
HAWQ-V3: Dyadic Neural Network Quantization

A. Deployment Frameworks
A number of frameworks (Abadi et al., 2016; Chen et al.,
2015; 2018; Gulli & Pal, 2017; Jia et al., 2014; Paszke et al.,
2017; Seide & Agarwal, 2016; Vasilache et al., 2018) have
been developed for deep learning. Many (Abadi et al., 2016;
Chen et al., 2015; Jia et al., 2014; Paszke et al., 2017) offer
a dataflow DAG abstraction for specifying NN workloads
and provide optimization support for inference as well as
training with automatic differentiation. These frameworks
significantly reduce development cycles for deep learning
algorithms and thus facilitate innovations in deep learning.
However, a majority of these frameworks (Chen et al., 2015;
Jia et al., 2014; Paszke et al., 2017) adopt a library-based ap-
proach that maps the NN operations to hardware through ex-
isting high-performance libraries, such as cuDNN (Chetlur
et al., 2014) for GPUs, and GEMMLOWP (Jacob et al.,
2017) and NNPACK (Dukhan, 2016) for CPUs. These li-
braries currently do not support low-precision inference
(INT4), and since they are not open source we could not
add that functionality. As such, for our analysis we adopted
to use TVM (Chen et al., 2018), which provides a general
graph and a tensor expression intermediate representation
(IR) to support automatic code transformation and genera-
tion. TVM also equips a QNN dialect (Jain et al., 2020) to
compile the quantization-specific operators of a quantized
model. We choose TVM as our deployment framework
for several reasons including: (i) its extensive support in
the frontend high-level frameworks and the backend hard-
ware platforms; and (ii) its decoupled IR abstraction that
separates the algorithm specifications and the scheduling
decisions. Augmenting TVM with our mixed-precision
quantization support allows this optimization to be used by
NNs written in different frameworks as well as for various
target hardware platforms. In addition, the decoupled IR
design in TVM allows the mixed-precision quantization op-
timization to be applied without affecting the specification
of algorithms.

B. Quantization Method
Symmetric and Asymmetric Quantization. For uniform
quantization, the scaling factor S is chosen to equally parti-
tion the range of real values r for a given bit width:

S =
rmax � rmin

2b � 1
,

where rmax, rmin denotes the max/min value of the real
values, and b is the quantization bit width. This approach
is referred to as asymmetric quantization. It is also pos-
sible to use a symmetric quantization scheme where S =
2 max(|rmax|, |rmin|)/(2b � 1) and Z = 0 (since zero will
be exactly represented). As such, the quantization mapping

can be simplified as:

Q(r) = Int
⇣ r
S

⌘
. (12)

Conversely, the real values r could be recovered from the
quantized values Q(r) as follows:

r̃ = S Q(r). (13)

Note that the recovered real values r̃ will not exactly match
r due to the rounding operation. For HAWQ-V3, we use
symmetric quantization for weights and asymmetric quanti-
zation for the activations.

Static and Dynamic Quantization. The scaling factor S
depends on rmax and rmin. These can be precomputed for
weights. However, for activations, each input will have a
different range of values across the NN layers. In dynamic
quantization, this range and the corresponding scaling fac-
tor is computed for each activation map during runtime.
However, computing these values during inference has high
overhead. This can be addressed with static quantization, in
which this range is pre-calculated during the quantization
phase and made independent of the input data, by analyz-
ing the range of activations for different batches. We use
static quantization for all of the experiments with HAWQ-
V3. With these definitions, we next discuss how quantized
inference is performed.

C. Fake Quantization for Convolution
In simulated quantization (also referred to as fake quanti-
zation in literature), all the calculations happen in FP32,
which is different from the approach we used in Section 3.1.
Similar to Section 3.1, suppose that the hidden activation
is h = Shqh and weight tensor is W = Swqw. In fake
quantization, the output is calculated as:

a = (Swqw) ⇤ (Shqh). (14)

That is the weight and activation are first represented back
to FP32 precision, and then the calculation is performed.
This result is then requantized and sent to the next layer as
follows:

qa = Int
✓

a

Sa

◆
, (15)

where Sa is the pre-calculated scale factor for the output
activation. However, notice that here the requantization op-
eration requires FP32 arithmetic (division by Sa), which is
different from HAWQ-V3’s Dyadic arithmetic that only
uses integer operations. Figure C.1 shows the illustration of
fake vs true quantization for a convolution (fully-connected)
layer, without the BN layer. We also showed the correspond-
ing illustration when BN is used in Figure 1.



HAWQ-V3: Dyadic Neural Network Quantization

Figure C.1. Illustration of fake vs true quantization for a convolution (fully-connected) layer. (Left) In the simulated quantization (aka
fake quantization), weights and activations are simulated as integers with floating point representation, and all the multiplication and
accumulation happens in FP32 precision. However, with this approach, one cannot benefit from low-precision ALUs. (Right) An
illustration of the integer-only pipeline with integer-only quantization. Note that with this approach, all the weights and activations
are stored in integer format, and all the multiplications are performed with INT4 and accumulated in INT32 precision. Finally, the
accumulated result is requantized to INT4 with dyadic scaling (denoted by (SwSh

Sa
)). Importantly, no floating point or even integer division

is performed.

D. Batch Normalization Fusion
During inference, the mean and standard deviation used in
the BN layer are the running statistics (denoted as µ and �).
Therefore, the BN operation can be fused into the previous
convolutional layer. That is to say, we can combine BN and
CONV into one operator as,

CONV_BN(h) = �
Wh� µ

�
+ �

=
�W
�

h + (� � �µ
�

) ⌘ W̄h + b̄,
(16)

where W is the weight parameter of the convolution layer
and h is the input feature map. In HAWQ-V3, we use the
fused BN and CONV layer and quantize W̄ to 4-bit or 8-bit
based on the setting, and quantize the bias term, b̄ to 32-bit.
More importantly, suppose the scaling factor of h is Sh and
the scaling factor of W̄ is SW̄ . The scaling factor of b̄ is
enforced to be

Sb̄ = ShSW̄ . (17)

So that the integer components of W̄h and b̄ can be directly
added during inference.

E. Concatenation Layer
The concatenation operation in Inception is an important
component, which needs to be quantized carefully to avoid
significant accuracy degradation. Concatenation layers are
often used in the presence of pooling layers and other con-
volutions (a good example is the inception family of NNs).
In HAWQ-V3, we use INT32 for the pooling layer since
performing pooling on 4-bit can result in significant in-
formation loss. Furthermore, we perform separate dyadic
arithmetic for the following concatenation operator in the
inception module. Suppose the input of a concatenation
block is denoted as h = Shqh, the output of the three convo-
lutional branches are m = Smqm, n = Snqn, and l = Slql,

Input (INT32)

INT32 -> INT4

Output (INT32)

P3x3 (INT32)

INT32 Concat

W1x1 (INT4)

INT32 -> INT4

W5x5 (INT4)

W1x1 (INT4) W1x1 (INT4)

INT32 -> INT4

W3x3 (INT4)

INT32 -> INT4

W3x3 (INT4)

Figure E.1. Illustration of HAWQ-V3 for an inception module.
Input feature map is given in INT32 precision, which is requantized
to INT4 precision (green boxes) before being passed to the three
convolutional branches. The pooling layer, however, is performed
on the original input feature map in INT32. This is important
since performing pooling on 4-bit data can result in significant
information loss. The outputs for all the branches are scaled and
requantized before being concatenated.

the output of the pooling branch is p = Spqp, and the final
output is a = Saqa.

The pooling branch directly takes h as input, and the rest
of the three convolutional branches take the quantized 4-
bit tensor as input. After the computation of four separate
branches, the output qa is calculated with four DN operators:

qa =
X

i2{m,n,l}

DN
✓
Si

Sa

◆
qi + DN

✓
Sp

Sa

◆
qp. (18)

This scheme is represented in Figure E.1.



HAWQ-V3: Dyadic Neural Network Quantization

0 5 10 15 20 25 30 35 40 45 50 55
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 D
iff

er
en

ce

Layer Index

 4-bit fake quantization
 8-bit fake quantization
 IQTORCH

Figure G.1. The normalized difference between activation tensors
in TVM and activation tensors in PyTorch during inference. The
normalized difference is the L2 norm of the difference between
two activation counterparts divided by the L2 norm of the TVM
activation tensor.

F. Fake Quantization for Residual Connection
Similar to Section 3.3, Let us denote the activation passing
through the residual connection as r = Srqr. the activation
of the main branch before residual addition as m = Smqm.
the final output after residual accumulation as a = Saqa. In
fake quantization, the output a is calculated in FP32 as,

a = Srqr + Smqm. (19)

Afterwards, requantization is performed,

qa = Int(
Srqr + Smqm

Sa
), (20)

where the Int operator requires FP32 multiplication.

Similarly, fake quantization for concatenation layer is calcu-
lated as (see Appendix E for notations):

qa = Int(
m + n + l + p

Sa
). (21)

G. Error Accumulation of Fake Quantization
There has been a common misunderstanding that using fake
quantization is acceptable since one can use FP32 precision
to perform Integer operations exactly. First, this is only
true if the matrix multiplications only use integer numbers,
without using very large numbers. The latter is the case in
most ML applications. However, the problem is that many
quantization approaches use fake quantization in a way that
is different than the above argument.

For example, keeping the BN parameters in FP32 and not
quantizing them is a major problem. It is not possible to

simply ignore that and deploy a quantized model with FP32
BN parameters on integer-only hardware. This difference
was discussed and illustrated in Figure 1.

Another very important subtle issue is how the residual con-
nection is treated. As discussed in the previous section,
the fake quantization approaches use FP32 arithmetic to
perform the residual addition. The common (but incorrect)
argument here again is that the INT arithmetic can be per-
formed without error with FP32 logic. However, this is not
the problem, since there is a subtle difference in how requan-
tization is performed. In fake quantization, the results are
first accumulated in FP32 and then requantized. However, it
is not possible to perform such an operation on integer-only
hardware, where the results are always quantized and then
accumulated. This difference can actually lead to O(1) error.

For example consider the following case: assume Sa = 1,
r = 2.4, m = 4.4 (see definition in Appendix F), and the
requantization operator (Int) uses the “round to the nearest
integer”. Then using fake quantization, the output qa is

qa = Int(4.4 + 2.4) = 7. (22)

However for true quantization, the output qa is
qa = Int(4.4) + Int(2.4) = 6. (23)

This is an O(1) error that will propagate throughout the
network. Also note that the problem will be much worse for
low precision error. This is because an O(1) error for INT8
quantization is equivalent to a constant times (1/256), while
for INT4 quantization it will be a constant times (1/16).

We also performed a realistic example on ResNet50 for the
uniform quantization case. We perform fake quantization in
PyTorch for fine-tuning and then deploy the model in TVM
using integer-only arithmetic. Afterwards, we calculate the
error between the feature map of PyTorch (fake quantiza-
tion) and TVM (integer-only). In particular, we measure the
normalized difference using L2 norm:

Normalized_Difference =
kx1 � x2k

kx1k
, (24)

where x1, x2 are the feature maps with fake quantization
and the corresponding values calculated in hardware with
integer-only arithmetic. In Figure G.1 we show the nor-
malized difference between activation tensors in TVM and
activation tensors in PyTorch during inference. As one can
see, the numerical differences of the first layers are rela-
tively small. However, this error accumulates throughout
the layers and becomes quite significant in the last layers.
Particularly, for uniform 4-bit quantization, the final differ-
ence becomes > 95%.

H. Implementation Details
Models All the empirical results are performed using pre-
trained models from PyTorchCV (pyt, 2020) library. In



HAWQ-V3: Dyadic Neural Network Quantization

particular, we do not make any architectural changes to the
models, even though doing so might lead to better accu-
racy. We consider three NN models, ResNet18, ResNet50,
and InceptionV3, trained on the ImageNet dataset (Deng
et al., 2009). For all the NNs, we perform BN folding to
speed up the inference. All the calculations during infer-
ence are performed using dyadic arithmetic (i.e., integer
addition, multiplication, and bit shifting), with no floating
point or integer division anywhere in the network, including
requantization stages.

Training details We use PyTorch (version 1.6) for quan-
tizing models with HAWQ-V3. For all the quantization re-
sults, we follow the standard practice of keeping the first and
last layer in 8-bit (note that input data is encoded with 8-bits
for the RGB channels, which is quantized with symmetric
quantization). We only use uniform quantization along with
channel-wise symmetric quantization for weights, and we
use layer-wise asymmetric quantization for activations. In
order to perform static quantization, we set our momentum
factor of quantization range (i.e., minimum and maximum)
of activations to be 0.99 during training. Although further
hyperparameter tuning may achieve better accuracy, for uni-
formity, all our experiments are conducted using learning
rate 1e-4, weight decay 1e-4, and batch size 128.

Distillation As pointed out previously (Polino et al.,
2018), for extra-low bit quantization (in our case uniform 4
bit and mixed 4/8 bit quantization), distillation may allevi-
ate the performance degradation from quantization. There-
fore, in addition to our basic results, we also present re-
sults with distillation (denoted with HAWQV3+DIST).
Among other things, we do confirm the findings of pre-
vious work (Polino et al., 2018) that distillation can boost
the accuracy of quantized models. For all different models,
we apply ResNet101 (He et al., 2016) as the teacher, and
the quantized model as the student. For simplicity, we di-
rectly use the naive distillation method proposed in (Hinton
et al., 2014). (More aggressive distillation or fine-tuning
with hyperparameter may lead to better results).

Latency Measurement We use TVM to deploy and tune
the latency of the quantized models using Google Cloud
Platform virtual machines with Tesla T4 GPUs and CUDA
10.2. We build the same NN models in TVM and tune the
layerwise performance by using the autotuner. Once we
have the tuned models, we run the end-to-end inference
multiple times to measure the average latency. For the
accuracy test, we load the parameters trained from PyTorch
and preprocess it to the corresponding data layout that TVM
requires. Then, we do inference in TVM and verify that the
final accuracy matches the results in PyTorch.

Mixed-precision configuration For mixed-precision
configuration, we first compute the trace of each layer (Dong
et al., 2020) using PyHessian (Yao et al., 2019), and then
solve the ILP problem using PULP (Roy & Mitchell,
2020). Our mixed-precision ILP problem can find the right
bit-precision configuration with orders of magnitude faster
run time, as compared to the RL based method (Wang
et al., 2019; Wu et al., 2018). For instance, the entire trace
computation can be finished within 30 minutes for all layers
of ResNet50/InceptionV3 with only 4 RTX 6000 GPUs.
Afterward, the ILP problem can be solved in less than a
second (on a 15 inch MacBook Pro), as compared to more
than 10/50 hours searching using RL (Wang et al., 2019)
with 4 RTX 6000 GPUs.

I. ILP Result Interpolation
We plot the bit-precision setting for each layer of ResNet18
that the ILP solver finds for different latency constraints,
as shown in Figure I.1. Additionally, we also plot the sen-
sitivity (⌦i in Eq. 8) and the corresponding speed up for
each layer computed by quantizing the respective layer in
INT8 quantization versus INT4. As can be seen, the bit
configuration chosen by the ILP solver is highly intuitive
based on the latency speed-up and the sensitivity. Partic-
ularly, when the mixed-precision model is constrained by
the High-Latency setting (the first row of Figure I.1), only
relatively insensitive layers, along with those that enjoy high
INT4 speed-up, are quantized (i.e., layers 9, 14, and 19).
However, for the more strict Low-Latency setting (last row
of Figure I.1), only very sensitive layers are kept at INT8
precision (layer 1, 2, 3, 5, and 7).7

7Note that here layer 7 is the downsampling layer along with
layer 5, so it is in the same bit setting as layer 5 even though the
latency gain of layer 7 is limited.



HAWQ-V3: Dyadic Neural Network Quantization

Figure I.1. Illustration of the final model specification that the ILP solver finds for ResNet18 with latency constraint. The black line shows
the percentage of latency reduction for a layer executed in INT4 versus INT8, normalized by total inference reduction. Higher values
mean higher speedup with INT4. The orange line shows the sensitivity difference between INT8 and INT4 quantization using second
order Hessian sensitivity (Dong et al., 2020). The bit-precision setting found by ILP is shown in bar plots, with the blue and taller bars
denoting INT8, and cyan and shorter bars denoting INT4. Each row corresponds to the three results presented in Table 2a with latency
constraint. For the low latency constraint, the ILP solver favors assigning INT4 for layers that exhibit large gains in latency when executed
in INT4 (i.e., higher values in dark plot) and that have low sensitivity (lower values in the orange plot).


