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Abstract
Viewing neural network models in terms of their loss landscapes has a long history
in the statistical mechanics approach to learning, and in recent years it has received
attention within machine learning proper. Among other things, local metrics
(such as the smoothness of the loss landscape) have been shown to correlate with
global properties of the model (such as good generalization performance). Here, we
perform a detailed empirical analysis of the loss landscape structure of thousands of
neural network models, systematically varying learning tasks, model architectures,
and/or quantity/quality of data. By considering a range of metrics that attempt
to capture different aspects of the loss landscape, we demonstrate that the best
test accuracy is obtained when: the loss landscape is globally well-connected;
ensembles of trained models are more similar to each other; and models converge
to locally smooth regions. We also show that globally poorly-connected landscapes
can arise when models are small or when they are trained to lower quality data;
and that, if the loss landscape is globally poorly-connected, then training to zero
loss can actually lead to worse test accuracy. Our detailed empirical results shed
light on phases of learning (and consequent double descent behavior), fundamental
versus incidental determinants of good generalization, the role of load-like and
temperature-like parameters in the learning process, different influences on the loss
landscape from model and data, and the relationships between local and global
metrics, all topics of recent interest.

1 Introduction

Among the many approaches to understanding the behavior of neural network (NN) models, the study
of their loss landscapes [1, 2] has proven to be particularly fruitful. Indeed, analyzing loss landscapes
has helped shed light on the workings of many popular techniques, including large-batch training
[3, 4], adversarial training [5], residual connections [6], and BatchNorm [7]. One particular concept
of recent interest is the so-called sharpness of local minima [3, 5, 8–10]. While sharpness can be
measured by first-order sensitivity measures, such as the Jacobian or Lipschitz constant, it is more
appropriately measured by second-order sensitivity measures, typically via the Hessian spectrum
[11]. It has been observed that in some cases NNs generalize well when they converge to a relatively
flat, i.e., non-sharp, local minimum [3].

While such local sharpness measures can provide insight, their focus on the local geometry of the loss
landscape neglects the global structure of the loss landscape (namely, precisely the sort of structure
that statistical mechanics approaches to learning aim to quantify [12, 13]). Indeed, it is well-known
that existing sharpness-based metrics can be altered (trivially) by reparameterization tricks or (more
interestingly) by taking algorithmic steps which have the effect of changing the local structures on the
loss landscape [5, 8, 14]. For example, [5] shows that adversarial training can decrease the magnitude
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Figure 1: (Caricature of different types of loss landscapes). Globally well-connected versus
globally poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes.
Globally well-connected loss landscapes can be interpreted in terms of a global “rugged convexity”;
and globally well-connected and locally flat loss landscapes can be further divided into two sub-cases,
based on the similarity of trained models.

of Hessian eigenvalues and bias the model towards a locally smooth area, even though adversarial
training can reduce clean test accuracy [15]. Similarly, [14] shows that Hessian eigenvalues become
smaller with reduced ℓ2 regularization, even though increased ℓ2 regularization is known to reduce
overfitting and improve training, if used properly. More general considerations would suggest (and
indeed our own empirical results, e.g., as reported in Figure 7, demonstrate) that by training to data
with noisy labels, one can find models that generalize poorly and yet simultaneously lie in very “flat”
regions of the loss landscape, with small Hessian eigenvalues, and vice versa. These observations (and
other observations we describe below) indicate that the previously-observed empirical correlation
between very local metrics like sharpness and more global properties like generalization performance
may be correlative and not causative, i.e., they may be due to the confounding factor that results in
the published literature are on reasonably-good models trained to reasonably-good data, rather than
due to some fundamental properties of deep NNs. They also raise the question of how to capture
more global properties of the loss landscape.

Motivated by these considerations, we are interested in understanding local properties/structure versus
global properties/structure of the loss landscape of realistic NN models. While similar ideas underlie
work that adopts a statistical mechanics perspective [2, 12, 13, 16], here we are interested in adopting
an operational machine learning (ML) perspective, where we employ metrics that have been used
within ML as “experimental probes” to gain insight into local versus global properties. To do so, we
employ the following metrics.

• First, we consider Hessian-based metrics, including the largest eigenvalue and the trace of the
Hessian. These metrics try to capture local curvature properties of the loss landscape [11].

• Second, we use mode connectivity [17, 18]—in particular, the connectivity between trained models.
This metric tries to capture how well-connected different local minima are to each other.

• Third, we use CKA similarity [19] to capture a correlation-like similarity between the outputs of
different trained models. Averaging the CKA over several pairs of models can be thought of as
approximating so-called overlap integrals frequently appearing in statistical mechanics [12, 13, 20].

We have considered many other metrics, but these three seem to be particularly useful for identifying
global structure versus local structure in loss landscapes. Informally, mode connectivity, as its name
suggests, captures connectivity, where well-connected models exhibit a single “rugged basin” with
low-energy / low-loss, potentially non-linear, paths through the loss landscape, (i.e., continuous
chains of models) all achieving a small loss value. We expect this property to be important since
the connectivity of local minima indicates efficiency of the training dynamics to explore the loss
landscape, without becoming stuck at saddle points or in a “bad” local minimum. Similarly, CKA
captures similarity, where an ensemble of good models will produce roughly similar outputs. These
two types of metrics are different and complementary; and both of them are very different than
Hessian-based metrics, which clearly capture much more local information.

Here we briefly summarize our main contributions.

• We design an experimental setup based on two control parameters, a temperature-like parameter
that correlates with the magnitude of SGD noise during training, e.g., batch size (in most figures),
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learning rate, or weight decay, and a load-like parameter that measures the relationship between
model size and data quantity and/or quality, e.g., the amount of data, size of intermediate layers,
amount of exogenously-introduced label noise, etc. By training thousands of models, under a
variety of settings, and by measuring local and global metrics of the loss landscape, we identify
four distinct phases in temperature-load space, with relatively sharp transitions between them.

• Using global connectivity (measured by mode connectivity) and local flatness (measured by the
Hessian), we taxonomize loss landscapes into four categories, which are pictorially represented
in Figure 1, labelled Phase I through Phase IV. For reasons observed in our empirical results in
Section 3, it is often convenient to further divide Phase IV into two subcategories, depending on
whether the trained models produce similar representations (as measured by CKA similarity). If
the loss landscape satisfies the first property, we say it is globally well-connected; and if the loss
landscape also satisfies the second property, we say it is globally nice. Depending on whether the
Hessian eigenvalues are large or small, we say the loss landscape is locally sharp or locally flat.

• Based on these results, as well as measured model quality, e.g., test accuracy, we empirically
demonstrate that the global (but not necessarily local) structure of a loss landscape is well-correlated
with good generalization performance, and that the best generalization occurs in the phase associated
with a locally flat, globally nice loss landscape. We demonstrate these results on a range of computer
vision and natural language processing benchmarks (CIFAR-10, CIFAR-100, SVHN, and IWSLT
2016 De-En) and various models (ResNet, VGG, and Transformers). We also vary the amount of
data, the number of noisy labels, etc., to study both the effect of the quantity of data and the quality
of data on changing the loss landscape.

• We observe the well-known double descent phenomenon [21, 22] in our experiments, which
exhibits itself as a “bad fluctuation” between the different phases (e.g., see the transition that
separates Phase I and II from Phase III and IV in Figure 4a). Our empirical observations on
double descent corroborates recent theoretical analysis [23, 24], which views the phenomenon as a
consequence of a transition between qualitatively different phases of learning [13].

Computing connectivity and similarity requires comparing multiple distinct models. This could be
computationally expensive, especially if model training is expensive. For many reasonably-sized
models, however, the metrics we consider are sufficiently tractable so as to be useful, e.g., during
model training. Moreover, the phase transitions and the metrics that we use to determine the phases
lead to practical tools that can diagnose typical failure modes in training, which we will discuss
towards the end of the paper. In this short conference version, we focus on the main message, and we
provide a much more thorough discussion on prior work in the full version online [25], in which we
also talk about related papers in the study of loss landscapes and statistical mechanics of learning. In
order that our results can be reproduced and extended, we have open-sourced our code.1

2 Setup

In the sequel, we consider training a NN fθ : Rdin → Rdout , with trainable parameters θ, to a
dataset consisting of n datapoint/label pairs Strain = {(x1, y1), . . . , (xn, yn)}. Our nominal training
objective is to minimize a loss function of the form

L(θ) = 1

n

∑
(x,y)∈Strain

ℓ(fθ(x), y) + λ∥θ∥22. (1)

Here ℓ is a loss function, typically chosen to be the cross entropy loss. The parameter λ is the weight
decay parameter, which controls the level of ℓ2 regularization. We consider optimizing NN models
using standard minibatch SGD, with iterates of the form

θ ← θ − ηg̃(θ), g̃(θ) =
1

B

B∑
j=1

∇θℓ(fθ(xij ), yij ), (2)

where η is the learning rate, 0 < B ≤ n is the batch size, and the indices i1, . . . , iB of each minibatch
are sampled without replacement from {1, . . . , n}. For classification tasks, we consider also the
training/testing accuracy, which is simply the fraction of correctly classified points, acctrain(θ) =
1
n

∑
(x,y)∈Strain

1(fθ(x) = y), and similarly for acctest(θ) on a given test set Stest.

1https://github.com/nsfzyzz/loss_landscape_taxonomy
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We now briefly introduce the main metrics and control parameters which we will consider.

Temperature and load. In the sequel, a load-like parameter of a loss landscape refers to some
quantity related to the amount and/or quality of data, relative to the size of the model. Specifically,
we vary either i) model size (e.g., width, which captures the size of an internal representation of the
data), for fixed training set size n, ii) training set size n, for fixed model size, or iii) the “quality” of
training data, which is varied by randomizing a fraction α of the training labels. Each of these control
parameters directly induces a different loss landscape by changing the data Strain and/or architecture
fθ for which the loss L(θ) is being computed. For example, we expect that increasing width will
result in a smoother loss landscape [26]; we shall see this effect with CKA similarity in the transition
from Phase IV-A to IV-B.

The second control parameter we vary in our experiments is a temperature-like parameter, repre-
senting the amount of noise introduced in the SGD iterates (2). Most commonly, we take this to be
the batch size B, although we will also use the learning rate η and the weight decay parameter λ.
Increasing temperature corresponds to smaller batch size, and large learning rate or weight decay.
Varying the temperature does not directly define a different loss function L(θ), but rather it indirectly
induces a different effective loss function. This is because, at different temperatures, the iterates
of SGD concentrate on different regions of the loss landscape. Due to the noise in the stochastic
optimization, the training dynamics may not be able to “see” certain features of the loss landscape.

CKA similarity. To measure the similarity of two NN representations, we use the centered kernel
alignment (CKA) metric, proposed in [19]. For a NN fθ, let Fθ = [fθ(x1) · · · fθ(xm)]

⊤ ∈
Rm×dout denote the concatenation of the outputs2 of the network over a set of m randomly sampled
datapoints. Then the (linear) CKA similarity between two parameter configurations θ, θ′ is given by

s(θ, θ′) =
Cov(Fθ, Fθ′)√

Cov(Fθ, Fθ)Cov(Fθ′ , Fθ′)
, (3)

where for X,Y ∈ Rm×d, we define Cov(X,Y ) = (m − 1)−2tr(XX⊤HmY Y ⊤Hm), and Hm =
Im − m−111⊤ is the centering matrix. The CKA similarity is known to be an effective way to
compare the overall representations learned by two different trained NNs [19]. Rather than computing
the similarity directly on the original training points, we measure CKA on a perturbed training set
comprised of Mixup samples [27]; this can reduce trivial similarity that occurs when the models are
trained to exactly or approximately zero training error. See also Appendix A.4.1 in the full paper for
the ablation study on different perturbed training sets.

Mode connectivity. For two parameter configurations θ, θ′, computing mode connectivity involves
finding a low-energy curve γ(t), t ∈ [0, 1], for which γ(0) = θ, γ(1) = θ′, such that

∫
L(γ(t))dt is

minimized [17, 18]. A number of techniques have been proposed to find such curves γ. In this work,
we use the technique proposed in [17], which parameterizes the Bezier curve with k + 1 bends, given
by γϕ(t) =

∑k
j=0

(
k
j

)
(1− t)k−jtjθj for t ∈ [0, 1], where θ0 = θ, θk = θ′, and ϕ = {θ1, . . . , θk−1}

are trainable parameters of additional models, defining “bends” on the curve γϕ(t). We use Bezier
curves with three bends (k = 2). Given the curve γϕ(t), we define the mode connectivity of the
models θ, θ′ to be

mc(θ, θ′) =
1

2
(L(θ) + L(θ′))− L(γϕ(t∗)), (4)

where t∗ maximizes the deviation t 7→ | 12 (L(θ) + L(θ
′))− L(γϕ(t))|. There are three possibilities

for mode connectivity. If mc(θ, θ′) < 0, then 1
2 (L(θ) +L(θ

′)) < L(γϕ(t∗)), which means there is a
“barrier” of high loss between θ, θ′; in this case, we will say that the loss landscape is poorly-connected
or simply say that mode connectivity is poor. If mc(θ, θ′) > 0, then this implies a curve of low loss
connecting θ, θ′, but it also implies that the training failed to locate a reasonable optimum, i.e., L(θ)
and L(θ′) are large. If mc(θ, θ′) ≈ 0, then we will say that the loss landscape is well-connected
or simply say that the mode connectivity is good. Note that for all the experiments except neural
machine translation, we use the training error (0-1 loss) when computing mode connectivity, so that
mode connectivity is always normalized to the range of [−100, 100]. We provide additional details

2For this work, we focus on the similarity of representations at the output layer, i.e., after the softmax is
applied, although the CKA similarity can be used to compare the representations at any layer.
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(a) Test accuracy

(b) Training loss (c) Hessian eigenvalue (d) Hessian trace

(e) Mode connectivity (f) CKA similarity (g) ℓ2 distance

Figure 2: (Standard setting). Partitioning the 2D load-like—temperature-like diagram into different
phases of learning, using batch size as the temperature and varying model width to change load.
Models are trained with ResNet18 on CIFAR-10. All plots are on the same set of axes. We note that
batch size is inverse temperature, and thus it has smaller values at the top of the y-axis and larger
values at the bottom.

on this procedure, as well as an ablation study on different mode connectivity hyperparameters, in
Appendix A.4.2 of the full paper [25].

Hessian. The Hessian at a given point θ0 in parameter space is represented by the matrix∇2
θL(θ0).

To summarize the Hessian in a single scalar value, we report the dominant eigenvalue λmax(∇2
θL(θ0))

and/or the trace tr(∇2
θL(θ0)), calculated using the PyHessian software [11].

ℓ2 distance. We will also occasionally report the ℓ2 distance between two parameter configurations
∥θ − θ′∥2 as a measure of similarity between models, although we typically find that the CKA
similarity is a more informative measure.

3 Empirical results on taxonomizing local versus global structure

In this section, we present our main empirical results. Among other things, our results will highlight
the presence of globally nice, globally well-connected/poorly-connected, and locally flat/sharp loss
landscapes, and the phase transitions which separate them. In addition to test accuracy, results on
six other metrics are presented, including training loss, leading Hessian eigenvalue, trace of Hessian,
CKA similarity, mode connectivity, and ℓ2 distance measured between model weights. For each
metric, the results are presented in a 2D diagram, in which the horizontal dimension is the load
(with increasing load to the right), and the vertical dimension is the temperature (with increasing
temperature to the top).

We will illustrate our main results in a simple setting, and then consider several variants of this setting
to illustrate how these results do or do not change when various parameters and design decisions are
modified. To start, we will consider ResNets [28] trained on CIFAR-10 [29] as the standard setting
to demonstrate different loss landscapes. We will scale the network width to change the size of the
network. For ResNet18 which contains four major blocks with channel width {k, 2k, 4k, 8k}, we
select different values of k to obtain ResNet models with different widths. In the standard setting,
batch size, learning rate, and weight decay are kept constant throughout training to study interactions
between temperature-like parameters, load-like parameters, and the loss landscape. Below, we
will apply learning rate decay and consider other variations of this standard setting, in separate
experiments. More details on the experimental setup can be found in Appendix B of [25].

3.1 Types of loss landscapes and phase transitions

In this subsection, we discuss our standard setting, in which we vary model width as the load-like
parameter and batch size as the temperature-like parameter. A summary of the results is displayed in
Figure 2. Each pixel represents a specific training configuration tuple (width, batch size), averaged
over five independent runs. Observe that there are two phase transitions (identified by different
metrics) that separate each plot into four primary regions (corresponding to those shown in Figure 1).
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• Hessian distinguishes locally sharp versus locally flat loss landscapes. The first phase transition
is displayed in Figure 2c and 2d, separating Phase I/II from Phase III/IV. A larger Hessian eigenvalue
or Hessian trace (darker color) represents a sharper local loss landscape [5, 11]. In Figure 2b, we
find this transition coincides with a significant decrease in the training loss. Indeed, the training
loss experiences a more than tenfold reduction when transitioning from the upper side to the lower
side on the right of the figure. Comparing Figures 2a and 2c-2d, categorizing loss landscapes
based solely on the Hessian (or, from other results, other local flatness metrics) is insufficient to
predict test accuracy, e.g., the test accuracy in Phase III is lower than Phase IV-A but the Hessian
eigenvalues are almost the same.

• Mode connectivity distinguishes globally well-connected versus globally poorly-connected loss
landscapes. The second phase transition is shown in Figure 2e. The white region represents near-
zero mode connectivity which, according to our definition, implies a flat curve in the loss landscape
between freshly-trained weights; the blue region represents negative mode connectivity which
implies a high barrier between weights; and the red region represents positive mode connectivity
which implies a low-loss curve between weights, although the weights are not trained to a reasonable
optimum. The loss along individual mode connectivity curves can be found in Appendix A.5 of
the full version [25]. In contrast to training loss, test accuracy only appears to show significant
improvements after this transition. In particular, for well-connected loss landscapes, one can
improve the test accuracy with suitable choice of temperature. This phase transition forms a curve
separating Phase I from II, and separates Phase III from IV.

Based on the two transitions, we now classify the loss landscapes into the following phases.

• Phase I: Globally poorly-connected and locally sharp: Training loss is high; Hessian eigenvalue
and trace are large; and mode connectivity is poor.

• Phase II: Globally well-connected and locally sharp: Training loss is high; Hessian eigenvalue
and trace are large; and mode connectivity is poor because the trained weights fail to locate a
reasonable minimum.

• Phase III: Globally poorly-connected and locally flat: Training loss is small; Hessian eigenvalue
and trace are small; yet mode connectivity still remains poor.

• Phase IV: Globally well-connected and locally flat: Training loss is small; Hessian eigenvalue
and trace are small; and mode connectivity is good (near-zero).

We remark that in Figure 2 (and subsequent figures below) the load-like and temperature-like
parameters are on the X and Y axes, respectively, and we have, to the extent possible, kept other
control parameters (in particular, those which are also load-like and temperature-like) fixed, so as to
isolate the effect of load-like and temperature-like behavior on trained models. One might wonder
(or even criticize our experimental setup, if one were not to realize that we are trying to isolate the
effects of load-like and temperature-like parameters) what would be the effect of varying learning
rate (which is another temperature-like parameter) during the training process. Thus, we include the
setting with decaying learning rate during training in Section 3.2.

Here are two additional observations we can make from Figure 1.

• CKA further distinguishes two subcategories in Phase IV. From Figure 2f, CKA can be used
to further divide Phase IV into Phase IV-A and Phase IV-B, with the latter exhibiting larger CKA
similarity. We remark that the transition from Phase IV-A to Phase IV-B is more like a smooth
crossover than a sharp transition. Thus, we name both of them Phase IV.

• Simple ℓ2 distance is not enough. A challenge in measuring similarity between models is that
the same model can be realized using different weights [8]. To reconcile this effect, the distance
between two models is commonly defined in terms of their predictions instead of weights. Indeed,
the representation-based CKA similarity is seen to be preferable to the weights-based ℓ2 distance.
For example, from Figure 2g, the ℓ2 distance provides some limited information, but it is not as
informative as CKA similarity.

Based on these results, we assert the following central claim of this work: optimal test accuracy is
obtained when the loss landscape is globally nice and the trained model converges to a locally
flat region; and we can diagnose these different phases in the load-like–temperature-like phase
diagram with Hessian, mode connectivity, and CKA metrics. Importantly, both similarity and
connectivity metrics are required for a globally nice loss landscape. Phase IV-B is precisely the
region with globally nice landscapes, exhibiting the highest test accuracies.
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(a) Test accuracy

(b) Training loss (c) Hessian eigenvalue (d) Hessian trace

(e) Mode connectivity (f) CKA similarity (g) ℓ2 distance

Figure 3: (Learning rate decay). Partitioning the 2D load-like—temperature-like diagram into
different phases of learning, varying batch size to change temperature and varying model width to
change load. Learning rate decay is applied during training. Models are trained with ResNet18 on
CIFAR-10. All plots are on the same set of axes.

3.2 Corroborating results

In this subsection, we consider initial corroborating results, modifying the setup of Section 3.1 to
train with learning rate decay, or to data with exogenously-introduced noisy labels, etc. Still more
results can be found in Section 3.3 and in the Appendix of the full paper [25].

Training with learning rate decay. Next, we consider a similar experimental setup and the same
phase diagram, except with the same learning rate decay schedule applied in the middle of training
rather than with a fixed learning rate throughout. We still vary batch size to change temperature. The
results are presented in Figure 3. Comparing Figure 3 with Figure 2, we see that the four phases are
still present, and the test accuracy is maximized when the loss landscape is globally nice and locally
flat. Therefore, our central claim is unaffected by the learning rate decay schedule. In Figures 3c
and 3d, smaller temperatures (or larger batch size) in Phase IV-A appear to increase the size of the
Hessian. This is a well-known issue with large-batch training [3]. Finally, note that the optimal test
accuracy achieved improves in the presence of learning rate decay.

Training to noisy labels and double descent. Next, we consider a similar experimental setup
and the same phase diagram, except that we randomize 10% of the training labels (similar to [30]).
The results are presented in Figure 4. Comparing with Figure 2, we see that our main conclusion
still holds, i.e., the loss landscape which is both globally nice and locally flat achieves the best test
accuracy, shown in Phase IV-B. However, an additional observation can be made: if we compare
Figure 4a with Figure 2a, a “dark band” arises between different learning phases. In particular, from
Figure 4a, we see that the test accuracy exhibits both width-wise and temperature-wise double descent
[21–24, 30], for certain parameter choices. In particular, the shape of the dark band matches that of
the transitions shown in Figure 4c and 4d.

Double descent and phases of learning. The significance of this “dark band” is the following.
A central prediction when viewing different phases of optimization landscapes from a statistical
mechanics perspective [12, 13] is that there should be “bad fluctuations” between qualitatively
different phases of learning (e.g., see the transition that separates Phase I and II from Phase III and IV
in Figure 4a). The connection between phases and fluctuations in the popular double descent [21, 22]
was made precise in analyzable settings [23, 24]. Here, we complement [23, 24] by exhibiting the
same type of transitions empirically between different phases in our taxonomy, and demonstrating
that empirical double descent is a consequence of qualitatively different phases of learning.

Training to zero loss. Next, we use Figure 4 to discuss whether to train to (approximately) zero
loss, which is popular in recent work. From Figure 4b, we observe that Phase III and Phase IV
achieve almost exactly zero loss, while Phase I and Phase II do not. Once again, the loss experiences
a more than tenfold decay when transitioning from Phase I/II to Phase III/IV. However, if we restrict
to globally poorly-connected regions and we restrict to a particular width value, i.e., selecting one
column slice in the diagram that cuts through Phase III, such as the red block shown in Figure 4a, we
see that the best test accuracy is obtained in Phase I/II, instead of Phase III. Note that Phase I/II not
only does not achieve zero loss, but it also has locally sharp minima (observed from Figure 4c and
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(a) Test accuracy

(b) Training loss (c) Hessian eigenvalue (d) Hessian trace

(e) Mode connectivity (f) CKA similarity (g) ℓ2 distance

Figure 4: (Training to noisy labels and double descent). Partitioning the 2D load-like—temperature-
like diagram into different phases of learning, using batch size as the temperature and varying model
width to change load. 10% of labels are randomized, and double descent is observed between different
phases. For an arbitrary column slice that cuts through Phase III (e.g., the red block), optimal accuracy
is achieved in Phase I/II with locally sharp minima. Models are trained with ResNet18 on CIFAR-10.
All plots are on the same set of axes.

(a) Test accuracy (b) Hessian trace (c) Mode connectivity (d) CKA similarity

Figure 5: (Weight decay as temperature). Partitioning the 2D load-like—temperature-like diagram
into different phases of learning, using weight decay as the temperature and varying model width to
change load. Models are trained with ResNet18 on CIFAR-10. All plots are on the same set of axes.

4d). This means that for globally poorly-connected loss landscapes, it is possible that converging
to a locally flat region achieves lower accuracy than a locally sharp region. More interestingly,
this locally sharp region does not even converge to close-to-zero training loss. Thus, one will wrongly
predict that Phase III outperforms Phase I/II if one only looks at local sharpness.

3.3 Ablation study

Different temperature parameters. First, we study weight decay as an alternative temperature
parameter, in addition to batch size. We change the temperature parameter from batch size used in
Figure 2 to weight decay, and we report the results in Figure 5. The results shown in Figure 5 are
similar to those seen in Figure 2. One observation is that, once again, the best test accuracy is obtained
when the loss landscape is both globally nice and locally flat. Another observation with Figure 5b
is that when training a wide model with small weight decay (which is shown on the bottom of the
figure), the Hessian trace becomes extremely small. This matches observations in [14] that decreasing
weight decay reduces the size of the Hessian. Since weight decay is known to improve generalization,
this also demonstrates that local metrics alone are insufficient to predict test performance.

Different amount of training data. Next, we vary the amount of training data (as another way
of changing load) and see how that affects our results. We vary the number of training samples
in CIFAR-10 by a factor of ten. Results are shown in Figure 6. Again, the optimal test accuracy
is achieved when the Hessian eigenvalue and trace are small, mode connectivity is near-zero, and
CKA similarity is large. Perhaps unsurprisingly, better test accuracy is achieved with more data.
Here, CKA provides useful complementary information to the Hessian and mode connectivity for
explaining the utility of larger data. The Hessian alone cannot predict the correct trend, as it increases
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Figure 6: (Varying amount of training data). Partitioning the 2D load-like—temperature-like
diagram into different phases of learning, using batch size as the temperature and varying model
width to change load. We vary quantities of training data from CIFAR-10 in different columns. All
plots are on the same set of axes.
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Figure 7: (Proportion of randomized labels as load). Partitioning the 2D load-like—temperature-
like diagram into different phases of learning, using batch size as the temperature and varying
proportion of randomized training labels to change load. Models are trained with ResNet18 on
CIFAR-10. All plots are on the same set of axes. (e) shows that the Hessian trace changes slowly
with the proportion of noisy labels when training loss is small.

in magnitude with data. Mode connectivity alone cannot predict the correct trend either, becoming
increasingly poor with larger data (see the shrinking white region). Indeed, it appears that larger
models are required to keep the loss landscape well-connected with increasing data. In contrast, CKA
precisely captures the relationship of increasing test accuracy with additional data.

These observations also imply that the utilities of extra data and larger models are different: larger
models can increase connectivity in the loss landscape (e.g., Figure 2e); while increasing data boosts
signal in the landscape, enabling trained models to become more similar to each other. Clearly,
researchers have been increasing both the size of data and the size of models in recent years; our
methodology suggests obvious directions for doing this in more principled ways.

Different quality of data by changing the amount of noisy labels. Next, we vary the proportion of
randomized labels to simulate the change in the quality of data, as another way to change load. To
generate randomized labels, a percentage of the training data is randomly selected and altered to an
incorrect target class. Results are shown in Figure 7. Once again, local information alone fails to
measure the quality of training data. We can see that training with a large amount of noise does not
significantly affect the Hessian — see Figure 7b. In particular, as the temperature decreases (down to
the bottom of Figure 7b), the Hessian becomes smaller, independent of the quantity of noisy labels.
This is especially evident in Figure 7e, where we plot Hessian trace against batch size. However,
looking instead at mode connectivity in Figure 7c and CKA in Figure 7d, one can easily deduce that
training with more noisy labels leads to more poorly-connected loss landscapes.

Different datasets, architectures, load/temperature parameters, and training schemes. We have
performed a wide range of other experiments, only a subset of which we report here. These additional
experiments can be found in the Appendix of the full paper [25]. In Appendix D, we cover additional
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datasets, including SVHN, CIFAR-100, and IWSLT 2016 German to English (De-En) (a machine
translation dataset), as well as additional NN architectures, including VGG11 and Transformers.
While there are many subtleties in such a detailed analysis (several of which point to future research
directions), all experiments support our main conclusions. Here, we briefly summarize these results.

In Appendix D.3, we study an analogous plot to Figure 4, training with 10% noisy labels but replacing
the temperature-like parameter from batch size to learning rate. Again, we observe the double descent
phenomenon. Using this experiment, we infer that the decision to train to zero loss (traditionally
a rule-of-thumb in computer vision tasks, although note that recent work has highlighted how the
difference between exactly zero versus approximately zero can matter [31]) should depend on the
global connectivity of the loss landscape. Indeed, for small models with poor connectivity, we find
that training to zero loss can harm test accuracy. This suggests that the common wisdom to fit training
data to zero loss is derived from experiments involving relatively high-quality data and models, and
is not a principle of learning more generally.

In Appendix D.4, we show that in the setting of machine translation, the loss landscape remains poorly-
connected (i.e., the mode connectivity remains negative) even for a reasonably large embedding
dimension up to 512 (see Figure 19). In this case, generalization can be quite poor when training to
zero loss. This conclusion matches (with hindsight) the observations in practice, e.g., dropout and
early stopping can improve test loss [32, 33]. It also suggests that an embedding size of dimension
512 (for six-layer Transformers with eight attention heads used in our experiments) is still not large
enough for baseline machine translation, and that certain (different) training schemes should be
designed to improve the optimization on these loss landscapes.

In Appendix D.5, we study learning rate as an alternative temperature parameter, which produces
analogous results to Figure 2. In Appendix D.7.1, we study large-batch training and show that it
increases local sharpness. Note that for most experiments, we intentionally keep a constant learning
rate when varying the batch size to study the change in the landscape with a changing temperature;
thus, in Appendix D.7.2, we provide additional results on tuning learning rate with changing batch
size, including the commonly used “linear scaling rule” [34].

4 Conclusions

Motivated by recent work in the statistical mechanics of learning, we have performed a detailed
empirical analysis of the loss landscape of realistic models, with particular attention to how properties
vary as load-like and temperature-like control parameters are varied. In particular, local properties
(such as those based on Hessian) are relatively easy to measure; and while more global properties
of a loss landscape are more challenging to measure, we have found success with a combination
of similarity metrics and connectivity metrics. This complements recent work that uses tools from
statistical mechanics and heavy-tailed random matrix theory, as we can perform large-scale empirical
evaluations using metrics (CKA, mode connectivity, Hessian eigenvalues, etc.) that are more familiar
to the ML community. We interpreted these metrics in terms of connectivity and similarity, and we
used them to obtain insight into the local versus global properties of NN loss landscapes.

Here, we summarize a few observations from our connectivity and similarity plots (that we expect
will be increasingly relevant as larger data sets and models are considered). i) A larger width
improves mode connectivity; ii) more data improves similarity; iii) better data quality improves mode
connectivity; iv) a larger width and a higher temperature in Phase IV improves similarity. These
observations can be restated in a way to guide the operations in training:

• A negative mode connectivity suggests that the data quality is low or the model size is small.
• A large positive mode connectivity or a large Hessian leading eigenvalue/trace indicates that the

training fails to converge to the bottom of a local minimum.
• A small CKA similarity suggests that generalization is not good, which can be caused by various

factors. However, if, in addition, the mode connectivity is close to zero, and the Hessian is small, a
large CKA similarity indicates the “lack of signal” from the data. In other words, one should get
more high-quality data for training.

In future work, we aim to provide a more detailed study on using the metrics for improved training,
and we will look at phase diagrams outside of the load/temperature form, especially in the low-
connectivity regime, which is most challenging according to our taxonomy.

10



Acknowledgements. We want to thank Charles Martin, Rajiv Khanna, Zhewei Yao, and Amir
Gholami for helpful discussions. Michael W. Mahoney would like to acknowledge the UC Berkeley
CLTC, ARO, IARPA (contract W911NF20C0035), NSF, and ONR for providing partial support
of this work. Kannan Ramchandran would like to acknowledge support from NSF CIF-2007669,
CIF-1703678, and CIF-2002821. Joseph E. Gonzalez would like to acknowledge supports from NSF
CISE Expeditions Award CCF-1730628 and gifts from Alibaba Group, Amazon Web Services, Ant
Group, CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk and VMware. Our conclusions do not necessarily reflect the position or the policy of our
sponsors, and no official endorsement should be inferred.

References
[1] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss

landscape of neural nets. In Conference on Neural Information Processing Systems, pages
6389–6399, 2018.

[2] Andrew J Ballard, Ritankar Das, Stefano Martiniani, Dhagash Mehta, Levent Sagun, Jacob D
Stevenson, and David J Wales. Energy landscapes for machine learning. Physical Chemistry
Chemical Physics, 19(20):12585–12603, 2017.

[3] Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In International Conference on Learning Representations, 2017.

[4] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Large batch size training
of neural networks with adversarial training and second-order information. Technical Report
Preprint: arXiv:1810.01021, 2018.

[5] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based
analysis of large batch training and robustness to adversaries. In Conference on Neural Informa-
tion Processing Systems, volume 31, pages 4949–4959, 2018.

[6] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU
activation. In Conference on Neural Information Processing Systems, pages 597–607, 2017.

[7] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Mądry. How does batch
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