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Abstract Modern graph clustering applications require the analysis of large graphs
and this can be computationally expensive. In this regard, local spectral graph clus-
tering methods aim to identify well-connected clusters around a given “seed set” of
reference nodes without accessing the entire graph. The celebrated Approximate Per-
sonalized PageRank (APPR) algorithm in the seminal paper by Andersen et al. (in:
FOCS ’06 proceedings of the 47th annual IEEE symposium on foundations of com-
puter science, pp 475–486, 2006) is one such method. APPR was introduced and
motivated purely from an algorithmic perspective. In other words, there is no a priori
notion of objective function/optimality conditions that characterizes the steps taken by
APPR. Here, we derive a novel variational formulationwhichmakes explicit the actual
optimization problem solved by APPR. In doing so, we draw connections between
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the local spectral algorithm of Andersen et al. (2006) and an iterative shrinkage-
thresholding algorithm (ISTA). In particular, we show that, appropriately initialized
ISTA applied to our variational formulation can recover the sought-after local cluster
in a time that only depends on the number of non-zeros of the optimal solution instead
of the entire graph. In the process, we show that an optimization algorithm which
apparently requires accessing the entire graph, can be made to behave in a completely
local manner by accessing only a small number of nodes. This viewpoint builds a
bridge across two seemingly disjoint fields of graph processing and numerical opti-
mization, and it allows one to leverage well-studied, numerically robust, and efficient
optimization algorithms for processing today’s large graphs.

Keywords Local spectral graph clustering · Variational formulation · Approximate
Personalized PageRank · Iterative shrinkage-thresholding

Mathematics Subject Classification 05C85 · 90C35 · 65K10

1 Introduction

Modern graph clustering applications require the analysis of large graphs [14,17].
However, inmany cases, large sizes of recent graph data have rendered the applications
of classical “global” approaches, i.e., those that require access to the entire graph, e.g.,
[3,12,13,16,22], rather impractical. The requirement to access the entire graph is
indeed very undesirable. This is so since, the running time of these global algorithms
typically increases with the size of the entire graph. This computational challenge
sparked the development of more recent methods [1,2,15,19,23,25] that are local
and only require access to a small portion of the graph. More specifically, given a
“target” cluster, such local methods find a “nearby” cluster that sufficiently overlaps
with the target and also has certain similar mathematical properties. Unlike global
methods, the running time of these local alternatives depends only on the size of the
output cluster or on the size of an input seed set of reference nodes, both of which
can be significantly smaller than the entire graph. This property makes local graph
clustering methods more applicable for today’s large-scale graphs. In addition, many
real-world graphs tend to have “good” small/medium size local clusters, as opposed
to “good” large ones [14,17], making the application of such local algorithms even
more appealing in practice.1

Approximate Personalized PageRank (APPR) algorithm, first introduced in the
seminal paper [1], has been the cornerstone of local spectral graph clustering algo-
rithms.APPR is a semi-supervised approximation algorithm for finding local partitions
in a graph, and it does so by approximately solving the PageRank linear system, fol-
lowed by rounding the approximate solution (see Sect. 3 for more details). Heuristic
modifications of APPR have also been proposed which have successfully aimed at

1 In between global and local algorithms, there is a class of locally-biased algorithms, e.g., [18], whose
running time depends on the entire graph, however, the solution is locally-biased toward some input seed
set of reference nodes. We don’t consider them in this paper.
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improving its performance, e.g., those that use different rules to update the iterates
and/or to terminate iterations [11]. However, APPR was introduced and motivated
purely from an algorithmic perspective. As a result, its output is solely determined by
the operations of the algorithm applied to the data. In other words, there is no a priori
notion of objective function/optimality conditions that characterizes the steps taken
by APPR. As a result, it is often difficult to precisely quantify how such heuristic
modifications affect the theoretical guarantees and the running time of APPR. Our
main objective here is to bridge this gap between APPR’s theory and its heuristic
modifications. We do this by finding the explicit variational formulation of the local
graph clustering problem,which is only implicitly considered inAPPR.This viewpoint
indeed decouples the combinatorial properties of the graph from the characteristics
of the optimization algorithm used to solve the new formulation. More importantly,
we will demonstrate that by using a popular optimization algorithm, namely iterative
shrinkage-thresholding algorithm (ISTA), [24], and with proper initialization, one can
indeed guarantee similar local properties as those of APPR. The “big-picture” objec-
tive of this work is to build a bridge between two seemingly disjoint fields of graph
processing and numerical optimization. It is hoped that once this viewpoint is extended
to other graph processing problems, faster and more efficient algorithms emerge as a
result.

In light of the aforementioned goals, our contributions can be summarized as fol-
lows. In comparison to APPR in which the properties of the local/sparse solutions and
those of the employed algorithms are tightly coupled, we propose a variational formu-
lation in the form of �1-regularized PageRank (PR) that decouples the locality/sparsity
of the solution from properties of the algorithm. In other words, if there exists a local
solution for the original clustering problem, then any optimization algorithm applied
to the proposed variational formulation outputs the same local solution. We then make
explicit why the optimality conditions of the proposed �1-regularized PageRank prob-
lem imply the special termination criterion of APPR, and thus its solution provides
the same combinatorial guarantees as in [1].

Although any optimization method applied to our proposed formulation naturally
produces the same output, what differentiates between them is their running time. As
a result, we present an algorithm based on iterative shrinkage-thresholding algorithm
(ISTA) [4] that solves the �1-regularized PRproblem,whilemaintaining a running time
in the order of the volume of nodes/non-zeros in the optimal solution (i.e., independent
of the size of the graph). We show that the considered algorithm only requires access
to the graph in a localized manner, and hence enjoys similar locality properties as the
original APPR.

Finally, by taking advantage of the local nature of iterations,we carefully implement
the proposed algorithm in C++ and illustrate a few numerical experiments on several
large-scale real graphs.

The rest of this paper is organized as follows. Notation used throughout the paper
is introduced in Sect. 2. Section 3 provides a brief introduction to APPR and, in doing
so, motivates our intentions in this paper. Our variational formulation is derived in
Sect. 4. The application of ISTA for solving this variational formulation is considered
in Sect. 5. This is then followed by numerical simulations on a few real graph data in
Sect. 6. Conclusions and further thoughts are gathered in Sect. 7.
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2 Notation and assumptions

Throughout the paper, vectors are denoted by bold lowercase letters, e.g., q, and
matrices are denoted by regular upper case letters, e.g., A. The i th coordinate of a
vector q is denoted by q(i) or [q]i , depending on which is less cumbersome in a
given formula. Iteration counter is denoted by k and is placed as subscripts, e.g., qk

denotes the vector corresponding to kth iteration.The dot-product between two vectors
is denoted by 〈p,q〉 = pTq. The vector of all ones and the vector whose i th coordinate
is one and zero elsewhere are denoted by e and ei , respectively. The square root of a
vector is taken component-wise, i.e., q1/2 := [q(1)1/2, . . . ,q(n)1/2].

We assume that we are given an undirected graph G with no self-loops, whose
number of nodes and edges are denoted by n and m, respectively.

The set of nodes of the graph is denoted by V . By j ∼ i we mean that j is a
neighbor of i and vice-versa. For a set of nodes S, the relation j ∼ S indicates that
a node j is a neighbor of at least one node in S, vol(S) := ∑

i∈S di and di is the
number of edges of node i , i.e., the degree of node i . We reserve d to be the vector
whose components are degrees of the nodes, i.e., d(i) = di . Matrices A and D denote,
respectively, the adjacency matrix and the diagonal degree matrix of G . Recall that
the i th diagonal element of D is given by di . For

Q := D−1/2
{

D − 1 − α

2
(D + A)

}

D−1/2,

we define

f (q) := 1

2
〈q, Qq〉 − α〈s, D−1/2q〉, (1)

where s is a given distribution over the nodes also known as teleportation distribution,
and α is a positive constant. For S ⊆ [n] where [n] = {1, 2, . . . , n}, let IS ∈ R

n×|S|
be a R

n×|S| matrix whose columns are taken from those of the R
n×n identity matrix

indexed by S. Further, we define ∇S f (q) := I T
S ∇ f (q), QS := I T

S Q IS , and dS :=
diag(I T

S DIS), where “diag(·)” extracts the diagonal of the input matrix and returns it
as a vector. We also define the support set of a vector q as the index set of its non-zero
elements, i.e., supp(q) := {i ∈ [n] | q(i) �= 0}. One can easily see that function ∇ f is
1-Lipschitz continuous w.r.t. �2 norm, that is, the largest eigenvalue of Q is smaller or
equal to 1. To prove this note that Q = α I + 1−α

2 L, where L = I − D−1/2AD−1/2 is
the symmetric normalized Laplacian matrix. Using the fact that the largest eigenvalue
of L is bounded by 2 and the latter definition of Q we obtain the result. Furthermore,
note that this condition implies that ∀p,q ∈ R

n

‖∇ f (p) − ∇ f (q)‖2 ≤ ‖p − q‖2,

which also implies

f (p) ≤ f (q) + 〈∇ f (q),p − q〉 + 1

2
‖p − q‖22.
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3 Background and motivation

Suppose n denotes the total number of nodes. A simplified version of PageRank (PR)
algorithm [20] amounts to computing the stationary solution of

pk+1( j) =
∑

i∼ j

pk(i)/di ,

where each node is modeled as a node of a graph, and the components of the vector
p ∈ R

n represent the “popularity” of thesen nodes.Usually the “popularity” is encoded
as a probabilitymass distributed over all the nodes, i.e., the vector p is like a probability
mass function where p ≥ 0 and eTp = 1 . As a result, operationally, the simplified
PR algorithm iteratively transfers probability mass around the graph by adding to a
node’s assigned probability and taking the equivalent amount from its neighbors. The
stationary vector corresponding to this iterative operation is the degrees vector d. In
Linear Algebra’s jargon, the above simplified version of the PR algorithm amounts
to the computation of the principal eigenvector of a large and sparse matrix, AD−1,
often referred to as transition matrix, i.e.,

AD−1p = p.

This simplified version of the PR algorithm has several disadvantages. A particular
issue arise when some node is isolated and lacks edges to other nodes, in which case,
the above procedure is not well-defined, i.e., the node’s degree is zero. This type of
nodes are often referred to as “dangling nodes” and an elegant way to handle such
situations was proposed in [8]. As a result, for simplicity’s sake, we assume that the
dangling nodes are dealt with in a proper way and hence, di > 0,∀i ∈ [n].

The second disadvantage is that the convergence to the principal eigenvector of
AD−1 requires the transition matrix to be aperiodic and irreducible, i.e., the smallest
eigenvalue of AD−1 is in absolute value less than 1, andmatrix (AD−1)t is component-
wise positive for some t . The former issue can be resolved by considering the lazy
random walk matrix, W = (I + AD−1)/2 instead of AD−1, while for the latter, one
can consider a convex combination of the form

αseT + (1 − α)W, (2)

where α ∈ (0, 1) is the “teleportation” parameter and s is a given distribution over the
nodes also known as teleportation distribution. The principal eigenvector of matrix (2)
is known as the PR vector [20]. The celebrated PageRank (PR) vector was initially
developed in [20] to rank websites/nodes according to their “popularity”.

Initially, swas set to have uniform probability distribution over all the nodes. How-
ever, “personalized” distributions became popular [10] which assign non-uniform
probability mass in favor of certain nodes and, as a result, one seeks to obtain per-
sonalized principal eigenvectors of matrix (2). For example, after arbitrarily ordering
the nodes of G , consider an input node, say i , and a vector s ∈ R

n such that s(i) = 1
and zero elsewhere. For a lazy random walk matrix, W = (I + AD−1)/2, finding the
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principal eigenvector of (2) which also satisfies eTp = 1 and p ≥ 0, is equivalent to
the solution of the linear system

p = αs + (1 − α)Wp. (3)

This approach is known as Personalized PageRank (PPR), and in fact, has become
the ubiquitous tool for ranking web pages, social and information network analysis,
recommendation systems, analysis of biology, neuroscience and physics networks;
see [10] for an excellent review of PR and PPR as well as their applications.

Approximate Personalized PageRank (APPR), was first introduced in the seminal
work of [1]. As it appears from its name, APPR is an approximate version of PPR
which boils down to approximately solving the linear system (3) using a particular
iterative scheme and a specifically chosen early stopping criterion. In fact, it can
be shown that APPR’s original algorithm is, indeed, an iterative coordinate solver
for the linear system (3). To see this, let us first define the residual vector as r :=
(I − (1 − α)W )p − αs. An iterative coordinate solver applied to (3) updates the
current approximate solution at iteration k according to pk+1 = pk − rk(i)ei . As a
result, the residual vector has the following recursive representation

rk+1 = rk − rk(i)ei + 1 − α

2
(I + AD−1)rk(i)ei . (4)

Algorithm 1 gives an overview of such iterative coordinate solver with a particular
stopping criterion. From the definitions of D and A, it can easily be seen that Steps 5,
6, and 7 practically implement the recursive relation (4).

Algorithm 1 Coordinate solver (APPR) for (3)
1: Initialize: ρ > 0, p0 = 0, thus r0 = −αs
2: while ‖D−1rk‖∞ > ρα do

3: Choose an i such that rk (i) < −αdi ρ

4: pk+1(i) = pk (i) − rk (i)
5: rk+1(i) = 1−α

2 rk (i)
6: For each j such that j ∼ i set

rk+1( j) = rk ( j) + 1 − α

2di
Ai j rk (i)

7: For each j such that j � i set rk+1( j) = rk ( j)
8: k = k + 1
9: end while
10: return pk

Now, by defining r̃k := −(1/α)rk and replacing rk with r̃k in Algorithm 1 we
obtain APPR algorithm in exactly the same form as described in [1, Section 3]. This
indeed shows that APPR is an iterative coordinate solver for the PPR linear system (3).

It is, in fact, easy to see that Algorithm 1 solves the optimization problem
“min f (q)”, where f is defined as in (1). To see this, note that the residual in
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Algorithm 2 Coordinate descent solver for “min f (q)”
1: Initialize: ρ > 0, q0 = 0, thus ∇ f (q0) = −αD−1/2s

2: while ‖D−1/2∇ f (qk )‖∞ > ρα do

3: Choose an i such that ∇i f (qk ) < −αρd1/2i
4: qk+1(i) = qk (i) − ∇i f (qk )

5: ∇i f (qk+1) = 1−α
2 ∇i f (qk )

6: For each j such that j ∼ i set

∇ j f (qk+1) = ∇ j f (qk ) + (1 − α)

2d1/2i d1/2j

Ai j ∇i f (qk )

7: For each j that j � i set ∇ j f (qk+1) = ∇ j f (qk )

8: k = k + 1
9: end while
10: return pk := D1/2qk

Algorithm 1 can be written in terms of the scaled gradient of function f . In particular,
since

∇ f (q) = D−1/2
{

D − 1 − α

2
(D + A)

}

D−1/2q − αD−1/2s,

we have D1/2∇ f (q) = r, where q := D−1/2p. Using D1/2∇ f (q) = rwe can rewrite
Algorithm 1 as a coordinate descent method for minimizing f as in Algorithm 2.

The above simple observation is amotivating factor behind our objective of deriving
the exact variational formulation of APPR. However, before delving into the details of
this derivation, let us briefly review the combinatorial guarantees ofAPPR,with respect
to graph clustering. This is indeed important in light of our new variational formulation
and the proposed algorithm for solving it. In particular, wewill show that the optimality
condition corresponding to this variational formulation, in fact, implies the special
termination criterion of APPR, and hence, the proposed algorithm, upon termination,
recovers a cluster with the same combinatorial guarantees as the solution of APPR.

Conductance is awidely used concept in graph clustering tomeasure the quality of a
cluster. Loosely speaking, conductance of a cluster is defined as the ratio of its external
over internal connectivities. Lower conductance translates to a better cluster since it
implies the cluster is better connected internally than externally. More specifically,
let wi j be the weight of the edge between two neighbor nodes i ∼ j . We define the
conductance of a subset of nodes S ⊂ V as

Φ(S) :=
∑

i∈S
∑

j∈V \S, j∼i wi j

min (vol(S), vol(V \S))

and the minimum-conductance of a given graph G as

Φ(G ) := min
S⊂V

Φ(S). (5)

123



K. Fountoulakis et al.

Given a target clusterC with conductanceΦ(C) ≤ Ω(ϕ2/ logm) andα set properly
according to ϕ, a particular rounding algorithm is applied to the output of APPR
which determines a set of nodes in the graph with conductance of at most ϕ. More
precisely, let pk be the output of APPR with input value α and let rk be the residual
of (3). According to [1, Theorem 5], the output of APPR can be used as an input to
a rounding procedure (see [1, Section 2.2 ]) to produce clusters of low-conductance.
The rounding procedure sorts the indices in supp(pk) in decreasing order according
to the values of the components of D−1pk . Let i1, i2, . . . , i|Hk | be the sorted indices,
where Hk = supp(pk). Using the sorted indices, the rounding procedure generates a
collection of sets S j := {i1, i2, . . . , i j } for each j ∈ {1, 2, . . . , |Hk |}. Provided that
there exists a subset of nodes, C , such that Φ(C) ≤ α/10, vol(C) ≤ 2vol(G )/3, s
is initialized within nodes in Cα , where Cα ⊆ C satisfies vol(Cα) ≥ vol(C)/2, and
ρ = 1/(10vol(C)) then [1, Theorem 5] implies that

min
j∈{1,2,...,|Hk |}

Φ(S j ) ≤ √
135 log(m)α.

This result is a local analogue of the Cheeger inequality [5] for PageRank vectors.
An undesirable side-effect of this rounding procedure is the lack of a lower bound

on the volume of the output cluster. This, in particular, implies that it is possible
to find a very small cluster. As a remedy, Andersen et al. [1, Section 6] introduces
PageRank-Nibble procedure. Let φ ∈ [0, 1] be a parameter and assume that there
exists C ⊂ V such that vol(C) ≤ vol(G )/2 and Φ(C) ≤ φ2/(22500 log2(100m)).
PageRank-Nibble makes only a single call to APPR and uses its output to produce the
rounded sets as before. However, [1, Theorem 7] suggests that if APPR is initialized
with α = φ2/(225 log(100m1/2)) and s is set in Cα , then there exists some b ∈
[1, �logm�] such that if ρ ≤ (2b48�logm�)−1, at least one setS j satisfies Φ(S j ) ≤
φ, 2b−1 < vol(S j ) < 2vol(G )/3 and vol(S j ∩ C) > 2b−2.

4 Variational formulation

In this section we set out to derive the variational formulation characterizing APPR
and discuss how we can view the approximate solution of (3) as the optimal solution
of an �1-regularized problem.

A key observation which helps us derive the sought-after variational formulation is
given by the following lemma. In particular, Lemma 1 shows that the iterates generated
by Algorithm 2 with a particular initialization, have an interesting property, in that
they all satisfy ∇ f (qk) ≤ 0 ∀k.

Lemma 1 If Algorithm 2 is initialized with q0 = 0 and s ≥ 0, then qk+1 ≥ qk and
∇ f (qk) ≤ 0 ∀k.

Proof Wewill prove this statement by induction. Let us assume that at the kth iteration
we haveqk ≥ 0 and∇ f (qk) ≤ 0. Further, let assume that there exists coordinate i such
that∇i f (qk) < −ραd1/2

i , otherwise, the termination criterion is satisfied.Algorithm2

chooses one coordinate which satisfies ∇i f (qk) < −ραd1/2
i . Then from Step 4 of
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Algorithm 2 we have that qk+1 ≥ qk . Moreover, from Steps 5, 6, and 7, it follows that
∇i f (qk) < ∇i f (qk+1) < 0, ∇ j f (qk+1) < ∇ j f (qk) ≤ 0 for each j such that i ∼ j
and ∇ j f (qk+1) = ∇ j f (qk) ≤ 0 for each j such that i � j . Hence, ∇ f (qk+1) ≤ 0.
Let q0 = 0 and s ≥ 0. Then ∇ f (q0) = −αs ≤ 0. We conclude that qk+1 ≥ qk ≥ 0
and ∇ f (qk) ≤ 0 ∀k. ��

On the one hand, as argued in Sect. 3, Algorithm 2 is equivalent to the coordinate
descent interpretation of APPR. On the other, Algorithm 2 terminates when

‖D−1/2∇ f (qk)‖∞ ≤ ρα, (6)

which, since by Lemma 1 the gradient components at every iteration are all non-
positive, is equivalent to

∇i f (qk) ≥ −ραd1/2
i ∀i. (7)

Interestingly, the termination criterion (7) is related to the first-order optimality con-
ditions of the following �1-regularized problem

�1-reg. PR: minimize ψ(q) := ρα‖D1/2q‖1 + f (q). (8)

Let q∗ denote the optimal solution of (8). The first-order optimality conditions of (8)
can be written as

∇i f (q∗) =

⎧
⎪⎨

⎪⎩

−ραd1/2
i if q∗(i) > 0

ραd1/2
i if q∗(i) < 0

∈ ραd1/2
i [−1, 1] if q∗(i) = 0.

(9)

Theorem 1, below, shows that the solution of (8) has the property that q∗ ≥ 0.
Therefore, the optimality conditions of problem (8) are equivalent to

∇i f (q∗) =
{

−ραd1/2
i if q∗(i) > 0

∈ ραd1/2
i [−1, 0] if q∗(i) = 0.

(10)

The formulation (8) is indeed a variational characterization of the APPR procedure
as described by its coordinate descent representation in Algorithm 2. However, notice
that the optimality conditions (10) imply the termination criterion (7) of APPR, but
the converse is not necessarily true. This is because (7) does not distinguish between
positive and zero components of q∗. Moreover, depending on which coordinate is
chosen at every iteration, APPR can yield a different output on multiple runs. In other
words, the output solution depends completely on the setting of the algorithm. In con-
trast, �1-regularized PR formulation (8) decouples the locality/sparsity of the solution
from properties of the algorithm, i.e., which nodes are chosen at every iteration. More
specifically, if there exists a good local cluster, then any optimization algorithm applied
to �1-regularized PR obtains the same solution, and the differences merely boil down
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to running time and locality as opposed to the actual output solution. Note that in
practice algorithms solve approximately the �1-regularized PR, therefore, small dif-
ferences might exist among solutions of different algorithms. However, the longer that
any convergent algorithm is run the closer its solution will be to the optimal solution
of the �1-regularized PR problem.

The proposed optimization formulation (8) is motivated by [11, Theorem 3]. How-
ever, by drawing a clear connection between the termination criterion of APPR, (7),
and the first-order optimality conditions of �1-regularized PR, (10), we get a much
simpler formulation than the one presented in [11]. In particular, unlike the formula-
tion of [11], problem (8) does not require any additional tuning parameters other than
the ones used for APPR, nor does it introduce any constraints, such as non-negativity.
More importantly, the formulation in [11] only implies the sparsity of the final solution
as opposed to the intermediate iterates produced by any iterative procedure applied to
solve the corresponding optimization problem. In sharp contrast, in Sect. 5, we will
show that the application of properly initialized ISTA to our formulation (8) main-
tains sparsity for all generated iterates, a property which is crucial to obtaining a local
algorithm.

5 Algorithm

As mentioned before, an advantage of the variational formulation (8) is that it decou-
ples the properties of the obtained solution from the applied algorithm. This allows
for application of any optimization algorithm. However, among all options, we need
to find methods that, like APPR, enjoy locality properties, in that they only require
access to small portion of the graph. In doing so, in this section, we investigate the
application of ISTA for solving (8) and study its theoretical properties such as locality
and running time. The adaptation of ISTA to our particular problem is depicted in
Algorithm 3.

The main computational advantage of APPR is that, APPR never requires access to
the entire graph and iterations are performed efficiently which makes the application
of APPR very appealing for modern large graphs. Interestingly, we now show that
Algorithm 3, which incorporates a presumably global optimization routine such as
ISTA, exhibits this desired locality property while inheriting the fast convergence
properties of ISTA.

Theorem 1 shows the equivalence between Algorithm 3 and ISTA, andmore impor-
tantly, establishes the desired locality property. In particular, part (iii) of Theorem 1
states that if Algorithm 3 is initialized properly, then despite the fact that the set Sk

changes at every iteration (Step 3 of Algorithm 3), its size, |Sk |, indeed never grows
larger than the total number of non-zeros of the optimal solution. As such, in the
worst case where one might update all the coordinates in Sk at every iteration, the
per-iteration cost depends only on the sparsity of the final solution vector, as opposed
to the size of the full graph.

Theorem 1 Let q∗ be the optimal solution of (8) and consider ρ > 0 and a vector
s ≥ 0 such that 〈e, s〉 = 1 and ‖s‖∞ ≥ ρ. Algorithm 3 has the following properties.

(i) Algorithm 3 is equivalent to ISTA in [4],
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Algorithm 3 ISTA-equivalent solver for (8)
1: Initialize: ε ∈ (0, 1), α > 0, q0 = 0, ρ > 0, s such that 〈e, s〉 = 1 and s ≥ 0, set∇ f (q0) = −αD−1/2s.

2: while ‖D−1/2∇ f (qk )‖∞ > (1 + ε)ρα do

3: Set Sk := {i ∈ [n] | qk (i) − ∇i f (qk ) ≥ ραd1/2i }
4: �qk := −(∇Sk f (qk ) + ραd1/2Sk

) and qk+1(Sk ) = qk (Sk ) + �qk

5: For each i ∈ Sk set

∇i f (qk+1) = −ραd1/2i − 1 − α

2
[ISk �qk ]i − 1 − α

2d1/2i

∑

l∼i,l∈Sk

Ail [ISk �qk ]l
d1/2l

6: For each j /∈ Sk such that j ∼ Sk set

∇ j f (qk+1) = ∇ j f (qk ) − 1 − α

2d1/2j

∑

l∼ j,l∈Sk

A jl [ISk �qk ]l
d1/2l

7: For each j /∈ Sk such that j � Sk set

∇ j f (qk+1) = ∇ j f (qk )

8: k = k + 1
9: end while
10: return pk := D1/2qk

(ii) Sk ⊆ Sk+1 ⊆ supp(q∗) ∀k,
(iii) |Sk | ≤ |Sk+1| ≤ |supp(q∗)|, ∀k,
(iv) 0 ≤ qk ≤ qk+1, ∀k, which implies that q∗ ≥ 0, since qk → q∗ as k → ∞.
(v) ∇ f (qk) ≤ 0, and moreover ∇i f (qk) ≤ −ραd1/2

i ∀i ∈ Sk and ∇i f (qk) >

−ραd1/2
i ∀i ∈ [n]\Sk ∀k.

Proof Define

f̃ (q;qk) := f (qk) + 〈q − qk,∇ f (qk)〉 + 1

2
‖q − qk‖22,

ψ̃(q;qk) := ρα‖D1/2q‖1 + f̃ (q;qk).

It is easy to see that

argmin
q

ψ̃(q;qk) = argmin
q

ρα‖D1/2q‖1 + 1

2
‖q − (qk − ∇ f (qk))‖22,

and hence

q(i) = prox
ραd1/2

i ‖.‖1 (qk(i) − ∇i f (qk)) ,

123



K. Fountoulakis et al.

where prox is the proximal operator [21]. Now let us define the sets

Sk := {i ∈ [n] | qk(i) − ∇i f (qk) ≥ ραd1/2
i },

Ŝk := {i ∈ [n] | − ραd1/2
i < qk(i) − ∇i f (qk) < ραd1/2

i }, (11)

S̃k := {i ∈ [n] | qk(i) − ∇i f (qk) ≤ −ραd1/2
i }.

For convenience, below, we rewrite ISTA from [4]. To show that Algorithms 3

Algorithm 4 ISTA for (8)
1: Initialize: ρ > 0, q0 = 0, thus ∇ f (q0) = −αD−1/2s
2: while termination criteria are not satisfied do

3: qk+1(i) = prox
ραd1/2i ‖.‖1 (qk (i) − ∇i f (qk )) , ∀i , whose closed-form solution is given by

qk+1(i) =

⎧
⎪⎨

⎪⎩

qk (i) − (∇i f (qk ) + ραd1/2i ) if i ∈ Sk

qk (i) − (∇i f (qk ) − ραd1/2i ) if i ∈ S̃k

0 if i ∈ Ŝk .

4: Calculate new gradient ∇ f (qk+1).
5: k = k + 1
6: end while
7: return pk := D1/2qk

and 4 are equivalent, it suffices to show that S̃k = ∅,∀k. We will prove the result
by induction. Let us assume that at iteration k we have a qk ≥ 0, ∇ f (qk) ≤ 0 and
∇i f (qk) ≤ −ραd1/2

i ∀i ∈ Sk . As a result of the first two assumptions, we have S̃k = ∅
and Sk ∪ Ŝk = [n]. Hence, Step 3 of ISTA Algorithm 4 can be simplified as

qk+1(i) =
{
qk(i) − (∇i f (qk) + ραd1/2

i ) if i ∈ Sk

0 if i ∈ Ŝk
. (12)

Define �qk := −I T
Sk

(∇ f (qk) + ραD1/2e
)
, where ISk is defined in Sect. 2. Conse-

quently, at iteration k, the new gradient components are updated as follows

∇i f (qk+1) =

⎧
⎪⎪⎨

⎪⎪⎩

−ραd1/2
i − 1−α

2 [ISk �qk ]i − 1−α

2d1/2
i

∑
l∼i,l∈Sk

Ail [ISk �qk ]l
d1/2

l

, i ∈ Sk

∇i f (qk) − 1−α

2d1/2
i

∑
l∼i,l∈Sk

Ail [ISk �qk ]l
d1/2

l

, i ∈ Ŝk and i ∼ Sk

∇i f (qk), i ∈ Ŝk and i � Sk ,

(13)

where A is the adjacency matrix of the given graph. Equation (13) is obtained by
using ∇ f (qk+1) = ∇ f (qk) − ISk �qk − 1−α

2 ISk �qk − 1−α
2 D−1/2AD−1/2 ISk �qk

and the definition of �qk . By induction hypothesis and noticing that �qk ≥ 0 and
Ai,l ≥ 0,∀i, l, it is easy to see that by (12), we have qk+1 ≥ 0, and by (13), we get
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∇ f (qk+1) ≤ 0. Hence, it follows that S̃k+1 = ∅. In addition, for any i ∈ Sk , we
get ∇i f (qk+1) ≤ −ραd1/2

i and, as such, i ∈ Sk+1. In other words, once an index i
enters the set Sk at iteration k, it will continue to stay in that set for all subsequent
iterations, and so we always have qk+1(i) ≥ qk(i). As a result we obtain Sk ⊆ Sk+1
and |Sk | ≤ |Sk+1|. The only indices entering Sk+1 are those from Ŝk that are also
neighbors of Sk . To prove this use that S̃k = ∅ ∀k, therefore the only coordinates that
can enter in Sk come from Ŝk . In addition from (12) we have that [qk]i = 0 ∀i ∈ Ŝk and
from (13) we have that neighbors of Sk that are also in Ŝk get their partial derivatives
updated. Therefore, using the definition of Sk in (11) only the neighbors of Sk that are
also in Ŝk might enter Sk , since the rest of the coordinates in i ∈ Ŝk have [qk]i = 0 and
also do not get their partial derivatives updated. In this case, suppose that i ∈ Ŝk ∩Sk+1.
By (12), we have qk+1(i) = 0, which combined with the definition of Sk+1, yields
∇i f (qk+1) ≤ −ραd1/2

i . As a result, we have ∇i f (qk+1) ≤ −ραd1/2
i ,∀i ∈ Sk+1. All

is left to do is to start the iterations with the proper initial conditions, so that the base
case of the induction holds. Set ρ small enough that ‖s‖∞ ≥ ρ. Now since s ≥ 0, by
choosing q0 = 0, we have that ∇ f (q0) = −αD−1/2s ≤ 0 and ∇i f (q0) ≤ −ραd1/2

i
∀i ∈ S0. In addition, such a choice of q0, (12) as well as the decreasing nature of Ŝk

imply that qk+1 ≥ qk,∀k. Since qk+1 ≥ qk ∀k and qk → q∗ then Algorithm 3 will
update only coordinates that are in supp(q∗). To prove this note that if a coordinate
in qk becomes positive it will remain positive because qk+1 ≥ qk . Since qk → q∗
it must be that only coordinates in supp(q∗) will become positive in qk for some k.
Thus, we have that Sk ⊆ supp(q∗) and |Sk | ≤ |supp(q∗)| ∀k. Finally, notice that
∇i f (qk) > −ραd1/2

i ∀i ∈ [n]\Sk ∀k. This can be proved by using [n]\Sk = Ŝk ∪ S̃k ,
S̃k = ∅, qk ≥ 0 ∀k and using the definition of S̃k in (11). ��

Let

S∗ := supp(q∗), (14)

be the support of the optimal solution. In the following theorem, we give an upper
bound for vol(S∗) which is, in turn, used in Theorem 3 to derive the worst-case
running time of Algorithm 3.

Theorem 2 We have that vol(S∗) ≤ ‖s‖1/ρ, where ρ is the regularization parameter
of the �1-regularized PageRank (8).

Proof From (v) in Theorem 1 we have that ∇i f (qk) ≤ −ραd1/2
i ∀i ∈ Sk for any

iteration k. Multiplying both sides of the latter by −d1/2
i and summing over all nodes

in Sk yields

∑

i∈Sk

−d1/2
i ∇i f (qk) ≥ ραvol(Sk),

which implies that

‖D1/2∇ f (qk)‖1 ≥ ραvol(Sk). (15)
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Wewill now prove that ‖D1/2∇ f (qk)‖1 decreasesmonotonically as k increases. From
Step 4 of Algorithm 3, we have qk+1 = qk + ISk �qk . As a result, from (1), it follows
that

∇ f (qk+1) = Qqk+1 − αD−1/2s

= Qqk + Q ISk �qk − αD−1/2s

= ∇ f (qk) + Q ISk �qk

= ∇ f (qk) +
(

α I + (1 − α)

2

(
I − D−1/2AD−1/2

))

ISk �qk .

In the last inequality we used Q = I − 1−α
2 (I + D−1/2AD−1/2) = I + 1−α

2 I −
1−α
2 I − 1−α

2 (I + D−1/2AD−1/2) = α I + (1−α)
2

(
I − D−1/2AD−1/2

)
. Hence, we get

D1/2∇ f (qk+1) = D1/2∇ f (qk) + αD1/2 ISk �qk + (1 − α)

2
(D − A)D−1/2 ISk �qk,

which implies

eT D1/2∇ f (qk+1) = eT D1/2∇ f (qk) + αeT D1/2 ISk �qk

+ (1 − α)

2
eT (D − A)D−1/2 ISk �qk

= eT D1/2∇ f (qk) + αeT D1/2 ISk �qk,

where for the latter equality, we used the fact that (D − A)e = 0.
From the proof of Theorem 1 we have that ∇ f (qk) ≤ 0 and �qk ≥ 0 ∀k. Hence,

the last equality implies that

‖D1/2∇ f (qk+1)‖1 ≤ ‖D1/2∇ f (qk)‖1.

Using the above inequality and D1/2∇ f (q0) = −αs in (15) we get

‖s‖1 ≥ ρvol(Sk) ∀k.

Since Sk → S∗ as k → ∞ then ‖s‖1 ≥ ρvol(S∗). To prove this use the fact
that Algorithm 3 is a convergent algorithm. Therefore, as Algorithm 3 converges
to the optimal solution q∗ then the set Sk converges to S∗, i.e., Sk consists of the
same elements as S∗, thus inequality ‖s‖1 ≥ ρvol(Sk) ∀k holds for S∗ as well, i.e.,
‖s‖1 ≥ ρvol(S∗). ��

We are now ready to derive the overall iteration complexity and the total running
time of Algorithm 3. For this, we will make use of strong convexity of f in (1). It is
easy to see that f is α-strongly convex. Indeed, Q in (1) can be rewritten as Q = α I +
(1 − α)L/2. Since L � 0, it follows that Q � α I . However, Theorem 1 guarantees
that for each iteration of Algorithm 3, one has supp(qk) ⊆ S∗ ∀k. Naturally, the
function f , restricted to vectors with support in S∗, has a better strong convexity
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parameter. Let LS∗ be the principal sub-matrix of the normalized graph Laplacian
L = I − D−1/2AD−1/2 by removing the rows and columns with indices in V \S∗. It
is clear that such restricted strong convexity parameter, when restricted to all vectors
q such that supp(q) ⊆ S∗, is α + (1 − α)λmin(LS∗)/2, which, if λmin(LS∗) > 0, is
larger than α.

Now consider the local conductance constant, defined in [6] as

H(S ) := min
S⊂S

Φ(S).

Note this latter definition differs from (5) in that H(S ) measures the minimum con-
ductance over all subsets of S , as opposed to V . Suppose G is connected and let
‖s‖1/ρ ≤ vol(G )/2, which, from Theorem 2, implies that vol(S∗) ≤ vol(G )/2. This
is a reasonable assumption since, in the context of local graph clustering, it is not
desired for the optimal support, S∗, to have a volume larger than half of that of the
whole graph,G . In [6], a local Cheeger inequality is proved for theDirichlet eigenvalue
λmin(LS∗) of the induced subgraph onS∗. For cases when such induced subgraph is
connected, the lower bound given in [6] is in the form of

0 <
(H(S∗))2

2
≤ λmin(LS∗). (16)

Luckily, it can be shown that, for any tolerance parameter in the termination con-
dition, the optimal supportS∗ from Algorithm 3 corresponds to a connected induced
subgraph of G . Indeed, Step 4 of Algorithm 3 ensures that the procedure only touches
the neighbors of the current non-zero nodes. Therefore, if the input reference set of
nodes (captured by vector s) corresponds to connected induced subgraphs of G , the
support of the output of Algorithm 3 and consequently S∗ correspond to connected
induced subgraphs of G . Note that, in the cases where G is disconnected, the above
reasoning still holds as long as ρ is chosen such that ‖s‖1/ρ ≤ vol(G̃ )/2, where
G̃ ⊂ G is the largest connected component of G that includes a reference node, i.e.,
a node i that satisfies s(i) �= 0 (otherwise, for the output of Algorithm 3, we might
have S∗ = G̃ , which implies λmin(LS∗) = 0).

Thus, using (16), we can define the restricted strong convexity parameter of f as

μ := α + 1 − α

4
(H(S∗))2 . (17)

We are not aware of any better lower bound for λmin(LS∗). In fact, we believe that
to lower bound this constant, one needs to make some strong assumptions about the
target cluster that includes the reference node. As this is not our primary objective in
this paper, we leave this for future work.

Using the restricted strong convexity parameter (17), Theorem 3 below gives the
overall iteration complexity and total running time2 of Algorithm 3.

2 Iteration complexity refers to the worst-case number of iterations to satisfy the termination criterion and
running time refers to the total amount of work, i.e., the per-iteration cost times iteration complexity.
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Theorem 3 Algorithm 3 with ‖s‖∞ ≥ ρ requires at most

T ∈ O
(
1

μ
log

(
2

ε2ρ2α2 min j d j

))

, (18)

iterations to converge to a solution that satisfies the termination criterion in Step 2,
where μ is as in (17). Furthermore, the running time of Algorithm 3 is at most

O
(

(|S∗| + v̂ol(S∗))
μ

log

(
2

ε2ρ2α2 min j d j

))

, (19)

where S∗ is defined in (14) and v̂ol(S∗) is the volume of S∗ by assuming that the
edges of the graph are unweighted, i.e., the sum of all neighbors for each node in S∗.
If we further suppose that |S∗|, v̂ol(S∗) ∈ O(vol(S∗)), then using Theorem 2 and
‖s‖1 = 1 (19) simplifies to

O
(

2

ρμ
log

(
2

ε2ρ2α2 min j d j

))

. (20)

Proof Let the assumption about s from Theorem 1 hold. Then from Theorem 1 we
have that qk ≥ 0 ∀k, i.e., we always remain in the the non-negative orthant. Denoting
the restriction of ψ(q) to q ≥ 0, by

ψ̂(q) := ραeT D1/2q + f (q),

it follows that ψ(q) = ψ̂(q) for all q in the non-negative orthant. From 1-Lipschitz
continuity of ∇ f w.r.t. �2 norm, it follows that ψ̂ is also smooth with the same param-
eter, i.e., 1. Hence, for any qk from Algorithm 3, we have

ψ̂(q) ≤ ψ(qk) + (q − qk)
T ∇ψ̂(qk) + 1

2
‖qk − q‖22. (21)

Since qk+1 ≥ 0 (see Theorem 1), qk+1 − qk = ISk �qk and �qk = −∇Sk ψ̂(qk) we
have that

ψ(qk+1) ≤ ψ(qk) − 1

2
‖∇Sk ψ̂(qk)‖22. (22)

We have that f isμ-restricted strongly convexwhen restricted to all vectors q such that
supp(q) ⊆ S∗, where μ := (α + (1− α)λmin(LS∗)/2). Therefore, ψ is μ-restricted
strongly convex as well and we have

ψ(qk) − ψ(q∗) ≤ 1

2μ
‖g‖22 ∀g ∈ ∂ψ(qk),
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where ∂ψ(qk) is the sub-differential of ψ at qk . Notice that ISk ∇ψ̂Sk (qk) is a valid
sub-gradient of ψ at qk . This gives us

ψ(qk) − ψ(q∗) ≤ 1

2μ
‖∇Sk ψ̂(qk)‖22. (23)

Combining (22) and (23) and subtracting ψ(q∗) from both sides we get

ψ(qk+1) − ψ(q∗) ≤ (1 − μ) (ψ(qk) − ψ(q∗)),

which implies linear convergence. Applying the last inequality recursively we get that
Algorithm 3 requires at most T ∈ O((1/μ) log(1/ε̂)) iterations to obtain a solution
qT such that ψ(qT ) − ψ(q∗) ≤ ε̂.

From (22) we have that

ψ(q∗) ≤ ψ(qk) − 1

2
‖∇Sk ψ̂(qk)‖22 ∀k.

Using the above and ψ(qT ) − ψ(q∗) ≤ ε̂, we get ‖∇Sk ψ̂(qT )‖2∞ ≤ 2ε̂, which is
equivalent to

−ρα −
(
2ε̂

di

)1/2

≤ ∇i f (qT )

d1/2
i

≤ ρα +
(
2ε̂

di

)1/2

∀i ∈ Sk . From Theorem 1 we have that ∇i f (qT ) > −ραd1/2
i ∀i ∈ [n]\Sk . Let

ε ∈ (0, 1) be the accuracy parameter of Algorithm 3. As a result, by setting ε̂ :=
(ε2ρ2α2 min j d j )/2 and using the fact that ∇ f (qk) ≤ 0 ∀k from Lemma 1, we get
that after

T ∈ O
(
1

μ
log

(
2

ε2ρ2α2 min j d j

))

iterations the output of Algorithm 3 satisfies −(1 + ε)ραd1/2
i ≤ ∇i f (qT ) ≤ 0 ∀i ,

which is the termination criterion in Step 2 of Algorithm 3.
From Theorem 1 we have that Sk ⊆ S∗ and |Sk | ≤ |S∗| ∀k. The set Sk in Step 3 of

Algorithm3canbeupdated inO(v̂ol(Sk−1))operations,where v̂ol(Sk−1) is the volume
of Sk−1 by assuming that the edges of the graph are unweighted, i.e., the sum of all
neighbors for each node inS∗. The quantity v̂ol(Sk−1) is upper bounded by v̂ol(S∗).
Therefore, Step 3 costs at mostO(v̂ol(S∗)) operations. Step 4 of Algorithm 3 requires
atmostO(|S∗|)operations. Similarly, Steps 5 and6 require atmostO(|S∗|+v̂ol(S∗))
operations. Finally, Step 7 does not perform any computations. Putting the operations
performed in all of the steps together, using the iteration complexity result in (18) and
the result of Theorem 2, we get (19) and (20). ��
Remark 1 The assumption |S∗|, v̂ol(S∗) ∈ O(vol(S∗)) in the latter part of The-
orem 3 holds for many types of graphs, e.g., unweighted. Indeed, such assumption
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is commonly made in the related literature, including APPR in [1] and many others
[2,15,19,23,25].

Remark 2 For unweighted graphs, according to Theorem 3, the worst-case running
time of Algorithm 3 is O (

log
(
2/(ε2ρ2α2)

)
/(ρμ)

)
(ignoring small terms and using

‖s‖1 ≤ 1),whereμwasdefined in (17).However,Andersen et al. [1, Theorems1 and5]
state that the worst-case running time of APPR is O(1/(ρα)). Despite the fact that
μ ≥ α, since (20) involves H(S∗) as well as a “log” factor, it is unfortunately difficult
to directly compare the worst-case running time of Algorithm 3 with that of APPR.

It is possible to replace the output ofAPPRwith the solution of (8) and still maintain
the combinatorial guarantees for PageRank-Nibble as in [1, Theorem 7]; see also the
discussion in Sect. 3. This can be shown using the fact that ISTA Algorithm 3 for �1-
regularizedPRsatisfies the invariance property ofAPPR (see [1, Section3]).Moreover,
all algorithms at termination satisfy ‖D−1/2∇ f (qk)‖∞ ≤ ρα. The proof is identical
to that of Theorem 7 in [1] and is, therefore, omitted. Relatedly, to ensure that the
solutions of Algorithm 3 and APPR share the same theoretical clustering guarantees,
the parameter ρ of Algorithm 3 must be set with respect to that of APPR. More
specifically, let ρ, ρ̃ ∈ (0, 1) be the parameters of the �1-regularized PR problem
(8) and APPR, respectively. Moreover, let the vector s ≥ 0 be chosen such that
s(i) ≥ max(ρ, ρ̃) for all i with s(i) �= 0, e.g., s(i) = 1 for the reference node i and
zero elsewhere. ThenAPPRalgorithmat termination gives an outputwhich satisfies (6)
while Algorithm 3 is terminated when ‖D−1/2∇ f (qk)‖∞ ≤ (1 + ε)ρα. Hence, one
can set ρ ≤ ρ̃/(1+ ε) to ensure that the termination criterion of Algorithm 3 matches
that of APPR; see Sect. 6 for numerical experiments.

6 Experiments

In this section, we numerically demonstrate that �1-reg. PR problem achieves in prac-
tice similar graph cut guarantees as APPR. The experiments are performed on a single
thread of a 64-coremachinewith four 2.4GHz16-coreAMDOpteron 6278processors.
The implementations are written using C++ code and compiled with the g++ com-
piler version 4.8.0. We use a set of undirected, unweighted real-world graphs from
the Stanford Network Analysis Project (http://snap.stanford.edu/data), whose sizes
are shown in Table 1. We present the performance of greedy and heuristic versions of
APPR and ISTA. In particular, in the following figuresAPPR greedy is Algorithm 2
where in step 3 we select the i’th coordinate with the largest partial derivative∇i f (qk)

in absolute value. APPR heuristic is Algorithm 2 where we select approximately

Table 1 Graph inputs Input graph Num. vertices Num. edgesa

wiki-Talk 2,394,385 4,659,565

soc-LJ 4,847,571 42,851,237

cit-Patents 6,009,555 16,518,947

com-Orkut 3,072,627 117,185,083
aNumber of unique undirected
edges
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Table 2 Number of non-zeros
for the output solution pk of
each algorithm for the four
experiments in Fig. 1

Input graph APPR greedy APPR heur. ISTA

wiki-Talk 326 334 326

soc-LJ 159 159 159

cit-Patents 210 211 198

com-Orkut 447 448 442

(a) (b)

(c) (d)

Fig. 1 Conductance versus cluster volume. The axes of all plots are in log-scale. This figure shows the
conductance criterion for the clusters which are produced by the sweep procedure applied on the output of
each algorithm. The volume of the clusters is shown in increasing size. a wiki-Talk, α = 0.1, ρ = 10−5, b
soc-LJ, α = 0.1, ρ = 10−5, c cit-Patents, α = 0.1, ρ = 10−5 and d com-Orkut, α = 0.1, ρ = 10−5

the i’th coordinate with the largest ∇i f (qk) in absolute value. In particular, a priority
queue of coordinates is maintained which initially contains the starting vertex only.
On each iteration we select the highest-priority coordinate in the queue and update the
coordinate and its neighbors accordingly. For each neighbor, insert it in the queue if it
is above the threshold with priority equal to the chosen coordinate. Note that this is a
heuristic because we select coordinates based on their priority when they are initially
inserted in the queue, and do not update their priorities later on. It is important to
mention that the heuristic versions of the algorithms are guaranteed to converge in
theory but not with linear convergence rate. However, there exist examples where one
can maintain the linear convergence rate, as discussed in Section 5 in [7].

For all experiments we set sv = 1 and zero elsewhere, where the coordinate/node v

is chosen based on a search of over 104 starting nodes. We used the starting vertex that
gave the best conductance. We conduct all experiments by fixing α = 0.1 and choose
the ρ values empirically such that we get clusters with at least 100 nodes each. This
agrees with the observations in [17] regarding the size of local clusters in large-scale
graphs.
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We use the same rounding procedure as the one described in Section 2.2 in [1]
for the original APPR algorithm, which is based on the conductance criterion. In
Fig. 1 we present the conductance criterion (y-axis) versus the volume of the clusters
(x-axis) produced by the sweep procedure in increasing order. All algorithms obtain
approximately the same conductance value after the rounding procedure. The number
of non-zeros of the output for each algorithm is given in Table 2. Notice that the output
of the �1-reg. PR problem, which is obtained by ISTA, has at most the same number
of non-zeros as the greedy and the heuristic versions of APPR.

7 Conclusion

In this paper, we derived and studied a variational formulation of the celebrated local
spectral clustering algorithm APPR in [1]. Through this explicit formulation, we
argued that an existing state-of-the-art optimization algorithm, i.e., ISTA [24], can
be applied in a way as to result in a strongly local algorithm, which only requires
access to a small portion of the graph. In addition, we showed that the running time of
this algorithm only depends on the volume of non-zeros of the solution, as opposed
to the entire graph. From a broader perspective, we hope that this variational view-
point serves as a bridge across two seemingly disjoint fields of graph processing and
numerical optimization, and allows one to leverage well-studied, numerically robust,
and efficient optimization algorithms for processing today’s large graphs. For exam-
ple, one might be able to apply a modification of accelerated ISTA, i.e. FISTA [24]
to further improve upon the efficiency of local graph clustering algorithms. This can
indeed be a direction for future research, which we plan to undertake.
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