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Abstract. Physics-informed neural networks (PINNs) incorporate
physical knowledge from the problem domain as a soft constraint
on the loss function, but recent work has shown that this can lead to
optimization difficulties. Here, we study the impact of the location
of the collocation points on the trainability of these models. We find
that the vanilla PINN performance can be significantly boosted by
adapting the location of the collocation points as training proceeds.
Specifically, we propose a novel adaptive collocation scheme which
progressively allocates more collocation points (without increasing
their total number) to areas where the model is making higher errors
(based on the gradient of the loss function in the domain). This, cou-
pled with a judicious restarting of the training during any optimization
stalls (by simply resampling the collocation points in order to adjust
the loss landscape) leads to better estimates for the prediction error.
We present results for several problems, including a 2D Poisson and
diffusion-advection system with different forcing functions. We find
that training vanilla PINNs for these problems can result in up to
70% prediction error in the solution, especially in the regime of low
collocation points. In contrast, our adaptive schemes can achieve up
to an order of magnitude smaller error, with similar computational
complexity as the baseline. Furthermore, we find that the adaptive
methods consistently perform on-par or slightly better than vanilla
PINN method, even for large collocation point regimes. The code for
all the experiments has been open sourced.

1 Introduction

A key aspect that distinguishes scientific ML (SciML) [10, 24, 29, 3,
16, 14] from other ML tasks is that scientists typically know a great
deal about the underlying physical processes that generate their data.
For example, while the Ordinary Differential Equations (ODEs) or
Partial Differential Equations (PDEs) used to simulate the physical
phenomena may not capture every detail of a physical system, they
often provide a reasonably good approximation. In some cases, we
know that physical systems have to obey conservation laws (mass, en-
ergy, momentum, etc.). In other cases, we can learn these constraints,
either exactly or approximately, from the data. In either case, the main
challenge in SciML lies in combining such scientific prior domain-
driven knowledge with large-scale data-driven methods from ML in a
principled manner.
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One popular method to incorporate scientific prior knowledge is to
incorporate them as soft-constraints throughout training, as proposed
with Physics Informed Neural Networks (PINNs) [17, 10, 12]. These
models use penalty method techniques from optimization [2] and
formulate the solution of the PDE as an unconstrained optimization
problem that minimizes a self-supervision loss function that incorpo-
rates the domain physics (PDEs) as a penalty (regularization) term.
Formulating the problem as a soft-constraint makes it very easy to
use existing auto-differentiation frameworks for SciML tasks. Once
trained, these PINNs can be promising alternatives to classical nu-
merical methods and can offer significant computational advantages
by circumventing prohibitive costs associated with solving large sys-
tems of equations and/or time integration (for spatiotemporal PDEs).
However, training PINNs can be very difficult, and it is often chal-
lenging to solve the optimization problem [11, 26, 6]. This could be
partly because the self-supervision term typically contains complex
terms such as (higher-order) derivatives of spatial functions and other
nonlinearities that cause the loss term to become ill-conditioned [11].
This is very different than unit �p ball or other such convex functions,
more commonly used as regularization terms in ML. Several solu-
tions such as loss scaling [26], curriculum or sequence-to-sequence
learning [11], tuning of loss function weights [13], and novel network
architectures [19] have been proposed to address this problem.

One overlooked, but very important, parameter of the training
process is the way that the self-supervision is performed in PINNs, and
in particular which data points in the domain are used for enforcing
the physical constraints (commonly referred to as collocation points
in numerical analysis). In the original work of [17], the collocation
points are randomly sampled in the beginning of the training and kept
constant throughout the learning process. However, we find that this
is sub-optimal, and instead we propose adaptive collocation schemes.
We show that these schemes can result in an order of magnitude better
performance, with similar computational overhead.

Background. We focus on scientific systems that have a PDE
constraint of the following form:

F(u(x)) = 0, x ∈ Ω ⊂ R
d, (1)

where F is a differential operator representing the PDE, u(x) is the
state variable (i.e., physical quantity of interest), Ω is the physical
domain, and x represents spatial domain (2D in all of our results). To
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ensure existence and uniqueness of an analytical solution, there are
additional constraints specified on the boundary, dΩ, as well (such
as periodic or Dirichlet boundary conditions). One possible approach
to learn a representation for the solution is to incorporate the PDE
as a hard constraint, and formulate a loss function that measures the
prediction error on the boundary (where data points are available):

min
θ

L(u) s.t. F(u) = 0, (2)

where L(u) is typically a data mismatch term (this includes ini-
tial/boundary conditions but can also include observational data
points), and where F is a constraint on the residual of the PDE
system (i.e., F(u) is the residual) under consideration. Since con-
strained optimization is typically more difficult than unconstrained
optimization [2], this constraint is typically relaxed and added as a
penalty term to the loss function. This yields the following uncon-
strained optimization problem, namely the PINNs (soft constrained)
optimization problem:

min
θ

L(u) + λFLF . (3)

In this problem formulation, the regularization parameter, λF , con-
trols the weight given to the PDE constraints, as compared to the
data misfit term; θ denotes the parameters of the model that predicts
u(x), which is often taken to be a neural network; and the PDE loss
functional term, LF , can be considered as a self-supervised loss, as
all the information comes from the PDE system we are interested in
simulating, instead of using direct observations. Typically a Euclidean
loss function is used to measure the residual of the PDE for this loss
function, ‖F(u)‖22, where the �2 norm is computed at discrete points
(collocation points) that are randomly sampled from Ω. This loss term
is often the source of the training difficulty with PINNs [11, 6], which
is the focus of our paper.

Main contributions. Unlike other work in the literature, which
has focused on changing the training method or the neural network
(NN) architecture, here we focus on the self-supervision component
of PINNs, and specifically on the selection of the collocation points.
In particular, we make the following contributions:

• We study the role of the collocation points for two PDE systems:
steady state diffusion (Poisson); and diffusion-advection. We find
that keeping the collocation points constant throughout training is
a sub-optimal strategy and is an important source of the training
difficulty with PINNs. This is particularly true for cases where the
PDE problem exhibits local behaviour (e.g., in presence of sharp,
or very localized, features).

• We propose an alternative strategy of resampling the collocation
points when training stalls. Although this strategy is simple, it can
lead to significantly better reconstruction (see Tab. 1 and Fig. 1).
Importantly, this approach does not increase the computational
complexity, and it is easy to implement.

• We propose to improve the basic resampling scheme with a
gradient-based adaptive scheme. This adaptive scheme is designed
to help to relocate the collocation points to areas with higher loss
gradient, without increasing the total number of points (see Al-
gorithm 1 for the algorithm). In particular, we progressively re-
locate the points to areas of high gradient as training proceeds.
This is done through a cosine-annealing that gradually changes the
sampling of collocation points from uniform to adaptive through
training. We find that this scheme consistently achieves better per-
formance than the basic resampling method, and it can lead to

more than 10x improvements in the prediction error (see Tab. 1
and Fig. 1).

• We extensively test our adaptive schemes for the two PDE systems
of Poisson and diffusion-advection while varying the number of
collocation points for problems with both smooth or sharp features.
While the resampling and adaptive schemes perform similarly in
the large collocation point regime, the adaptive approach shows
significant improvement when the number of collocation points is
small and the forcing function is sharp (see Tab. 2).

2 Related work

There has been a large body of work studying PINNs [18, 4,
9, 21, 32, 7, 20] and the challenges associated with their train-
ing [6, 28, 27, 26, 11, 25]. The work of [26] notes these challenges
and proposes a loss scaling method to resolve the training difficulty.
Similar to this approach, some works have treated the problem as a
multi-objective optimization and tune the weights of the different loss
terms [31, 1]. A more formal approach was suggested in [13] where
the weights are learned by solving a minimax optimization problem
that ascends in the loss weight space and descends in the model pa-
rameter space. This approach was extended in [15] to shift the focus
of the weights from the loss terms to the training data points instead,
and the minimax forces the optimization to pay attention to specific
regions of the domain. However, minimax optimization problems are
known to be hard to optimize and introduce additional complexity and
computational costs. More recently, the work of [25] shows that incor-
porating causality in time can help training for time-dependent PDEs.
There is also recent work that studies the role of the collocation points.
For instance, [23] refines the collocation point set without learnable
weights. They propose an auxiliary NN that acts as a generative model
to sample new collocation points that mimic the PDE residual. How-
ever, the auxiliary network also has to be trained in tandem with the
PINN. The work of [14] proposes an adaptive collocation scheme
where the points are densely sampled uniformly and trained for some
number of iterations. Then the set is extended by adding points in in-
creasing rank order of PDE residuals to refine in certain locations (of
sharp fronts, for example) and the model is retrained. However, this
method can increase the computational overhead, as the number of
collocation points is progressively increased. Furthermore, in [8] the
authors show that the latter approach can lead to excessive clustering
of points throughout training. To address this, instead they propose
to add points based on an underlying density function defined by the
PDE residual. Both these schemes keep the original collocation set
(the low residual points) and increase the training dataset sizes as the
optimization proceeds. Unlike the work of [14, 8], we focus on using
gradient of the loss function, instead of the nominal loss value, as the
proxy to guide the adaptive resampling of the collocation points. We
show that this approach leads to better localization of the collocation
points, especially for problems with sharp features. Furthermore, we
incorporate a novel cosine-annealing scheme, which progressively
incorporates adaptive sampling as training proceeds. Importantly, we
note that we keep the number of collocation points the same and only
resample them unlike previous works. Not only does this not increase
or imbalance the computational overheard (number of data points is
fixed) but it is easier to implement as well. Finally, we acknowledge
two concurrent works that have appeared recently that also look at
resampling strategies for PINNs [5, 30] that have suggested similar
ideas of dynamically resampling points through training; however
they also focus only on the PDE residual for sampling.
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3 Methods

In PINNs, we use a feedforward NN, denoted NN(x; θ), that is param-
eterized by weights and biases, θ, takes as input values for coordinate
points, x, and outputs the solution value u(x) ∈ R at these points.
As described in §1, the model parameters θ are optimized through the
loss function:

min
θ

LB + λFLF . (4)

We focus on boundary-value (steady state) problems and define the
two loss terms as:

LB =
1

nb

nb∑

i=1

‖u(xi
b)− û(xi

b)‖22, (5a)

LF =
1

nc

nc∑

i=1

‖F(u(xi
c)‖22, (5b)

where u is the model predicted solution, û is the true solution or
data, xi

b are points on the boundary, and xi
c are collocation points

uniformly sampled from the domain Ω. Here, nb and nc are the
number of boundary and collocation points, respectively; and the
boundary loss term LB implements a Dirichlet boundary condition,
where we assume that the solution values are known on the boundary
dΩ. In PINNs [17], the collocation points used in Eq. 5b are randomly
sampled with a uniform probability over the entire space Ω in the
beginning of training and then kept constant afterwards (we refer to
this approach as Baseline). While a uniformly distributed collocation
point set may be sufficient for simple PDEs with smooth features, we
find them to be sub-optimal when the problem exhibits sharp/local
features, or even fail to train. To address this, we propose the following
schemes.

Resampling collocation points. Current PINNs are typically opti-
mized with LBFGS. In our experiments, we found that in the baseline
approach LBFGS often fails to find a descent direction and training
stalls, even after hyperparamter tuning. This agrees with other results
reported in the literature [26, 11, 6]. We find that this is partially
due to the fact that the collocation points are kept constant and not
changed. The simplest approach to address this is to resample the
collocation points when LBFGS stalls. We refer to this approach as
RESAMPLING. As we will discuss in the next section, we find this
approach to be helpful for cases with moderate to large number of
collocation points.

Adaptive sampling. While the RESAMPLING method is effective
for large number of collocation points, we found it to be sub-optimal
in the small collocation point regime, especially for problems with
sharp/localized features. In this case, the RESAMPLING method still
uses a uniform distribution with which to sample the new the collo-
cation points; and, in the presence of a small number of collocation
points and/or sharp/localized features, this is not an optimal allocation
of the points. Ideally, we want to find a probability distribution, as a re-
placement for the uniform distribution, that can improve trainability of
PINNs for a given number of collocation points and/or computational
budget. There are several possibilities to define this distribution. The
first intuitive approach would be to use the value of the PDE residual
(Eq. 5b), and normalize it as a probability distribution. This could
then be used to sample collocation points based on the loss values
in the domain. That is, more points would be sampled in areas with
with higher PDE residual, and vice versa. We refer to this approach

Algorithm 1 Adaptive Sampling for Self-supervision in PINNs
Require: Loss L, NN model, number of collocation points nc, PDE
regularization λF , T , sw, momentum γ, max epochs imax

1: i ← 0
2: while i ≤ imax do

3: Compute proxy function as the loss gradient (ADAPTIVE-G)
or PDE residual (ADAPTIVE-R)

4: Current proxy Pi ← P + γPi−1

5: Tc ← i mod T
6: η ← cosine-schedule(Tc, T )
7: if i mod e is true then

8: Sample ηnc points xu uniformly
9: Sample (1− η)nc points xa using proxy function Pi

10: end if

11: xc ← xu ∪ xa

12: Input x ← xb ∪ xc where xb are boundary points
13: u ← NN(x; θ)
14: L ← LB + λFLF
15: θ ← optimizer-update(θ,L)
16: if stopping-criterion is true then

17: reset cosine scheduler Tc ← 0
18: end if

19: i ← i+ 1
20: end while

as ADAPTIVE-R sampling (with R referring to the PDE residual). An
alternative is to use the gradient of the loss function (PDE loss term
LF ) w.r.t. the spatial grid, using that as the probability distribution
with which to sample the collocation points. We refer to this approach
as ADAPTIVE-G (with G referring to gradient of the loss). As we
will show in the next section, when combined with a cosine annealing
scheme (discussed next), both of these adaptive schemes consistently
perform better than the RESAMPLING scheme.

Progressive adaptive sampling. Given the non-convex nature of
the problem, it might be important to not overly constrain the NN to
be too locally focused, as the optimization procedure could get stuck
in a local minima. However, this can be addressed by progressively
incorporating adaptive sampling as training proceeds. In particular, we
use a cosine annealing strategy. This allows the NN to periodically al-
ternate between focusing on regions of high error as well as uniformly
covering larger parts of the sample space, over a period of iterations.
Specifically, in each annealing period, we start with a full uniform
sampling, and progressively incorporate adaptively sampled points
using a cosine schedule rule of η = 1/2(1 + cosπTc/T ), where η is
the fraction of points uniformly sampled, Tc is the number of epochs
since the last restart, and T is the length of the cosine schedule. We
use this schedule to resample the collocation every e epochs. Given
the periodic nature of the cosine annealing, that approach balances
local adaptivity without losing global information. We outline the
adaptive sampling Algorithm 1.

4 Experiments

In this section, we show examples that highlight the prediction error
improvement using our adaptive self-supervision method on two PDE
systems: Poisson’s equation and (steady state) diffusion-advection.
We open-source our code and appendix at [22].
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(a) TC1

(b) TC2

Figure 1: We visualize the predicted solution at all testing points for both test-cases TC1 (top; smooth source function with σf = 0.1) and
TC2 (bottom; sharp source function with σf = 0.01). We also visualize the location of the collocation points for the final model. We observe
that for the smooth source, the resampling helps predict a good solution, while the sharp source functions still cause the model to fail. The
adaptive schemes are able to capture the correct solution. We also observe that the gradient boosted sampler ADAPTIVE-G is more aggressive
in localizing the points and shows the best prediction errors of less than 5% for TC1 and TC2.

Problem setup and metrics. We use the same problem set up as
in [17, 26, 11] for the NN model, which is a feed forward model with
hyperbolic tangent activation function, trained with LBFGS optimizer.
We focus on 2D spatial domains in Ω = [0, 1]2. The training data set
contains points that are randomly sampled from a uniform 2562 mesh
on Ω. The testing data set is the set of all 2562 points, along with the
true solution of the PDE û(x) at these points. Furthermore, we use a
constant regularization parameter of λF = 1E-4. This hyperparameter
is difficult to tune since it is part of the loss function. Furthermore, we
also do not have access to the true solution (and hence solution error)
during validation. We empirically choose this value such that the
boundary loss and PDE residual loss are roughly balanced. To ensure
a fair comparison, we tune the rest of the hyperparameters both for the
baseline model as well as for the adaptive schemes (see appendix for
hyperparameter list and values). For tuning the parameters, we use the
validation loss computed by calculating the total loss over randomly
sampled points in the domain (30K points for all the experiments).
Note that we do not use any signal from the analytical solution, and
instead only use the loss in Eq. 4. We train the optimizer for 5000
epochs with a stall criterion when the loss does not change for 10
epochs. We keep track of the minimum validation loss in order to get
the final model parameters for testing. We compute our prediction
error using two metrics: the �2 relative error, μ1 = ‖u − û‖2/‖û‖
and the �1 error μ2 = ‖u − û‖1, where u is the model prediction
solution from the best validation loss epoch and û is the true solution.
All runs are trained on an A100 NVIDIA GPU on the Perlmutter
supercomputer.

4.1 2D Poisson’s equation

Problem formulation. We consider a prototypical elliptic system
defined by the Poisson’s equation with source function f(x). This
system represents a steady state diffusion equation:

−divK∇u = f(x), x ∈ Ω, (6)

where K denotes the diffusion tensor. For homogeneous diffusion
tensors, the solution of the poisson’s equation with doubly-periodic
boundary conditions can be computed using the fast Fourier transform
on a discrete grid as:

û = F−1( −1

−(k2
xk11 + k2

yk22 + 2kxkyk12)
F (f(x))

)
, (7)

where F is the Fourier transform, kx, ky are the frequencies in the
Fourier domain, and k11, k22, k12 are the diagonal and off-diagonal
coefficients of the diffusion tensor K. We enforce the boundary con-
ditions as Dirichlet boundary conditions using the true solution to cir-
cumvent the ill-posedness of the doubly-periodic Poisson’s equation.1

We use a Gaussian function as the source with standard deviation σf

and consider the diffusion tensor k11 = 1, k22 = 8, k12 = 4 to make
the problem anisotropic. We consider two test-cases (TC):

• TC1: smooth source function with σf = 0.1
• TC2: sharp source function with σf = 0.01.

We show these source functions and the corresponding target solutions
in the appendix. For any experiment, we sweep over hyperparameters
and select the ones that show the lowest validation loss.

Observations. We start by examining the performance of the dif-
ference methods for the relatively small number of collocation points
of nc = 1, 000 (which corresponds to 1.5% of the 256× 256 domain
Ω). We report the errors μ1 and μ2 for the different schemes in Tab. 1.
We also visualize the predicted solution for each method in Fig. 1,
along with the location of the collocation points overlayed for the final
model. We can clearly see that the baseline model does not converge
(despite hyperparameter tuning) due to the optimizer stalls. However,
RESAMPLING achieves significantly better errors, especially for the

1 Note that the NN reaches suboptimal solutions with periodic boundaries due
to the forward problem ill-posedness.
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Table 1: We report the relative and absolute errors for the predicted solution for the two test-cases TC1 and TC2 for the four different
schemes. The vanilla PINN training (baseline) fails to converge to a good solution for small number of collocation points (nc), despite tuning
the hyperparameter. The RESAMPLING method however, achieves significantly better results for the smooth testing case (TC1), but incurs
high errors for the second test case which exhibits sharper features (TC2). To the contrary, the two adaptive schemes of ADAPTIVE-R and
ADAPTIVE-G consistently achieve better (or comparable) results than both baseline and RESAMPLING for both test cases.

Test-case Errors Baseline RESAMPLING ADAPTIVE-R ADAPTIVE-G

TC1 μ1 5.34E-1 1.61E-2 2.56E-2 1.80E-2
μ2 7.84E+0 1.68E-1 2.57E-1 1.43E-1

TC2 μ1 7.09E-1 4.83E-1 6.03E-2 4.08E-2
μ2 15.0E+1 9.51E+0 7.20E-1 5.04E-1

Table 2: We report relative errors for the Baseline, RESAMPLING and ADAPTIVE-G schemes as a function of number of collocation points nc for
five different values in {500, 1000, 2000, 4000, 8000}. We observe that the RESAMPLING method performs well at the larger collocation points
regime and for the test-cases with smooth functions. ADAPTIVE-G shows a consistent performance on-par or better than the RESAMPLING

across all nc values.

Test-case Method nc = 500 nc = 1000 nc = 2000 nc = 4000 nc = 8000
Baseline 4.41E-1 5.34E-1 2.73E-2 4.70E-2 5.39E-1

RESAMPLING 2.53E-2 1.61E-2 2.14E-2 2.10E-2 1.98E-2TC1
ADAPTIVE-G 1.94E-2 1.80E-2 2.17E-2 2.59E-2 1.79E-2

Baseline 7.64E-1 7.09E-1 7.34E-1 6.93E-1 5.44E-1
RESAMPLING 3.85E-1 4.83E-1 6.74E-2 4.68E-2 5.85E-2TC2
ADAPTIVE-G 4.86E-2 4.08E-2 4.43E-2 3.55E-2 3.91E-2

smooth source function setup (TC1). However, for the sharp source
experiment (TC2), the resampling does not help and shows an er-
ror of about 50%. Overall, the adaptive schemes show much better
(or comparable) prediction errors for both test-cases. In particular,
ADAPTIVE-R and ADAPTIVE-G achieve about 2–5% relative error
(μ1) for both TC1 and TC2. The visual reconstruction shown in Fig. 1
also shows the clearly improved prediction with the adaptive schemes
(last two columns), as compared to the baseline with/without resam-
pling (first two columns). Note that the ADAPTIVE-G method assigns
more collocation points around the sharp features. This is due to the
fact that it uses the gradient information for its probability distribution,
instead of the residual of the PDE which is used in ADAPTIVE-R
method. To show the effect of the scheduler, we show an ablation
study with the cosine-annealing scheduler in the appendix.

Finally, we note that while computing the sampling proxies incurs
additional costs, this is done only every several epochs (typically
O(100), dictated by the scheduler) and hence the overall cost is the
same as the baseline. For instance, the training time per epoch for
TC2 is about tr = 0.05 seconds, the validation time is O(10)tr
(because we use around 10 times the collocation points for valida-
tion, assuming nc = 1000), and the time for resampling is roughly
O(10)tr (because we once again use about 10 times the points for
computing the proxy function and the resampling itself is negligible
cost). For ADAPTIVE-G, the resampling cost is further increased by
2x due to the fact that a backward pass is performed to compute the
loss gradient (for the sampling proxy). However, we note the follow-
ing: the resampling (and computation of proxy) is only done every e
epochs (see line 7, Algorithm 1 and e is a tunable hyperparameter).
In our experiments, e = O(100). Hence, our amortized cost (over
5000 epochs) or wall-clock time-to-solution is roughly the same ir-
respective of the adaptation (Baseline ∼ 45 minutes vs Adapted ∼
47 minutes). We do note that if e is small, then the compute cost
can increase significantly. However, constantly adapting the points
is detrimental for learning, as it does not allow the neural network
to learn sufficiently over the sampled points and hence e is typically
larger (as observed in hyperparameter tuning).

We then repeat the same experiment, but now varying the number
of collocation points, nc, from 500 to 8K, and we report the relative

error (μ1) in Tab. 2. We observe a consistent trend, where the Baseline
(PINN training without resampling) does not converge to a good
solution, whereas ADAPTIVE-G consistently achieves up to an order
of magnitude better error. Also, note that the performance of the
RESAMPLING method significantly improves and becomes on par
with ADAPTIVE-G as we increase nc. This is somewhat expected
since at large number of collocation points resampling will have the
chance to sample points near the areas with sharp features. In §4.3,
we show the errors for every test-case as a function of number of
collocation points using 10 different random seed values to quantify
the variance in the different methods. We observe that the adaptive
schemes additionally show smaller variances across seeds, especially
for the test-cases with sharp sources.

4.2 2D diffusion-advection equation

We next look at a steady-state 2D diffusion-advection equation with
source function f(x), diffusion tensor K, and velocity vector v:

−v · ∇u+ divK∇u = f(x), x ∈ Ω. (8)

For homogeneous diffusion tensors and velocity vectors, the solution
of the advection-diffusion equation with doubly-periodic boundary
conditions can also be computed using the fast Fourier transform on a
discrete grid as:

û = F−1( −1

g1 − g2
F (f(x))

)
,

g1 = −(k2
xk11 + k2

yk22 + 2kxkyk12),

g2 = ikxv1 + ikyv2,

(9)

where F is the Fourier transform, i =
√−1, kx, ky are the fre-

quencies in the Fourier domain, k11, k22, k12 are the diagonal and
off-diagonal coefficients of the diffusion tensor K, and v1, v2 are
the velocity components. As before, we enforce the boundary con-
ditions as Dirichlet boundary conditions using the true solution, and
we consider a Gaussian function as the source with standard devia-
tion σf . We use a diffusion tensor k11 = 1, k22 = 8, k12 = 4 and
velocity vector v1 = 40, v2 = 10 to simulate sufficient advection.
We consider two test-cases as before:
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(a) TC3

(b) TC4

Figure 2: We visualize the predicted solution at all testing points for both test-cases TC3 (top) and TC4 (bottom). We observe that resampling
can help significantly for this system, but the adaptive schemes still show the least errors for both test-cases.

• TC3: smooth source function with σf = 0.1
• TC4: sharp source function with σf = 0.01.

We show the source functions and the target solutions in the appendix.

Observations. We observe a very similar behaviour for the re-
construction errors as in the previous experiments. As before, we
start with nc = 1, 000 collocation points, and we report the results
in Tab. 3 and the visualizations in Fig. 2. Here, the baseline achieves
slightly better performance for TC3 (14%) but completely fails (100%
error) for the TC4 test case, which includes a sharper forcing function.
However, the RESAMPLING achieves better results for both cases.
Furthermore, the best performance is achieved by the adaptive meth-
ods. Finally, in Tab. 4 we report the relative errors for the baseline
and adaptive schemes with various numbers of collocation points nc.
Similar to the Poisson system, larger values of nc show good per-
formance, but the baselines underperform in the low data regime for
sharp sources. The resampling achieves better errors, while the adap-
tive methods once again consistently achieve the best performance for
both data regimes.

4.3 Sensitivity to random seeds

We test the sensitivity of our methods to the randomization processes
involved by repeating all experiments with 10 different random seeds
(from 1 to 10) to quantify the variance in our metrics. We report the
testing error and the variance in Fig. 3. We observe that the adaptive
schemes consistently show the best (or comparable) performance and
are superior to the RESAMPLING scheme in the low collocation points
regime as well as for TC2 and TC4 (systems with sharp features).
Further, the variance in the error for the adaptive schemes is small
across all numbers of collocation points and is much smaller than
the RESAMPLING for these two sharp source test-cases in the small
collocation point regime. With larger number of collocation points
the RESAMPLING scheme’s variance also reduces and is compara-
ble to the adaptation. For the smooth systems, both schemes show
comparable performance and spread.

5 Conclusions

We studied the impact of the location of the collocation points on
PINN models and showed that the vanilla PINN strategy of keeping
the collocation points fixed throughout training often results in sub-
optimal solutions. This is particularly the case for PDE systems with
sharp (or very localized) features. We showed that a simple strategy
of resampling collocation points during optimization stalls can sig-
nificantly improve the reconstruction error, especially for moderately
large number of collocation points. We also proposed adaptive collo-
cation schemes to obtain a better allocation of the collocation points.
This is done by constructing a probability distribution derived from
either the PDE residual (ADAPTIVE-R) or its gradient w.r.t. the input
(ADAPTIVE-G). We found that by progressively incorporating the
adaptive schemes, we can achieve up to an order of magnitude better
solutions, as compared to the baseline, especially for the regime of
a small number of collocation points and with problems that exhibit
sharp (or very localized) features. Some limitations of this current
work include the following: we did not change the NN architecture
(it was fixed as a feed forward NN) or tune hyperparameters relating
to the architecture (which can be a significant factor in any analysis);
and we only focused on 2D spatial systems (it is known that time-
dependent or 3D or higher-dimensional systems can show different
behaviours and may benefit from different kinds of adaptivity in space
and time). We leave these directions to future work. However, we
expect that techniques such as those we used here that aim to com-
bine in a more principled way domain-driven scientific methods and
data-driven ML methods will help in these cases as well.
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Table 3: We report the relative and absolute errors for the predicted solution for the two test-cases TC3 and TC4 for the four different schemes.
As before, the Baseline fails to converge to a good solution. The RESAMPLING method shows significant performance improvements. The
two adaptive schemes of ADAPTIVE-R and ADAPTIVE-G consistently achieve better results than both baseline and RESAMPLING for both
test-cases.

Test-case Errors Baseline RESAMPLING ADAPTIVE-R ADAPTIVE-G

TC3 μ1 1.43E-1 4.48E-2 3.515E-2 5.5E-2
μ2 3.23E-1 1.63E-1 1.47E-1 1.32E-1

TC4 μ1 1.06E+0 4.10E-1 6.47E-2 8.70E-2
μ2 5.23E+0 1.83E+0 3.28E-1 3.29E-1

Table 4: We report relative errors for the Baseline, RESAMPLING and ADAPTIVE-G schemes as a function of number of collocation points nc

for five different values in {500, 1000, 2000, 4000, 8000}. As before, the RESAMPLING method performs well at the larger collocation points
regime and ADAPTIVE-G shows a consistent performance across all nc values.

Test-case Method nc = 500 nc = 1000 nc = 2000 nc = 4000 nc = 8000

Baseline 7.23E-1 1.43E-1 7.18E-1 6.99E-1 7.04E-1
RESAMPLING 4.69E-2 4.48E-2 5.10E-2 5.83E-2 3.82E-2TC3
ADAPTIVE-G 3.54E-2 5.5E-2 4E-2 4.56E-2 4.06E-2

Baseline 1.094E+0 1.07E+0 1.09E+0 1.04E+0 9.91E-1
RESAMPLING 2.84E-1 4.1E-1 7.06E-2 1.05E-1 6.69E-2TC4
ADAPTIVE-G 1.13E-1 8.70E-2 7.47E-2 5.69E-2 5.03E-2

(a) TC1 (b) TC2

(c) TC3 (d) TC4

Figure 3: Summary of testing errors for baseline, RESAMPLING and ADAPTIVE-G schemes as a function of different collocation points for all
the test-cases to show the variance in error across 10 preset random seeds. We observe that the variance of errors in ADAPTIVE-G is the least
across all the numbers of collocation points and the variance in RESAMPLING reduces steadily and compares to ADAPTIVE-G in the large
collocation point regime (for the systems with sharp source functions).
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