from node in S to nodes in T , but not those from T to S.

Given this set-up the min-cut problem is: find the “smallest” cut, i.e., find the cut with the
“smallest” cut set, i.e. the smallest boundary (or sum of edge weights, more generally). That is:

Definition 2. The capacity of an s-t-cut is c(S, T ) =
∑

(u,v)∈(S,S̄) cuv. In this case, the Min-Cut
Problem is to solve

min
s∈S,t∈S̄

c(S, S̄).

That is, the problem is to find the “smallest” cut, where by smallest we mean the cut with the
smallest total edge capacity across it, i.e., with the smallest “boundary.”

Things to note about this formalization:

1. Good: Solvable in low-degree polynomial time by a polynomial time algorithm. (As we will
see, min-cut = max-flow is related.)

2. Bad: Often get very unbalanced cut. (This is not necessarily a problem, as maybe there are
no good cuts, but for this formalization, this happens even when it is known that there are
good large cuts. This objective tends to nibble off small things, even when there are bigger
partitions of interest.) This is problematic for several reasons:

• In theory. Cut algorithms are used as a sub-routine in divide and conquer algorithm,
and if we keep nibbling off small pieces then the recursion depth is very deep; alterna-
tively, control over inference is often obtained by drawing strength over a bunch of data
that are well-separated from other data, and so if that bunch is very small then the
inference control is weak.

• In practice. Often, we want to “interpret” the clusters or partitions, and it is not nice
if the sets returned are uninteresting or trivial. Alternatively, one might want to do
bucket testing or something related, and when the clusters are very small, it might not
be worth the time.

(As a forward-looking pointer, we will see that an ‘improvement” of the idea of cut and
min-cut may also get very imbalanced partitions, but it does so for a more subtle/non-trivial
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reason. So, this is a bug or a feature, but since the reason is somewhat trivial people typically
view this as a bug associated with the choice of this particular objective in many applications.)

5.2.2 A slight detour: the Max-Flow Problem

Here is a slight detour (w.r.t. spectral methods per se), but it is one that we will get back to, and
it is related to our first try objective.

Here is a seemingly-different problem called the Max-Flow problem.

Definition 3. The capacity of an edge e ∈ E is a mapping c : E → R+, denoted ce or cuv (which
will be a constraint on the maximum amount of flow we allow on that edge).

Definition 4. A flow in a directed graph is a mapping f : E → R, denoted fe or fuv s.t.:

• fuv ≤ cuv, ∀(u, v) ∈ E (Capacity constraint.)

•
∑

v:(u,v)∈E fuv =
∑

v:(v,u)∈E fvu, ∀u ∈ V \{s, t} (Conservation of flow, except at source and
sink.)

• fe ≥ 0 ∀e ∈ E (obey directions)

A flow in a undirected graph is a mapping f : E → R, denoted fe. We arbitrarily assign directions
to each edge, say e = (u, v), and when we write f(v,u), it is just a notation for −f(u,v)

• |fuv| ≤ cuv, ∀(u, v) ∈ E (Capacity constraint.)

•
∑

v:(u,v)∈E fuv = 0, ∀u ∈ V \{s, t} (Conservation of flow, except at source and sink.)

Definition 5. The value of the flow |f | =
∑

v∈V |fsv|, where s is the source. (This is the amount of
flow flowing out of s. It is easy to see that as all the nodes other than s, t obey the flow conservation
constraint, the flow out of s is the same as the flow into t. This is the amount of flow flowing from
s to t.) In this case, the Max-Flow Problem is

max |f |.

Note: what we have just defined is really the “single commodity flow problem” since there exists
only 1 commodity that we are routing and thus only 1 source/sink pair s and t that we are routing
from/to. (We will soon see an important generalization of this to something called multi-commodity
flow, and this will be very related to a non-spectral method for graph partitioning.)

Here is an important result that we won’t prove.

Theorem 1 (Max-Flow-Min-Cut Theorem). The max value of an s − t flow is equal to the min
capacity of an s− t cut.

Here, we state the Max-Flow problem and the Min-Cut problem, in terms of the primal and dual
optimization problems.
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Primal: (Max-Flow):

max |f |
s.t. fuv ≤ Cuv, (uv) ∈ E∑

v:(vu)∈E

fvu −
∑

v:(uv)∈E

fuv ≤ 0, u ∈ V

fuv ≥ 0

Dual: (Min-Cut):

min
∑

(i,j)∈E

cijdij

s.t. dij − pi + pj ≥ 0, (ij) ∈ E
ps = 1, pt = 0,

pi ≥ 0, i ∈ V
dij ≥ 0, ij ∈ E

There are two ideas here that are important that we will revisit.

• Weak duality: for any instance and any feasible flows and cuts, max flow ≤ min cut.

• Strong duality: for any instance, ∃ feasible flow and feasible cut s.t. the objective functions
are equal, i.e., s.t. max flow = min cut.

We are not going to go into these details here—for people who have seen it, it is just to set the
context, and for people who haven’t seen it, it is to give an important fyi. But we will note the
following.

• Weak duality generalizes to many settings, and in particular to multi-commodity flow; but
strong duality does not. The next question is: does there exist a cut s.t. equality is achieved.

• We can get an approximate version of strong duality, i.e., an approximate Min-Cut-Max-Flow
theorem in that multi-commodity case. That we can get such a bound will have numerous
algorithmic implications, in particular for graph partitioning.

• We can translate this (in particular, the all-pairs multi-commodity flow problem) into 2-way
graph partitioning problems (this should not be immediately obvious, but we will cover it
later) and get nontrivial approximation guarantees.

About the last point: for flows/cuts we have introduced special source and sink nodes, s and t, but
when we apply it back to graph partitioning there won’t be any special source/sink nodes, basically
since we will relate it to the all-pairs multi-commodity flow problem, i.e., where we consider all

(
n
2

)
possible source-sink pairs.
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5.3 Beyond simple min-cut to “better” quotient cut objectives

The way we described what is a “good” clustering above was in terms of an intra-connectivity versus
intra-connectivity bi-criterion. So, let’s revisit and push on that. A related thing or a different way
(that gives the same result in many cases, but sometimes does not) is to say that a bi-criterion is:

• We want a good “cut value”—not too many crossing edges—where cut value is E(S, S̄) or a
weighted version of that. I.e., what we just considered with min-cut.

• We want good “balance” properties—i.e., both sides of the cut should be roughly the same
size—so both S, S̄ are the same size or approximately the same size.

There are several ways to impose a balance condition. Some are richer or more fruitful (in theory
and/or in practice) than others. Here are several. First, we can add “hard” or explicit balance
conditions:

• Graph bisection—find a min cut s.t. |S| = |S̄| = n/2, i.e., ask for exactly 50-50 balance.

• β-balanced cut—find a min cut s.t |S| = βn, |S̄| = (1 − β)n, i.e., give a bit of wiggle room
and ask for exactly (or more generally no worse than), say, a 70-30 balance.

Second, there are also “soft” or implicit balance conditions, where there is a penalty and separated
nodes “pay” for edges in the cut. (Actually, these are not “implicit” in the way we will use the
word later; here it is more like “hoped for, and in certain intuitive cases it is true.” And they are
not quite soft, in that they can still lead to imbalance; but when they do it is for much more subtle
and interesting reasons.) Most of these are usually formalized as quotient-cut-style objectives:

• Expansion: E(S,S̄)
|S|
n

or E(S,S̄)
min{|S|,|S̄|} (def this as :h(S) ) (a.k.a. q-cut)

• Sparsity: E(S,S̄)
|S||S̄| (def this as :sp(S) ) (a.k.a. approximate-expansion)

• Conductance: E(S,S̄)

Vol(S)
n

or E(S,S̄)

min(Vol(|S|),Vol(|S̄|))
(a.k.a. Normalized cut)

• Normalized-cut: E(S,S̄)

Vol(|S|)·Vol(|S̄|)
(a.k.a. approximate conductance)

Here, E(S, S̄) is the number of edges between S and S̄, or more generally for a weighted graph
the sum of the edge weights between S and S̄, and Vol(S) =

∑
ij∈E deg(Vi). In addition, the

denominator in all four cases correspond to different volume notions: the first two are based on the
number of nodes in S, and the last two are based on the number of edges in S (i.e., the sum of the
degrees of the nodes in S.)

Before proceeding, it is worth asking what if we had taken a difference rather than a ratio, e.g.,
SA−V OL, rather than SA/V OL. At the high level we are discussing now, that would do the same
thing—but, quantitatively, using an additive objective will generally give very different results than
using a ratio objective, in particular when one is interested in fairly small clusters.

(As an FYI, the first two, i.e., expansion and sparsity, are typically used in the theory algorithms
algorithms, since they tend to highlight the essential points; while the latter two, i.e., conductance
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and normalized cuts, are more often used in data analysis, machine learning, and other applications,
since issues of normalization are dealt with better.)

Here are several things to note:

• Expansion provides a slightly stronger bias toward being well-balanced than sparsity (i.e.
between a 10 − 90 cut and a 40 − 60 cut, the advantage in the denominator for the more
balanced 40− 60 cut in expansion is 4 : 1, while it is 2400 : 900 < 4 : 1 in sparsity) (and there
might be some cases where this is important. That is, the product variants have a “factor of
2” weaker preference for balance than the min variants. Similarly for normalized cuts versus
conductance.

• That being said, that difference is swamped by the following. Expansion and sparsity are the
“same” (in the following sense:)

minh(S) ≈ min sp(S)

Similarly for normalized cuts versus conductance.

• Somewhat more precisely, although the expansion of any particular set isn’t in general close
to the sparsity of that set, The expansion problem and the sparsity problem are equivalent
in the following sense:

It is clear that

argmin
S

Φ′(G) = argmin
S

nΦ′(G) = argmin
S

C(S, S̄)

min{|S|, |S̄|}
n

max{|S|, |S̄|}

As 1 < n
max{|S|,|S̄|} ≤ 2 , the min partition we find by optimizing sparsity will also give, off by

a multiplicative factor of 2, the optimal expansion. As we will see this is small compared to
O(log n) approximation from flow or the quadratic factor with Cheeger, and so is not worth
worrying about from an optimization perspective. Thus, we will be mostly cavalier about
going back and forth.

• Of course, the sets achieving the optimal may be very different. An analogous thing was seen
in vector spaces—the optimal may rotate by 90 degrees, but for many things you only need
that the Rayleigh quotient is approximately optimal. Here, however, the situation is worse.
Asking for the certificates achieving the optimum is a more difficult thing—in the vector space
case, this means making awkward “gap” assumptions, and in the graph case it means making
strong and awkward combinatorial statements.

• Expansion 6= Conductance, in general, except for regular graphs. (Similarly, Sparsity 6=
Normalized Cuts, in general, except for regular graphs.) The latter is in general preferable
for heterogeneous graphs, i.e., very irregular graphs. The reason is that there are closer
connections with random walks and we get tighter versions of Cheeger’s inequality if we take
the weights into account.

• Quotient cuts capture exactly the surface area to volume bicriteria that we wanted. (As a
forward pointer, a question is the following: what does this mean if the data come from a low
dimensional space versus a high dimensional space; or if the data are more or less expander-
like; and what is the relationship between the original data being low or high dimensional
versus the graph being expander-like or not?
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• For “space-like” graphs, these two bicriteria as “synergistic,” in that they work together; for
expanders, they are “uncoupled,” in that the best cuts don’t depend on size, as they are all
bad; and for many “real-world” heavy-tailed informatics graphs, they are “anti-correlated,”
in that better balance means worse cuts.

• An obvious question: are there other notions, e.g., of “volume” that might be useful and that
will lead to similar results we can show about this? (In some cases, the answer to this is yes:
we may revisit this later.) Moreover, one might want to choose a different reweighting for
statistical or robustness reasons.

(We will get back to the issues raised by that second-to-last point later when we discuss “local”
partitioning methods. We simply note that “space-like” graphs include, e.g., Z2 or random geo-
metric graphs or “nice” planar graphs or graphs that “live” on the earth. More generally, there is
a trade-off and we might get very imbalanced clusters or even disconnected clusters. For example,
for the G(n, p) random graph model if p ≥ log n2/n then we have an expander, while for extremely
sparse random graphs, i.e., p < log n/n, then due to lack of concentration we can have deep small
cuts but be expander-like at larger size scales.)

5.4 Overview Graph Partition Algorithms

Here, we will briefly describe the “lay of the land” when it comes to graph partitioning algorithms—
in the next few classes, we will go into a lot more details about these methods. There are three
basic ideas you need to know for graph partitioning, in that nearly all methods can be understood
in terms of some combination of these methods.

• Local Improvement (and multi-resolution).

• Spectral Methods.

• Flow-based Methods.

As we will see, in addition to being of interest in clustering data graphs, graph partitioning is
a nice test-case since it has been very well-studied in theory and in practice and there exists a
large number of very different algorithms, the respective strengths and weaknesses of which are
well-known for dealing with it.

5.4.1 Local Improvement

Local improvement methods refer to a class of methods that take an input partition and do more-
or-less naive steps to get a better partition:

• 70s Kernighan-Lin.

• 80s Fiduccia-Mattheyses—FM and KL start with a partition and improve the cuts by flipping
nodes back and forth. Local minima can be a big problem for these methods. But they can
be useful as a post-processing step—can give a big difference in practice. FM is better than
KL since it runs in linear time, and it is still commonly used, often in packages.
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• 90s Chaco, Metis, etc. In particular, METIS algorithm from Karypis and Kumar, works very
well in practice, especially on low dimensional graphs.

The methods of the 90s used the idea of local improvement, coupled with the basically linear
algebraic idea of Multiresolution get algorithms that are designed to work well on space-like graphs
and that can perform very well in practice. The basic idea is:

• Contract edges to get a smaller graph.

• Cut the resulting graph.

• Unfold back up to the original graph.

Informally, the basic idea is that if there is some sort of geometry, say the graph being partitioned is
the road network of the US, i.e., that lives on a two-dimensional surface, then we can “coarse grain”
over the geometry, to get effective nodes and edges, and then partition over the coarsely-defined
graph. The algorithm will, of course, work for any graph, and one of the difficulties people have
when applying algorithms as a black box is that the coarse graining follows rules that can behave
in funny ways when applied to a graph that doesn’t have the underlying geometry.

Here are several things to note:

• These methods grew out of scientific computing and parallel processing, so they tend to work
on “space-like” graphs, where there are nice homogeneity properties—even if the matrices
aren’t low-rank, they might be diagonal plus low-rank off-diagonal blocks for physical reasons,
or whatever.

• The idea used previously to speed up convergence of iterative methods.

• Multiresolution allows globally coherent solutions, so it avoids some of the local minima
problems.

• 90s: Karger showed that one can compute min-cut by randomly contracting edges, and so
multiresolution may not be just changing the resolution at which one views the graph, but it
may be taking advantage of this property also.

An important point is that local improvement (and even multiresolution methods) can easily get
stuck in local optima. Thus, they are of limited interest by themselves. But they can be very
useful to “clean up” or “improve” the output of other methods, e.g., spectral methods, that in a
principled way lead to a good solution, but where the solution can be improved a bit by doing some
sort or moderately-greedy local improvement.

5.4.2 Spectral methods

Spectral methods refer to a class of methods that, at root, are a relaxation or rounding method
derived from an NP-hard QIP and that involves eigenvector computations. In this case that we are
discussing, it is the QIP formulation of the graph bisection problem that is relaxed. Here is a bit
of incomplete history.
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• Donath and Hoffman (ca. 72,73) introduced the idea of using the leading eigenvector of the
Adjacency Matrix AG as a heuristic to find good partitions.

• Fiedler (ca. 73) associated the second smallest eigenvalue of the Laplacian LG with graph
connectivity and suggested splitting the graph by the value along the associated eigenvector.

• Barnes and Hoffman (82,83) and Bopanna (87) used LP, SDP, and convex programming
methods to look at the leading nontrivial eigenvector.

• Cheeger (ca. 70) established connections with isoperimetric relationships on continuous man-
ifolds, establishing what is now known ad Cheeger’s Inequality.

• 80s: saw performance guarantees from Alon-Milman, Jerrum-Sinclair, etc., connecting λ2 to
expanders and rapidly mixing Markov chains.

• 80s: saw improvements to approximate eigenvector computation, e.g., Lanczos methods,
which made computing eigenvectors more practical and easier.

• 80s/90s: saw algorithms to find separators in certain classes of graphs, e.g., planar graphs,
bounds on degree, genus, etc.

• Early 90s: saw lots of empirical work showing that spectral partitioning works for “real”
graphs such as those arising in scientific computing applications

• Spielman and Teng (96) showed that “spectral partitioning works” on bounded degree planar
graphs and well-shaped meshed, i.e., in the application where it is usually applied.

• Guattery and Miller (95, 97) showed “spectral partitioning doesn’t work” on certain classes of
graphs, e.g., the cockroach graph, in the sense that there are graphs for which the quadratic
factor is achieved. That particular result holds for vanilla spectral, but similar constructions
hold for non-vanilla spectral partitioning methods.

• Leighton and Rao (87, 98) established a bound on the duality gap for multi-commodity flow
problems, and used multi-commodity flow methods to get an O(log n) approximation to the
graph partitioning problem.

• LLR (95) considered the geometry of graphs and algorithmic applications, and interpreted LR
as embedding G in a metric space, making the connection with the O(log n) approximation
guarantee via Bourgain’s embedding lemma.

• 90s: saw lots of work in TCS on LP/SDP relaxations of IPs and randomized rounding to get
{±1} solutions from fractional solutions.

• Chung (97) focused on the normalized Laplacian for degree irregular graphs and the associated
metric of conductance.

• Shi and Malik (99) used normalized cuts for computer vision applications, which is essentially
a version of conductance.

• Early 00s: saw lots of work in ML inventing and reinventing and reinterpreting spectral
partitioning methods, including relating it to other problems like semi-supervised learning
and prediction (with, e.g., boundaries between classes being given by low-density regions).
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• Early 00s: saw lots of work in ML on manifold learning, etc., where one constructs a graph
and recovers an hypothesized manifold; constructs graphs for semi-supervised learning appli-
cations; and where the diffusion/resistance coordinates are better or more useful/robust than
geodesic distances.

• ARV (05) got an SDP-based embedding to get an O(
√

log n) approximation, which combined
ideas from spectral and flow; and there was related follow-up work.

• 00s: saw local/locally-biased spectral methods and improvements to flow improve methods.

• 00s: saw lots of spectral-like methods like viral diffusions with social/complex networks.

For the moment and for simplicity, say that we are working with unweighted graphs. The graph
partitioning QIP is:

min xTLx

s.t. xT 1 = 0

xi ∈ {−1,+1}

and the spectral relaxation is:

min xTLx

s.t. xT 1 = 0

xi ∈ R, xTx = n

That is, we relax x from being in {−1, 1}, which is a discrete/combinatorial constraint, to being a
real continuous number that is 1 “on average.” (One could relax in other ways—e.g., we could relax
to say that it’s magnitude is equal to 1, but that it sits on a higher-dimensional sphere. We will
see an example of this later. Or other things, like relaxing to a metric.) This spectral relaxation is
not obviously a nice problem, e.g., it is not even convex; but it can be shown that the solution to
this relaxation can be computed as the second smallest eigenvector of L, the Fiedler vector, so we
can use an eigensolver to get the eigenvector.

Given that vector, we then have to perform a rounding to get an actual cut. That is, we need to
take the real-valued/fractional solution obtained from the continuous relaxation and round it back
to {−1,+1}. There are different ways to do that.

So, here is the basic spectral partitioning method.

• Compute an eigenvector of the above program.

• Cut according to some rules, e.g., do a hyperplane rounding, or perform some other more
complex rounding rule.

• Post process with a local improvements method.

The hyperplane rounding is the easiest to analyze, and we will do it here, but not surprisingly
factors of 2 can matter in practice; and so—when spectral is an appropriate thing to do—other
rounding rules often do better in practice. (But that is a “tweak” on the larger question of spectral
versus flow approximations.) In particular, we can do local improvements here to make the output
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slightly better in practice. Also, there is the issue of what exactly is a rounding, e.g., if one performs
a sophisticated flow-based rounding then one may obtain a better objective function but a worse
cut value. Hyperplane rounding involves:

• Choose a split point x̂ along the vector x

• Partition nodes into 2 sets: {xi < x̂} and {xi > x̂}

By Vanilla spectral, we refer to spectral with hyperplane rounding of the Fiedler vector embedding.

Given this setup of spectral-based partitioning, what can go “wrong” with this approach.

• We can choose the wrong direction for the cut:

– Example—Guattery and Miller construct an example that is “quadratically bad” by
taking advantage of the confusion that spectral has between “long paths” and “deep
cuts.”

– Random walk interpretation—long paths can also cause slow mixing since the expected
progress of a t-step random walk is O(

√
t).

• The hyperplane rounding can hide good cuts:

– In practice, it is often better to post-process with FM to improve the solution, especially
if want good cuts, i.e., cuts with good objective function value.

An important point to emphasize is that, although both of these examples of “wrong” mean that
the task one is trying to accomplish might not work, i.e., one might not find the best partition,
sometimes that is not all bad. For example, the fact that spectral methods “strip off” long stringy
pieces might be ok if, e.g., one obtains partitions that are “nice” in other ways. That is, the direction
chosen by spectral partitioning might be nice or regularized relative to the optimal direction. We
will see examples of this, and in fact it is often for this reason that spectral performs well in practice.
Similarly, the rounding step can also potentially give an implicit regularization, compared to more
sophisticated rounding methods, and we will return to discuss this.

5.4.3 Flow-based methods

There is another class of methods that uses very different ideas to partition graphs. Although this
will not be our main focus, since they are not spectral methods, we will spend a few classes on it,
and it will be good to know about them since in many ways they provide a strong contrast with
spectral methods.

This class of flow-based methods uses the “all pairs” multicommodity flow procedure to reveal
bottlenecks in the graph. Intuitively, flow should be “perpendicular” to the cut (i.e. in the sense
of complementary slackness for LPs, and similar relationship between primal/dual variables to
dual/primal constraints in general). The idea is to route a large number of commodities simultane-
ously between random pairs of nodes and then choose the cut with the most edges congested—the
idea being that a bottleneck in the flow computation corresponds to a good cut.

Recall that the single commodity max-flow-min-cut procedure has zero duality gap, but that is not
the case for multi-commodity problem. On the other hand, the k-multicommodity has O(log k)
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duality gap—this result is due to LR and LLR, and it says that there is an approximate min-flow-
max-cut. Also, it implies an O(log n) gap for the all pairs problem.

The following is an important point to note.

Claim 1. The O(log n) is tight on expanders.

For flow, there are connections to embedding and linear programming, so as we will see, we can
think of the algorithm as being:

• Relax flow to LP, and solve the LP.

• Embed solution in the `1 metric space.

• Round solution to {0, 1}.

5.5 Advanced material and general comments

We will conclude with a brief discussion of these results in a broader context. Some of these issues
we may return to later.

5.5.1 Extensions of the basic spectral/flow ideas

Given the basic setup of spectral and flow methods, both of which come with strong theory, here
are some extensions of the basic ideas.

• Huge graphs. Here want to do computations depending on the size of the sets and not the
size of the graph, i.e., we don’t even want to touch all the nodes in the graph, and we want
to return a cut that is nearby an input seed set of nodes. This includes “local” spectral
methods—that take advantage of diffusion to approximate eigenvectors and get Cheeger-like
guarantees.

• Improvement Methods. Here we want to “improve” an input partition—there are both spec-
tral and flow versions.

• Combining Spectral and Flow.

– ARV solves an SDP, which takes time like O(n4.5) or so; but we can do it faster (e.g.,
on graphs with ≈ 105 nodes) using ideas related to approximate multiplicative weights.

– There are strong connections here to online learning—roughly since we can view “worst
case” analysis as a “game” between a cut player and a matching player.

– Similarly, there are strong connections to boosting, which suggest that these combina-
tions might have interesting statistical properties.

A final word to reemphasize: at least as important for what we will be doing as understanding
when these methods work is understanding when these methods “fail”—that is, when they achieve
their worst case quality-of-approximation guarantees:
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• Spectral methods “fail” on graphs with “long stringy” pieces, like that constructed by Guat-
tery and Miller.

• Flow-based methods “fail” on expander graphs (and, more generally, on graphs where most
of the

(
n
2

)
pairs but most pairs are far log n apart).

Importantly, a lot of real data have “stringy” pieces, as well as expander-like parts; and so it is not
hard to see artifacts of spectral and flow based approximation algorithms when they are run on
real data.

5.5.2 Additional comments on these methods

Here are some other comments on spectral versus flow.

• The SVD gives good “global” but not good “local” guarantees. For example, it provides
global reconstruction error, and going to the low-dimensional space might help to speed up
all sorts of algorithms; but any pair of distances might be changed a lot in the low-dimensional
space, since the distance constraints are only satisfied on average. This should be contrasted
with flow-based embedding methods and all sorts of other embedding methods that are used
in TCS and related areas, where one obtains very strong local or pairwise guarantees. There
are two important (but not immediately obvious) consequences of this.

– The lack of local guarantees makes it hard to exploit these embeddings algorithmically
(in worst-case), whereas the pair-wise guarantees provided by other types of embeddings
means that you can get worst-case bounds and show that the solution to the subproblem
approximates in worst case the solution to the original problem.

– That being said, the global guarantee means that one obtains results that are more robust
to noise and not very sensitive to a few “bad” distances, which explains why spectral
methods are more popular in many machine learning and data analysis applications.

– That local guarantees hold for all pair-wise interactions to get worst-case bounds in
non-spectral embeddings essentially means that we are “overfitting” or “most sensitive
to” data points that are most far apart. This is counter to a common design principle,
e.g., exploited by Gaussian rbf kernels and other NN methods, that the most reliable
information in the data is given by nearby points rather than far away points.
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