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ABSTRACT
The tutorial will cover randomized sampling algorithms that
extract structure from very large data sets modeled as ma-
trices or tensors. Both provable algorithmic results and re-
cent work on applying these methods to large biological and
internet data sets will be discussed.

1. TUTORIAL SUMMARY
Large matrices arise in numerous applications. For exam-

ple, in Information Retrieval, Data Management, and Data
Mining, the data often consist of m objects, e.g., documents,
genomes, images, or web pages, each of which may be de-
scribed by n features. Such data may be represented by an
m×n matrix A, the rows of which are the object vectors and
the columns of which are the feature vectors. Similarly, large
tensors arise in applications in which the data are described
by a variable subscripted by three or more indices.

The tutorial will cover recent advances in theoretical tech-
niques for handling large data sets in the form of matrices
or tensors, including both theoretical foundations of these
techniques and their applications in the context of VLDB
research topics. Applications of these techniques include ex-
plaining the success of LSI for large document corpora, near-
est neighbor queries, “sketching approaches” for matrices
and tensors, speeding up kernel computations, recommen-
dation systems and collaborative filtering, and a large class
of algorithmic problems in the framework of the streaming
and the pass-efficient model.

We will cover:

• provably accurate sampling based algorithms for com-
puting: the product of two or more matrices; the SVD
of a matrix; CUR decompositions of a matrix,

• theoretical limitations of these techniques,

• applications of such algorithms in traditional data min-
ing problems such as nearest neighbor queries, recom-
mendation systems, and speeding up of kernel compu-
tations in machine learning,
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• empirical evaluation of such approaches in the context
of bioinformatics and medical datasets,

• empirical evaluation of such approaches in internet and
recommendation system applications, and

• methods to extend the presented results and develop
new algorithms by coupling them with other more tra-
ditional tools of data analysis.

The presentation will be available at our web pages (for
Drineas: http://www.cs.rpi.edu/~ drinep; and for Ma-
honey: http://www.cs.yale.edu/homes/mmahoney/). In ad-
dition, please see:

• http://www.cs.yale.edu/homes/mmahoney/talks/

KDD05 dm.ppt (for a similar tutorial given at the 2005
ACM SIGKDD conference), and

• http://www.cs.yale.edu/homes/mmahoney/talks/

SDM06 dm.ppt (for a similar tutorial given at the 2006
SIAM Data Mining conference).

For more details about some of the material to be presented,
see [1, 2, 3, 4, 5, 6].
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