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ABSTRACT
Selecting suitable architecture parameters and training hyperpa-
rameters is essential for enhancing machine learning (ML) model
performance. Several recent empirical studies conduct large-scale
correlational analysis on neural networks (NNs) to search for effec-
tive generalization metrics that can guide this type of model selec-
tion. Effective metrics are typically expected to correlate strongly
with test performance. In this paper, we expand on prior analyses
by examining generalization-metric-based model selection with the
following objectives: (i) focusing on natural language processing
(NLP) tasks, as prior work primarily concentrates on computer
vision (CV) tasks; (ii) considering metrics that directly predict test
error instead of the generalization gap; (iii) exploring metrics that do
not need access to data to compute. From these objectives, we are
able to provide the first model selection results on large pretrained
Transformers from Huggingface using generalization metrics. Our
analyses consider (I) hundreds of Transformers trained in different
settings, in which we systematically vary the amount of data, the
model size and the optimization hyperparameters, (II) a total of 51
pretrained Transformers from eight families of Huggingface NLP
models, including GPT2, BERT, etc., and (III) a total of 28 existing
and novel generalization metrics. Despite their niche status, we
find that metrics derived from the heavy-tail (HT) perspective are
particularly useful in NLP tasks, exhibiting stronger correlations
than other, more popular metrics. To further examine these metrics,
we extend prior formulations relying on power law (PL) spectral dis-
tributions to exponential (EXP) and exponentially-truncated power
law (E-TPL) families.1

CCS CONCEPTS
• Computing methodologies → Machine learning.

1This is the conference version of a paper that appeared in technical report version as
“Evaluating natural language processing models with generalization metrics that do
not need access to any training or testing data” [48]; the title is different due to the
conference submission policy.
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1 INTRODUCTION
Selecting the optimal hyperparameters, such as those for training
or model size, is a critical phase in the ML pipeline. Motivated by
the importance of model selection, recent years have seen a wide
array of large-scale empirical studies on the various metrics used
to predict the test-time performance of ML models [9, 17, 26, 27].
These generalization metrics have been applied in a wide variety of
data science tasks, including predicting the quality of pretrained
learning models [23, 27], designing effective training procedures
[11, 14], improving network efficiency [5, 8], quantifying model ro-
bustness [41, 47], improving ensemble learning techniques [12, 13],
analyzing and improving large-scale machine learning contests [26],
and so on. They are typically studied using correlational analysis,
measuring how strongly each metric correlates with (and there-
fore, can predict) model performance. In this regard, several recent
works point out the deficiencies of existing generalization metrics,
including a lack of “robustness” to the changes of environmental
hyperparameters [9, 17] (such as data, neural network architecture
and training schemes), or the Simpson’s paradox that generaliza-
tion metrics perform differently (i.e., predict opposite trends) when
applied to each sub-part of a collection of learning models or to the
holistic study [26]. Another drawback is the over-reliance on CV
models, which are relatively well-explored, and are not always rep-
resentative of other types of tasks. With few exceptions [27, 31, 46],
systematic studies in other fields, such as NLP, are largely missing.
Generalization metrics for model selection in NLP. The objec-
tive of this work is to provide a systematic study of generalization
metrics in NLP, addressing several deficiencies in prior studies
[9, 17, 27]. Compared to CV, model selection in NLP has several
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important differences that require careful consideration. For exam-
ple, the training data from standard CV benchmarks can often be
easily obtained, while large language model datasets are typically
web-scale and are challenging to access. Therefore, generalization
metrics that can assess the quality of learning models without access
to data are ideal for NLP. In this paper, we focus on generaliza-
tion metrics that do not need access to data, which is useful for
evaluating pretrained NLP models [45]. Indeed, recent work has
demonstrated that access to training or testing data should not be
necessary for assessing the model quality of learning models [27],
though these findings have yet to be evaluated at scale in the NLP
domain. Furthermore, it is typically infeasible to train NLP models
to interpolate the (frequently large) training set. Contrary to com-
mon practice for CV models, the training error on NLP datasets is
often much larger than zero. This becomes an issue when apply-
ing most existing generalization metrics as they compare models
through the generalization gap (i.e., the difference between training
and test performance) rather than the test error itself. Metrics that
focus on ranking the generalization gap include most of the well-
known metrics in CV, such as those based on the PAC-Bayesian
framework [28, 33] and margins [3, 16, 37].

To illustrate the issue, consider selecting between two models
with test errors 𝑒1, 𝑒2, training errors 𝑙1, 𝑙2, and generalization gaps
𝑔1 = 𝑒1 − 𝑙1 and 𝑔2 = 𝑒2 − 𝑙2. Assuming a generalization metric
can rank the generalization gap perfectly (which is often the focus
of prior studies on generalization metrics [9, 15, 17]) 2, we know
only that one model has a larger training-test gap than another
(𝑔1 > 𝑔2). For these two models, even if we have access to both
models’ exact training errors 𝑙1, 𝑙2, we still cannot determine which
model exhibits smaller test error: if 𝑙1 < 𝑙2, we cannot determine
whether 𝑙1+𝑔1 > 𝑙2+𝑔2 unless we know the training-test gaps𝑔1, 𝑔2
explicitly. Therefore, if our objective is to construct a metric that
correctly predicts model performance, rank correlation with the
generalization gap is insufficient. In this paper, we aim to study how
generalization metrics rank correlate with model quality, for which
we use test error as a close approximation. As we will demonstrate
(in Figure 4), rank correlation with the generalization gap indeed
does not imply rank correlation with model quality in practice, and
in fact often orders models in the opposite order of their test errors.
From a practical point of view, for NLP tasks, we prefer generaliza-
tion metrics that can directly predict trends in test error (or similar
evaluation metrics in NLP, such as the test BLEU score [36]) rather
than trends in the generalization gap.

Naturally, we cannot expect a metric to be universally correlated
with test error if evaluating the metric does not need data. How-
ever, within certain classes of models (e.g., stages of training in
one model or across pre-trained models), they may be effective at
diagnosing model quality. With these objectives in mind, among the
generalization metrics in the literature, we take particular interest
in those derived from the heavy-tail self regularization (HT-SR)
theory [23, 25] due to reasons summarized in the following:

2As the report of the NeurIPS 2020 Competition on Predicting Generalization in Deep
Learning [15] points out, the generalization metric “should” be able to order models’
performance in a way similar to the generalization gap, and thus one hopes that it can
be used for model selections or neural architecture search. However, see Martin and
Mahoney [26] for a detailed exposition of issues and problems with this.

We choose HT-SR generalization metrics for model se-
lection in NLP because they (i) predict test error directly
instead of the generalization gap and (ii) do not require
access to training (or testing) data.

HT-SR theory and shape metrics. The core principle of HT-SR
theory is that HT structures arise naturally in the ESDs of the
weight matrices 3 as the result of extracting various correlations in
data during optimization [23–27]. Its primary practical consequence
is that by estimating the PL coefficient from the ESDs (requiring
only weights), one can predict model quality, as smaller coefficients
are reported to correspond to higher test accuracy. However, these
estimators can be unstable, and so one must be careful not to rely
on them alone. The quality of the PL fit itself should also point to
similar conclusions [25], which can be a sanity check.

The principles of HT-SR theory extend beyond fitting the PL
coefficient, however, as ESDs can take many forms. To this end,
we study three different types of distributions to fit to the ESDs of
weight matrices, including power laws (PL) in Eqn. (1), exponen-
tially truncated power laws (E-TPL) in Eqn. (2), and exponential
laws (EXP) in Eqn. (3). These are all commonly considered families
of distributions in classical studies of PL [6], and it is often hard in
practice to predict which family fits data the best. Figure 1 shows
examples of comparing different HT fittings on the same ESD. Fol-
lowing Martin and Mahoney [26], we refer to the various metrics
derived from HT-SR as shape metrics.
Contributions. The following summarizes our main contributions.
• Deviating from prior work examining generalization metrics in
CV [9, 17], we provide the first systematic correlational analysis
on various generalization metrics in NLP. Our detailed studies
include:
– considering 360 transformers trained onWMT14 [4] with vary-
ing hyperparameters, and eight families of pretrained SOTA
transformers downloaded from Huggingface [45], including
BERT [18], GPT2 [38], ALBERT (both v1 and v2) [19], etc;

– providing the first systematic study of applying generalization
metrics to the model selection of Transformers without any
training/validation/testing data;

– measuring the correlation between 28 generalization metrics
and the model quality (measured by test-time performance)
over three different model classes: (i) models trained with the
optimal hyperparameters, (ii) a single model at different stages
of training, and (iii) a model trained with different hyperpa-
rameters (similar to Jiang et al. [17], Martin and Mahoney
[26].)

• We revisit prior findings on data-dependent metrics motivated
by margins and PAC-Bayesian bounds [9, 17], finding that while
these metrics perform well in predicting the generalization gap,
none of them satisfactorily predicts test error directly.

• When applied appropriately, we find that HT-based shape metrics
consistently perform better than scale metrics (or norm-based
metrics) for predicting model quality.

3The ESD of a weight matrix W refers to the empirical density of the eigenvalues of
the squared weight matrix W⊤W. See “Preliminary of ESDs of weight matrices” at
the end of the Introduction.
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(b) Mediocre ks_distance.
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(d) E-TPL fitting of the ESD.
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(e) E-TPL fitting of the ESD.
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(f) E-TPL fitting of the ESD.

Figure 1: Comparing PL and E-TPL fitting. (First row). Good, mediocre, and bad PL fittings measured by the ks_distance. (Second
row). E-TPL fitting of the ESD on the same column. Blue histograms represent the ESDs. Solid vertical lines represent the lower
threshold 𝑥min of the PL distribution found by the fitting procedure. Solid curves represent ESDs truncated using 𝑥min, and
dashed curves represent the fitted HT distributions.

• We extend prior studies on HT-SR theory and investigate alterna-
tive models to fit heavy-tail/light-tail distributions. Our results
show that E-TPL fits are comparatively robust alternatives to PL
fits on suboptimally-trained models.

A more detailed empirical evaluation may be found in the arXiv
version [48], including corroborating results on Wikitext-103, Red-
dit and MNLI, definitions of all the generalization metrics used in
this paper, and results comparing various ways of measuring rank
correlations, such as Spearman’s rank correlation and Kendall’s tau.
In order that our results can be reproduced and extended, we have
open-sourced our code.4

Preliminary of ESDs of weight matrices. Consider a NN with
𝑑 layers and corresponding weight matrices W1, W2,..., W𝑑 . For
each weight matrix W𝑖 with shape 𝑁 × 𝑀 , assume without loss
of generality that 𝑁 ≥ 𝑀 (otherwise, consider W⊤

𝑖
). We define

the correlation matrix as X𝑖 = W⊤
𝑖

W𝑖 , and denote the eigenvalues
of X𝑖 as {_ 𝑗 }𝑀𝑗=1, so that _ 𝑗 = 𝜎2𝑗 , where {𝜎 𝑗 }

𝑀
𝑗=1 are the singular

values of W𝑖 . Furthermore, we use _𝑖,max to denote the maximum
eigenvalue of the correlation matrix X𝑖 . The ESD (empirical spectral
density) of the weight matrix W𝑖 refers to the empirical density of
the eigenvalues of X𝑖 , typically represented through a histogram.

4https://github.com/nsfzyzz/Generalization_metrics_for_NLP

We let 𝑝 (𝑥) denote the density function to fit the ESD taking values
in the interval (𝑥min, 𝑥max). For a power law, 𝑝 satisfies

𝑝 (𝑥) ∝ 𝑥−𝛼 , 𝑥min < 𝑥 < 𝑥max . (1)

From Martin and Mahoney [26], 𝑥max is chosen to be the maximum
eigenvalue of the empirical correlation matrix. However, 𝑥min is a
variable to be optimized to improve the quality of PL fitting, and it
is not equal to the minimum eigenvalue in general.

2 HEAVY-TAIL SELF-REGULARIZATION
Here, we provide a brief overview of the HT-SR theory, and discuss
several metrics that can be derived from it. According to HT-SR
theory, the ESDs of the weight matrices become more heavy-tailed
during training as they become increasingly correlated. One can
quantify the extent of these correlations by fitting a PL to the
ESD of a weight matrix, for example, by using the open-source
WeightWatcher tool 5[27]. After computing the ESD of a weight
matrix, we use the maximum likelihood estimate from Alstott et al.
[1] to fit the PL distribution, the specific form of which has been
defined in (1). Let PL_alpha denote the PL coefficient averaged
over layers; effectively the slope of the tail of the ESD of the pooled
weights, on a log-log scale.
5https://github.com/CalculatedContent/WeightWatcher
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Correctly identifying and fitting PL distributions is well-known
to be a challenge in practice. For example, a density that appears
as a straight line on a log-log scale plot need not follow a power
law, as there are many other distributions that could show a similar
behavior, including lognormal and exponential-type distributions
[6]. Nested distributions such as E-TPL, which combine the pure
PL and other distributional assumptions, can often improve the
quality of fitting [1, 6]. Therefore, in addition to PL (defined in (1)),
we consider several other distribution classes from the literature.

• (E_TPL_lambda and E_TPL_beta) The ESDs are assumed to
take a “nested” form in the interval (𝑥min, 𝑥max).

𝑝 (𝑥) ∝ 𝑥−𝛽 exp(−_𝑥), 𝑥min < 𝑥 < 𝑥max . (2)

After fitting the E-TPL, we call the exponential truncation
coefficient _ the E_TPL_lambda metric, and we call the PL
coefficient the E_TPL_beta metric.

• (EXP_lambda). The ESDs are assumed to take the following
form, in the interval (𝑥min, 𝑥max).

𝑝 (𝑥) ∝ exp(−_𝑥), 𝑥min < 𝑥 < 𝑥max . (3)

After fitting the EXP, we call the exponential coefficient _
the EXP_lambda metric.

For more details of the various metrics considered in this paper,
see Table 1. All of the metrics derived from HT-SR do not require ac-
cess to data, and they are relatively cheap to compute. Our primary
comparisons are between shape metrics (derived from HT-SR), and
scale metrics (mostly norm-based). Scale metrics are mostly stud-
ied in prior work [9, 17], while shape metrics have received less
attention. For the precise definitions of these metrics, see Appendix
A of our full report online [48].
Issues of PL fitting. It is well-known that subtle issues can arise
when fitting the ESDs [1, 6, 22, 26]. To best mitigate these issues in
PL fits, we adopt the fitting strategies used in WeightWatcher [22].
For example, as in Clauset et al. [6], it is common to choose the
lower threshold 𝑥min which coincides with the best quality fit under
the Kolmogorov–Smirnoff statistic defined as:

`ks_distance = sup
𝑥

|𝐹 ∗ (𝑥) − 𝑆 (𝑥) |, (4)

where 𝐹 ∗ (𝑥) is the distribution of the estimated PL fit to the ESD
of the weight matrix, and 𝑆 (𝑥) is the ESD itself. We will refer to
(4) as PL_ks_distance, or E_TPL_ks_distance when the fitting
is E-TPL. However, this method is time-consuming, especially for
E-TPL as there are two parameters to fit. Instead, we adopt the
fix-finger method (see WeightWatcher) which selects 𝑥min as the
peak of the ESD when fitting E-TPLs. More than a simple speed
improvement, we find this method also yields more stable results.
Comparing PL and E-TPL fitting. Referring to Figure 1, we
now discuss how E-TPL could partially address these fitting issues.
On the first row of Figure 1, we show three typical cases of PL
fitting. In Figure 1a, the log-log scale reveals a “linear region” of the
histogram, which the PL fitting correctly locates. The quality of fit,
measured by the ks_distance, is within a typical range, as reported
in Table 6 of Martin and Mahoney [25]. In Figure 1b and Figure 1c,
the ESDs do not exhibit a clear linear region on the log-log scale.
Following Martin and Mahoney [25], it is ill-advised to consider
metrics derived from a PL fit in these scenarios. In practice, this
typically occurs when PL_alpha > 4 (e.g., see Figure 1c). On the

other hand, in these two cases, the corresponding E-TPL fits (shown
on the second row in Figure 1) still closely match the empirical
density function (see Figure 1e and Figure 1f), and the ks_distance
on the second row using a E-TPL fit is smaller than that for the PL fit
on the first row, even when the fit on the second row clearly covers
a larger part of the ESD. In these two cases, the E_TPL_lambda
plays a similar role as the PL_alpha in PL fitting, and provides an
effective alternative when the ESD does not exhibit a proper PL.

3 EMPIRICAL RESULTS
3.1 Experimental setup
Dataset. In Section 3.2, we studymodels trained on theWMT14Ger-
man to English (DE-EN) dataset [4], commonly used as a benchmark
for neural machine translation [10, 35, 40, 43]. WMT14 consists of
4.5 million sentence pairs for training.
Hyperparameters. To conduct correlational analysis, and to cap-
ture the relationship between the generalization metrics and model
quality in different settings, we vary several hyperparameters: the
number of samples (either 160K, 320K, 640K, 1.28M, 2.56M sam-
ples), the initial learning rate during training (across eight different
rates), the model width (embedding dimension either 256, 384, 512,
768, or 1024), and the model depth ({4, 5, 6, 7, 8}-layer transform-
ers). Similar to prior works on correlational analysis [17] for model
selection, we construct a high-dimensional grid of different hyper-
parameters Θ = {(\1, . . . , \𝐾 ) : \1 ∈ Θ1, . . . , \𝐾 ∈ Θ𝐾 }, so that we
can compare models when one of the hyperparameters is varied.
Two separate high-dimensional grids with dimension 𝐾 = 3 are
considered: (1) sample×learning rate×width; (2) sample×learning
rate×depth. Each grid contains 5×8×5=200 of these training set-
tings. In total, there are 360 trained models because the two high-
dimensional grids overlap each other, and 40 models belong to both
grids. We will conduct three correlational analyses in the following
to evaluate model selection performance.
Task one, correlation evaluated on optimally trained models.
In the first task (Section 3.2.1), we measure the (rank) correlation be-
tween model quality and generalization metrics on models trained
with the optimal choice of training hyperparameters, that is, if we
are allowed to grid-search the best training hyperparameters, can
we predict the best data size or model size parameters?
Task two, correlation in time. In the second task (Section 3.2.2),
we track BLEU score and generalization metrics during training,
assessing time-wise correlation to model quality. This task has
been considered in the literature [3], and from a practical point of
view, capturing the time-wise dependence during training could
potentially lead to better early stopping and regularization methods.
Task three, correlation when a single hyperparameter is var-
ied. In the third task (Section 3.2.3), we study the relationship
between the model quality and the generalization metrics when a
single hyperparameter is varied. Metrics that achieve a high (rank)
correlation for all the hyperparameters are good candidates for
model selection.
Training and model setup. For the details of training Transform-
ers on WMT14, see Appendix B of the online report [48].
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Name Ref
Need initial
weights?

Scale or
shape

Need
data?

Need
gpu?

Predicting model quality
or generalization gap?

param_norm [17] No Scale No No Generalization gap
fro_dist [17] Yes Scale No No Generalization gap
log_norm [25] No Scale No No Generalization gap

log_spectral_norm [26] No Scale No No Generalization gap
dist_spec_int [17] Yes Scale No No Generalization gap
path_norm [34] No Scale No No Generalization gap

mp_softrank [25] No Scale/Shape No No Model quality
stable_rank [25] No Scale/Shape No No Model quality
PL_alpha [25] No Shape No No Model quality

E_TPL_beta

This paper
WeightWatcher No Shape No No Model quality

E_TPL_lambda

This paper
WeightWatcher No Shape No No Model quality

EXP_lambda

This paper
WeightWatcher No Shape No No Model quality

PL_ks_distance [25] No Shape No No Model quality

E_TPL_ks_distance

This paper
[25] No Shape No No Model quality

alpha_weighted [25] No Hybrid No No Model quality
log_alpha_norm [26] No Hybrid No No Model quality
inverse_margin [17] No Scale Yes Maybe Generalization gap

log_prod_of_spec_over_margin [3, 37] No Scale Yes Maybe Generalization gap
log_sum_of_spec_over_margin [3, 37] No Scale Yes Maybe Generalization gap
log_prod_of_fro_over_margin [3, 37] No Scale Yes Maybe Generalization gap
log_sum_of_fro_over_margin [3, 37] No Scale Yes Maybe Generalization gap

path_norm_over_margin [34] No Scale Yes Maybe Generalization gap
pacbayes_init [32] Yes Scale Yes Yes Generalization gap
pacbayes_orig [32] No Scale Yes Yes Generalization gap

pacbayes_flatness [32] No Scale Yes Yes Generalization gap
pacbayes_mag_init [17] Yes Scale Yes Yes Generalization gap
pacbayes_mag_orig [17] No Scale Yes Yes Generalization gap

pacbayes_mag_flatness [17] No Scale Yes Yes Generalization gap

Table 1: Overview of the generalization metrics considered in this paper. We focus on the shape metrics derived from the ESDs
of weight matrices. Due to the space constraint, detailed definitions of these metrics are presented in Appendix A of our full
version online [48].

3.2 Correlational analyses on Transformers
trained in different settings

In this subsection, we study 28 generalization metrics (with details
provided in Table 1) and examine their correlations with BLEU
score [36], the most commonly used metric to evaluate machine
translation 6. Note that BLEU score here is used as a close approx-
imation of model quality, mimicking the role of test accuracy in
image classification. We also consider correlation between these
metrics and the generalization gap, defined as the BLEU score for
training data subtracted by the BLEU score for test data. We intend
to find generalization metrics that strongly correlate with model
quality instead of the generalization gap.

3.2.1 Task one: Evaluating correlations on optimally trained models
only. Here, we group models using the number of training samples,

6Several empirical metrics have been designed tomeasure the quality of text generation,
such as BERTScore [50] and BARTScore [49]. Our work is different because we do
not need any data, and we do model selection using the ESDs of weight matrices only.
BERTScore and BARTScore evaluate the text quality, and thus they need source or
reference texts generated by humans. These metrics can serve as alternatives to BLEU,
which is viewed as ground truth in our work.

and select the best model from each group when the model depth
and the learning rate are varied. In Figure 2, each curve represents
a group of models trained with a certain number of training sam-
ples. The black star on each curve represents training with optimal
hyperparameters (learning rate and depth in our setting), obtained
by searching for the optimum on a third-order polynomial fit of
each curve. From Figure 2, we see that the shape metrics correctly
predict the model quality for models trained with the optimal train-
ing hyperparameters, i.e., the BLEU scores should be higher when
the metric values are smaller on the optimal models represented
using black stars. Since all six shape metrics show similar trends, a
pairing of these metrics can be considered as a sanity check.
Comparison with scale metrics. We compare scale metrics and
shape metrics in Section 3.2.3 in our full report [48]). We show that
shape metrics predict the correct trends in test BLUE scores, while
scale metrics predict wrongly because they are correlated with the
generalization gap.

Remark 3.1. Figure 2 points out an important but subtle issue
in empirically evaluating the HT-SR theory. In Figure 2, one can
make a model less well-trained—and artificially anti-correlate the
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Figure 2: BLEU-score vs. six shape metrics for 200 Transformers trained on WMT14 with varying hyperparameters. HT-SR
theory applies for optimally-tuned models (black stars), that is, for optimally-tuned models indicated by the black stars, models
that have better BLEU scores exhibit heavier-tailed ESDs. For suboptimal models, the HT-SR metrics can be anti-correlated
with model quality, see e.g. the grey dotted line in the first subfigure.

generalization metric with the task accuracy. For example, see the
gray dotted line in the first subfigure in Figure 2.

3.2.2 Task two: Time-wise correlations and rank correlation results.
In this subsection, we study time-wise correlation between our
chosen metrics and the BLEU scores.
E_TPL_lambda tracks the BLEU score.As a warm-up, we consider
how well the E_TPL_lambda metric defined in (2) tracks the BLEU
score (recalling that E_TPL_lambda assumes the ESDs follow E-
TPLs). We use training with and without dropout to study the effect
of training schemes, and we consider different quantities of data to
test robustness when the size of data changes. In Figure 3, the first
row considers models trained with dropout, while the second row
considers models trained without dropout. The multiple columns
track E_TPL_lambda and the BLEU score throughout training for
different amounts of data. We can see that E_TPL_lambda not only
successfully tracks BLEU scores but also differentiates underfitting
(first row, with dropout) from overfitting (second row, without
dropout) in this experiment.
Shape metrics predict model quality, while scale metrics pre-
dict the generalization gap. Now we consider the rank correla-
tions between our chosen metrics and the test BLEU score. The rank
correlations are evaluated across training, i.e., for each of the 360
settings of the hyperparameters, we calculate the Spearman’s rank
correlation between BLEU scores and the values of each generaliza-
tion metric over all epochs. The summarized results are presented
in Figure 4a. A positive Spearman’s rank correlation (with BLEU)
suggests that the generalization metric is useful in tracking BLEU
during training. A negative Spearman’s rank correlation, on the

other hand, implies that the metric often gives the incorrect pre-
diction. In Figure 4a, we use the average rank correlations for all
settings to study the effectiveness of each metric, and present 25%
quantile rank correlations to indicate robustness across runs.

In Figure 4a, we find shape metrics, such as E_TPL_ks_distance,
EXP_lambda, E_TPL_lambda, and E_TPL_beta, exhibit some of the
highest rank correlations with BLEU score. The EXP_lambdametric,
which assumes a EXP distribution on the ESDs, achieves the highest
median rank correlation, while the E_TPL_lambda metric, which
assumes a E-TPL distribution on the ESDs, achieves the second
highest.

In Figure 4b, we plot the rank correlations to the generalization
gap across our chosen metrics. While it is encouraging that most
existing generalization metrics yield correct predictions, as previ-
ously discussed, correct predictions of the generalization gap do
not imply accurate predictions on the best-performing models here.
Details of the rank correlation calculations. When calculating
the rank correlation with the test accuracy, we associate a negative
sign to all the generalization metrics, i.e., a positive rank correla-
tion in Figure 4a means that a generalization metric is negatively
correlated with the BLEU score. We use this procedure to follow the
conventional wisdom that a smaller value of the complexity metric
leads to better generalization [17]. On the other hand, for Figure 4b,
a positive rank correlation means that the metric is positively cor-
related with the generalization gap. Thus, for both Figure 4a and
4b, a strong positive correlation corresponds to the expected trend.
Can we utilize anti-correlation for prediction? One may ask if
the anti-correlation shown in Figure 4b implies that scale metrics
can also predict model quality. Indeed, from Figure 4b alone, it
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Figure 3: E_TPL_lambda closely tracks the BLEU score, i.e., BLEU score increases when the E_TPL_lambda drops. Results are
shown for Transformers trained on WMT14 with different number of samples. (First row). Training with dropout 0.1. (Second
row). Training without dropout.
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(a) Correlations with model quality. Spearman’s rank correlation be-
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Correlations with generalization gap
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(b) Correlations with generalization gap. Spearman’s rank correlation
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Figure 4: Comparing multiple generalization metrics for predicting BLEU score (on the left) or the generalization gap (on the
right). Lines on each box delineate the 25/50/75 percentiles of the rank correlations in 360 different settings (including different
amount of data, different network depths, different network widths, and different initial learning rates).
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seems that one can negate the predicted results of scale metrics to
obtain an accurate prediction. However, note this strong negative
correlation of scalemetrics only holds in this one particular scenario.
In other scenarios, such as in Dziugaite et al. [9], Jiang et al. [17],
the correlation is strong in the other direction. Broadly speaking, if
a particular theory says that a quantity should go up with model
quality, and it goes down sometimes instead, then the theory is
incomplete, regardless of how strong the correlation is. A prominent
claim in our paper is that the correlation between test error and
the generalization gap can sometimes be reversed. Therefore, it is
insufficient to study metrics that have a large rank correlation with
the generalization gap.

3.2.3 Task three: evaluating correlation when a single hyperparame-
ter is varied. In this subsection, we assess whether the generaliza-
tion metrics can predict trends in BLEU score when a single hy-
perparameter is changed. Specifically, for a hyperparameter space
Θ = {(\1, . . . , \𝐾 ) : \1 ∈ Θ1, . . . , \𝐾 ∈ Θ𝐾 }, we consider each
one-dimensional slice of the form

{(\1, . . . , \𝐾 ) : \𝑖 ∈ Θ𝑖 while other parameters \ 𝑗 , 𝑗 ≠ 𝑖 are fixed},

and we calculate the rank correlation using the models in each such
slice. Then, we aggregate the rank correlations from all the one-
dimensional slices and plot the distributions of the rank correlations.
For example, if we evaluate the trends when the initial learning rate
is varied, we choose Θ𝑖 to be the set of eight different initial learning
rates mentioned in Section 3.1, “Hyperparameters”. As another
example, we can define Θ𝑖 to be the set of five different numbers
of samples to study the (rank) correlation when the number of
samples is varied.

Similar to Figure 4, we provide the rank correlation results on
both the test BLEU scores and the generalization gap. See Section
3.2.3 of our report online [48]. Again, shape metrics have better
rank correlations with model quality, while scale metrics are better
correlated with the generalization gap.
Corroborating results.We extend our empirical evaluations to
other datasets and evaluationmethods. First, we consider pretrained
Huggingface Transformers in Section 3.3, providing model selec-
tion results in a broad range of NLP tasks. Then, we consider three
other language processing tasks trained with different Transform-
ers, including

• Roberta [21] trained on the masked language modeling task
using Wikitext-103 [29], and then finetuned on MNLI [44];

• Six-layer base Transformers trained on the language model-
ing task using the Wikitext-103 dataset [29];

• Six-layer base Transformers trained on the next-word pre-
diction task using the Reddit dataset, following the imple-
mentation in Bagdasaryan et al. [2].

All extended results can be found in our online report [48]. Also,
in [48], we provide additional results on conducting correlational
analysis using Kendall’s tau instead of Spearman’s rank correlation.
Computational cost and carbon emission.We believe it is ex-
tremely important that papers relying on large-scale empirical anal-
ysis accurately report the computational cost. The overall training
cost is 7301.66 GPU hours. We use GPU nodes with TITAN RTX
for our training. The overall carbon emission depends on carbon

Model series Models
BERT [18] BERT {Tiny, Mini, Small, Base, Large}

Smaller BERT [42] 24 smaller BERT models (English, uncased,
trained with WordPiece masking)

GPT2 [38] GPT2 {Original, Medium, Large, XL}
ALBERTv1 [19] ALBERT-v1 {base, large, xlarge, xxlarge}
ALBERTv2 [19] ALBERT-v2 {base, large, xlarge, xxlarge}

T5 [39] T5 {small, base, large}
DialoGPT [51] DialoGPT {small, medium, large}
FlauBERT [20] FlauBERT {small, base, large}

Funnel Transformer [7] FunnelModel {small, medium,
intermediate, large, xlarge}

Table 2: Pretrained Transformers considered in this paper.

efficiency. Using the default values from the online Machine Learn-
ing Emissions Calculator7, the total emissions are estimated to be
883.21 kg CO2 eq.

3.3 Selecting Huggingface Transformers
Finally, we evaluate generalization metrics on the model selection
task of pretrained Transformers. This section presents the first
systematic study of applying generalization metrics to the model
selection of Transformers without any training/validation/testing
data. In our study, eight series of models downloaded from Hug-
gingface [45] are considered—see Table 2. We also include 24 BERT
models from the “Smaller BERT” series [42] produced from a “pre-
trained distillation” pipeline that combines masked language model-
ing pretraining [18] and knowledge distillation from a single BERT
teacher model. In total, there are 51 pretrained Transformers.

We report rank-correlations averaged over these 8 model series
in Figure 5a (left subplot), i.e., larger/deeper models should have
smaller generalization metric values. Again, we find that the shape
metrics outperform scale metrics (except for stable_rank, which
is strongly influenced by the size of the weight matrix). The hybrid
models achieve performance in-between the shape and scale met-
rics. In Figure 5a (right subplot), we compare different metrics in
their ability to select the best model. That is, we report for each met-
ric the proportion that the best model is selected from one model
series when this metric is used as the model selection criterion.
Note that the rankings of metrics on the two subplots in Figure 5a
are the same.

From Figure 5a, we can see that, while the shape metrics perform
better than scale metrics, none show a particularly strong rank
correlation. To understand this, we examine the “Smaller BERT”
series [42], which contains amore fine-grained structure of different
model sizes. Specifically, these models are arranged in a 4-by-6 grid,
where 6 represents {2,4,6,8,10,12} transformer layers and 4 means
different hidden embedding sizes {128,256,512,768}. From Figure 5b,
we see that the E_TPL_ks_distance correctly predicts the trend
that wider and deeper models perform better. On the other hand,
from Figure 5c, E_TPL_lambda correctly predicts that wider models
are better, but incorrectly predicts that shallower models are better
(yet another form of Simpson’s paradox in a data set of neural
network model quality; see also Martin and Mahoney [26]).

7https://mlco2.github.io/impact/#compute
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Figure 5: Generalization metrics evaluated on pretrained
Transformers. (a) Model selection results on eight Hugging-
face Transformer model series: BERT, GPT2, ALBERTv1,
ALBERTv2, T5, DialoGPT, FlauBERT, Funnel Transformer.
Left shows the rank correlation averaged over different
Transformers. Right shows the proportion of the best Trans-
formers correctly selected using different metrics. Shape
metrics outperform scale metric only except stable_rank
which is strongly affected by the matrix size. (b and c) Eval-
uating two metrics on the “Smaller BERT” series. While
E_TPL_ks_distance predicts the correct trends, E_TPL_lambda
shows the reversed trends with depth.

Another curious observation from Figure 5a is that, for the pre-
trained transformers, PL metrics, such as PL_ks_distance and
PL_alpha, outperform E-TPLmetrics, such as E_TPL_ks_distance,
E_TPL_lambda, and E_TPL_beta. This phenomenon may seem sur-
prising as one may expect E-TPL fits to be more flexible than PL
fits. These pretrained models are likely trained with much larger
datasets and over many more epochs than the models we have
otherwise considered. Here, PLs appear to provide a more natural
fit. This is further evidence that HT-SR theory is particularly well-
suited for evaluating the quality of relatively high-quality models.

4 CONCLUSION
Poor correlations between existing generalization metrics and test-
time performance have been reported in prior work [9, 17, 30].
Rather than providing a “lump sum” to rank existing and novel gen-
eralization metrics (Figure 4), we evaluated these metrics in several
ways: quantifying correlations only on optimally-trained models
(Figure 2); examining the time-wise correlation during training
(Figure 3); differentiating between the correlation with test accu-
racy versus generalization gap (Figure 4); providing the first result
on model selection of pretrained Transformers using these met-
rics (Figure 5); and thoroughly investigating the rich correlational
structures when different hyperparameters are varied (see the full
paper [48]). Our large-scale empirical analyses suggest that popu-
lar generalization metrics still exhibit excellent correlations with
generalization gap on NLP tasks. However, metrics derived from
HT-SR theory appear to be most valuable to large language model
practitioners, allowing one to assess pretrained NLP models with-
out requiring training or testing data. Due to their apparent utility
and current niche status, we recommend further investigations
into these metrics, in particular, to address some of their remaining
weaknesses (e.g. for suboptimally-trained models).
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