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Abstract

An algorithm is presented and analyzed that, when given as input a d-mode tensor A, computes an
approximation Ã. The approximation Ã is computed by performing the following for each of the d modes:
first, form (implicitly) a matrix by “unfolding” the tensor along that mode; then, choose columns from the
matrices thus generated; and finally, project the tensor along that mode onto the span of those columns. An
important issue affecting the quality of the approximation is the choice of the columns from the matrices
formed by “unfolding” the tensor along each of its modes. In order to address this issue, two algorithms of
independent interest are presented that, given an input matrix A and a target rank k, select columns that span
a space close to the best rank k subspace of the matrix. For example, in one of the algorithms, a number c
(that depends on k, an error parameter ε, and a failure probability δ) of columns are chosen in c independent
random trials according to a nonuniform probability distribution depending on the Euclidean lengths of
the columns. When this algorithm for choosing columns is used in the tensor approximation, then under
appropriate assumptions bounds of the form

‖A − Ã‖F �
d∑

i=1

‖A[i] − (A[i])ki
‖F + dε‖A‖F

are obtained, where A[i] is the matrix formed by “unfolding” the tensor along the ith mode and where (A[i])ki

is the best rank ki approximation to the matrix A[i]. Each ‖A[i] − (A[i])ki
‖F term is a measure of the extent

to which the matrix A[i] is not well-approximated by a rank-ki matrix, and the ε‖A‖F term is a measure
of the loss in approximation quality due to the choice of columns (rather than, e.g., the top ki singular
vectors along each mode). Bounds of a similar form are obtained with the other column selection algorithm.
When restricted to matrices, the main tensor decomposition provides a low-rank matrix decomposition that
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is expressed in terms of the columns and rows of the original matrix, rather than in terms of its singular
vectors. Connections with several similar recently-developed matrix decompositions are discussed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this introductory section, we first, in Section 1.1, provide a review of relevant tensor algebra,
and then, in Section 1.2, we describe two results relating to the quality of approximation obtained
by projecting a matrix onto a subset of its columns. (These results are of independent interest,
and they will be used in an essential way in our main tensor approximation.) Then, in Section 1.3,
we describe our main result, a randomized algorithm to compute an approximation to a tensor
and a theorem providing an associated quality-of-approximation bound. Finally, in Section 1.4
we provide an outline of the remainder of the paper.

1.1. Review of tensor algebra

Before stating our main result, we provide a brief review of relevant tensor algebra and a
definition of notation that we will use. We shall use calligraphic letters to denote higher-order or
multi-mode tensors with d > 2 modes. For example, let A ∈ Rn1×n2×···×nd be a d-mode tensor
of size n1 × n2 × · · · × nd . Consider the following definitions:

• Given a tensor A and a particular mode α ∈ {1, . . . , d}, define the matrix A[α] ∈ Rnα×Nα ,
where Nα = ∏

i /=α ni and where the columns of the matrix consist of varying the αth coordinate
of A while leaving the rest fixed. We refer to the (usually implicit) construction of A[α] as
matricizing [27] or unfolding [34] A along mode α and define the α-rank of the tensor A to
be the rank of the matrix A[α].

• Given a tensor A, a particular mode α, and any nα × cα matrix B, define the α-mode tensor-
matrix product to be the d-mode tensor of size n1 × · · · × nα−1 × cα × nα+1 × · · · × nd

whose i1 · · · id element is

(A ×α B)i1···id =
nα∑
i=1

Ai1···iα−1iiα+1···id Biαi . (1)

(To understand this notation better, consider how it is applied to a m × n matrix A, i.e., to a
2-mode tensor. In this case, e.g., the SVD of A may be written A = U�V T = � ×1 U ×2 V .
Note that the α-mode tensor-matrix product satisfies (A ×α B) ×α′ C = (A ×α′ C) ×α B =
A ×α B ×α′ C, for α /= α′, assuming that the various individual products are defined.)

• Given a tensorA, if we denote the SVD of A[α] by A[α] = UA[α]�A[α]V
T
A[α] = U[α]�[α]V T[α] (the

latter being an abuse of notation in favor of simplicity), where, e.g., U[α] is an nα × rank(A[α])
matrix, then the higher-order SVD of A is the decomposition of A of the form

A = S ×1 U[1] ×2 · · · ×d U[d], (2)

where the rank(A[1]) × · · · × rank(A[d]) tensor S is the so-called core tensor.
• If U[α],kα is a nα × kα matrix consisting of the left singular vectors corresponding to the top

kα singular values of A[α], then define

Ã = S ×1 U[1],k1 ×2 · · · ×d U[d],kd
(3)
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to be the best rank-(k1, k2, . . . , kd) approximation to the tensor A. (Note of course that this
does not in general provide a best rank-k approximation to the tensor A for any k. See [34,35]
for further discussion of this decomposition and approximation.)

• Given a d-mode tensor A, define the (square of its) Frobenius norm to be

‖A‖2
F =

n1∑
i1=1

· · ·
nd∑

id=1

A2
i1···id .

Remark. See [34,27] and references therein for a more detailed description of these tensor-related
definitions.

Remark. Tensors are a natural generalization of matrices (see, e.g., [23] for more details) and
have been studied in several fields. For example, tensors have been studied in mathematics and
computer science for their algebraic properties, their ability to efficiently represent multidimen-
sional functions, and the relationship between their properties and problems in complexity theory
[23,20,25,39,4]. In addition, tensors provide a natural way to represent many large and complex
data sets [34,33,24,27,36,45,5,46,47].

Remark. It is worth emphasizing that computing the rank of a general tensor A (defined as the
minimum number of rank one tensors into which A can be decomposed) is an NP-hard problem,
that only weak bounds are known relating the α-rank and the tensor rank, and that there does not
exist definitions of tensor rank and associated tensor SVD such that the optimality properties of
the matrix rank and matrix SVD are preserved [31,26,32,25,35,29,37,38,51].

1.2. Randomized algorithms for matrix problems

Before stating our main tensor approximation result, we also discuss two intermediate results
related to the quality of approximation obtained by projecting a matrix onto a subset of its columns.
(These two intermediate results are discussed separately since they are of independent interest.)
Given an m × n matrix A, we wish to choose columns of A such that the projection of the matrix
onto those columns “captures” as much of the matrix as possible, i.e., that is a basis for a space
close to the space spanned by the top singular vectors of the matrix. Thus, in particular, if A is
well approximated by a low-rank matrix, then we would like A ≈ Pspan(C)A, where C is a matrix
consisting of the chosen columns and where Pspan(C) is a projection onto the column space of C.

In Section 2 the following two algorithmic results are presented in more detail. Each algorithm
takes as input a matrix A and a number c of columns to choose (the second algorithm also takes as
input a number t of iterations to perform), and each algorithm returns as output an m × c matrix
C whose columns consist of the chosen columns. Let ε be an error parameter and δ be a failure
probability (due to the randomization in the algorithm). In addition, let Ak be the best rank-k
approximation to A and let ‖·‖F denote the Frobenius norm of a matrix.

• In the SelectColumnsSinglePass algorithm (described more precisely in Algorithm 2 in
Section 2.1), the columns of C are chosen from the columns of A in c i.i.d. trials by sam-
pling randomly according to the probability distribution proportional to the Euclidean lengths
squared of the column. If c � 4(1 + √

8 log(1/δ))2k/ε2 columns are chosen in this manner
then under appropriate assumptions (which are stated more precisely in Theorem 2 in Section
2.1) we have that



556 P. Drineas, M.W. Mahoney / Linear Algebra and its Applications 420 (2007) 553–571

‖A − CC+A‖2
F � ‖A − Ak‖2

F + ε‖A‖2
F, (4)

with probability at least 1 − δ.
• In the SelectColumnsMultiPass algorithm (described more precisely in Algorithm 3 in

Section 2.2), the columns of C are chosen from the columns of A in t iterative rounds. In
each round, c columns are chosen from A in c i.i.d. trials by sampling randomly according
to the probability distribution proportional to the Euclidean lengths squared of the columns
of residual of the matrix A after subtracting the projection of A on the subspace spanned by
the columns sampled in all the previous rounds. If c � 4(1 + √

8 log(1/δ))2k/ε2 columns are
chosen in this manner in each of the t rounds, then under appropriate assumptions (which are
stated more precisely in Theorem 3 in Section 2.2) we have that

‖A − CC+A‖2
F � 1

1 − ε
‖A − Ak‖2

F + εt‖A‖2
F, (5)

with probability at least 1 − δ.

Remark. In (4) and (5), the ‖A − Ak‖2
F term is a measure of the extent to which the matrix A is

not well-approximated by a rank-k matrix, and the ε‖A‖2
F or εt‖A‖2

F term is a measure of the loss
in approximation quality due to the choice of columns (rather than, e.g., the top k singular vectors).
This latter measure is of the form of an arbitrary (but fixed) precision, scaled by a measure of the
size of the matrix A.

Remark. Recent work in the randomized algorithms literature has focused on algorithms for
extremely large linear algebra problems [18,19,48,7,2,1,8,9,10,11,12,14,15,42,6]. We should
note that algorithms from this literature are quite different from traditional numerical analysis
approaches and generally may be viewed as fitting within the following framework. They will be
allowed to read the data from external storage a small number of times and keep a small randomly-
chosen and rapidly-computable “sketch” of the data in RAM. Computations will then be performed
on the “sketch” and the results of these computations will be returned as approximations to
the solution of the original problem. In the interests of simplicity, we will not discuss in detail the
resource requirements for the algorithms we present, except to note that they are efficient within
the Pass Efficient Model of data streaming computation [9,10]. In this model, the data are assumed
to be stored externally (e.g., on a tape or disk and not in RAM) and the scarce computational
resources are the number of sequential-access passes over the data and the additional scratch
space and computational time required; see [10,11] for a detailed discussion of these issues.

Remark. As discussed in Section 2, the second column selection algorithm is presented in the
recent work by Rademacher, Vempala, and Wang [42].

1.3. Summary of the main result

In this subsection, we present the main result of the paper. Our main result is a randomized
algorithm to compute an approximation to a tensor and a theorem providing an associated quality-
of-approximation bound. We first describe the algorithm and then we present the theorem.

The ApproxTensorSVD algorithm (described in Algorithm 1) takes as input a d-mode tensor
A ∈ Rn1×···×nd and numbers ci, i = 1, . . . , d. The algorithm returns as output matrices C[i] of
size ni × ci for all i = 1, . . . , d. Let A[i] be the matrix formed by “unfolding” the tensor A
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Algorithm 1. The ApproxTensorSVD Algorithm.

along the ith mode. The algorithm works by choosing (for every i ∈ {1, . . . , d}) ci columns
from the (not explicitly constructed) matrix A[i] to construct (explicitly) an ni × ci matrix, which
we will denote (with an abuse of notation in the interests of simplicity) by C[i]. The columns
may be chosen from A[i] using either the SelectColumnsSinglePass algorithm or with the
SelectColumnsMultiPass algorithm (in the latter case a number t of iterations to perform is
also input to the ApproxTensorSVD algorithm). In both cases, the matrix bounds from (4) and
(5) (see also Sections 2.1 and 2.2) will translate into bounds for tensor approximation. Regardless
of how the matrices C[i] are determined, we note that C[i]C+

[i] is a projection matrix onto the space
spanned by the columns of C[i]. Thus,

Ã = A ×1 C[1]C+
[1] ×2 · · · ×d C[d]C+

[d] (6)

is an approximation to the original tensor A.
The following theorem provides our main quality-of-approximation bound for the

ApproxTensorSVD algorithm. In this theorem, we bound the Frobenius norm of the error tensor
Ẽ = A − Ã. The proof may be found in Section 3.2.

Theorem 1. Let A ∈ Rn1×...×nd be a d-mode tensor, let β ∈ (0, 1], and let η = 1 +√
(8/β) log(1/δ), for any 0 < δ < 1. Let matrices C[i], i ∈ {1, . . . , d}, be computed by the

ApproxTensorSVD algorithm (Algorithm 1).

• If the columns are chosen with the SelectColumnsSinglePass algorithm (see Algorithm 2
in Section 2.1) then, with probability at least 1 − dδ,

‖A − A ×1 C[1]C+
[1] ×2 . . . ×d C[d]C+

[d]‖F �
d∑

i=1

‖A[i] − (A[i])ki
‖F + dε‖A‖F,

(7)

if ci � 4η2ki/(βε2) for all i = 1, . . . , d.

• If the columns are chosen with the SelectColumnsMultiPass algorithm (see Algorithm 3
in Section 2.2) then, with probability at least 1 − tdδ,
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‖A − A ×1 C[1]C+
[1] ×2 · · · ×d C[d]C+

[d]‖F

� 1

1 − ε

d∑
i=1

‖A[i] − (A[i])ki
‖F + dεt‖A‖F, (8)

if ci � 4η2ki/(βε2) for every one of the t rounds and for all i = 1, . . . , d.

Remark. In (7), each ‖A[i] − (A[i])ki
‖F term is a measure of the extent to which the matrix A[i]

is not well-approximated by a rank-ki matrix, and the dε‖A‖F term is a measure of the loss in
approximation quality due to the choice of columns (rather than, e.g., the top ki singular vectors
along each mode). This latter measure is of the form of an arbitrary (but fixed) precision, scaled by
the (fixed) number of modes times a measure of the size of the tensor A. A similar interpretation
holds for the bound (8).

Remark. Recent work in applied linear algebra has focused on such areas as:

• computing approximate decompositions of tensors [34,35,33,27,28,29,37,38],
• randomized algorithms for extremely large matrix problems [18,7,2,10,11,12,19,42], and
• computing low-rank matrix approximations that are expressed in terms of the rows and columns

of the matrix rather than in terms of its singular vectors [43,44,3,22,21,12,15].

Our main approximate tensor decomposition combines ideas from the first two of these areas.
As discussed in greater detail in Section 4, when our main approximate tensor decomposition is
applied to two-mode tensors, i.e., to matrices, it sheds light on the third area.

Remark. During the time since the initial submission of this paper, two developments are worth
note. First, we have developed and analyzed a new algorithm for randomly sampling columns from
a matrix. This algorithm comes with provable relative error guarantees (as opposed to the additive
error guarantees of Theorems 2 and 3). The algorithm runs in time of the order of computing
the best rank-k approximation to the SVD of the matrix, and it returns a matrix C consisting of
O(k2/ε2) columns of A such that

‖A − CC+A‖F � (1 + ε)‖A − Ak‖F.

See [16] for details and [17] for related ideas. Second, we have applied heuristic variants of these
column sampling algorithms to the analysis of DNA single nucleotide polymorphism data and
hyperspectrally-resolved medical imaging data. See [41,40] for details.

1.4. Outline of the paper

In the next section, Section 2, we discuss several results related to approximating a matrix by
projecting the matrix onto subsets of its columns. These results are of independent interest, and
they will be used in our main tensor approximation. In Section 3, we prove Theorem 1 and provide
a discussion of our main result. In Section 4, we consider the case when our main approximate
tensor decomposition is applied to a two-mode tensor, i.e., to a matrix. Particular attention is paid
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to how our our main approximate tensor decomposition relates to several recently-developed low-
rank matrix decompositions that are expressed in terms of the columns and rows of the original
matrix, rather than in terms of its singular vectors. Finally, in Section 5, a brief conclusion is
presented.

2. Projecting matrices on subsets of their columns

Given an m × n matrix A, we wish to choose columns of A such that the projection of the
matrix onto those columns “captures” as much of the matrix as possible, i.e., that is a basis for
a space close to the space spanned by the top singular vectors of the matrix. Thus, in particular,
if A is well approximated by a low-rank matrix, then we would like A ≈ Pspan(C)A, where C is
a matrix consisting of the chosen columns and where Pspan(C) is a projection onto the column
space of C.

In Sections 2.1 and 2.2, two column selection results are presented. In each subsection, an
algorithm is first described and then a theorem is presented that states the conditions under which
an approximation of the given form is obtained. Thus, the two theorems in this section quantify
the sense in which (for the two different choices of C) A ≈ Pspan(C)A.

2.1. Choosing the columns in a single pass

The SelectColumnsSinglePass algorithm (described in Algorithm 2) takes as input a matrix
A and a number c of columns to choose. It returns as output a matrix C such that the columns
of C are chosen from the columns of A in c i.i.d. trials by sampling randomly according to the
probability distribution (9). More formally, for an m × n matrix A and a multiset S ⊆ {1, . . . , n},
let C = AS denote the m × |S| matrix whose columns are the columns of A with indices in S.
The SelectColumnsSinglePass constructs the multiset S by randomly sampling according to
(9) and returns the matrix C = AS .

Algorithm 2. The SelectColumnsSinglePass Algorithm.
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Remark. The SelectColumnsSinglePass algorithm is so-named since, given probabilities of
the form (9), the matrix C can be constructed in one pass over the (externally-stored) data matrix
A. If the probabilities {pi}ni=1 that are used by the algorithm are not given based on a knowledge
of the application area then one pass over the data and O(m + n) additional space is sufficient to
calculate them; see [10] for more details on these resource requirements.

Remark. Although any choice of sampling probabilities could be used in the SelectColumns
SinglePass algorithm, a judicious choice of these probabilities allows us to prove interesting
error bounds for the quality of the approximation; see [10,11] for a detailed discussion. Sampling
probabilities of the form (9) (with β = 1 and where A(i) is the ith column of the matrix A and
|A(i)| is its Euclidean length) are optimal in a sense made precise in [10].

The following theorem is our main quality-of-approximation result for the SelectColumns
SinglePass algorithm.

Theorem 2. Suppose A ∈ Rm×n, and let C be the m × c matrix constructed by sampling c

columns of A with the SelectColumnsSinglePass algorithm. If η = 1 + √
(8/β) log(1/δ) for

any 0 < δ < 1, then, with probability at least 1 − δ,

‖A − CC+A‖2
F � ‖A − Ak‖2

F + ε‖A‖2
F, (10)

if c � 4η2k/(βε2).

Proof. Let the m × c matrix Ĉ be that matrix whose columns consist of appropriately rescaled
copies of the columns of C, as discussed in conjunction with the LinearTimeSVD algorithm of
[11]. First, note that since CC+ = PC = P

Ĉ
= ĈĈ+ is a projection onto the full column space

of C, it follows that

‖A − CC+A‖2
F � ‖A − P

Ĉ,k
A‖2

F. (11)

The theorem follows by combining this with the results of [11]. �

Remark. The crucial role played in the algorithm by the nonuniform sampling probabilities
should be emphasized. By providing a bias toward columns that are more informative (in the sense
of having greater Euclidean length), sampling probabilities of the form (9) allow the algorithm
to obtain substantial variance reduction relative to less informative (e.g., uniform) probabilities.
This allows a martingale argument to be successfully applied so that bounds of the form (10) hold
not only in expectation but also with exponentially high probability.

Remark. In many applications the data may be generated in such a way that all of the columns have
approximately the same Euclidean length. In these cases, uniform probabilities are approximately
optimal and we can obtain meaningful bounds for the approximation error. More precisely, if
there exists some positive constant β � 1 such that ∀i : |A(i)|2 � 1

βn
‖A‖2

F then the uniform
probabilities are nearly optimal and we can sample uniformly with only a small β-dependent
loss in accuracy; see [10,11] for a detailed discussion.

Remark. The relationship of this algorithm with the LinearTimeSVD algorithm of [11] (and thus
with the algorithms of [18,7,10,12,19,42]) should also be emphasized. In the LinearTimeSVD
algorithm of [11], the columns of A that are sampled by the algorithm are scaled prior to being
included in C, by dividing each sampled column by a quantity proportional to the square root of
the probability of picking it. This scaling allows one to prove that the top k singular values of the
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matrix Ĉ, i.e., the scaled version of C, and the top k singular values of A are close. Additionally,
it allows one to prove that under appropriate assumptions

‖A − P
Ĉ,k

A‖2
ξ � ‖A − Ak‖2

ξ + ε‖A‖2
F, (12)

in both expectation and with high probability, for both the spectral and Frobenius norms, ξ = 2, F .
Algorithms of this flavor were first analyzed in [18], and have also been studied in [48,2,1,7–
12,14,15,19,42]. In this paper in the projection matrix to the full space spanned by the columns
of C, namely PC = CC+ = ĈĈ+ = P

Ĉ
rather than P

Ĉ,k
. Clearly, any scaling of the columns of

C does not affect this full projection matrix.

2.2. Choosing the columns in multiple passes

The SelectColumnsMultiPass algorithm (described in Algorithm 3) was originally pre-
sented in [42]. The algorithm takes as input a matrix A, a number t of rounds to perform, and a
number c of columns to choose per round. It returns as output a matrix C such that the columns
of C are chosen from the columns of A in the following manner. There are t rounds, and each
round consists of 2 passes over the data. In the first round, let � = 1. Sampling probabilities of
the form (9) are computed in the first pass of the first round, and in the second pass a multiset
S1 of columns of A is picked in c i.i.d. trials by sampling according to the probabilities (9). For
each subsequent round � = 2, . . . , t , sampling probabilities of the form (14) are constructed that
depend on the lengths of the columns of the the m × n matrix E� that is the residual of the matrix
A after subtracting the projection of A on the subspace spanned by the columns sampled in the
first � − 1 rounds.

More formally, let the indices of the columns that have been chosen in the first � − 1 rounds
form the multiset {S1, S2, . . . , S�−1} (where the multiset of columns Si were chosen in the ith
round) and let C�−1 = A{S1,S2,...,S�−1} denote the m × |S1||S2| · · · |S�−1| matrix whose columns
are the columns of A with indices in {S1, S2, . . . , S�−1}. Then,

E� = A − A{S1,...,S�−1}A
+
{S1,...,S�−1}A = A − C�−1C

+
�−1A. (13)

Sampling probabilities of the form (14) are then constructed in the first pass of each round
� = 2, . . . , t , and c columns are chosen from A by sampling in c i.i.d. trials according to the
probabilities (14) in the second pass of each round � = 2, . . . , t . (Note that if, by definition,
E1 = A, then for � = 1 the sampling probabilities (14) are the same as those of (9).)

Remark. The SelectColumnsMultiPass algorithm is so-named since, given probabilities of
the form (14), c columns can be extracted in one pass over the (externally-stored) data matrix A.
Of course, in each round the probabilities {pi}ni=1 that are used by the algorithm may be computed
with one pass over the data and O(1) additional space. The algorithm is thus efficient in the Pass
Efficient Model; see [10] for more details on these resource requirements.

Remark. We should emphasize that Rademacher, Vempala and Wang, motivated to improve the
magnitude of the additional additive error in the bound (12), explored alternative constructions
for the matrix C [42]. They developed the column selection procedure we are presenting as the
SelectColumnsMultiPass algorithm.

The following theorem is our main quality-of-approximation result for the SelectColumns-
MultiPass algorithm.
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Algorithm 3. The SelectColumnsMultiPass Algorithm.

Theorem 3. Suppose A ∈ Rm×n and let C be the m × tc matrix constructed by sampling c

columns of A in each of t rounds with the SelectColumnsMultiPass algorithm. If η = 1 +√
(8/β) log(1/δ) for any 0 < δ < 1, then, with probability at least 1 − tδ,

‖A − CC+A‖2
F � 1

1 − ε
‖A − Ak‖2

F + εt‖A‖2
F, (15)

if c � 4η2k/(βε2) columns are picked in each of the t rounds.

Proof. The proof will be by induction on the number of rounds t . Let S1 denote the set of columns
picked at the first round, and let C1 = AS1 . Thus, C1 is an m × c matrix, where c � 4η2k/(βε2).
By Theorem 2 and since 1 < 1/(1 − ε) for ε > 0, we have that

‖A − C1(C1)+A‖2
F � 1

1 − ε
‖A − Ak‖2

F + ε‖A‖2
F (16)

holds with probability at least 1 − δ, thus establishing the base case of the induction.
Next, let (S1, . . . , St−1) denote the set of columns picked in the first t − 1 rounds and let

Ct−1 = A(S1,...,St−1). Assume that the proposition holds after t − 1 rounds, i.e., assume that by
choosing c � 4η2k/(βε2) columns in each of the first t − 1 rounds, we have that

‖A − Ct−1(Ct−1)+A‖2
F � 1

1 − ε
‖A − Ak‖2

F + εt−1‖A‖2
F (17)

holds with probability at least 1 − (t − 1)δ.
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We will prove that it also holds after t rounds. Let Et = A − Ct−1(Ct−1)+A be the residual
of the matrix A after subtracting the projection of A on the subspace spanned by the columns
sampled in the first t − 1 rounds. (Note that it is ‖Et‖2

F that is bounded by (17).) Consider
sampling columns of Et at round t with probabilities proportional to the square of their Euclidean
lengths, i.e., according to (14), and let Z be the matrix of the columns of Et that are included
in the sample. (Note that these columns of Et have the same span and thus projection as the
corresponding columns of A when the latter are restricted to the residual space.) Then, by choosing
c � 4η2k/(βε2) columns of Et in the t th round we can apply Theorem 2 to Et and get that

‖Et − ZZ+Et‖2
F � ‖Et − (Et )k‖2

F + ε‖Et‖2
F (18)

holds with probability at least 1 − δ. By combining (17) and (18) we see that if at least 4η2k/(βε2)

columns are picked in each of the t rounds then

‖Et − ZZ+Et‖2
F � ‖Et − (Et )k‖2

F + ε

1 − ε
‖A − Ak‖2

F + εt‖A‖2
F (19)

holds with probability at least 1 − tδ. The theorem thus follows from (19) if we can establish that

Et − ZZ+Et = A − Ct(Ct )+A, (20)

‖Et − (Et )k‖2
F�‖A − Ak‖2

F. (21)

But (20) follows from the definition of Et , since Ct(Ct )+ = Ct−1(Ct−1)+ + ZZ+ by the con-
struction of Z, and since ZZ+Ct−1(Ct−1)+ = 0. To establish (21), and thus the theorem, notice
that

‖Et − (Et )k‖2
F = ‖(I − Ct−1(Ct−1)+)A − ((I − Ct−1(Ct−1)+)A)k‖2

F (22)

� ‖(I − Ct−1(Ct−1)+)A − (I − Ct−1(Ct−1)+)Ak‖2
F (23)

� ‖(I − Ct−1(Ct−1)+)(A − Ak)‖2
F (24)

� ‖A − Ak‖2
F. (25)

(22) follows by definition of Et , (23) follows since (I − Ct−1(Ct−1)+)Ak is a rank k ma-
trix, but not necessarily the optimal one, (24) follows immediately, and (25) follows since
I − Ct−1(Ct−1)+ is a projection. �

Remark. As contrasted with the algorithm and theorem of the previous subsection, this algorithm
and theorem demonstrate that by sampling in t rounds and by judiciously computing sampling
probabilities for picking columns of A in each of the t rounds, the overall error drops exponentially
with t . This is a substantial improvement over the results of Theorem 2; in that case, if c �
4η2kt/(βε2) then the additional additive error is (ε/

√
t)‖A‖2

F.

Remark. Rademacher, Vempala and Wang provided the first proof of a theorem in which the
additional error drops exponentially with the number of passes [42]. In particular, they proved
that there exists a rank k matrix in the subspace spanned by C that satisfies (in expectation) a
bound of the form (15). Thus, by Markov’s inequality, they obtain a bound of the form (15) that
holds with probability at least 1 − δ̄ if c = O(t2/δ̄). Our proof is simpler, and we obtain (15) with
probability at least 1 − δ̄ if c = O(t log(t/δ̄)).
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3. Analysis and discussion of the main tensor approximation

In this section, our main result, which was summarized in Section 1.3, is analyzed in more detail.
In Section 3.1, the ApproxTensorSVD algorithm (described in Algorithm 1 in Section 1.3) is
elaborated upon. Then, in Section 3.2, the proof of Theorem 1, the main quality-of-approximation
theorem for the ApproxTensorSVD algorithm (and which was also presented in Section 1.3), is
presented. Finally, in Section 3.3, several remarks are made.

3.1. Elaboration on the main result

The ApproxTensorSVD algorithm (described in Algorithm 1 in Section 1.3) takes as input
a d-mode tensor A ∈ Rn1×···×nd and numbers ci, i = 1, . . . , d. The algorithm returns as out-
put matrices C[i] of size ni × ci for all i = 1, . . . , d. The algorithm works by choosing (for
every i ∈ {1, . . . , d}) ci columns from the (not explicitly constructed) matrix A[i] to construct
(explicitly) the ni × ci matrix C[i]. The columns may be chosen from A[i] using either the
SelectColumnsSinglePass algorithm (described in Section 2.1) or with the SelectColumns-
MultiPass algorithm (described in Section 2.2). In the latter case a number t of iterations to
perform is also input to the ApproxTensorSVD algorithm. In both cases, the matrix bound (10)
from Theorem 2 (of Section 2.1) or (15) from Theorem 3 (of Section 2.2) will translate into a
bound for the tensor approximation. Regardless of how the matrices C[i] are determined,

Ã = A ×1 C[1]C+
[1] ×2 · · · ×d C[d]C+

[d] (26)

is an approximation to the original tensor A, and Theorem 1 provides a bound for a measure of
the size of A − Ã.

3.2. Proof of Theorem 1

Let Ẽd = Ẽ = A − Ã, where Ã is the approximation (6), let �̃i = C[i]C+
[i], for all i =

1, . . . , d, and recall that �̃i is an exact projection onto the column space of the matrix C[i].
Then,

‖Ẽd‖F = ‖A − A ×d �̃d + A ×d �̃d − A ×1 �̃1 ×2 · · · ×d �̃d‖F (27)

� ‖A − A ×d �̃d‖F + ‖(A − A ×1 �̃1 ×2 · · · ×d−1 �̃d−1) ×d �̃d‖F (28)

� ‖A − A ×d �̃d‖F + ‖A − A ×1 �̃1 ×2 · · · ×d−1 �̃d−1‖F, (29)

where (28) follows by subadditivity and where (29) follows since the �̃i are projection matri-
ces, for all i = 1, . . . , d. If we next define Ẽd−1 = A − A ×1 �̃1 ×2 · · · ×d−1 �̃d−1, then we
similarly see that

‖Ẽd−1‖F � ‖A − A ×d−1 �̃d−1‖F + ‖A − A ×1 �̃1 ×2 · · · ×d−2 �̃d−2‖F. (30)

Continuing in this manner, we can show that

‖Ẽ‖F �
d∑

i=1

‖A − A ×i �̃i‖F. (31)

Since “unfolding” A along any mode does not change the value of its Frobenius norm (since it
is simply a reordering of indices in a summation) it follows that, for every i : 1 � i � d,
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Algorithm 4. The TensorSVD Algorithm.

‖A − A ×i �̃i‖F =
∥∥∥A[i] −

(
A ×i C[i]C+

[i]
)

[i]

∥∥∥
F
. (32)

Note that the Frobenius norm on the left hand side of (32) is a tensor norm and that the Frobenius
norm on the right hand side of (32) is a matrix norm. It is this latter quantity that Theorems 2
and 3 bound. By applying the appropriate matrix bound from Theorem 2 or Theorem 3, the two
statements of the theorem follow from (31) and (32).

3.3. Remarks on the main result

Remark. The error bounds (7) and (8) have a natural interpretation: projecting the tensor A onto
an approximation to the best rank-ki space across each of its modes incurs an error that depends on
the sum of the residuals of the best low-rank approximations across each mode plus an additional
error due to the degree to which the space spanned by the columns of C[i] is close to the space
spanned by the top k singular vectors of A[i].

Remark. The ApproxTensorSVD algorithm may be viewed as computing an approximation to
the best rank-(k1, k2, . . . , kN) approximation to the tensor A [34,35]. To see this, consider the
TensorSVD algorithm (described in Algorithm 4). This algorithm takes as input a d-mode tensor
A and numbers ki, i = 1, . . . , d (which are the target ranks along each of the d modes), and it
returns as output matrices U[i],ki

for i = 1, . . . , d, where each U[i],ki
contains the top ki singular

vectors of A[i]. In this case, if we define the error tensor

E = A − A ×1 U[1],k1U
T[1],k1

×2 · · · ×d U[d],kd
UT[d],kd

, (33)

then by reasoning similar to that in the proof of Theorem 1 it can be shown that

E �
d∑

i=1

‖A[i] − (A[i])ki
‖F. (34)

When applied to matrices, this bound is suboptimal by a factor of 2.

Remark. Assume, for simplicity, that the tensorA is stored externally and assume that ki = O(1)

and that ni = n for every i = 1, . . . , d. Then the matrices C[i] each occupy only O(n) additional
scratch space. In general, of course, O(nd−1) additional scratch space will be needed to compute
the probabilities of the form (9) and (14), and this will be comparable to the overall memory
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requirements. On the other hand, if the columns are chosen with the SelectColumnsSinglePass
algorithm (Algorithm 2) and if the uniform probabilities are approximately optimal for each of
the d nodes, then only O(n) additional scratch space and computation time are needed by the
ApproxTensorSVD algorithm (Algorithm 1), resulting in a substantial scratch memory and time
savings. See [10] for additional discussion of resource issues within the framework of the Pass
Efficient Model of data streaming computation.

Remark. Although sampling with respect to the proper probability distribution is critical for our
provable results, one might expect that in many cases columns will all be approximately the same
length due to the manner in which the data are generated, in which case uniform sampling may
be successfully employed. This was seen to be the case for an application of our CUR algorithm
(see [12] and Section 4.2) to kernel-based learning [14,15,49].

4. Restricting the main tensor approximation to matrices

In this section, we consider the special case of the ApproxTensorSVD algorithm when
restricted to input tensors that are matrices, i.e., 2-mode tensors. In Section 4.1, we present the re-
striction of Theorem 1 to matrices. Then, in Section 4.2, we provide a discussion about how the ap-
proximate matrix decomposition generated by this restriction relates to several recently-developed
low-rank matrix decompositions.

4.1. Approximating the left and right singular subspaces of a matrix

When restricted to input tensor that are matrices, theApproxTensorSVD algorithm (described
in Algorithm 1 in Section 1.3) takes as input an m × n matrix A and two numbers, c and r . The
algorithm returns as output two matrices, an m × c matrix C consisting of c columns of A and an
r × n matrix R consisting of r rows of A. (For notational convenience, we have let A = A be the
input matrix, and let c = c1 and r = c2.) The algorithm works by choosing c columns from A and
r columns from AT (or, equivalently, r rows from A). The columns and rows may be chosen from
A using either the SelectColumnsSinglePass algorithm (described in Section 2.1) or with the
SelectColumnsMultiPass algorithm (described in Section 2.2). In the latter case a number t

of iterations to perform is also input to the ApproxTensorSVD algorithm.
When restricted to input tensors that are matrices, the approximation

Ã = A ×1 C[1]C+
[1] ×2 C[2]C+

[2] (35)

may be written in usual matrix notation as

Ã = CC+AR+R. (36)

As in the more general case of d-mode input tensors, quality-of-approximation bounds for the
matrix A by the matrix Ã will follow from the matrix bound (10) from Theorem 2 (of Section
2.1) or (15) from Theorem 3 (of Section 2.2). The following theorem bounds the error A − Ã and
is a corollary of Theorem 1.

Theorem 4. Let A ∈ Rm×n be a matrix, i.e., a 2-mode tensor, and let η = 1 + √
(8/β) log(1/δ),

for any 0 < δ < 1. Let C and R be computed by theApproxTensorSVD algorithm (Algorithm 1).
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• If the columns and rows are chosen with the SelectColumnsSinglePass algorithm (Algorithm
2) then, with probability at least 1 − 2δ,

‖A − CC+AR+R‖F � 2‖A − Ak‖F + 2ε‖A‖F, (37)

if c, r � 4η2k/(βε2).

• If the columns and rows are chosen with the SelectColumnsMultiPass algorithm (Algorithm
3) then, with probability at least 1 − 2tδ,

‖A − CC+AR+R‖F � 2

1 − ε
‖A − Ak‖F + 2εt‖A‖F, (38)

if c, r � 4η2k/(βε2) in each of the t passes.

4.2. Connections with recently-developed low-rank matrix decompositions

As described in Section 4.1, when our main algorithm is applied to an m × n matrix A rather
than a general tensor A, our main result consists of constructing an m × c matrix C and an r × n

matrix R and approximating A by a matrix Ã of the form

Ã = CC+AR+R = CUR, (39)

where U = C+AR+ is a c × r matrix. Thus, if c and r are constant (independent of m and n),
then A is approximated by the product of three matrices, where the middle matrix is a constant-
size matrix and the left and right matrices consist of a small number of columns and rows of A,
respectively. More generally, a CUR decomposition is a low-rank matrix decomposition of the
form A ≈ CUR, where C is a matrix consisting of a small number of columns of A, R is a matrix
consisting of a small number of rows of A, and U is an appropriately-defined low-dimensional ma-
trix. Low-rank matrix decompositions with this structure, i.e., those expressed in terms of columns
and rows of the original matrix, have been considered recently by Stewart [43,44,3], by Goreinov,
Tyrtyshnikov and Zamarashkin [22,21], and by Drineas, Kannan and Mahoney [9,12,14,15].

Stewart was interested in computing sparse low-rank approximations to sparse matrices, and
he developed the quasi-Gram-Schmidt method [43,44,3]. Given as input an m × n matrix A and a
rank parameter k, this variant of the QR decomposition returns (in our notation) an m × k matrix
C and a nonsingular upper-triangular k × k matrix SC . The matrix C consists of k columns of A

whose span approximates the column space of A, and the matrix SC orthogonalizes these columns,
i.e., is such that C = QCSC , where the m × k matrix QC has orthogonal columns. A key feature
of this algorithm is that the matrix QC is not explicitly computed, and it is not needed for certain
computations (such as projections) since one can store SC and C and use the relation QC = CS−1

C

to recover the action of QC . The quasi-Gram-Schmidt method can be used to compute a sparse
low-rank approximation to a sparse matrix A in the following manner. First, after applying it to
A, apply it to AT to get a k × n matrix R of rows of A and a nonsingular upper-triangular k × k

matrix SR such that RT = QRSR , where QR has orthogonal columns. Then, it can be shown that
A ≈ CUR, where the matrix U minimizing ‖A − CUR‖2

F is of the form

U =S−1
C QT

CAQRS−T
R (40)

=(ST
CSC)−1CTART(ST

RSR)−1. (41)

Several things should be noted about this result. First, the derivation of (41) assumes that the
upper-triangular matrices SC and SR are invertible, which is guaranteed by the particular greedy
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strategy, based on the QR decomposition, that Stewart uses to select the columns and rows of A

to be included in C and R, respectively. Second, with this U , the approximation takes the form

A ≈ CUR = QCQT
CAQRQT

R. (42)

Thus, although Stewart forms his C (and R) by choosing columns (and rows) in a manner that
guarantees their linear independence, whereas in this paper we randomly sample columns to form
a C (and rows to form an R) that may be rank deficient, (39) and (42) indicate that both algorithms
construct a low-rank approximation to a matrix A by projecting A onto the spaces spanned by C

and R. Finally, an error bound provided by Stewart for the quality of approximation is

‖A − CUR‖2
F � ε2

C + ε2
R, (43)

where εC and εR (∼ ‖A − Ak‖F) are errors associated with the column and row projections,
respectively [43]. That this is likely to be an overestimate by a factor of approximately 2 [43,3]
is related to the suboptimality of (34) when applied to matrices and the multiplicative factor of 2
in in Theorem 4.

Goreinov, Tyrtyshnikov and Zamarashkin [22,21] were interested in applications such as
scattering in which large coefficient matrices have blocks that can be easily approximated by
low-rank matrices. They first note that if an m × n matrix A is exactly rank k then there exists a
set of k columns of A, denoted by the m × k matrix C, and a set of k rows of A, denoted by the
k × n matrix R, such that the k × k submatrix of A consisting of the intersection of those columns
and those rows, denoted W , is nonsingular, and further that A = CW−1R. They then show that
if A is approximated by a rank-k matrix to within an accuracy ε, then for ε sufficiently small

‖A − CW−1R‖2 = O(‖A‖2
2‖W−1‖2

2ε)

provided that the matrix W is nonsingular. In both these cases, U = W−1, but they note that this is
clearly unsatisfactory since if W is ill-conditioned or singular then it may not be that A ≈ CW−1R

in any meaningful sense. Motivated by this, they define more general decompositions, which in
our notation are of the form A ≈ CUR and which they call a pseudoskeleton component of A. In
[22], they show that if the matrix A is approximated by a rank-k matrix to within an accuracy ε,
i.e., if there exists a matrix E such that rank(A − E) � k and ‖E‖2 � ε (where ε does not need
to be assumed to be sufficiently small) then there exists a choice of k columns and k rows, i.e., C

and R, and a low-dimensional k × k matrix U constructed from the elements of C and R, such
that A ≈ CUR in the sense that

‖A − CUR‖2 � ε(1 + 2
√

km + 2
√

kn). (44)

Although the primary goal of [22,21] was not to analyze algorithms to construct the matrices
C, R, and U , in [22] the choice for these matrices is related to the problem of determining the
minimum singular value σk of k × k submatrices of n × k matrices with orthogonal columns. In
addition, in [21] the choice for C and R is interpreted in terms of the maximum volume concept
from interpolation theory, in the sense that columns and rows should be chosen such that their
intersection W defines a parallelepiped of maximum volume among all k × k submatrices of A.

In [12,14,15], Drineas, Kannan and Mahoney describe the so-called CUR decomposition. In
particular, the LinearTimeCUR and ConstantTimeCUR algorithms of [12] (so named due to
their relationship with the correspondingly-named SVD algorithms of [11]) compute an approx-
imation to an m × n matrix A by sampling c columns and r rows of the matrix A to form m × c

and r × n matrices C and R, respectively. The matrices C and R are constructed by randomly
sampling with carefully-chosen and data-dependent nonuniform probability distributions, and
from C and R a c × r matrix U is constructed such that under appropriate assumptions:
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‖A − CUR‖ξ � ‖A − Ak‖ξ + ε‖A‖F, (45)

with high probability, for both the spectral and Frobenius norms, ξ = 2, F . The form of the
matrix U described in [12] permits bounds of the form (45) to be obtained, where, e.g., the
suboptimal multiplicative factor of 2 is not present. In [14,15] it is shown that if A is a symmetric
positive semidefinite (SPSD) matrix, then one can choose R = CT and U = W+, thus obtaining
an approximation A ≈ Ã = CW+CT. This approximation is SPSD and has provable bounds of
the form (45), except that the scale of the additional additive error is somewhat larger [14,15]. The
CUR decompositions of [12,14,15] are quite similar in flavor to the algorithms discussed in this
paper, and they have been applied to recommendation system analysis [13] and to kernel-based
statistical learning [14,15,49]. See [14,15] for a discussion of the CUR matrix decomposition, its
relationship with recent work in learning theory, and its relationship to the Nyström method from
integral equation theory.

5. Conclusion

We conclude by noting that tensor decompositions of the form we are considering have been
studied in several data analysis areas. Depending on the processes generating a given data set, such
a multilinear description may provide superior results relative to a simple linear description of the
data. It has been argued, e.g., that data consisting of natural images consist of multiple factors,
each of which has a linear property, and thus that the entire data set exhibits a multilinear property.
For example, in [46,47] the data consisted of images of p male subjects, each photographed in q

poses, subject to r different illuminations, having s different expressions, and stored as a grayscale
image with t pixels; this was represented as a p × q × r × s × t tensor A. In addition, higher-
order tensors arise in higher-order statistics since for multivariate stochastic variables the basic
higher-order statistics are symmetric higher-order tensors, in the same way as the covariance of a
stochastic vector is a symmetric matrix. The use of these methods has been applied to independent
component analysis by exploiting the statistical independence of the sources [34,35,33]. Finally,
note that the model proposed by Tucker [45] as well as the related the “canonical decomposition”
[5] or the “parallel factors” model [24] also provide decompositions for higher-order tensors
and have a long history. They have received attention recently; see, e.g., [34,30,32,36,38] and
references therein.
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