
Stat260/CS294: Spectral Graph Methods Lecture 4 - 02/03/2015

Lecture: Basic Matrix Results (3 of 3)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

4 Review and overview

Recall the basic statement of the Perron-Frobenius theorem from last class.

Theorem 1 (Perron-Frobenius). Let A ∈ Rn×n be an irreducible non-negative matrix. Then,

1. A has a positive real eigenvalue λmax; which is equal to the spectral radius; and λmax has an
associated eigenvector x with all positive entries.

2. If 0 ≤ B ≤ A, with B 6= A, then every eigenvalue σ of B satisfies |σ| < λmax = ρA. (Note
that B does not need to be irreducible.) In particular, B can be obtained from A by zeroing
out entries; and also all of the diagonal minors A(i) obtained from A by deleting the ith

row/column have eigenvalues with absolute value strictly less than λmax = ρA. Informally,
this says: ρA increases when any entry of A increases.

3. That eigenvalue ρA has algebraic and geometric multiplicity equal to one.

4. If y ≥ 0, y 6= 0 is a vector and µ is a number such that Ay ≤ µy, then y > 0 and µ ≥ λmax;
with µ = λmax iff y is a multiple of x. Informally, this says: there is no other non-negative
eigenvector of A different than x.

5. If, in addition, A is primitive/aperiodic, then each other eigenvalue λ of A satisfies |λ| < ρA.

6. If, in addition, A is primitive/aperiodic, then

lim
t→∞

(
1

ρA
A

)t
= xyT ,

where x and y are positive eigenvectors of A and AT with eigenvalue ρA, i.e., Ax = ρAx and
AT y = ρAy (i.e., yTA = ρAy

T ), normalized such that xT y = 1.

Today, we will do three things: (1) we will prove this theorem; (2) we will also discuss periodic-
ity/aperiodicity issues; (3) we will also briefly discuss the first connectivity/non-connectivity result
for Adjacency and Laplacian matrices of graphs that will use the ideas we have developed in the
last few classes.

Before proceeding, one note: an interpretation of a matrix B generated from A by zeroing out an
entry or an entire row/column is that you can remove an edge from a graph or you can remove
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a node and all of the associated edges from a graph. (The monotonicity provided by that part of
this theorem will be important for making claims about how the spectral radius behaves when such
changes are made to a graph.) This obviously holds true for Adjacency matrices, and a similar
statement also holds true for Laplacian matrices.

4.1 Proof of the Perron-Frobenius theorem

We start with some general notation and definitions; then we prove each part of the theorem in turn.

Recall from last time that we let P = (I +A)n and thus P is positive. Thus, for every non-
negative and non-null vector v, then we have that Pv > 0 element-wise; and (equivalently) if v ≤ w
element-wise, and v 6= w, then we have that Pv < Pw. Recall also that we defined

Q = {x ∈ Rn s.t. x ≥ 0, x 6= 0}
C = {x ∈ Rn s.t. x ≥ 0, ||x|| = 1} ,

where || · || is any vector norm. Note in particular that this means that C is compact, i.e., closed
and bounded. Recall also that, for all z ∈ Q, we defined the following function: let

f(z) = max {s ∈ R : sz ≤ Az} = min
1≤i≤n,zi 6=0

(Az)i
zi

Finally, recall several facts about the function f .

• f(rz) = f(z), for all r > 0.

• If Az = λz, i.e., if (λ, z) is an eigenpair, then f(z) = λ.

• In general, f(z) ≤ f(Pz); and if z is not an eigenvector of A, then f(z) < f(Pz). (The reason
for the former is that if sz ≤ Az, then sPz ≤ PAz = APz. The reason for the latter is that
in this case sz 6= Az, for all s, and sPz < APz, and by considering the second expression for
f(z) above.)

We will prove the theorem in several steps.

4.2 Positive eigenvalue with positive eigenvector.

Here, we will show that there is a positive eigenvalue λ∗ and that the associated eigenvector x∗ is
a positive vector.

To do so, consider P (C), the image of C under the action of the operator P . This is a compact
set, and all vectors in P (C) are positive. By the second expression in definition of f(·) above, we
have that f is continuous of P (C). Thus, f achieves its maximum value of P (C), i.e., there exists
a vector x ∈ P (C) such that

f(x) = sup
z∈C

f(Pz).

Since f(z) ≤ f(Pz), the vector x realizes the maximum value fmax of f on Q. So,

fmax = f(x) ≤ f(Px) ≤ fmax.
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Thus, from the third property of f above, x is an eigenvector of A with eigenvalue fmax. Since
x ∈ P (C), then x is a positive vector; and since Ax > 0 and Ax = fmaxx, it follows that fmax > 0.

(Note that this result shows that fmax = λ∗ is achieved on an eigenvector x = x∗, but it doesn’t
show yet that it is equal to the spectral radius.)

4.3 That eigenvalue equals the spectral radius.

Here, we will show that fmax = ρA, i.e., fmax equals the spectral radius.

To do so, let z ∈ Cn be an eigenvector of A with eigenvalue λ ∈ C; and let |z| be a vector, each
entry of which equals |zi|. Then, |z| ∈ Q.

We claim that |λ||z| ≤ A|z|. To establish the claim, rewrite it as |λ||zi| ≤
∑n

k=1Aik|zk|. Then,
since Az = λz, i.e., λzi =

∑n
k=1Aikzk, and since Aik ≥ 0, we have that

|λ||z| =

∣∣∣∣∣
n∑
k=1

Aikzk

∣∣∣∣∣ ≤
n∑
k=1

Aik|zk|,

from which the claim follows.

Thus, by the definition of f (i.e., since f(z) = min (Az)i
(z)i

, we have that |λ| ≤ f(|z|). Hence,

|λ| ≤ fmax, and thus ρA ≤ fmax (where ρA is the spectral radius). Conversely, from the above, i.e.,
since fmax is an eigenvalue it must be ≤ the maximum eigenvalue, we have that fmax ≤ ρA. Thus,
fmax = ρA.

4.4 An extra claim to make.

We would like to establish the following result:

f(z) = fmax ⇒ (Az = fmaxz and z > 0) .

To establish this result, observe that above it is shown that: if f(z) = fmax, then f(z) = f(Pz).
Thus, z is an eigenvector of A for eigenvalue fmax. It follows that Pz = λz, i.e., that z is also an
eigenvector of P . Since P is positive, we have that Pz > 0, and so z is positive.

4.5 Monotonicity of spectral radius.

Here, we would like to show that 0 ≤ B ≤ A and B 6= A implies that ρB < ρA. (Recall that B
need not be irreducible, but A is.)

To do so, suppose that Bz = λz, with z ∈ Cn and with λ ∈ C. Then,

|λ||z| ≤ B|z| ≤ A|z|,

from which it follows that
|λ| ≤ fA(|z|) ≤ ρA,

and thus ρB ≤ ρA.
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Next, assume for contradiction that |λ| = ρA. Then from the above claim (in Section 4.4), we have
that fA(z) = ρA. Thus from above it follows that |z| is an eigenvector of A for the eigenvalue ρA
and also that z is positive. Hence, B|z| = A|z|, with z > 0; but this is impossible unless A = B.

Remark. Replacing the ith row/column of A by zeros gives a non-negative matrix A(i) such that
0 ≤ A(i) ≤ A. Moreover, A(i) 6= A, since the irreducibility of A precludes the possibility that all
entries in a row are equal to zero. Thus, for all matrices A(i) that are obtained by eliminating the

ith row/column of A, the eigenvalues of A(i) < ρ.

4.6 Algebraic/geometric multiplicities equal one.

Here, we will show that the algebraic and geometric multiplicity of λmax equal 1. Recall that the
geometric multiplicity is less than or equal to the algebraic multiplicity, and that both are at least
equal to one, so it suffices to prove this for the algebraic multiplicity.

Before proceeding, also define the following: given a square matrix A:

• Let A(i) be the matrix obtained by eliminating the ith row/column. In particular, this is a
smaller matrix, with one dimension less along each column/row.

• Let Ai be the matrix obtained by zeroing out the ith row/column. In particular, this is a
matrix of the same size, with all the entries in one full row/column zeroed out.

To establish this result, here is a lemma that we will use; its proof (which we won’t provide) boils
down to expanding det (Λ−A) along the ith row.

Lemma 1. Let A be a square matrix, and let Λ be a diagonal matrix of the same size with λ1, . . . , λn
(as variables) along the diagonal. Then,

∂

∂λi
det (Λ−A) = det

(
Λ(i) −A(i)

)
,

where the subscript (i) means the matrix obtained by eliminating the ith row/column from each
matrix.

Next, set λi = λ and apply the chain rule from calculus to get

d

dλ
det (λI −A) =

n∑
i=1

det
(
λI −A(i)

)
.

Finally, note that
det (λI −Ai) = λdet

(
λI −A(i)

)
.

But by what we just proved (in the Remark at the end of last page), we have that det
(
ρAI −A(i)

)
>

0. Thus, the derivative of the characteristic polynomial of A is nonzero at ρA, and so the algegraic
multiplicity equals 1.
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4.7 No other non-negative eigenvectors, etc.

Here, we will prove the claim about other non-negative vectors, including that there are no other
non-negative eigenvectors.

To start, we claim that: 0 ≤ B ≤ A⇒ fmax(B) ≤ fmax(A). (This is related to but a little different
than the similar result we had above.) To establish the claim, note that if z ∈ Q is s.t. sz ≤ Bz,
then sz ≤ Az (since Bz ≤ Az), and so fB(z) ≤ fA(z), for all z.

We can apply that claim to AT , from which it follows that AT has a positive eigenvalue, call it η.
So, there exists a row vector, w > 0 s.t. wTA = ηwT . Recall that x > 0 is an eigenvector of A with
maximum eigenvalue λmax. Thus,

wTAx = ηwTx = λmaxw
Tx,

and thus η = λmax (since wTx > 0).

Next, suppose that y ∈ Q and Ay ≤ µy. Then,

λmaxw
T y = wTAy ≤ µwT y,

from which it follows that λmax ≤ µ. (This is since all components of w are positive and some
components of y is positive, and so wT y > 0).

In particular, if Ay = µy, then µ = λmax.

Further, if y ∈ Q and Ay ≤ µy, then µ ≥ 0 and y > 0. (This is since 0 < Py = (I +A)n−1 y ≤
(1 + µ)n−1 y.)

This proves the first two parts of the result; now, let’s prove the last part of the result.

If µ = λmax, then wT (Ay−λmaxy) = 0. But, Ay−λmaxy ≤ 0. So, given this, from wT (Ay − λmaxy) =
0, it follows that Ay = λmaxy. Since y must be an eigenvector with eigenvalue λmax, the last result
(i.e., that y is a scalar multiple of x) follows since λmax has multiplicity 1.

To establish the converse direction march through these steps in the other direction.

4.8 Strict inequality for aperiodic matrices

Here, we would like to establish the result that the eigenvalue we have been talking about is strictly
larger in magnitude than the other eigenvalues, under the aperiodicity assumption.

To do so, recall that the tth powers of the eigenvalues of A are the eigenvalues of At. So, if we want
to show that there does not exist eigenvalues of a primitive matrix with absolute value = ρA, other
than ρA, then it suffices to prove this for a positive matrix A.

Let A be a positive matrix, and suppose that Az = λz, with z ∈ Cn, λ ∈ C, and |λ| = ρA, in which
case the goal is to show λ < ρA.

(We will do this by showing that any eigenvector with eigenvalue equal in magnitude to ρA is the
top eigenvalue.) (I.e., we will show that such a z equals |z| and thus there is no other one with ρA.)

Then,
ρA|z| = |Az| ≤ A|z|,
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from which it follows that
ρA ≤ f(|z|) ≤ ρA,

which implies that f(|z|) = ρA. From a result above, this implies that |z| is an eigenvector of A
with eigenvalue ρA. Moreover, |Az| = A|z|. In particular,∣∣∣∣∣

n∑
i=1

A1izi

∣∣∣∣∣ =
n∑
i=1

A1i|zi|.

Since all of the entries of A are positive, this implies that there exists a number u ∈ C (with |u| = 1)
s.t. for all i ∈ [n], we have that zi = u|zi|. Hence, z and |z| are collinear eigenvectors of A. So, the
corresponding eigenvalues of λ and ρ are equal, as required.

4.9 Limit for aperiodic matrices

Here, we would like to establish the limiting result.

To do so, note that AT has the same spectrum (including multiplicities) as A; and in particular
the spectral radius of AT equals ρA.

Moreover, since AT is irreducible (a consequence of being primitive), we can apply the Perron-
Frobenius theorem to it to get yA = ρAy. Here y is determined up to a scalar multiple, and so let’s
choose it s.t. xT y =

∑n
i=1 xiyi = 1.

Next, observe that we can decompose the n-dimensional vector space Rn into two parts,

Rn = R⊕N,

where both R and N are invariant under the action of A. To do this, define the rank-one matrix
H = xyT , and:

• let R be the image space of H; and

• let N be the null space of H.

Note that H is a projection matrix (in particular, H2 = H), and thus I −H is also a projection
matrix, and the image space of I −H is N . Also,

AH = AxyT = ρAxy
T = xρAy

T = xyTA = HA.

So, we have a direct sum decomposition of the space Rn into R ⊕ N , and this decomposition is
invariant under the action of A.

Given this, observe that the restriction of A to N has all of its eigenvalues strictly less that ρA
in absolute value, while the restriction of A to the one-dimensional space R is simply a multipli-
cation/scaling by ρA. So, if P is defined to be P = 1

ρA
A, then the restriction of P to N has its

eigenvalues < 1 in absolute value. This decomposition is also invariant under all positive integral
powers of P . So, the restriction of P k to N tends to zero as k → ∞, while the restriction of P to

R is the identity. So, limt→∞

(
1
ρA
A
)t

= H = xyT .
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4.10 Additional discussion form periodicity/aperiodic and cyclicity/primitiveness

Let’s switch gears and discuss the periodicity/aperiodic and cyclicity/primitiveness issues.

(This is an algebraic characterization, and it holds for general non-negative matrices. I think that
most people find this less intuitive that the characterization in terms of connected components, but
it’s worth at least knowing about it.)

Start with the following definition.

Definition 1. The cyclicity of an irreducible non-negative matrix A is the g.c.d. (greatest common
denominator) of the length of the cycles in the associated graph.

Let’s let Nij be a positive subset of the integers s.t.

{t ∈ N s.t. (At)ij > 0},

that is, it is the values of t ∈ N s.t. the matrix At’s (i, j) entry is positive (i.e. exists a path from
i to j of length t) . Then, to define γ to be the cyclicity of A, first define γi = gcd (Nii), and
then clearly γ = gcd ({γi s.t. i ∈ V }). Note that each Nii is closed under addition, and so it is a
semi-group.

Here is a lemma from number theory (that we won’t prove).

Lemma 2. A set N of positive integers that is closed under addition contains all but a finite number
of multiples of its g.c.d.

From this it follows that ∀i ∈ [n], γi = γ.

The following theorem (which we state but won’t prove) provides several related conditions for an
irreducible matrix to be primitive.

Theorem 2. Let A be an irreducible matrix. Then, the following are equivalent.

1. The matrix A is primitive.

2. All of the eigenvalues of A different from its spectral radius ρA satisfy |λ| < ρA.

3. The sequence of matrices
(

1
ρA
A
)t

converges to a positive matrix.

4. There exists an i ∈ [n] s.t., γi = 1.

5. The cyclicity of A equals 1.

For completeness, note that sometimes one comes across the following definition.

Definition 2. Let A be an irreducible non-negative square matrix. The period of A is the g.c.d. of
all natural numbers m s.t. (Am)ii > 0 for some i. Equivalently, the g.c.d. of the lengths of closed
directed paths of the directed graph GA associated with A.
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Fact. All of the statements of the Perron-Frobenius theorem for positive matrices remain true for
irreducible aperiodic matrices. In addition, all of those statements generalize to periodic matrices.
The the main difference in this generalization is that for periodic matrices the “top” eigenvalue
isn’t “top” any more, in the sense that there are other eigenvalues with equal absolute value that
are different: they equal the pth roots of unity, where p is the periodicity.

Here is an example of a generalization.

Theorem 3. Let A be an irreducible non-negative n×n matrix, with period equal to h and spectral
radius equal to ρA = r. Then,

1. r > 0, and it is an eigenvalue of A.

2. r is a simple eigenvalue, and both its left and right eigenspace are one-dimensional.

3. A has left/right eigenvectors v/w with eigenvalue r, each of which has all positive entries.

4. A has exactly h complex eigenvalues with absolute value = r; and each is a simple root of the
characteristic polynomial and equals the r · hth root of unity.

5. If h > 0, then there exists a permutation matrix P s.t.

PAP T =


0 A12 0

0 A23

. . .
. . .

0 0 Ah−1,h
Ah1 0 0

 . (1)

4.11 Additional discussion of directness, periodicity, etc.

Today, we have been describing Perron-Frobenius theory for non-negative matrices. There are a lot
of connections with graphs, but the theory can be developed algebraically and linear-algebraically,
i.e., without any mention of graphs. (We saw a hint of this with the g.c.d. definitions.) In particular,
Theorem 3 is a statement about matrices, and it’s fair to ask what this might say about graphs we
will encounter. So, before concluding, let’s look at it and in particular at Eqn. (1) and ask what
that might say about graphs—and in particular undirected graphs—we will consider.

To do so, recall that the Adjacency Matrix of an undirected graph is symmetric; and, informally,
there are several different ways (up to permutations, etc.) it can “look like.” In particular:

• It can look like this:

A =

(
A11 A12

AT12 A22

)
, (2)

where let’s assume that all-zeros blocks are represented as 0 and so each Aij is not all-zeros.
This corresponds to a vanilla graph you would probably write down if you were asked to write
down a graph.

• It can look like this:

A =

(
A11 0
0 A22

)
, (3)

in which case the corresponding graph is not connected.
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• It can even look like this:

A =

(
0 A12

A21 0

)
, (4)

which has the interpretation of having two sets of nodes, each of which has edges to only the
other set, and which will correspond to a bipartite graph.

• Of course, it could be a line-like graph, which would look like a tridiagonal banded matrix,
which is harder for me to draw in latex, or it can look like all sorts of other things.

• But it cannot look like this:

A =

(
A11 A12

0 A22

)
, (5)

and it cannot look like this:

A =

(
0 A12

0 0

)
, (6)

where recall we are assuming that each Aij is not all-zeros. In both of these cases, these
matrices are not symmetric.

In light of today’s results and looking forward, it’s worth commenting for a moment on the rela-
tionship between Eqns. (1) and Eqns (2) through (6).

Here are a few things to note.

• One might think from Eqns. (1) that periodicity means that that the graph is directed and
so if we work with undirected graphs we can ignore it. That’s true if the periodicity is 3 or
more, but note that the matrix of Eqn (4) is periodic with period equal to 2. In particular,
Eqn (4) is of the form of Eqn. (1) if the period h = 2. (It’s eigenvalues are real, which they
need to be since the matrix is symmetric, since the complex “2th roots of unity,” which equal
±1, are both real.)

• You can think of Eqn. (3) as a special case of Eqn. (5), with the A12 block equal to 0, but it
is not so helpful to do so, since its behavior is very different than for an irreducible matrix
with A12 6= 0.

• For directed graphs, e.g., the graph that would correspond to Eqn. (5) (or Eqn. (6)), there
is very little spectral theory. It is of interest in practice since edges are often directed.
But, most spectral graph methods for directed graphs basically come up—either explicitly
or implicitly—with some sort of symmetrized version of the directed graph and then apply
undirected spectral graph methods to that symmetrized graph. (Time permitting, we’ll see
an example of this at some point this semester.)

• You can think of Eqn. (5) as corresponding to a “bow tie” picture (that I drew on the board
and that is a popular model for the directed web graph and other directed graphs). Although
this is directed, it can be made irreducible by adding a rank-one update of the form 11T to
the adjacency matrix. E.g., A → A + ε11T . This has a very natural interpretation in terms
of random walkers, it is the basis for a lot of so-called “spectral ranking” methods, and it is
a very popular way to deal with directed (and undirected) graphs. In addition, for reasons
we will point out later, we can get spectral methods to work in a very natural way in this
particular case, even if the initial graph is undirected.
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