
Stat260/CS294: Spectral Graph Methods Lecture 2 - 01/27/2015

Lecture: Basic Matrix Results (1 of 3)

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

2 Introduction

Today and next time, we will start with some basic results about matrices, and in particular the
eigenvalues and eigenvectors of matrices, that will underlie a lot of what we will do in this class. The
context is that eigenvalues and eigenvectors are complex (no pun intended, but true nonetheless)
things and—in general—in many ways not so “nice.” For example, they can change arbitrarily as
the coefficients of the matrix change, they may or may not exist, real matrices may have complex
eigenvectors and eigenvalues, a matrix may or may not have a full set of n eigenvectors, etc. Given
those and related instabilities, it is an initial challenge is to understand what we can determine
from the spectra of a matrix. As it turns out, for many matrices, and in particular many matrices
that underlie spectral graph methods, the situation is much nicer; and, in addition, in some cases
they can be related to even nicer things like random walks and diffusions.

So, let’s start by explaining “why” this is the case. To do so, let’s get some context for how/why
matrices that are useful for spectral graph methods are nicer and also how these nicer matrices sit in
the larger universe of arbitrary matrices. This will involve establishing a few basic linear algebraic
results; then we will use them to form a basis for a lot of the rest of what we will discuss. This is
good to know in general; but it is also good to know for more practical reasons. For example, it
will help clarify when vanilla spectral graph methods can be extended, e.g., to weighted graphs or
directed graphs or time-varying graph or other types of normalizations, etc.

2.1 Some basics

To start, recall that we are interested in the Adjacency matrix of a graph G = (V,E) (or G =
(V,E,W ) if the graph is weighted) and other matrices that are related to the Adjacency matrix.
Recall that the n× n Adjacency matrix is defined to be

Aij =

{
Wij if (ij) ∈ E
0 otherwise

,

where Wij = 1, for all (i, j) ∈ E if the graph is unweighted. Later, we will talk about directed
graphs, in which case the Adjacency matrix is not symmetric, but note here it is symmetric. So,
let’s talk about symmetric matrices: a symmetric matrix is a matrix A for which A = AT , i.e., for
which Aij = Aji.

Almost all of what we will talk about will be real-valued matrices. But, for a moment, we will start
with complex-valued matrices. To do so, recall that if x = α + iβ ∈ C is a complex number, then
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x̄ = α − iβ ∈ C is the complex conjugate of x. Then, if M ∈ Cm×n is a complex-valued matrix,
i.e., an m×n matrix each entry of which is a complex number, then the conjugate transpose of M ,
which is denoted M∗, is the matrix defined as

(M∗)ij = M̄ji.

Note that if M happens to be a real-valued m× n matrix, then this is just the transpose.

If x, y ∈ Cn are two complex-valued vectors, then we can define their inner product to be

〈x, y〉 = x∗y =
n∑

i=1

x̄iyi.

Note that from this we can also get a norm in the usual way, i.e., 〈x, x〉 = ‖x‖22 ∈ R. Given all this,
we have the following definition.

Definition 1 If M ∈ Cn×n is a square complex matrix, λ ∈ C is a scalar, and x ∈ Cn\{0} is a
non-zero vector such that

Mx = λx (1)

then λ is an eigenvalue of M and x is the corresponding eigenvector of λ.

Note that when Eqn. (1) is satisfied, then this is equivalent to

(M − λI)x = 0, for x 6= 0, (2)

where I is an n × n Identity matrix. In particular, this means that we have at least one eigen-
value/eigenvector pair. Since (2) means M − λI is rank deficient, this in turn is equivalent to

det (M − λI) = 0.

Note that this latter expression is a polynomial with λ as the variable. That is, if we fix M , then
the function given by λ → det (M − λI) is a univariate polynomial of degree n in λ. Now, it
is a basic fact that every non-zero, single-variable, degree polynomial of degree n with complex
coefficients has—counted with multiplicity—exactly n roots. (This counting multiplicity thing
might seem pedantic, but it will be important latter, since this will correspond to potentially
degenerate eigenvalues, and we will be interested in how the corresponding eigenvectors behave.)
In particular, any square complex matrix M has n eigenvectors, counting multiplicities, and there
is at least one eigenvalue.

As an aside, someone asked in class if this fact about complex polynomials having n complex roots
is obvious or intuitive. It is sufficiently basic/important to be given the name the fundamental
theorem of algebra, but its proof isn’t immediate or trivial. We can provide some intuition though.
Note that related formulations of this state that every non-constant single-variable polynomial with
complex coefficients has at least one complex root, etc. (e.g., complex roots come in pairs); and that
the field of complex numbers is algebraically closed. In particular, the statements about having
complex roots applies to real-valued polynomials, i.e., since real numbers are complex numbers
polynomials in them have complex roots; but it is false that real-valued polynomials always have
real roots. Equivalently, the real numbers are not algebraically closed. To see this, recall that the
equation x2 − 1 = 0, viewed as an equation over the reals has two real roots, x = ±1; but the
equation x2 + 1 = 0 does not have any real roots. Both of these equations have roots over the
complex plane: the former having the real roots x = ±1, and the latter having imaginary roots
x = ±i.
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2.2 Two results for Hermitian/symmetric matrices

Now, let’s define a special class of matrices that we already mentioned.

Definition 2 A matrix M ∈ Cn×n is Hermitian if M = M∗. In addition, a matrix M ∈ Rn×n is
symmetric if M = M∗ = MT .

For complex-valued Hermitian matrices, we can prove the following two lemmas.

Lemma 1 Let M be a Hermitian matrix. Then, all of the eigenvalues of M are real.

Proof: Let M be Hermitian and λ ∈ C and x non-zero be s.t. Mx = λx. Then it suffices to show
that λ = λ∗, since that means that λ ∈ R. To see this, observe that

〈Mx, x〉 =
∑
i

∑
j

M̄ij x̄jxi

=
∑
i

∑
j

Mjixix̄j (3)

= 〈x,Mx〉

where Eqn. (3) follows since M is Hermitian. But we have

〈Mx, x〉 = 〈λx, x〉 = λ̄ 〈x, x〉 = λ̄‖x‖22
and also that

〈x,Mx〉 = 〈x, λx〉 = λ 〈x, x〉 = λ‖x‖22.
Thus, λ = λ̄, and the lemma follows.

�

Lemma 2 Let M be a Hermitian matrix; and let x and y be eigenvectors corresponding to different
eigenvalues. Then x and y are orthogonal.

Proof: Let Mx = λx and My = λ′y. Then,

〈Mx, y〉 = (Mx)∗ y = x∗M∗y = x∗My = 〈x,My〉 .

But,
〈Mx, y〉 = λ 〈x, y〉

and
〈x,My〉 = λ′ 〈x, y〉 .

Thus (
λ− λ′

)
〈x, y〉 = 0.

Since λ 6= λ′, by assumption, it follows that 〈x, y〉 = 0, from which the lemma follows.
�

So, Hermitian and in particular real symmetric matrices have real eigenvalues and the eigenvectors
corresponding to to different eigenvalues are orthogonal. We won’t talk about complex numbers
and complex matrices for the rest of the term. (Actually, with one exception since we need to
establish that the entries of the eigenvectors are not complex-valued.)
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2.3 Consequences of these two results

So far, we haven’t said anything about a full set of orthogonal eigenvectors, etc., since, e.g., all
of the eigenvectors could be the same or something funny like that. In fact, we will give a few
counterexamples to show how the niceness results we establish in this class and the next class fail
to hold for general matrices. Far from being pathologies, these examples will point to interesting
ways that spectral methods and/or variants of spectral method ideas do or do not work more
generally (e.g., periodicity, irreducibility etc.)

Now, let’s restrict ourselves to real-valued matrices, in which case Hermitian matrices are just
symmetric matrices. With the exception of some results next time on positive and non-negative
matrices, where we will consider complex-valued things, the rest of the semester will consider real-
valued matrices. Today and next time, we are only talking about complex-valued matrices to set the
results that underlie spectral methods in a more general context. So, let’s specialize to real-values
matrices.

First, let’s use the above results to show that we can get a full set of (orthogonalizable) eigenvectors.
This is a strong “niceness” result, for two reasons: (1) there is a full set of eigenvectors; and (2)
that the full set of eigenvectors can be chosen to be orthogonal. Of course, you can always get
a full set of orthogonal vectors for Rn—just work with the canonical vectors or some other set of
vectors like that. But what these results say is that for symmetric matrices we can also get a full
set of orthogonal vectors that in some sense have something to do with the symmetric matrix under
consideration. Clearly, this could be of interest if we want to work with vectors/functions that are
in some sense adapted to the data.

Let’s start with the following result, which says that given several (i.e., at least one) eigenvector,
then we can find another eigenvector that is orthogonal to it/them. Note that the existence of
at least one eigenvector follows from the existence of at least one eigenvalue, which we already
established.

Lemma 3 Let M ∈ Rn×n be a real symmetric matrix, and let x1, . . . , xk, where 1 ≤ k < n,
be orthogonal eigenvectors of M . Then, there is an eigenvector xk+1 of M that is orthogonal to
x1, . . . , xk.

Proof: Let V be the (n − k)-dimensional subspace of Rn that contains all vectors orthogonal to
x1, . . . , xk. Then, we claim that: for all x ∈ V , we have that Mx ∈ V . To prove the claim, note
that for all i ∈ [k], we have that

〈xi,Mx〉 = xTi Mx = (Mxi)
T x = λixix = λi 〈xi, x〉 = 0,

where xi is one of the eigenvectors assumed to be given.

Next, let

• B ∈ Rn×(n−k) be a matrix consisting of the vectors b1, . . . , bn−k that form an orthonormal
basis for V . (This takes advantage of the fact that Rn has a full set of exactly n orthogonal
vectors that span it—that are, of course, not necessarily eigenvectors.)

• B′ = BT . (If B is any matrix, then B′ is a matrix such that, for all y ∈ V , we have that B′y
is an (n − k)-dimensional vector such that BB′y = y. I think we don’t loose any generality
by taking B to be orthogonal.)
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• λ be a real eigenvalue of the real symmetric matrix

M ′ = B′MB ∈ R(n−k)×(n−k),

with y a corresponding real eigenvector of M . I.e., M ′y = λy.

Then,
B′MBy = λy,

and so
BB′MBy = λBy,

from which if follows that
MBy = λBy.

The last equation follows from the second-to-last since By ⊥ {x1, . . . , xk}, from which it follows
that MBy ⊥ {x1, . . . , xk}, by the above claim, and thus BB′MBy = MBy. I.e., this doesn’t
change anything since BB′ξ = ξ, for ξ in that space.

So, we can now construct that eigenvector. In particular, we can choose xk+1 = By, and we have
that Mxk+1 = λxk+1, from which the lemma follows.

�

Clearly, we can apply the above lemma multiple times. Thus, as an important aside, the following
“spectral theorem” is basically a corollary of the above lemma.

Theorem 1 (Spectral Theorem) Let M ∈ Rn×n be a real symmetric matrix, and let λ1, . . . , λn
be its real eigenvalues, including multiplicities. Then, there are n orthonormal vectors x1, . . . , xn,
with xi ∈ Rn, such that xi is an eigenvector corresponding to λi, i.e., Mxi = λixi.

A few comments about this spectral theorem.

• This theorem and theorems like this are very important and many generalizations and vari-
ations of it exist.

• Note the wording: there are n vectors “such that xi is an eigenvector corresponding to λi.”
In particular, there is no claim (yet) about uniqueness, etc. We still have to be careful about
that.

• From this we can derive several other things, some of which we will mention below.

Someone asked in class about the connection with the SVD. The equations Mxi = λixi, for all
λi, can be written as MX = XΛ, or as M = XΛXT , since X is orthogonal. The SVD writes
an arbitrary m × n matrix A a A = UΣV T , where U and V are orthogonal and Σ is diagonal
and non-negative. So, the SVD is a generalization or variant of this spectral theorem for real-
valued square matrices to general m× n matrices. It is not true, however, that the SVD of even a
symmetric matrix gives the above theorem. It is true by the above theorem that you can write a
symmetric matrix as M = XΛXT , where the eigenvectors Λ are real. But they might be negative.
For those matrices, you also have the SVD, but there is no immediate connection. On the other
hand, some matrices have all Λ positive/nonnegative. They are called SPD/SPSD matrices, and
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form them the eigenvalue decomposition of the above theorem essentially gives the SVD. (In fact,
this is sometimes how the SVD is proven—take a matrix A and write the eigenvalue decomposition
of the SPSD matrices AAT and ATA.) SPD/SPSD matrices are important, since they are basically
covariance or correlation matrices; and several matrices we will encounter, e.g., Laplacian matrices,
are SPD/SPSD matrices.

We can use the above lemma to provide the following variational characterization of eigenvalues,
which will be very important for us.

Theorem 2 (Variational Characterization of Eigenvalues) Let M ∈ Rn×n be a real sym-
metric matrix; let λl ≤ · · · ≤ λn be its real eigenvalues, containing multiplicity and sorted in
nondecreasing order; and let x1, . . . , xk, for k < n be orthonormal vectors such that Mxi = λixi,
for i ∈ [k]. Then

λk+1 = min
x∈Rn�{~0}

x⊥xi ∀i∈[k]

xTMx

xTx
,

and any minimizer of this is an eigenvector of λk+1.

Proof: First, by repeatedly applying the above lemma, then we get n − k orthogonal eigenvectors
that are also orthogonal to x1, . . . , xk. Next, we claim that the eigenvalues of this system of n
orthogonal eigenvectors include all eigenvalues of M . The proof is that if there were any other
eigenvalues, then its eigenvector would be orthogonal to the other n eigenvectors, which isn’t
possible, since we already have n orthogonal vectors in Rn.

Call the additional n− k vectors xk+1, . . . , xn, where xi is an eigenvector of λi. (Note that we are
inconsistent on whether subscripts mean elements of a vectors or different vectors themselves; but
it should be clear from context.) Then, consider the minimization problem

min
x∈Rn�{~0}

x⊥xi ∀i∈[k]

xTMx

xTx

The solution x ≡ xk+1 is feasible, and it has cost λk+1, and so min ≤ λk+1.

Now, consider any arbitrary feasible solution x, and write it as

x =

n∑
i=k+1

αixi.

The cost of this solution is ∑n
i=k+1 λiα

2
i∑n

i=k+1 α
2
i

≥ λk+1

∑n
i=k+1 α

2
i∑n

i=k+1 α
2
i

= λk+1,

and so min ≥ λk+1. By combining the above, we have that min = λk+1.

Note that is x is a minimizer of this expression, i.e., if the cost of x equals λk+1, then ai = 0 for
all i such that λi > λk+1, and so x is a linear combination of eigenvectors of λk+1, and so it itself
is an eigenvector of λk+1.

�

Two special cases of the above theorem are worth mentioning.
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• The leading eigenvector.

λ1 = min
x∈Rn�{~0}

xTMx

xTx

• The next eigenvector.

λ2 = min
x∈Rn�{~0},x⊥x1

xTMx

xTx
,

where x1 is a minimizer of the previous expression.

2.4 Some things that were skipped

Luca and Dan give two slightly different versions of the variational characterization and Courant-
Fischer theorem, i.e., a min-max result, which might be of interest to present.

From wikipedia, there is the following discussion of the min-max theorem which is nice.

• Let A ∈ Rn×n be a Hermitian/symmetric matrix, then the Rayleigh quotient RA : Rn�{0} →
R is RA(x) = 〈Ax,x〉

〈x,x〉 , or equivalently fA(x) = 〈Ax, x〉 : ‖x‖2 = 1.

• Fact: for Hermitian matrices, the range of the continuous function RA(x) or fA(x) is a
compact subset [a, b] of R. The max b and min a are also the largest and smallest eigenvalue
of A, respectively. The max-min theorem can be viewed as a refinement of this fact.

• Theorem 3 If A ∈ Rn×n is Hermitian with eigenvalues λ1 ≥ · · · ≥ λk ≥ · · · , then

λk = max{min{RA(x) : x ∈ U, x 6= 0}, dim(U) = k},

and also
λk = min{max{RA(x) : x ∈ U, x 6= 0}, dim(U) = n− k + 1}.

• In particular,
λn ≤ RA(x) ≤ λ1,

for all x ∈ Rn�{0}.

• A simpler formulation for the max and min is

λ1 = max{RA(x) : x 6= 0}
λn = min{RA(x) : x 6= 0}

Another thing that follows from the min-max theorem is the Cauchy Interlacing Theorem. See
Spielman’s 9/16/09 notes and Wikipedia for two different forms of this. This can be used to
control eigenvalues as you make changes to the matrix. It is useful, and we may revisit this later.

And, finally, here is counterexample to these results in general. Lest one thinks that these niceness
results always hold, here is a simple non-symmetric matrix.

A =

(
0 1
0 0

)

(This is an example of a nilpotent matrix.
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Definition 3 A nilpotent matrix is a square matrix A such that Ak = 0 for some k ∈ Z+.

More generally, any triangular matrix with all zeros on the diagonal; but it could also be a dense
matrix.)

For this matrix A, we can define RA(x) as with the Rayleigh quotient. Then,

• The only eigenvalue of A equals 0.

• The maximum value of RA(x) is equal to 1
2 , which is larger that 0.

So, in particular, the Rayleigh quotient doesn’t say much about the spectrum.

2.5 Summary

Today we showed that any symmetric matrix (e.g., adjacency matrix A of an undirected graph,
Laplacian matrix, but more generally) is nice in that it has a full set of n real eigenvalues and a
full set of n orthonormal eigenvectors.

Next time, we will ask what those eigenvectors look like, since spectral methods make crucial use
of that. To do so, we will consider a different class of matrices, namely positive or nonnegative (not
PSD or SPSD, but element-wise positive or nonnegative) and we will look at the extremal, i.e., top
or bottom, eigenvectors.
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