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Abstract—Although large social and information networks are
often thought of as having hierarchical or tree-like structure, this
assumption is rarely tested. We have performed a detailed em-
pirical analysis of the tree-like properties of realistic informatics
graphs using two very different notions of tree-likeness: Gromov’s
δ-hyperbolicity, which is a notion from geometric group theory
that measures how tree-like a graph is in terms of its metric
structure; and tree decompositions, tools from structural graph
theory which measure how tree-like a graph is in terms of its
cut structure. Although realistic informatics graphs often do not
have meaningful tree-like structure when viewed with respect
to the simplest and most popular metrics, e.g., the value of δ
or the treewidth, we conclude that many such graphs do have
meaningful tree-like structure when viewed with respect to more
refined metrics, e.g., a size-resolved notion of δ or a closer analysis
of the tree decompositions. We also show that, although these
two rigorous notions of tree-likeness capture very different tree-
like structures in worst-case, for realistic informatics graphs they
empirically identify surprisingly similar structure. We interpret
this tree-like structure in terms of the recently-characterized
“nested core-periphery” property of large informatics graphs;
and we show that the fast and scalable k-core heuristic can be
used to identify this tree-like structure.

I. INTRODUCTION

Although large informatics graphs such as social and infor-
mation networks are often thought of as having hierarchical or
tree-like structure, this assumption is rarely tested, and it has
proven difficult to exploit this idea in practice. Moreover, given
recent work demonstrating that large informatics graphs have
properties that are very different than small social networks and
graphs that arise in other machine learning and data analysis
applications (e.g., they have strong expander-like properties
at large size scales), it is not clear whether such structure
can be exploited for improved graph mining and machine
learning, even assuming it exists. Here, we describe the results
of a detailed empirical analysis of the tree-like structure in a
wide range of small to moderately-large social and information
networks. We consider two traditional notions of the manner
in which a graph or network can be tree-like: Gromov’s
δ-hyperbolicity, a notion from geometric group theory that
measures how tree-like a graph is in terms of its metric
or distance structure; and tree decompositions, tools from
structural graph theory that measure how tree-like a graph is
in terms of its cut or partitioning structure.

By both of these measures, we find that, when compared
with a suite of idealized graphs representing low-dimensional

structures, constant-degree expanders, popular generative mod-
els, etc., realistic social and information networks do have
meaningful large-scale tree-like structure; but we also find that
characterizing this structure with just these traditional tools is
nontrivial and quite brittle, suggesting that exploiting this tree-
like structure for common machine learning and data analysis
tasks will be challenging. Relatedly, this tree-like structure is
not evident when considering the simplest and most popular
hyperbolicity and tree decomposition metrics, e.g., the value
of δ or the treewidth; but it is evident when considering more
refined metrics, e.g., a size-resolved notion of δ or a closer
analysis of the tree decomposition.

Interestingly, although δ-hyperbolicity and tree decompo-
sitions attempt to capture very different ways in which a
graph can be tree-like, we observe that, for most realistic
informatics graphs, they empirically identify surprisingly sim-
ilar structure; and that this structure is consistent with the
recently-characterized “nested core-periphery” structure that is
common to many large social and information networks [30].
To understand this phenomenon in greater detail, we used the
method of k-core decompositions, which is a fast heuristic
that can be applied to networks with millions (or more) of
nodes. Interpreting the output of our k-core computations in
light of the tree-like structure we identified with the more
theoretically-principled δ-hyperbolicity and tree decomposition
computations provides a much more detailed and principled
way to describe the structural properties of larger networks.

II. BACKGROUND AND RELATED WORK

A. Preliminaries on Graph Theory and Metric Spaces

Let G = (V,E) be a graph with vertex set V and edge set
E ⊆ V × V . We will model social and information networks
by undirected graphs. The degree of a vertex v, denoted d(v),
is defined as the number of vertices that are adjacent to v. The
average degree is denoted d̄. A graph is called connected if
there exists a path between any two vertices. A graph is called
a tree if it is connected and has no cycles. A vertex in a tree is
called a leaf if it has degree 1. Unless otherwise specified, our
analyses will always consider the largest connected subgraph
of G, the giant component.

A graph G naturally defines a metric l on its vertex set
V , where the distance between two vertices is the length of a
shortest path between the vertices. The geodesics are shortest
paths between vertices and are generally not unique. We will
use the term quadruplet to refer to a set of four nodes. As
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any two nodes in a network can have multiple geodesic paths
between them, a quadruplet may be associated with many
different sets of geodesics. To refer to a choice of one geodesic
between each pair of nodes in a quadruplet, we will use the
term quadruped.

B. Metric Tree-likeness: Gromov’s δ-hyperbolicity

The notion of δ-hyperbolicity was introduced by Gromov
in the context of geometric group theory and the geometry of
negatively curved metric spaces [12], [14], [21]. Informally,
it may be thought of as characterizing how tree-like a metric
space is in terms of its distance or metric structure [21]. There
are several ways of characterizing δ-hyperbolic metric spaces,
all of which are equivalent up to constant factors [12], [14],
[21]. Here, we present the Gromov 4-point δ-hyperbolicity.

Definition 1: Let 0 ≤ δ < ∞. (X, �) is called 4-point δ-
hyperbolic if and only if for all x, y, u, v ∈ X , ordered such
that �(x, y) + �(u, v) ≥ �(x, u) + �(y, v) ≥ �(x, v) + �(y, u),
the following condition holds:

(�(x, y) + �(u, v))− (�(x, u) + �(y, v)) ≤ 2δ. (1)

In particular, the δ of a graph G is the minimum value of δ
such that G is δ-hyperbolic. More generally, a space is non-
hyperbolic if no finite δ exists such that the 4-point condition
is true. For integral distance functions, δ is valued in multiples
of 1/2 for the 4-point condition. Intuitively, δ provides a bound
on the maximum distance between any points on two different
sides of a geodesic triangle, causing the sides of a triangle
to “bend-in” towards the center of the triangle as it becomes
large. This is in contrast to Euclidean space where the distance
between the sides of a triangle becomes arbitrarily large as the
triangle grows.

We have referred to δ-hyperbolicity as a metric notion
of tree-likeness. Recall that n-point δ-hyperbolic spaces can
be approximated by a tree metric with an additive error of
O(δ log2 n) [21], and consider several additional examples.
The first example is, as expected, that trees are 0-hyperbolic.
The second, perhaps unexpected, example is that cliques are
also 0-hyperbolic. It may seem strange that a clique would be
considered tree-like, but in the sense of metric structure, it is.
Another example is the cycle graph with n vertices. For large
n, it is approximately n

4 -hyperbolic and it can be shown that
this is the largest possible δ-hyperbolicity on a finite graph of
n vertices. Finally, the Poincaré half-space is log2 3-hyperbolic
and discretizations of the hyperbolic plane (including d-regular
trees or the ring trees in [13]) have constant hyperbolicity. This
is in contrast to a square planar grid, where the hyperbolicity
grows with the size of grid considered.

C. Cut-based Tree-likeness: Tree Decompositions

Originally associated with the proof of the Graph Minors
Theorem [35], tree decompositions find applications in graph
theory, dynamic programming, and linear algebra [22].

Definition 2: A tree decomposition of G = (V,E) is a
pair ({Xi : i ∈ I}, T = (I, F )), with each Xi ⊆ V , and T a
tree with the following properties: (1) ∪i∈IXi = V ; (2) For
all (v, w) ∈ E, ∃i ∈ I with v, w ∈ Xi; (3) For all v ∈ V ,
{i ∈ I : v ∈ Xi} forms a connected subtree of T.

The Xi are the bags of the tree decomposition. The width of
a tree decomposition is maxi∈I |Xi| − 1 and the treewidth
of G, denoted tw(G) is the minimum width over all tree
decompositions of G. The length of a tree decomposition is
maxi∈I,x,y∈Xi

�(x, y). The treelength of G, denoted tl(G), is
the minimum length over all tree decompositions of G.

Finding optimal tree decompositions, e.g., optimizing
treewidth, is NP-hard [37], [22]. Although several approx-
imation algorithms exist [11], [7], it is known that these
are not practical [36], and thus in practice one of several
widely-used heuristics can be used. For example, the so-called
MINDEGREE heuristic [31] and the AMD heuristic [6] are
based on making greedy decisions based on node degrees;
and nested dissection, or the ND heuristic [19], [20], works
by repeatedly finding a balanced separator for the network.
We used two of these heuristics (and others which do not
scale well), relying on METIS [25] to find the separators;
and we have also used several methods for computing lower
bounds on the treewidth. We were able to run the ND heuristic
on most of our networks, but it does not complete for some
Facebook networks.

We emphasize that the tree-like properties captured by a
tree decomposition of low width are generally very different
than those in δ-hyperbolic spaces. For example, removing the
vertices in Xi (or the vertices in Xi ∩Xj) from G separates
the graph G into two or more disconnected pieces [17]. A
tree decomposition thus captures the ways in which the cut-
structure of a network behaves like a tree. By this definition,
trees have the minimum possible treewidth of 1, but (in contrast
to δ-hyperbolicity) a clique is now the least tree-like graph with
a treewidth of n−1. In fact, the only valid tree decompositions
of a clique have all vertices in a single bag. On the other hand,
a cycle graph of size n, has a treewidth of 2. A square, n×n
planar grid has treewidth n and is not tree-like by this measure.

D. k-Core Decompositions

A k-core decomposition provides a way to decompose a
graph that, while less explicitly tree-like than δ-hyperbolicity
or tree decompositions, is faster for much larger graphs.

Definition 3: Given a set C ⊆ V , G[C] is the k-core of G
if and only if G[C] is the maximal induced subgraph with the
property that for all v ∈ C, the degree dG[C](v) ≥ k.

Let Gk denote the k-core of G. We note that the cores Gk

are nested, i.e. if i ≤ j then Gj ⊆ Gi. The maximum k-core
of G is the largest k such that Gk 
= ∅. A node v has core
number k if v belongs to the k-core, but not the (k+1)-core.
The k-shell of G, denoted Sk, is the set of all nodes with core
number k. The k-periphery of a graph is all nodes and edges in
a network that are not contained in the k-core. In Section VI,
we use an algorithm from [9], [10] that calculates the k-core
decomposition in O(|V |+ |E|) time.

E. Additional Related Work

Recent work has focused on using ideas related to δ-
hyperbolicity for the study of large graphs [38], [27], [29].
This complements results demonstrating that many real-world
networks have a highly connected core with “whiskers” or
“tendrils” that are connected by short paths through the core
[30], [38]. An important practical point is that the usual
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definition of hyperbolicity was developed for continuous and
infinite metric spaces and leads to trivial results when applied
to discrete, finite metric spaces (since the maximum length
of the side of any triangle or quadruplet is bounded by the
diameter, δ is always finite for a finite graph). Methods to
deal with this on finite graphs include [13], [34], [24], [23].

Tree decompositions gained popularity in the theoretical
computer science community due to linear time algorithms
for NP-hard optimization problems for graphs of bounded
treewidth using dynamic programming [8] and have been used
for inference in probabilistic graphical models [28]. One previ-
ous study considers heuristics for the hyperbolicity/treewidths
of autonomous systems and internet router networks, suggest-
ing that treewidth is large for these networks [33].

Many methods have used k-core decomposition ideas to
analyze real networks. For example, the core number has been
shown to be a better measure of importance than either node
degree or betweenness centrality for some applications [5],
[26], and it has the advantage that it is relatively easy to
compute [10]. It has also been used in a variety of visualization
algorithms for large networks [4], [5], [16].

III. NETWORK DATASETS

We have examined a broad set of real-world social and in-
formation networks as well as a wide range of synthetic graphs
chosen to illustrate various extreme cases for δ-hyperbolicity
and tree decompositions. See Table I for a summary. Since
exactly computing the δ-hyperbolicity of a graph is extremely
computionally intensive (see [3] for details on these chal-
lenges), many of the synthetic networks are rather small, e.g.,
consisting of fewer than 10, 000 nodes. For the real-world
networks, we considered both small networks of roughly the
same size as well as much larger networks (for which we could
perform tree decompositions and/or k-core computations).

Erdős-Rényi (ER) graphs. Although often viewed as a
straw-man, this model has several interesting properties for
our tree-like analysis when extremely sparse values of the
connection probability are considered. In the extremely sparse
regime of 1/n < p < log(n)/n, (w.h.p.) ER graphs are not
fully-connected, they have nodes with degree roughly log(n),
and they have small clusters of size roughly log(n) that are
connected to the rest of the graph by one or a small constant
number of edges [18], [30]. Here, we set the target number of
nodes to n = 5000, and we choose p = d

n for various values
of d from 1.6 to 32.0. We denote these networks using ER(d).

Power Law (PL) graphs. Here, we consider the Chung-
Lu model [15], an ER-like random graph model parameterized
to have a power law degree distribution (in expectation) with
power law parameter γ, which we vary between 2 and 3.

SNAP Networks. We selected several representative net-
works from the SNAP website [1] that were used in the large-
scale evaluation of clustering and community structure in large
networks [30]. These networks represent a range of application
domains of social and information network analysis, and
include autonomous system snapshots (AS20000102, ORE-
GON1), collaboration networks (CA-GRQC, CA-ASTROPH),
an email network from Enron (EMAILENRON), a Gnutella
peer-to-peer network (GNUTELLA09), and a Stanford Web
network (STANFORDWEB).

Facebook Networks. We selected several representative
Facebook graphs out of the 100 Facebook graphs from various
American universities [39]. These range in size from ca. 700
nodes (CALTECHFB) to ca. 30, 000 nodes (TEXAS84FB, and
others). Since these networks can be thought of as being
multiple snapshots of graphs constructed with similar genera-
tive processes, in general these networks exhibit very similar
properties. One notable characteristic that is evident from
Table I is that these Facebook networks have a much higher
average degree than the networks drawn, e.g., from the SNAP
website, that were considered previously [30].

Miscellaneous Networks. Finally, we also selected several
miscellaneous real and synthetic networks, designed to illus-
trate several points and to serve as “controls” on our empirical
evaluations: a network of the the Western United States Power
Grid (POWERGRID) [40]; a network of US political bloggers
(POLBLOGS) [2]; a discretization of part of the 2-dimensional
lattice Z

2 (PLANARGRID); and a random geometric graph
(RANDGRID) from the two-dimensional Euclidean plane.

IV. METRIC TREE-LIKENESS: δ-HYPERBOLICITY

In this section, we will summarize our main empirical
results on the hyperbolic properties of a suite of synthetic
and realistic networks, with an eye on characterizing how real
networks are tree-like in terms of their metric structure.

A. Main Empirical Results for δ-hyperbolicity

Our main empirical results consist of the computation of
the δ-hyperbolicity on a suite of idealized graphs (representing
low-dimensional structures, constant-degree expanders, popu-
lar generative models, etc.) and real-world networks (drawn
from several domains of social and information network anal-
ysis). As mentioned in Section II-E, the maximum value of δ in
a finite graph can be difficult to interpret. A finite graph has
a finite δ, limited by the diameter of the graph, and results
not presented show that there are a very small number of
quadruplets which achieve the maximum δ. Thus, we consider
a “scaled” and “size-resolved” version of δ (from which the
original δ can be recovered). By scaled, we mean that we
divide by the length of the longest side of the quadruplet
defined by vertices x, y, u, v; and by size-resolved, we mean
that we look at this as a function of the longest side of the
quadruplet.

In more detail, consider the δ value of a given quadruplet:
by this, we mean the value on the left side of the inequality in
Equation (1), for a given set of nodes x, y, u, v. We will write
δ(�xyuv) to denote this quantity for the quadruplet �xyuv with
vertices x, y, u, v. We define δD to be:

δD = max
�xyuv∈QD

δ(�xyuv)

D
,

where QD is the set of quadruplets with maximum pairwise
distance D (the “diameter” of the quadruplet) [34], [24]. This
allows us to look at how δ behaves over different distance
scales in the network. Then, we will consider plots of δD
against D, which allows us to see the relative hyperbolicity
of the networks at each size scale present in the network.

See Figure 1 for our main results on δD as a function of
d, a summary of which is presented in Table II. In Figure 1,
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Network n e nc ec d̄ C̄ D D̄ Description

ER Random Graphs

ER(1.6) 5000 3996 3210 3471 2.16 0.00 38 15.8 ER graph with p = 1.6/n
ER(1.8) 5000 4486 3617 4118 2.28 9.30 ×10−4 34 12.7 ER graph with p = 1.8/n
ER(2) 5000 4986 4001 4783 2.39 9.11 ×10−4 30 11.9 ER graph with p = 2/n
ER(4) 5000 9881 4879 9878 4.05 8.96 ×10−3 15 6.80 ER graph with p = 4/n
ER(8) 5000 20102 4998 20102 8.04 1.59 ×10−3 7 4.81 ER graph with p = 8/n
ER(16) 5000 40215 5000 40215 16.1 3.13 ×10−3 5 3.86 ER graph with p = 16/n
ER(32) 5000 80258 5000 80258 32.1 6.39 ×10−3 4 3.05 ER graph with p = 32/n

PL Random Graphs

PL(2.25) 5000 5790 3393 5634 3.32 .0131 16 5.51 PL graph with γ = 2.25
PL(2.50) 5000 7238 4895 6802 2.78 2.46 ×10−3 18 6.65 PL graph with γ = 2.50
PL(2.75) 5000 6236 4650 5641 2.43 6.99 ×10−4 22 8.20 PL graph with γ = 2.75
PL(3.00) 5000 5363 4071 4556 2.24 1.18 ×10−3 29 10.1 PL graph with γ = 5.00

SNAP Graphs

AS20000102 6474 12572 6474 12572 3.88 .399 9 4.34 Snapshot of autonomous systems network
CA-GRQC 5241 14484 4158 13422 6.46 .665 17 6.74 Collaboration network, general relativity
CA-ASTROPH 18771 198050 17903 196972 22.0 .669 14 4.77 Collaboration network, astrophysics
GNUTELLA09 8114 26013 8104 26008 6.42 .0137 10 5.22 Peer-to-peer filesharing network
EMAILENRON 36692 183831 33696 180811 10.7 .708 13 4.72 E-mail network of Enron
OREGON1 11174 23409 11174 23409 4.19 .453 10 4.28 AS peering information

FB Graphs

LEHIGHFB 5075 198347 5073 198346 78.2 .270 6 3.19 Facebook friend network from Lehigh
VANDERBILTFB 8096 427832 8063 427829 106 .255 7 3.18 Facebook friend network from Vanderbilt
STANFORDFB 11621 568330 11586 568309 98.1 .252 9 3.35 Facebook friend network from Stanford

Miscellaneous Graphs

POWERGRID 4941 6594 4941 6594 2.67 .107 46 24.2 Western US power grid
POLBLOGS 1224 16715 1222 16714 27.4 .360 8 3.43 Political blogs network
PLANARGRID 2500 4900 2500 4900 3.92 0.00 98 73.0 50-by-50 planar grid
RANDGRID(3) 2500 3808 114 205 3.60 .510 34 21.4 Random planar graph, average degree 3
RANDGRID(7) 2500 8679 2480 8656 6.98 .596 68 55.7 Random planar graph, average degree 7

TABLE I: Statistics of analyzed networks: number of nodes n; number of edges e; nodes in giant component nc; edges in giant
component ec; average degree d̄ = 2E/N ; average clustering coefficient C̄; diameter D; and average path length D̄.

each subplot shows a different class of network: ER graphs
with different connection probabilities p; PL graphs with
different heavy-tailed parameters γ; real and synthetic graphs
that are low-dimensional or planar; and several realistic social
and information graphs. In all subfigures, the vertical axis
corresponds to δD, where in all cases the maximum achievable
δD is 0.5; and the horizontal axis shows the quadruplet
diameter d. Note that, because of the variations in diameter
among the networks shown, the scale is not the same for
each plot. The planar networks, in particular, have significantly
larger diameters than the other networks investigated and thus
a significantly expanded horizontal axis. The main feature of
these plots in which we will be interested is the overall increase
or decrease in δ as quadruplet diameter increases. Although
they can be confusing, the “multiple-of-two variations,” i.e., the
fluctuations in δ values for even and odd values of quadruplet
diameter, are not directly relevant for understanding the large-
scale hyperbolicity properties of these graphs; they will be
discussed in the long version of this paper.

The plots for the ER graphs indicate that there are two
regimes (each with very different tree-like properties) of in-
terest: one where the graphs are dense enough to be fully
connected (even though they are still quite sparse); and one
where the graphs are so extremely sparse that they are not
even fully connected (in which case we are considering the
properties of the giant component). In the former case, the
diameter is extremely small, and (aside from the multiple-of-
two effect mentioned above) the maximal values of δD of 0.5

are obtained for all values of D (indicating that the networks
are not meaningfully hyperbolic). Interestingly, though, when
the connection probability is decreased, the diameter of the
graph increases, and the plots exhibit a decreasing δD after a
certain size scale, indicating the presence of nontrivial large-
scale hyperbolic structure. The phenomonon responsible for
this is a type of core-periphery structure, where a quadruped
has “legs” in the periphery (or whiskers [30]), and where
the “high degree nodes” (where for the extremely sparse ER
graphs, this means only logarithmically, or slightly, larger
than the expected degree due to random fluctuations and
lack of measure concentration) provide a scaffolding in the
core for short paths to go through. The same phenomenon
is seen in the PL graphs; and, in these cases, the large-scale
hyperbolicity properties also seem to be due to the lack of
measure concentration caused by the degree variability.

A second example of nonhyperbolic networks is seen in
PLANARGRID. In this case, the δD increases to 0.5 and
(aside from the multiple-of-two fluctuations) remains flat.
Interestingly, although the POWERGRID “looks like” a two-
dimensional mesh in terms of its clustering and isoperimetric
structure [30], the hyperbolicity plots indicate that in terms
of its metric structure, the variability induced by considering
either a RANDGRID graph or the POWERGRID is sufficient to
make the graphs have substantial large-scale tree-like structure
when viewed in terms of δD, though this size-scale is much
larger than the other real networks studied.

In light of these results, the real networks do have prop-
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Network D Ddrop δ

Erdös-Rényi

ER(1.6) 38 21 10
ER(1.8) 34 18 8.0
ER(2) 30 16 7.5
ER(4) 15 9 4.0
ER(8) 7 7 3.0
ER(16) 5 5 2.0
ER(32) 4 4 2.0

Chung-Lu

PL(2.25) 16 8 3.5
PL(2.50) 18 9 4.0
PL(2.75) 22 11 5.0
PL(3.00) 29 13 6

Network D Ddrop δ

Planar Networks

PLANARGRID 98 98 49
RANDGRID(5) 124 40 20
RANDGRID(7) 68 20 18
POWERGRID 46 19 10

Real Networks

AS20000102 9 6 2.5
CA-GRQC 17 8 3.5
GNUTELLA09 10 7 3.0
POLBLOGS 8 5 2.0
VANDERBILTFB 7 5 2.0

TABLE II: Summary of max δD Results.

erties consistent with tree-like metric structure. The VANDER-
BILTFB network is denser and exhibits only a slight decay
in δD before the diameter of the network is reached, thus
indicating slightly hyperbolic properties; but the much sparser
CA-GRQC (as well as to a lesser extent other networks
such as GNUTELLA09) exhibits a much broader range of
decreasing δD values. On the whole, these results suggest that
the real social and information graphs are nontrivially tree-
like in terms of their metric structure when compared with
the expander graphs (e.g., moderately dense ER) and low-
dimensional graphs (e.g., the PLANARGRID), both of which
are well-known to be non-tree-like.

The tendency for δ to begin to decrease as the diameter of
the quadruplets increases has been noted in previous work [34].
The drop-off, which happens starting at a size-scale denoted
Ddrop in Table II, indicates that relatively large structures are
hyperbolic while there are non-hyperbolic structures at small
size scales. This is analogous to the finite-δ definition of
hyperbolicity used in infinite spaces [21].
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Fig. 1: Max δD vs Diameter of Quadruplet.

B. Interpretation of Empirical Results for δ-hyperbolicity

In order to understand better the metric structure of the
network, we sampled quadruplets (five from each δ value, and
as well as some additional large diameter quadruplets) as we

computed δ, and we kept all of the geodesic paths associated
with those quadruplets. See Figures 2 and 3 for representative
examples. The examples shown are quadruplets with diameters
in the range of the hyperbolic drop-off Ddrop and relatively
large δ values. In all cases, the four square nodes in the figure
(which are not visible in some of the denser networks, e.g.,
VANDERBILTFB), are the four nodes defining the quadruplet.
The coloring is based on the relative k-core of the nodes within
in the quadruplet (red is high, blue is low) and the layout was
generated using the GraphViz command neato.

Figure 2 shows all of the geodesics paths between the four
nodes in several synthetic networks. Similarities are seen be-
tween the very sparse ER(1.6) network, the low-heterogeneity
PL(2.75), and POWERGRID, and all sparse networks with
small amounts of degree heterogeneity. All of these networks
show very little variation in the k-core among the quadruplets,
though the peripheral nodes are often in the (slightly) lower
cores. This looks quite different from PLANARGRID, where all
quadruplets show a very regular structure. The dense ER(16)
generates quadruplets with a very flat core structure (most
nodes are in the deep core of the network). PL(2.25) shows the
most variation in core structure, and the quadruplets sampled
suggest that the deeper core nodes make up the central portions
of the geodesics in most quadrupeds.

In the real networks, we see the (expected) nonzero clus-
tering coefficient and deeper core nodes towards the center of
the quadruplets, although for CA-GRQC there are also short
paths that don’t include deep core nodes. In the Facebook
networks, if the diameter of the quadruplet is more than 2,
the uninformative visualization we see for VANDERBILTFB
is typical. If the diameter is increased to 5 or 6, a similar
picture is obtained, except one of the nodes in the quadruplet
is connected to the central cluster by a path of length 2 or 3.

(a) ER(1.6),
δ = 3, d = 29 (b) ER(16),

δ = 0.5, d = 4

(c) PL(2.25),
δ = 2.0, d = 11

(d) PL(2.75),
δ = 2.0, d = 16

(e) PLANARGRID,
δ = 3.0, d = 19

(f) POWERGRID,
δ = 4.5, d = 19

Fig. 2: Selected quadruplets from synthetic networks with all
geodesics shown.

We chose quadruplets with large δ values and relatively
large diameters because they show a pattern which explains
the hyperbolicity drop-off with size-scale seen in Figure 1.
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(a) AS20000102,
δ = 0.5, d = 7

(b) CA-GRQC,
δ = 3.0, d = 13 (c) VANDERBILTFB,

δ = 1.0, d = 3

Fig. 3: Selected quadruplets from real networks with all
geodesics shown.

Using the 4-point definition of hyperbolicity, it is easy to show
that, given a quadruplet and one of the associated quadrupeds
(a single choice of geodesics between each of the six pairs
of nodes), if there is a section of the geodesics where all
six geodesics overlap, then this portion of the network does
not contribute to the hyperbolicity. In particular, if all the
geodesics overlap, then the length of that section will show
up in both the positive and negative terms of definition and
will cancel out. Thus, the peripheral “legs” of the quadrupeds,
which are particularly prominent in the synthetic networks,
do not contribute to the hyperbolicity of the quadruplet. In
the real networks (particularly in the Facebook networks), this
is much easier to see if a single quadruped is visualized for a
quadruplet, because the increased clustering and larger average
degrees results in many paths obscuring the path-like nature
of individual quadrupeds.

Clearly, below a certain size scale, there exist non-
hyperbolic structures in the core of the network. As the
diameter of the quadruplets becomes larger than the diameter
of the network core, the geodesic paths converge and form
long paths which do not change the hyperbolicity, but they do
change the scaling factor for the quadruplet, reducing δD. Thus
we see a drop-off in δD as quadruplets grow beyond the core
of the network. In other words, the maximum hyperbolicity of
these networks is driven by large non-hyperbolic structures
in the core. As the quadruplet size grows, these structures
eventually stop growing and most quadruplets consist of the
smaller non-hyperbolic structures, likely cyclical structures,
attached to long legs extending out in the periphery. Note that
there could be paths between these legs, but not shortest paths.
This will become important in Section VI, where we provide
additional evidence of this structure and its interactions with
the k-core decomposition.

V. CUT-BASED TREE-LIKENESS: TREE DECOMPOSITIONS

In this section, we describe our results illustrating the com-
binatorial tree-like structures present in many real networks.

A. Main Empirical Results for Tree Decompositions

Our main empirical results consist of using the AMD and
ND heuristics with Gavril’s algorithm to compute tree decom-
positions on our suite of idealized graphs. In addition to report-
ing the width (W ) and the length (L) of the decompositions
computed using these heuristics, we also compute several other
statistics: the number of bags in the tree decomposition, Nbags;
and the diameter of the tree (we call this E, for eccentricity

of the tree, and this shows how far out the tree’s branches
extend from its center/bicenter). An additional quantity of
interest is how many branches the tree decomposition has. We
measure the branch ratio of the network with the statistic:
B = Nleaves−2

Nbags−3 . A summary of our results is presented in

Table III. A subscript of a indicates the AMD heuristic, and a
subscript of n indicates the ND heuristic. A bar indicates an
averaged statistic.

Consider, first, the ER networks, where we see several
trends as the parameter p is varied. As expected, the width and
average width of the tree decomposition grow with the density
of the network indicating the increasingly large number of
vertices needed to produce a cut in the network. In the densest
of the ER networks, ER(32.0), 80% of the network is in a
single, central bag and the length of this bag is equivalent to the
diameter. In addition, the number of bags and the diameter of
the tree decomposition is smaller in this network. Recall that
this is similar to the tree decomposition of a clique (which
would contain all nodes in a single bag). In contrast, and
importantly, the sparsest ER networks exhibit a more tree-like
structure. They have tree decompositions with much smaller
widths, longer branches, and lengths that are small compared
to the diameter of the network. The basic structure of the tree
decomposition is the same, however, with the largest width
bag in the center of the tree. This is due to the presence of a
dense core in all of these networks, but in the sparsest networks
the ‘dense’ core is only slightly more dense than the longer
whiskers coming off of it.

For the random PL graphs, there is a negative correlation
between the γ exponent and the width of the tree, i.e., the lower
γ values yield larger widths. An apparent exception to this is
PL(2.25), but this is because the degree heterogeneity of this
graph is large enough that the giant component, i.e., the graph
we are actually considering, is much smaller. Similar to the ER
networks, the trees with large widths also have a larger branch
ratio. In contrast to the ER networks, the bag lengths in these
trees are small relative to the diameter of the network. The
length grows with the power law exponent, suggesting that
high width bags become less tightly connected when there
is less degree heterogeneity. Again, this phenomena can be
explained by a relatively dense core which must be placed in
a single bag with tree-like whiskers coming off and forming
the branches of the trees. This core-periphery effect is more
pronounced in the networks with more degree-heterogeneity,
whereas the networks with less degree-heterogeneity begin to
look more like the sparse ER networks.

Looking at the real networks, several have similar proper-
ties; for example, AS20000102 and GNUTELLA09 both have
tree decompositions with a much higher branch ratio compared
to any other network. In fact, the number of bags and the
diameter of the tree are similar in both of these networks,
indicating similar cut structures in the decompositions of the
two networks. They also have similar lengths. The widths
of the two networks, are very different; GNUTELLA09 has
a width of 1628, while AS20000102 has a width of 87. The
tree-decompositions show the same structure, a set of central
bags with many small width branches coming off of them. In
these networks, the large central bags have a great number of
leaf bags attached to them, most having a width of 2 or 3,
indicating a core-periphery structure which has many single
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Network Na Nn Ba Bn Ea En La Ln Wa Wn W̄a W̄n

ER Networks

ER(1.6) 3127 2881 .384 .518 43 37 19 21 78 85 1.94 2.55
ER(1.8) 3457 3229 .398 .532 37 39 17 18 156 155 2.52 3.58
ER(2) 3760 3554 .413 .533 37 52 16 17 234 229 3.03 5.11
ER(4) 3777 3683 .489 .545 34 103 9 10 1092 1106 13.0 37.2
ER(8) 2787 2646 .517 .540 28 162 6 6 2207 2244 35.4 148
ER(16) 1856 1734 .539 .539 27 188 5 5 3141 3186 73.2 361
ER(32) 1137 1069 .540 .529 21 163 4 4 3862 3902 137 626

PL Networks

PL(2.25) 3192 3042 .591 .658 26 30 6 7 199 206 3.47 4.60
PL(2.50) 4672 4377 .537 .629 31 35 7 9 218 255 2.99 3.96
PL(2.75) 4500 4170 .498 .604 38 36 9 10 147 159 2.40 3.05
PL(3.00) 3974 3637 .466 .584 35 32 12 14 95 105 1.89 2.35

Planar Networks

PLANARGRID 1884 1917 .609 .537 60 33 69 33 70 60 7.11 8.10
POWERGRID 4666 4420 .442 .555 58 32 26 22 20 22 2.21 2.45

Real Networks

AS20000102 6364 6307 .833 .854 32 39 4 5 87 90 2.592 2.76
CA-GRQC 3014 2829 .566 .627 38 67 7 8 221 225 5.08 7.28
LEHIGHFB 1919 - .465 - 150 - 4 - 2982 - 194 -
GNUTELLA09 6475 6276 .824 .874 32 167 6 6 1628 1764 13.4 47.3

TABLE III: Network TD Statistics: Xa =AMD, Xn =ND.

or double node whiskers coming off of the core. This large
number of leaf nodes creates the high branch ratio.

GRQC and LEHIGHFB both show similarities to some
of the synthetic networks. GRQC has a small set of large
central bags and relatively thin outer branches. It has a smaller
width (and average width) compared to the ER networks of
a similar density. It is more similar to the PL networks,
both qualitatively and quantitatively than the ER networks.
LEHIGHFB has the largest width of the real networks and
the second largest width of all the networks with 50% of
the network contained in the central bag. Noting that it has
the highest average degree of all the networks, this is not
surprising, but the fact that it does not have the largest width
demonstrates that there are multiple factors which affect the
width of a tree decomposition besides just the average degree.
The large average degree of LEHIGHFB also slows down the
computations, hence we were only able to compute a tree
decomposition using the faster AMD heuristic. LEHIGHFB
is also distinctive from the other AMD tree-decompositions
because of the large eccentricity of the tree decomposition.
This is due to a long, wide ‘trunk’ of bags which have narrow
branches at each end.

Again, the two planar networks (PLANARGRID and POW-
ERGRID) are different from the other networks, showing a
large length relative to the diameter and width of the bag. In
fact, we can see that the tree decomposition of PLANARGRID

has a length of similar value to the width (which we also saw
with moderately dense ER), which occurs as the bags consist
of paths (with a few additional nodes) across the grid.

The tree decompositions generated using the ND heuristic
show several of the same general trends, though there are a
few differences. The widths and lengths of ND are very similar
to the AMD widths/lengths in the networks and demonstrate
that the basic cut-structure of each network is captured by
both heuristics. The main feature difference between ND and
AMD seems to be the that ND generates long thick trunks in
the networks with dense cores.

B. Interpretation of Empirical Results for TDs

In many of the networks, such as GNUTELLA09, the
eccentricity of the tree decomposition and the size of the bags
indicates that there is a large overlap between bags. By looking
at the statistics of nodes in a bag, we can get a preliminary
idea of what the interior of a bag looks like. In Figure 4, we
provide results for a representative set of real networks, and we
provide a least-squares fit in the figure for reference. We see
that the nodes that appear in many bags have a large degree,
as expected. The POWERGRID network shows the weakest
correlation while AS200001202 shows the strongest. Similar
results are obtained for ND. In AS20000102, the strong linear
correlation occurs because most of the nodes (not bags) in
the network have many “leaves” or neighbors of degree 1.
Checking the bags, each of these leaf nodes, depending on the
heuristic used, tends to generate a bag containing the leaf node
and the single high-degree node it is connected to. This causes
each node to appear in a number of bags that is approximately
the same as its degree. The larger bags then have many leaf
bags of small width hanging off of them and each of these
leaf bags contains a high degree node and a low degree node.

In the other networks, this does not happen. In these
networks (such as CA-GRQC and LEHIGHFB), there is a
set of thick central bags with only a few of these (in several
networks, only the largest bag) having any leaf bags connected
to them. These central bags form a trunk which eventually
splinters at several points into many smaller branches. These
central bags tend to contain many of the high degree nodes
in the network. Performing the same calculations, including
the median values of the degree and k-core depth, shows that
the high k-core nodes tend to be in many bags in the tree
decompositions as well.

These results for the real graphs are consistent with a
tree-like structure that includes the presence of a central,
relatively well-connected core, as will be discussed in more
detail in the next section. As this core is difficult to separate
without breaking many edges, these nodes are repeated in the
many large central bags. They are also repeated in low-width
bags that contain more peripheral nodes, consistent with the
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(a) AS20000102

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80  90

# 
ba

gs
 c

on
ta

in
in

g 
no

de

Degree of node

./CA-GrQc
Line fit

(b) CA-GRQC
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(c) POWERGRID
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(d) LEHIGHFB

Fig. 4: Bags containing node vs the degree of node in the
AMD heuristic.

existence of sparser periphery which consists of both whiskers
(such as the low-width leaves in the decomposition) or sparser,
peripheral layers in the network.

VI. CORE-PERIPHERY: k-CORE

In this section we look at the k-core decomposition as
an easy-to-compute alternative to the previous (more rigorous
but more expensive) notions of tree-likeness. We investigate
some of the connections between the k-core structure and the
tree-like properties of real networks. As a comment on our
nomenclature, we will often talk about the “depth” of a node
in this section. By depth we will mean a node’s core number
(i.e., the shell Sk to which the node belongs). A deep node
has a high core number, while a shallow node has a small core
number, relative to the range of cores present in the network.
This last point is important as there is a large amount of
variation among network k-core structure and number of shells
in a given network. Also note that we define kmin to be the
maximum k such that the k-core contains the entire network.

A. Summary of k-core Statistics

Table IV contains the size and depth of the k-core structure,
as well as relevant graph statistics such as network size and
average degree, for our suite of networks.

Among the synthetic networks, there is a marked difference
between expander graphs and low-dimensional graphs versus
more realistic graphs; and, in particular, between the ER net-
works and networks with more degree heterogeneity. With both
network types, the depth of the k-core structure increases with
the average degree (increased connectivity of the network), as
one would expect. With the ER networks, the connectivity is
distributed uniformly among all nodes. This uniformity causes
kmin to increase with the average degree, keeping a smaller
difference between the maximum and minimum shells. In
contrast, the nodes in the power-law networks have a wide
range of degrees with a few nodes having degrees orders of
magnitude larger than the others. As a consequence, the k-core
decomposition deepens, keeping a non-empty 1-shell while
the maximum k-core increases. Also since most nodes have

a small degree, the shallow shells have a larger proportion of
the nodes than the deeper shells.

In PLANARGRID, there is a single shell, S2, while the
random geometric networks have a richer k-core structure,
but the core is less prominent than in the real networks. This
is to be expected since the ‘core’ is the results of random
fluctuations and boundary effects in the generation process.

Similarly, the average degree and the maximum k-core are
correlated in the real networks. Broadly speaking, the real
networks we have been studying have degree heterogeneity
similar to the synthetic PL networks and thus have a similar
but richer k-core structure to these synthetic networks, with
a few exceptions. The collaboration networks behave in this
manner in the shallow shells, but have large gaps in the k-
core decomposition with isolated deep cores consisting of a
few small, disconnected subgraphs. These cliques are likely
due to a few large collaborations and publications associated
with a single experiment, and they are not central to the
network structure [32]. The real networks with the highest
average degree (the Facebook networks, email networks, and
the political blogs network) have the deepest k-cores and a
larger percentage of their nodes in the deep cores.

These k-core statistics also agree with several of the
empirical results in [30]. Cuts of good conductance do not
exist in many real networks because the shallow nodes have
many connections to the highly connected central core and a
good cut cannot pass through this core. Thus, the “whiskers,”
or small relatively-dense subgraphs attached to the main core
by only a few edges, are the best cuts. Facebook networks,
because of their deep, large central cores and the tendency
of peripheral nodes to connect to these cores, have very poor
conductance cuts, lacking even the whiskers described above.
This behavior is different than the classical models (such as
dense ER graphs) where the nodes are essentially all in the
same core of the network (a different reason for lacking good
cuts). In contrast, the planar geometric networks have good
cuts at all size scales and also do not have a deep core structure
or many connections to the deep cores.

B. k-core and Hyperbolicity

We performed several experiments to confirm that the k-
core is an important part of the hyperbolic structure of the
network. If the intuition of geodesic paths connecting to a more
complicated, higher δ structure in the core of the network is
true, then removing (or collapsing) these nodes should have
several predictable effects. In particular, if deep k-cores are
central to the structure of the network, removing the cores
from the network should result in a “hole” in the center of the
network. The geodesics would now have to travel around this
hole, resulting in large cyclical structures which would increase
the maximum δ observed in the networks. This would also
cause the diameter of the network to increase and the scaled
δd to fall off later. If, on the other hand, we collapsed the k-
cores (i.e., remove the k-core and then assign all edges from
nodes outside the removed k-core into nodes in the removed
k-core to a single supernode), we should see the hyperbolicity
decrease while the distances between the nodes should stay
approximately the same as it will modify only a short portion
of the geodesics.
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Network nc d̄ kmin kmax Pkmin Pkmax

ER Networks

ER(1.6) 3210 2.16 1 2 58.7 41.3
ER(1.8) 3617 2.28 1 2 49.6 50.4
ER(2) 4001 2.39 1 2 41.5 58.5
ER(4) 4879 4.05 1 3 8.28 67.6
ER(8) 4998 8.04 1 5 .300 88.3
ER(16) 5000 16.1 4 11 0.04 88.3
ER(32) 5000 32.1 7 23 0.02 93.8

PL Networks

PL(2.25) 3393 3.32 1 5 45.7 0.825
PL(2.50) 4895 2.78 1 4 52.2 0.776
PL(2.75) 4650 2.43 1 2 59.0 41.0
PL(3.00) 4071 2.24 1 2 65.9 34.1

Planar Networks

PLANARGRID 2500 3.92 2 2 100 100
POWERGRID 4941 2.67 1 5 32.1 0.243

Real Networks

AS20000102 6474 3.88 1 12 37.9 0.324
OREGON1 11174 4.19 1 17 35.3 0.269
LEHIGHFB 5073 78.2 1 62 1.42 15.4
VANDERBILTFB 8063 106.1 1 86 1.98 23.3
STANFORDFB 11586 98.1 1 91 4.36 20.1
CA-GRQC 4158 6.46 1 43 17.9 1.06
CA-ASTROPH 17903 22.0 1 56 5.55 0.318
EMAILENRON 33696 10.7 1 43 28.4 0.816
EMAILEUALL 224832 3.02 1 37 83.9 0.130
POLBLOGS 1222 27.4 1 36 11.3 4.50
STANFORDWEB 255265 15.2 1 71 5.98 0.152

TABLE IV: k-core network statistics: Pkmin and Pkmax are
percentage of nodes in the kmin and kmax shells, respectively.

We performed all of these experiments, but because of
space, we will show only the results involving the maximum
hyperbolicity calculations on the k-periphery of several real
networks. In Figure 5, we remove cores and plot the resulting
maximum hyperbolicity of the giant component of the k-
periphery. As predicted, removing cores from the network
increases the size-scale at which cyclical structures are still
found. The minimum scale at which cycles appear stays the
same, indicating that small scale cycles must appear across the
network, not only in the deep cores. This provides additional
corroboration for the notion of a size-scale above which the
network structure is hyperbolic or tree-like, but below which
it is not. Additionally, the increasing size of the cyclical
structures in the network as cores are removed provides further
evidence that the quadruped centers are contained in the deep
k-cores of the network.

C. k-core and Tree Decompositions

In this section, we will demonstrate that the k-core decom-
position also interacts with the cut-structure of the networks
we studied. To start, we can ask: how is the k-core structure
in real networks related to the cut-structure (via the tree-
decompositions) in real networks? Figure 6 shows two AMD
tree decompositions of AS20000102. The diameters of the
bags are scaled by width and colored by the average k-core
of the nodes they contain. The smallest peripheral bags are
difficult to see, but they have a green or blue coloring (low
k-core), while the center bags have a yellow to red coloring
(high k-core).

Looking at the average k-core of the bags in the real
networks, results not shown demonstrate that a higher k-
core is correlated with the central, wide bags of the tree
decomposition. But we also see (as Figure 6 shows) that this
is a noisy correlation. The central bags are yellow, while bags
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Fig. 5: Maximum Hyperbolicity of Network Periphery.

further towards the periphery are red. There are also hundreds
of small bags containing only two or three nodes connected
to the central bag. As each of these contains a single node in
a deep core and the rest of the bag is a shallow core, these
nodes have a high average k-core. In the planar networks, most
of the bags contain low k-core nodes, while a few peripheral
bags contain the deep core nodes, suggesting that the k-core
is not as central to the network structure.

We also removed the k-cores, as in the previous section.
This had the effect of reducing the width in the real networks
we tested on, with the exception of POWERGRID, where the
widths remained flat until the network became disconnected.
In CA-GRQC, we see no effect from the deepest cores (the
large clique-like physics collaborations), but we see a similar
fall-off in width when we begin removing shallower cores.
Interestingly, while removing the cores decreases the widths
of many of the real networks, it leaves similar tree structures
(see Figure 6b). The bags have a smaller width and a lighter
coloring, but the tree structure appears to be similar. This
would seem to support the idea of a nested core-periphery
as reported in [30], but additional investigation is required.

(a) Full Network

(b) 7-core removed

Fig. 6: AMD of AS20000102, bags colored by average core
number of nodes
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VII. DISCUSSION AND CONCLUSION

Our empirical results (only some of which have been
presented here for space reasons) indicate that realistic social
and information networks do have meaningful large-scale tree-
like structure, both in terms of their cut properties and in terms
of their metric properties. Although characterizing this tree-
like structure with just the traditional tools of δ-hyperbolicity
or tree decomposition theory is nontrivial and quite brittle,
our empirical results also indicate that — for the class of
realistic social and information networks — these two very
different tree-like notions have strong similarities. In addition,
these similarities can be interpreted in terms of a nested core-
periphery structure, and they can be identified with the fast
k-core decomposition heuristic. Clearly, the next step is to
try to exploit our insights and this heuristic to do improved
graph data mining, machine learning, and statistical inference
on much larger realistic social and information networks.
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[12] M.R. Bridson and A. Häfliger. Metric Spaces of Non-Positive Curvature.
Grundlehren Der Mathematischen Wissenschaften. Springer, 2009.

[13] W. Chen, W. Fang, G. Hu, and M. W. Mahoney. On the hyperbolicity
of small-world and tree-like random graphs. In press at: Internet
Mathematics. Also available at: arXiv:1201.1717.

[14] V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès. Diameters,
centers, and approximating trees of δ-hyperbolic geodesic spaces and
graphs. In Proceedings of the 24th Annual Symposium on Computa-
tional Geometry, pages 59–68, 2008.

[15] F.R.K. Chung and L. Lu. Complex Graphs and Networks. American
Mathematical Society, 2006.

[16] P. Colomer-de Simon, A. Serrano, M. G. Beiro, J. Ignacio Alvarez-
Hamelin, and M. Boguna. Deciphering the global organization of
clustering in real complex networks. CoRR, abs/1306.0112, 2013.

[17] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer,
2006.

[18] P. Erdos and Alfred R. On the evolution of random graphs. Publ. Math.
Inst. Hungary. Acad. Sci., 5:17–61, 1960.

[19] J. A. George. Nested dissection of a regular finite element mesh. SIAM
Journal of Numerical Analysis, 10:345–363, 1973.

[20] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection
algorithm. Numerische Mathematik, 50(4):377–404, 1986.

[21] M. Gromov. Hyperbolic groups. In Essays in Group Theory, volume 8
of Math. Sci. Res. Inst. Publ., pages 75–263. Springer-Verlag, 1987.

[22] I.V. Hicks, A. Koster, and E. Kolotoglu. Branch and tree decomposition
techniques for discrete optimization. INFORMS TutORials in Operation
Research, 2005:1–29, 2005.

[23] E. A. Jonckheere, P. Lohsoonthorn, and F. Ariaei. Scaled Gromov
four-point condition for network graph curvature computation. Internet
Mathematics, 7(3):137–177, 2011.

[24] E. A. Jonckheere, P. Lohsoonthorn, and F. Bonahon. Scaled Gromov
hyperbolic graphs. Journal of Graph Theory, 57(2):157–180, 2008.

[25] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
1998.

[26] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. Nature Physics, 6:888–893, 2010.

[27] R. Kleinberg. Geographic routing using hyperbolic space. In Pro-
ceedings of the 26th IEEE International Conference on Computer
Communications, pages 1902–1909, 2007.

[28] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[29] D. V. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá.
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