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Abstract
For large-scale finite-summinimization problems, we study non-asymptotic and high-
probability global as well as local convergence properties of variants of Newton’s
method where the Hessian and/or gradients are randomly sub-sampled. For Hessian
sub-sampling, using random matrix concentration inequalities, one can sub-sample
in a way that second-order information, i.e., curvature, is suitably preserved. For
gradient sub-sampling, approximate matrix multiplication results from randomized
numerical linear algebra provide a way to construct the sub-sampled gradient which
contains as much of the first-order information as possible. While sample sizes all
depend on problem specific constants, e.g., condition number, we demonstrate that
local convergence rates are problem-independent.

Keywords Newton-type methods · Local and global convergence · Sub-sampling

Mathematics Subject Classification 49M15 · 65K05 · 90C25 · 90C06

1 Introduction

Consider the convex optimization problem

min
x∈D∩C

F(x) = 1

n

n∑

i=1

fi (x), (1)

where C ⊆ R
p is a convex constraint set and D = ⋂n

i=1 dom( fi ) is a convex and
open domain of the strongly convex objective F . Many data fitting applications can
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be expressed as (1) where each fi corresponds to an observation (or a measurement)
which models the loss (or misfit) given a particular choice of the underlying parameter
x, e.g., empirical risk minimization in machine learning including softmax classifi-
cation, support vector machines, and graphical models, among many others. Many
optimization algorithms have been developed to solve (1), [3,6,32]. Here, we consider
the regime where n, p � 1. In such high dimensional settings, the mere evaluation of
the gradient or the Hessian of F can be computationally prohibitive. As a result, many
of the classical deterministic optimization algorithms might prove to be inefficient, if
applicable at all. In this light, faced with modern “big data” problems, there has been
a great deal of effort to design stochastic variants which are efficient and inherit much
of the “nice” convergence behavior of the original deterministic counterparts.

Many of these stochastic algorithms employ sub-sampling to speed up the com-
putations. Within the class of first order methods, i.e., those which only use gradient
information, there are many such algorithms with various kinds of theoretical guar-
antees. However, for second order methods, i.e., those that employ both the gradient
and the Hessian information, studying the theoretical properties of such sub-sampled
algorithms lags behind. In this paper, we provide a detailed analysis of sub-sampling
as a way to leverage the “magic of randomness” in the classical Newton’s method and
study variants that are more suited for modern large-scale problems.

The common occurring theme in our approach is the high-probability and non-
asymptotic convergence analysis. This is so since high-probability analysis allows for a
small, yet non-zero, probability of occurrence of “bad events” in each iteration. Hence,
the accumulative probability of occurrence of “good events” at all times becomes
smaller with increasing iterations, and in fact is asymptotically zero for an infinite
sequence of iterates. As a result, although the term “convergence” typically implies the
asymptotic limit of an infinite sequence, here we consider non-asymptotic behavior
of a finite number of random iterates and provide high-probability results on their
properties. For example,we studywhether, with high-probability, a finite set of random
iterates generated by an algorithm approaches the solution of (1) and, if so, at what
rate. Henceforth, we use the term “convergence” loosely in this sense.

Under such an analytic framework, our theoretical results are delivered in two
stages. At first, we take a “coarse-grained” approach and provide a variety of condi-
tions under which the convergence is global, i.e., random iterations are guaranteed to
converge, with high-probability, to the solution of (1) starting from any initial point.
In the second stage, we zoom-in and employ a “finer-grained” approach to study non-
asymptotic local convergence of these sub-sampled methods, i.e., when the initial
iterate is chosen in a neighborhood “close enough” to the solution of (1). This is so
since the theoretical appeal of many second-order methods mainly lies in their local
convergence behaviors, e.g., local quadratic convergence of the classical Newton’s
method. Indeed, any method claiming to be second-order must be accompanied by
similar superior local convergence properties. In this light, the “big-picture” contribu-
tion of this paper is to map the lay of the land for the non-asymptotic local and global
convergence properties of variants of Newton’s method in which the Hessian and/or
gradient are randomly sub-sampled.

The rest of the paper is organized as follows. In Sect. 1.1, we first give a brief
overview of the general framework for the iterative schemes considered in our anal-
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ysis. In Sect. 1.2, we briefly survey the related works, and in their light, discuss our
contributions in Sect. 1.3. The notation and the assumptions used in this paper are
given in Sects. 1.4 and 1.5, respectively. Section 2 addresses sampling strategies for
approximating the Hessian and gradient. The non-asymptotic and high-probability
convergence results for sub-sampled Newton’s methods are given in Sect. 3. In par-
ticular, global and local convergence properties are treated in Sects. 3.1and 3.2,
respectively, followed by some unifying results in Sect. 3.3.Worst-case computational
complexities involving various parts of these algorithms are gathered in Sect. 3.4. Con-
clusions and further thoughts are gathered in Sect. 4.

1.1 Framework

The iterative framework under which we study the sub-sampled Newton-type variants
is what is best known as scaled gradient projection formulation [3]. More specifically,
given the current iterate, x(k) ∈ D ∩ C , consider the following iterative scheme,

x̂(k) = arg min
x∈D∩C

{
(x − x(k))T g(x(k)) + 1

2
(x − x(k))T H(x(k))(x − x(k))

}
, (2a)

x(k+1) = x(k) + αk

(
x̂(k) − x(k)

)
, (2b)

where g(x(k)) and H(x(k)) are some approximations to (in our case, sub-samples of)
the actual gradient and the Hessian at the kth iteration, respectively, and αk is the
step-size. A variety of first and second order methods can be written in this form. For
example, classical Newton’s method is obtained by setting g(x(k)) = ∇F(x(k)) and
H(x(k)) = ∇2F(x(k)), the (projected) gradient descent is with g(x(k)) = ∇F(x(k))

and H(x(k)) = I, and the pair

g(x(k)) = ∇F(x(k)), H(x(k)) = 1

|SH |
∑

j∈SH

∇2 f j (x(k)), or

g(x(k)) = 1

|Sg|
∑

j∈Sg

∇ f j (x(k)), H(x(k)) = 1

|SH |
∑

j∈SH

∇2 f j (x(k)),

for some index setsSg,SH ⊆ [n] gives rise to sub-sampled Newton methods [5,7,8,
18,42], henceforth referred to as SSN, which are the focus of this paper. Depending
on the method, the step-size αk is sometimes set to a predefined value, or alternatively
is chosen adaptively, e.g., using line-search techniques.

Our primary objective in this paper is to study conditions under which variants of
SSN are not only efficient for large-scale problems, but also preserve, at least locally,
as much of the superior convergence properties of the classical Newton’s method as
possible while maintaining a reasonable global convergence behavior. In doing so, we
need to simultaneously ensure the following requirements.

(R.1) Our sampling strategy needs to provide a sample size which is independent of
n, or at least smaller, e.g, grows slowly with n.
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(R.2) To re-scale the gradient direction appropriately, the sub-sampled matrix must
preserve the spectrum of the full Hessian as much as possible. At the very least,
it should be able to generate descent directions, e.g., when D = C = R

p, if
the original matrix is uniformly positive definite (PD), so should be the sub-
sampled approximation (preferably without any additional regularization to the
Hessian). Approximation to the gradient should also contain asmuch of the first
order information as possible.

(R.3) Such algorithms need to be globally convergent and approach the optimum
starting from any initial guess. More importantly, for any variant of SSN to
be considered “Newton-like”, it must enjoy a reasonably fast convergence rate
which is, at least locally, similar to that of the classical Newton’s method.

(R.4) In high-dimensional regimes where p � 1, solving (2a) exactly at each itera-
tion can pose a significant computational challenge. In such settings, allowing
for (2a) to be solved inexactly is indispensable.

In this paper, we strive to, at least partially, address challenges (R.1)–(R.4). More
precisely, by using randommatrix concentration inequalities and results from approx-
imate matrix multiplication of randomized numerical linear algebra (RandNLA) [28],
we aim to ensure (R.1) and (R.2). For (R.3), we give variants of SSNwhich are globally
convergent andwhose local convergence rates can bemade close to that of the classical
Newton’s method. Finally, to satisfy (R.4), for both global and local convergence, we
give inexactness requirements, which are less strict than prior works.

1.2 Related work

Randomized approximation of the full Hessian matrix has been previously considered
in [1,5,7,8,18,29,31,35,40,42].Within the context of deep learning, [29] is the first to
suggest a heuristic sub-sampled Newton-type algorithm and study its empirical per-
formance. The pioneering work in [7,8] establishes, for the first time, the convergence
of variants of Newton’s method with the sub-sampled Hessian. However, the results
are asymptotic and no quantitative convergence rate is given. In addition, convergence
is established for the case where each fi is assumed to be strongly convex. Under the
same setting, somemodifications and improvements are given in [40]. Thework in [35]
is the first to use “sketching”within the context of Newton-likemethods, specialized to
the cases where some square root of the Hessian matrix is readily available. Under the
same setting, non-uniform sampling strategies are proposed in [42]. Non-asymptotic
local convergence rates for the uniform sub-sampling of the Hessian is first established
in [18]. The authors suggest an algorithm where, at each iteration, the spectrum of
the uniformly sub-sampled Hessian is modified as a form of regularization. In [1] a
Hessian sub-sampling algorithm is proposed that employs unbiased estimator of the
inverse of the Hessian. This is followed by an improved and simplified convergence
analysis in [31]. Arguably, the closest results to those of the present paper are given
in [5]. However, the convergence results in [5] are given in expectation whereas, here,
we give high probability results. In addition, [5] assumes that each fi in (1) is strongly
convex, while here, we only make such an assumption for the objective function, F ,
and each fi need only be (weakly) convex.
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Within the context of second order methods, gradient sub-sampling has been
successfully applied in large scale machine learning, e.g., [5,7,8], as well as non-
linear inverse problems, e.g., [22,36]. By carefully increasing the sample size across
iterations, the hybrid methods of [19] combine the inexpensive iterations of incremen-
tal gradient algorithms and the convergence of full gradient methods. Such careful
increase of the sample size is one of the main ingredients of our analysis.

Finally, inexact updates have been used in many second-order optimization algo-
rithms; see [5,9,14,17,26] and references therein.

1.3 Contributions

In light of the related work, the main contributions of this paper are summarized as
follows; seeTable 1.Wefirst consider the unconstrainedversionof (1)whereD = C =
R

p, and under certain assumptions, study non-asymptotic and high-probability global
convergence of SSN with Armijo line search. Specifically, we consider the variants of
SSN depicted inAlgorithms 1 and 2. Theorems 1 and 3 give global convergence results
for the case where the linear system arising from (2a) is solved exactly, Theorems 2
and 4 give similar results for inexact updates. For all these results, we only require
that the objective F in (1) is strongly convex, while each component function, fi , is
allowed to be only (weakly) convex. This is a relaxation over all previous work where
strong convexity is assumed for all fi ’s.

We then zoom in, and in full generality, i.e., omitting the assumptionD = C = R
p,

study non-asymptotic and high-probability local convergence behavior of SSN using
the natural step size of the classical Newton’s method, i.e., αk = 1 in (2b). Specifically,
for Algorithms 3, 4, and 5, we establish non-asymptotic equivalents of Q-linear, Q-
superlinear, and R-linear convergence results in Theorem 6, 7, 8, and 11. Though
the sample size depends on the condition number of the problem, we show that the
local rates for the (super)linear convergence phase are, in fact, problem-independent, a
property common to most Newton-type methods. Fast and problem-independent local
convergence rates using the inexact solution of (2a) (in unconstrained case) are studied
in Theorems 9 and 12.

Compared to similar results, e.g., [5,42], our inexactness tolerance is a significant
improvement. More specifically, in prior works, the inexactness tolerance depends

Table 1 Summary of the main results. “Lin” and “SupLin”, respectively, are short for “Linear” and “Super-
linear”. “Exact” and “Inexact”, refer to the exact and approximate solution of (2a), respectively
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on the inverse of the condition number, where as here, our tolerance depends on the
square root of this inverse (Theorems 2, 4, 9, and 12).

We finally combine these global and local analysis and obtain unifying results (The-
orems13and14),which ensure that SSNwithArmijo line search is globally convergent
with problem-independent local rate. Further, after certain number of iterations, the
line-search automatically adopts the natural step size of the classicalNewton’smethod,
i.e., αk = 1, for all subsequent iterations.

1.4 Notation

Throughout this paper, vectors are denoted by bold lowercase letters, e.g., v, and
matrices or randomvariables are denoted by regular upper case letters, e.g., V , which is
clear from the context. For a vectorv, and amatrixV ,‖v‖,‖V ‖ and‖V ‖F , respectively,
denote the vector �2 norm, the matrix spectral norm, and the matrix Frobenius norm.
∇ f (x) and ∇2 f (x) are the gradient and the Hessian of f at x, respectively. For a set
X and two symmetric matrices A and B, A �X B indicates that xT (B− A)x ≥ 0 for
all x ∈ X . The superscript, e.g., x(k), denotes iteration counter and ln(x) denotes the
natural logarithm of x . Throughout the paper,S denotes a collection of indices from
[n] := {1, 2, . . . , n}, with potentially repeated items and |S | denote its cardinality.
The cone of feasible directions at the optimum x� is denoted by

K :=
{
p ∈ R

p; ∃t > 0 s.t. x� + tp ∈ D ∩ C
}
. (3)

If x� lies in the relative interior of D ∩ C , then, as a consequence of Prolongation
Lemma [4, Lemma 1.3.3], it is easy to show thatK is a subspace. For a vector v and
a matrix A, using K , we can define their K -restricted seminorms, respectively, as

‖v‖K := sup
p∈K \{0}

|pT v|
‖p‖ , and ‖A‖K := sup

p,q∈K \{0}
|pT Aq|
‖p‖‖q‖ . (4)

Similarly, one can define the K -restricted maximum and the minimum eigenvalues
of a symmetric matrix A as

λKmin(A) := inf
p∈K \{0}

pT Ap
‖p‖2 , and λKmax(A) := sup

p∈K \{0}
pT Ap
‖p‖2 . (5)

Alternatively, letU be an orthonormal basis for the subspaceK . The definitions above
are equivalent to ‖v‖K = ‖UT v‖, ‖A‖K = ‖UT AU‖. Also, this representation
allows us to define anyK -restricted eigenvalue of A as λKi (A) = λi (UT AU ), where
λi (A) is the usual i th eigenvalue of A, i.e., computed with respect to all vectors inRp.

For the non-asymptotic high-probability analysis in this paper, we use the fol-
lowing adaptations of the classical notions of convergence, which are typically
applied asymptotically. Recall that we use the term “convergence” loosely for a
finite sequence. To evaluate convergence, one typically uses an appropriate distance
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measure, d : R
p × R

p → [0,∞), such that d(z, z) = 0. Here, we consider
d(x, y) = ‖x− y‖ and d(x, y) = |F(x) − F(y)|. Let z(k) denote the iterate generated
by an iterative algorithm at the kth iteration. An algorithm’s iterations are said to con-
verge Q-linearly to a limiting value z� if ∃ρ ∈ [0, 1) such that ∀k0 ∈ N = {1, 2, . . .},
the iterates generated by k0 iterations of the algorithm starting from z(0) satisfy
d(z(k+1), z�) ≤ ρd(z(k), z�), k = 0, 1, . . . , k0 − 1. Q-superlinear convergence is
defined similarly by requiring that ∃ρ : N → [0, 1), ρ(k) ↓ 0, s.t. ∀k0 ∈ N,
d(z(k+1), z�) ≤ ρ(k)d(z(k), z�), k = 0, 1, . . . , k0 − 1. The notion of R-convergence
rate is an extension which captures sequences which still converge reasonably fast, but
whose “speed” is variable. An algorithm’s iterations are said to converge R-linearly to
z� if ∃ρ ∈ [0, 1), ∃R > 0 such that ∀k0 ∈ N, d(z(k), z�) ≤ Rρk, k = 1, 2, . . . , k0.
Clearly, for k0 = ∞, these notions imply the typical asymptotic definitions. For ran-
domized algorithms considered in this paper, we study conditions under which these
algorithms, with high-probability, generate iterates that satisfy the corresponding con-
vergence criteria.

1.5 Assumptions

We assume that each fi is twice-differentiable, smooth and convex with respect to the
cone K , i.e., we have

0 ≤ inf
x∈D∩C

λKmin

(
∇2 fi (x)

)
≤ sup

x∈D∩C
λKmax

(
∇2 fi (x)

)
� Ki < ∞, i ∈ [n],

(6a)

where λKmin(A) and λKmax(A) are defined in (5). We further assume that F is smooth
and strongly convex, i.e., we have

0 < γ � inf
x∈D∩C

λKmin

(
∇2F(x)

)
≤ supx∈D∩C λKmax

(∇2F(x)
)

� K < ∞, (6b)

and it has a Lipschitz continuous Hessian with respect toK , i.e.,

sup
x−y∈K
x �=y

‖∇2F(x) − ∇2F
(
y)‖K

‖x − y‖ � L < ∞, (7)

where ‖A‖K is defined in (4). Since D ∩ C is convex, Assumption (6b) implies the
uniqueness of the optimum, x�. We further assume that x� lies in the relative interior
of D ∩ C . The quantity

κ � K/γ, (8)

is known as the condition number of the problem, restricted to vectors inK . Note that,
depending onK , (8) might be significantly smaller than the usual condition number,
which is usually defined using all vectors inRp. For example, consider the case where
D = R

p and C = {x ∈ R
p; Ax = b} for some matrix A ∈ R

m×p with m < p that
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has full row-rank . ThenK is the null space of A, i.e.,K = {p ∈ R
p; Ap = 0}, and

rank(K ) = p − m. As a result, one can compute K and γ using Rayleigh quotients
of ∇2 fi (x) and ∇2F(x) for all x ∈ D ∩ C , respectively, but restricted to vectors in
this p−m dimensional sub-space. Depending on A, these values can be much smaller
than the minimum and maximum of such Rayleigh quotients over the entire Rp. Of
course, in an unconstrained problem, κ coincides with the usual condition number.

For an integer 1 ≤ q ≤ n, let Q be the set of indices corresponding to q largest
Ki ’s and define the “sub-sampling” condition number as

κq � K̂q/γ, (9a)

where

K̂q � 1

q

∑

j∈Q
K j . (9b)

It is easy to see that K ≤ K̂n and for any two integers q and r such that 1 ≤ q ≤ r ≤ n,
we have κ ≤ κr ≤ κq . Finally, define

κ̃ �
{

κ1, If sampleS is drawn with replacement

κ|S |, If sampleS is drawn without replacement
, (9c)

where κ1 and κ|S | are as in (9a).

2 Sub-sampling

Wenow study various sampling strategies for appropriately approximating theHessian
and the gradient. We note that all the following sampling results provide worst-case
sample sizes which are useful in regimes where n � 1. More generally, however, the
prescribed sample sizes should be mostly regarded as a qualitative guide to practice,
as opposed to verbatim.

2.1 Sub-sampling Hessian

For the optimization problem (1), at each iteration, consider pickingS , uniformly at
random with or without replacement. Let

H(x) � 1

|S |
∑

j∈S
∇2 f j (x), (10)

be the sub-sampled Hessian. As mentioned before in Sect. 1.1, in order for such sub-
sampling to be useful, we need the sample size |S | to satisfy (R.1). In addition, as
mentioned in (R.2), we need to at least ensure that H(x) is K -restricted PD similar
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to the original Hessian, e.g., forD = C = R
p, H(x) should be uniformly PD. In this

case, the direction given by H(x), indeed, yields a descent direction with respect to
K . It is important to emphasize that, ideally, we’d like to ensure such K -restricted
PD property without any additional regularization to the Hessian, e.g., Levenberg–
Marquardt type. This is because such added regularization perturbs the spectrum
corresponding to small eigenvalues of theHessian, which in turn destroys the curvature
information. Recall that the most “informative” part of the curvature information is
contained in the spectrum corresponding to small eigenvalues. Levenberg–Marquardt
type regularization, for example, easily diminishes the contributions of the direc-
tions corresponding to small eigenvalues. This could make the algorithm behave more
like gradient descent, which defeats the purpose of using second order information!
Lemma 1 shows that we can indeed probabilistically guarantee such PD property.

Lemma 1 (K -restricted positive definiteness) Given any 0 < ε, δ < 1, and x ∈
D ∩ C , if |S | ≥ 2κ1 ln(p/δ)/ε2, then for H(x) defined in (10), we have

Pr
(
(1 − ε)γ ≤ λKmin (H(x))

) ≥ 1 − δ,

where γ and κ1 are defined in (6b) and (9a), respectively.

Proof Let U be an orthonormal basis for the subspace K in (3). For x ∈ D ∩ C ,
consider |S | random matrices X j (x), j = 1, 2, . . . , |S | such that Pr(X j (x) =
∇2 fi (x)) = 1/n; ∀i ∈ [n]. Define H(x) �

∑
j∈S X j (x)/|S | and also

X(x) �
∑

j∈S UT X j (x)U = |S |UT H(x)U . Note that we have E(X j (x)) =
∇2F(x), X j (x) �K 0, λKmax(X j (x)) ≤ K̂1, and λmin(

∑
j∈S E(UT X j (x)U )) =

|S |λKmin(∇2F(x)) ≥ |S |γ , where γ and K̂1 are defined in (6b) and (9b), respectively.
Noting that λmin(X(x)) = |S |λKmin(H(x)), Matrix Chernoff bound [39, Theorem
1.1] or [38, Theorem 2.2] for sampling with or without replacement, respectively,

gives Pr(λmin(X(x)) ≤ (1 − ε)|S |λKmin(∇2F(x))) ≤ p
[
e−ε(1 − ε)(ε−1)

]|S |γ /K̂1 .

The result follows by noticing that e−ε(1 − ε)(ε−1) ≤ e−ε2/2, and requiring that
exp{−ε2|S |/(2κ1)} ≤ δ. ��

If, instead, we require that the sub-sampled Hessian preserves the spectrum of the
full Hessian, we will need larger sample than that of Lemma 1.

Lemma 2 (K -restricted spectrumpreserving)Given any 0 < ε, δ < 1 and x ∈ D∩C ,
if |S | ≥ 16κ2

1 ln(2p/δ)/ε
2, then for H(x) defined in (10), we have

Pr
(‖H(x) − ∇2F(x)‖K ≤ εγ

) ≥ 1 − δ,

where γ and κ1 are defined in (6b) and (9a), respectively.

Proof LetU be an orthonormal basis for the subspaceK in (3). Consider |S | random
matrices X j (x), j = 1, 2, . . . , |S | as in the proof of Lemma 1. Define Y j (x) �
UT
(
X j (x) − ∇2F(x)

)
U and Y (x) �

∑
j∈S Y j (x) = |S |UT

(
H(x) − ∇2F(x)

)
U ,

where H(x) �
∑

j∈S X j (x)/|S |.Note thatE(Y j (x)) = 0 and for X j (x) = ∇2 f1(x),
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‖Y 2
j (x)‖ = ‖Y j (x)‖2 = ‖UT ( n−1

n ∇2 f1(x) −∑n
i=2

1
n∇2 fi (x))U‖2 ≤ 4( n−1

n )2 K̂ 2
1 ≤

4K̂ 2
1 , where K̂1 is defined in (9b). Operator-Bernstein inequality [21, Theorem 1],

for both sampling with and without replacement, gives Pr(‖H(x) − ∇2F(x)‖K ≥
εγ ) = Pr(‖Y (x)‖ ≥ ε|S |γ ) ≤ 2p exp{−ε2|S |γ 2/(16K 2)}. The requirement on
|S | gives the result. ��

As a consequence of Lemma 2, we have the spectral approximation property of the
sub-sampled matrix H(x), with respect to the cone K i.e., Pr

(
(1 − ε)∇2F(x) �K

H(x) �K (1 + ε)∇2F(x)
) ≥ 1 − δ, where A �K B is defined in Sect. 1.4.

This follows from ‖H − ∇2F(x)‖K ≤ εγ , which gives (1 − ε)UT∇2F(x)U �
UT∇2F(x)U − εγ I � UT H(x)U � UT∇2F(x)U + εγ I � (1 + ε)UT∇2F(x)U .
This ensures that the sub-sampled Hessian, to ε accuracy, preserves the spectrum of
the full Hessian.

In Lemma 1, the sufficient sample size, |S |, grows only linearly in κ1, i.e., Ω(κ1),
as opposed to quadratically, i.e., Ω(κ2

1 ), in Lemma 2. This difference, in fact, boils
down to the difference between the requirements for global and local convergence
in (R.2). For example, for D = C = R

p, in order to guarantee global convergence,
we only require that the sub-sampled Hessian is uniformly PD. In contrast, to obtain
fast local convergence, we need a much stronger guarantee to preserve the spectrum
of the true Hessian. Consequently, Lemma 1 requires a smaller sample size, i.e., in the
order of κ1 versus κ2

1 for Lemma 2, while delivering a much weaker guarantee.
Depending on κ1 and for n � 1, in Lemmas 1 and 2, we can have |S | � n. How-

ever, since both bounds on |S | in Lemmas 1 and 2 are too conservative, the required
sample size can be unnecessarily large. Unfortunately, for uniform sampling, this is
unavoidable as the prescribed sample size protects against the worst-case scenario of
extreme non-uniformity among∇2 fi (x)’s [12,25,42]. In some extreme cases, uniform
sampling might even require Ω(n) samples to capture the Hessian appropriately. In
such cases, if possible, non-uniform sampling schemes result in sample sizes that are
independent of n and are resilient to such non-uniformity [42].

2.2 Sub-sampling gradients

For sub-sampling the gradient, consider picking the indices inS uniformly at random
with replacement, and let

g(x) � 1

|S |
∑

j∈S
∇ f j (x), (11)

be the sub-sampled gradient. By (R.2), we require that the sub-sampled gradient con-
tains as much of the first order information from the full gradient as possible. For this,
we write the gradient∇F(x) in amatrix-matrix product from as∇F(x) = AB where

A �
(∇ f1(x) ∇ f2(x) · · · ∇ fn(x)

) ∈ R
p×n , B �

(
1/n 1/n . . . 1/n

)T ∈ R
n×1.

(12)
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Table 2 Uniform estimates for G(x) in GLMs, F(x) = n−1∑n
i=1

(
Φ(aTi x) − biaTi x

)
, over the sparsity

inducing constraint set C = {x ∈ R
p; ‖x‖1 ≤ 1}. The infinity norm of a vector a is denoted by ‖a‖∞

We then use approximate matrix multiplication results from RandNLA [15,28], to
probabilistically control the error in the approximation of ∇F(x) by g(x), through
uniform sampling of the columns and rows A, B.

Lemma 3 (Gradient sub-sampling)For a given x ∈ D∩C , let ‖∇ fi (x)‖K ≤ G(x) <

∞, i = 1, 2, . . . , n. For any 0 < ε, δ < 1, if |S | ≥ G(x)2
(
1 + √

8 ln(1/δ)
)2

/ε2,
then for g(x) as in (11), we have

Pr
(‖∇F(x) − g(x)‖K ≤ ε

) ≥ 1 − δ,

where ‖.‖K is defined as in (4).

Proof LetU be an orthonormal basis forK . By the assumption and the definition (4),
we have that at a given x ∈ D ∩ C , ‖UT∇ fi (x)‖ ≤ G(x), i = 1, 2, . . . , n. Now,
approximating the gradient using sub-sampling is equivalent to approximating the
product AB in (12) by sampling columns and rows of A and B, respectively, and
forming matrices Â and B̂ such Â B̂ ≈ AB. More precisely, for a random sampling
index setS , we can represent the sub-sampled gradient (11), by the product Â B̂ where
Â ∈ R

p×|S | and B̂ ∈ R
|S |×1 are formed by selecting uniformly at random and with

replacement, |S | columns and rows of A and B, respectively, rescaled by
√
n/|S |.

By the assumption on G(x), we can use [15, Lemma 11] to get, with probability 1− δ,
‖UT AB − UT ÂB̂‖F = ‖∇F(x) − g(x)‖K ≤ G(x)(1 + √

8 ln(1/δ))/
√|S |. The

result follows by requiring G(x)(1 + √
8 ln(1/δ)) ≤ ε

√|S |. ��

Note that the gradient sampling in Lemma 3 is done with replacement; for gradient
sampling without replacement see [5,8,19]. Further, the sample size from Lemma 3
is given with respect to the current iterate, x(k). As a result, we need to be able to
efficiently estimate G(x(k)) at every iteration or, a priori, have a uniform upper bound
for G(x) for all x ∈ D ∩ C . Fortunately, in many different problems, it is possible
to efficiently estimate G(x). For example, consider GLM objective function F(x) =
n−1∑n

i=1

(
Φ(aTi x) − biaTi x

)
, over a sparsity inducing constraint set, e.g., C = {x ∈

R
p; ‖x‖1 ≤ 1}. Here, (ai , bi ), i = 1, 2, . . . , n, form response and covariate pairs

where ai ∈ R
p, and the domain of bi depends on the GLM. The cumulant generating

function, Φ, determines the type of GLM; see the book [30] for further details and
applications. For illustration purposes only, Table 2 gives some very rough uniform
estimates of the constant G(x) with respect to C for some popular GLMs.
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3 Convergence results

We will now leverage the sampling strategies described in Sect. 2 to study the conver-
gence properties of SSN. We consider the global convergence behaviour in Sect. 3.1,
followed by the local convergence properties in Sect. 3.2. We then combine these
to give unifying results in Sect. 3.3. Finally, worst-case computational complexities
involving various parts of these algorithms are gathered in Sect. 3.4.

The following results rely on the high-probability occurrence of the events {(1 −
ε)γ ≤ λKmin (H(x))}, {‖H(x) − ∇2F(x)‖K ≤ εγ } and/or {‖∇F(x) − g(x)‖K ≤ ε}
from Lemmas 1, 2, and 3, for one or several iterations. In what follows, the conver-
gence probabilities, which can be controlled a priori, are explicitly given in all theorem
statements. However, for simplicity, the respective proofs are given by implicitly con-
ditioning on the occurrence of the corresponding events.

3.1 Global convergence

In this section, we study the global convergence of SSN using Armijo line search
and only in the unconstrained case where D = C = R

p. Our choice in considering
unconstrained optimization lies in the unfortunate fact that defining “inexactness”
for the solution of constrained variant of (2a) in a computationally feasible way is
non-trivial, if possible at all. In unconstrained case, the solution to (2a) boils down
to a linear system [cf. (13a) and (15a)], where the notion of inexactness naturally
arises.

Similar algorithms with asymptotic convergence guarantees are given in the pio-
neering work of [7], while [5] gives quantitative convergence rates in expectation.
However, for both sets of these results, it is assumed that each fi in (1) is strongly
convex. Using Lemma 1, we study such globally-convergent algorithms under amilder
assumption (6b), where strong convexity is only assumed for F , while each fi is
allowed to be only (weakly) convex as in (6a). Many optimization problems can be of
this form, e.g., fi (x) = g(aTi x), with g : R → R, ai ∈ R

p and Range({ai }ni=1) = R
p,

i.e., the matrix whose rows are formed by ai is full column rank. If the real valued
function g(t) is strongly convex, then we have ∇2 fi (x) = g′′(aTi x)aiaTi , which is
clearly rank one and not positive definite, but F(x) is indeed strongly convex. A
simple example is when g(t) = t2 which gives rise to ordinary linear least squares.

3.1.1 Global convergence: sub-sampled Hessian and full gradient

In this section, we consider iterations (2) using the sub-sampled Hessian, H(x(k))

and the full gradient, ∇F(x(k)). We first present an iterative algorithm in which, at
every iteration, the linear system in (2a) is solved exactly, followed by an inexact
variant.

Exact update In the unconstrained case where D = C = R
p, the iterations (2) using

Armijo-type line-search to select αk , can be re-written as x(k+1) = x(k) +αkpk , where

pk = −[H(x(k))]−1∇F(x(k)), (13a)
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and αk is the largest α ≤ 1 such that

F(x(k) + αpk) ≤ F(x(k)) + αβpTk ∇F(x(k)), (13b)

for some β ∈ (0, 1). Recall that (13b) can be approximately solved using various
methods such as backtracking line search [6].

Algorithm 1 Globally Convergent SSN with Hessian Sub-Sampling

1: Input: x(0), 0 < δ < 1, 0 < ε < 1, 0 < β < 1
2: - Set the sample size, |S |, with ε and δ as in Lemma 1
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, S , of size |S | and form H(x(k)) as in (10)
5: - Update x(k+1) as in (13) with H(x(k))

6: end for

Theorem 1 (Global convergence of Algorithm 1) Let Assumptions (6) hold. Using
Algorithm 1 with any x(k) ∈ R

p, with probability 1 − δ, we have

F(x(k+1)) − F(x�) ≤ (1 − ρk)
(
F(x(k)) − F(x�)

)
, (14)

where ρk = 2αkβ/κ̃ , and κ̃ is defined as in (9c). Moreover, the step size is at least
αk ≥ 2(1 − β)(1 − ε)/κ , where κ is defined as in (8).

Proof Since pTk H(x(k))pk ≥ λmin(H(x))‖p‖2, by Lemma 1, we have pTk H(x(k))pk ≥
(1−ε)γ ‖pk‖2. By pTk ∇F(x(k)) = −pTk H(x(k))pk , this implies that pTk ∇F(x(k)) < 0
and we can indeed obtain decrease in the objective function. Now, it suffices to show
that there exists an iteration-independent α̃ > 0, such that (13b) holds for any 0 ≤ α ≤
α̃. For any 0 ≤ α, define xα = x(k)+αpk . Assumption (6b) implies F(xα)−F(x(k)) ≤
(xα − x(k))T∇F(x(k)) + K‖xα − x(k)‖2/2 = αpTk ∇F(x(k)) + α2K‖pk‖2/2. Now in
order to pass the Armijo rule, we search for α such that 2αpTk ∇F(x(k))+α2K‖pk‖2 ≤
2αβpTk ∇F(x(k)), which givesαK‖pk‖2 ≤ −2(1−β)pTk ∇F(x(k)). This latter inequal-
ity is satisfied if we require that αK‖pk‖2 ≤ 2(1−β)pTk H(x(k))pk . As a result, having
α ≤ 2(1 − β)(1 − ε)/κ , satisfies the Armijo rule. So in particular, we can always
find an iteration-independent α̃ = 2(1 − β)(1 − ε)/κ such that (13b) holds for all
α ≤ α̃. Now, for sampling without replacement and by H(x(k))pk = −∇F(x(k)) we
get pTk H(x(k))pk = ∇F(x(k))T [H(x(k))]−1∇F(x(k)) ≥ ‖∇F(x(k))‖2/K̂|S |. Simi-
larly for sampling with replacement, we have pTk H(x(k))pk ≥ 1/K̂1‖∇F(x(k))‖2. By
pTk ∇F(x(k)) = −pTk H(x(k))pk , (13b) gives F(x(k+1)) ≤ F(x(k))−αkβpTk H(x(k))pk .
The result follows by subtracting F(x�) from both sides and noting that Assump-
tion (6b) gives F(x(k)) − F(x�) ≤ ‖∇F(x(k))‖2/(2γ ); see [32, Theorem 2.1.10].

��
The role of ε in Theorem 1, which appears explicitly in the worst-case step-size,

is rather interesting. As it can be seen, the better we approximate the Hessian, the
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larger our “bottom-line” step-size would be, which in turn implies a faster worst-case
convergence speed. In fact, this is rather intuitive: inaccurate estimationof the curvature
implies that the local quadratic approximation of F at x(k) in (2a) is unreliable, i.e,
the local approximation error between the true function and the second-order model
increases. Hence, the resulting method would tend to take more conservative, i.e.,
shorter, steps, to account for such increased local inaccuracy.

Theorem 1 states that the iterates generated by Algorithm 1, with high-probability,
approach x�, starting from any x(0). However, in the worst case, the global linear rate
is with ρk ∈ Ω(1/(κκ̃)) which is seemingly unsatisfying, and indeed worse than that
of simple gradient descent. This is due to the application of Armijo line search and
appears as a by-product of the analysis. In fact, such unsatisfying global rate appears
throughout the literature for similar Newton-type methods, e.g. Theorem 2.1 in [5], as
well as in some classical and widely cited textbooks such as Sect. 9.3.5 in [6]. This has
indeed been pointed out in [33]where a cubic regularization is employed to circumvent
this issue. Examples have also been constructed for which, in the worst case, steepest-
descent andNewton’smethod are equally slow for unconstrained optimization [10,11].
Despite these worst-case scenarios, efficient variants of Newton-type methods have
been shown to outperform first order alternatives in many practical settings, e.g., see
the numerical examples in [2,5,16,27,41,42].

Inexact update In high dimensional settings where p � 1, finding the exact update,
pk , in (13a) is computationally expensive. Hence, it is imperative to be able to calculate
the update direction only approximately. Such inexact updates have been used inmany
second-order optimization algorithms, e.g. [5,9,14,26].

Our results are inspired by [9].More specifically, instead of (13a),we approximately
solve the underlying linear system such that for some 0 ≤ θ1, θ2 < 1, we have

‖H(x(k))pk + ∇F(x(k))‖ ≤ θ1‖∇F(x(k))‖, (15a)

pTk ∇F(x(k)) ≤ −(1 − θ2)pTk H(x(k))pk . (15b)

The condition (15a) is the usual relative residual of the approximate solution, while
condition (15b) ensures that such a pk is always a descent direction. Note that given
any 0 ≤ θ1, θ2 < 1, one can always find a pk satisfying (15), e.g., the exact solution.

Assume that to find pk in (15), the linear system H(x(k))p�
k = −∇F(x(k)) is solved

approximately using an iterative method, in which the iterates, p(t)
k , are generated

by successive minimization of the function gk(p) � pT∇F(x(k)) + pT H(x(k))p/2
over progressively expanding linear manifolds Mt , i.e., p

(t)
k = argminp∈Mt gk(p).

One such method, which is suitable for our setting here, is the celebrated conjugate
gradient (CG). Now since over any such space Mt , gk(0) = 0, we always have
gk(p

(t)
k ) ≤ 0, ∀t . As a result, for θ2 = 1/2, any such p(t)

k always satisfies (15b).
Although for θ2 = 1/2, (15b) can be simply dropped from (15), in the following
results, we will treat θ2 as a hyper-parameter to discuss its effect on convergence.

Recall that by Lemma 1, with high probability, we have (1−ε)γ ≤ λmin(H(x(k)));
hence Cond(H(x(k))) ≤ κ̃/(1 − ε) where κ̃ is as in (9c). If CG is used to obtain a
solution for (15a), then by its worst case convergence [24], we get
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‖p(t)
k − p�

k‖H(x(k)) ≤ 2

(√
κ̃/(1 − ε) − 1√
κ̃/(1 − ε) + 1

)t
‖p(0) − p�

k‖H(x(k)),

where ‖p‖A = √pT Ap. If p(0) = 0, it follows that

‖H(x(k))p(t)
k + ∇F(x(k))‖ ≤ 2

√
κ̃

(1 − ε)

(√
κ̃/(1 − ε) − 1√
κ̃/(1 − ε) + 1

)t
‖∇F(x(k))‖.

Hence, after

t ≥ ln

⎛

⎝ 2

θ1

√
κ̃

(1 − ε)

⎞

⎠ / ln

(√
κ̃/(1 − ε) + 1√
κ̃/(1 − ε) − 1

)
, (16)

iterations, we get (15a). Theorem 2 prescribes a sufficient condition on θ1, which is
less strict than similar prior works, and yet ensures a desirable convergence property.

As shown above, for θ2 = 1/2 and any θ1 < 1, the complexity of checking (15)
is directly related to the computational cost involved in solving the underlying linear
system. For θ2 < 1/2, however, we are not aware of a way to quantify the cost required
to ensure (15b). Overall computational complexities of Algorithms involving (15) are
discussed in Sect. 3.4.

Theorem 2 (Global convergence of Algorithm 1: inexact update) Let Assumptions (6)
hold, and 0 ≤ θ1, θ2 < 1 be given. Using Algorithm 1 with any x(k) ∈ R

p, and the
“inexact” update (15) instead of (13a), with probability 1 − δ, we have (14) with ρk
as follows: (i) if

θ1 ≤ √(1 − ε)/(4κ̃),

then ρk = αkβ/κ̃ , (ii) otherwise, ρk = 2(1 − θ2)(1 − θ1)
2(1 − ε)αkβ/κ̃2, with κ̃ , θ1

and θ2 as in (9c) for (15a), and (15b), respectively. Moreover, for both cases, the step
size is αk ≥ 2(1 − θ2)(1 − β)(1 − ε)/κ , where κ is as in (8).

Proof We give the proof for sampling without replacement. The proof for sampling
with replacement is obtained similarly. First, we note that Lemma 1 and (15b) imply

pTk ∇F(x(k)) ≤ −(1 − θ2)(1 − ε)γ ‖pk‖2. (17)

So,pTk ∇F(x(k)) < 0 andwe can indeed obtain decrease in the objective function.As in
the proof of Theorem (1), we get F(xα) − F(x(k)) ≤ αpTk ∇F(x(k)) + α2K‖pk‖2/2.
In order to pass the Armijo rule, we search for α such that αK‖pk‖2 ≤ −2(1 −
β)pTk ∇F(x(k)). Hence, α ≤ 2(1 − θ2)(1 − β)(1 − ε)/κ , satisfies the Armijo rule.

For part (i), we notice that by self-duality of the vector �2 norm, i.e., ‖v‖2 =
sup{wT v; ‖w‖2 = 1}, (15a) implies pTk ∇F(x(k)) + ∇F(x(k))T [H(x(k))]−1∇F(x(k))
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≤ θ1‖∇F(x(k))‖‖[H(x(k))]−1∇F(x(k))‖. From Lemma 1 we have that [H(x(k))]−1 �
1/((1 − ε)γ )I, which, in turn, gives

‖[H(x(k))]−1∇F(x(k))‖ ≤
√

∇F(x(k))T [H(x(k))]−1∇F(x(k))/((1 − ε)γ ).

Hence,

pTk ∇F(x(k)) ≤ q
(
θ1‖∇F(x(k))‖/√(1 − ε)γ − q

)
,

where q �
√

∇F(x(k))T [H(x(k))]−1∇F(x(k)). Since q ≥ ‖∇F(x(k))‖/
√
K̂|S |, if

θ1 ≤ √(1 − ε)/(4κ̃), then we get θ1‖∇F(x(k))‖ ≤ q
√

(1 − ε)γ /2.
For part (ii), we have θ1‖∇F(x(k))‖ ≥ ‖H(x(k))pk + ∇F(x(k))‖ ≥ ‖∇F(x(k))‖ −

‖H(x(k))pk‖, which gives (1 − θ1)‖∇F(x(k))‖ ≤ ‖H(x(k))pk‖ ≤ ‖H(x(k))‖‖pk‖ ≤
K̂|S |‖pk‖. (17) impliespTk ∇F(x(k)) ≤ −(1−θ2)(1−ε)γ (1−θ1)

2‖∇F(x(k))‖2/K̂ 2
|S |.

By Assumption (6b), the results follow as in the end of the proof of Theorem 1. ��
By Theorem 2, in order to guarantee similar worst-case global convergence rate as
that with exact update in Theorem 1, i.e., ρk ∈ Ω(1/(κκ̃)), it is sufficient to solve
the linear system to a “small-enough” accuracy, i.e., Ω(

√
1/κ̃). This requirement on

relative accuracy is less strict than with what is found in similar literature. Clearly,
this improvement merely manifests itself as a constant in the worst-case analysis of
the number of CG iterations. However, in practice, the difference between the actual
amount of work by CG to achieve a relative residual of O(1/κ̃) versus O(

√
1/κ̃),

given the non-monotonic behavior of CG in terms of residuals, can be significant. By
Theorem 2, large ill-conditioning, i.e., κ̃ � 1, or inaccurate Hessian estimation, i.e.,
large ε, both can necessitate small θ1, and if the linear system is not solved accurately
enough, then the convergence rate can degrade, i.e., ρk ∈ Ω(1/(κκ̃2)).

From Theorem 2, we see that the minimum amount of decrease in the objective
function is mainly dependent on θ1, i.e., the accuracy of the linear system solve. On
the other hand, the dependence of the step size, αk , on θ2 indicates that the algorithm
can take larger steps along a search direction, pk, that points more accurately towards
the direction of the largest rate of decrease.

3.1.2 Global convergence: sub-sampled Hessian and gradient

We now consider SSN-type algorithms which are fully stochastic, in which, both the
gradient and the Hessian are approximated. As before, we first study the iterations
with exact solution of (2a), and then turn to inexact variants.

Exact update For the sub-sampled gradient and the Hessian, g(x(k)), H(x(k)), respec-
tively, consider rewriting the update (2) for as x(k+1) = x(k) + αkpk , where

pk = −[H(x(k))]−1
g(x(k)), (18a)

and αk is the largest α ≤ 1 such that, for some β ∈ (0, 1), we have

F(x(k) + αpk) ≤ F(x(k)) + αβpTk g(x
(k)). (18b)
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Algorithm 2 Globally Convergent SSN with Hessian and Gradient Sub-Sampling

1: Input: x(0), 0 < δ < 1, 0 < ε1 < 1, 0 < ε2 < 1, 0 < β < 1, σ ≥ 0
2: - Set the sample size, |SH |, with ε1 and δ as in Lemma 1
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, SH , of size |SH | and form H(x(k)) as in (10)
5: - Set the sample size, |Sg|, with ε2, δ and x(k) as in Lemma 3

6: - Select a sample set, Sg of size |Sg| and form g(x(k)) as in (11)

7: if ‖g(x(k))‖ < σε2 then
8: - STOP
9: end if
10: - Update x(k+1) as in (18) with H(x(k)) and g(x(k))

11: end for

Theorem 3 (Global convergence of Algorithm 2) Let Assumptions (6) hold. For any
x(k) ∈ R

p, using Algorithm 2 with ε1 ≤ 1/2 and σ ≥ 4κ̃/(1 − β), we have the
following with probability (1 − δ)2: if “STOP”, then

‖∇F(x(k))‖ < (1 + σ) ε2,

otherwise, (14) holds with ρk = 8αkβ/(9κ̃) and αk ≥ (1 − β)(1 − ε1)/κ , where κ

and κ̃ are defined in (8) and (9c), respectively.

Proof We give the proof for the sampling without replacement as sampling with
replacement is obtained similarly. By Lemma 1 and (13a), we have pTk g(x

(k)) =
−pTk H(x(k))pk ≥ −(1 − ε1)γ ‖pk‖2. Hence, since pTk g(x

(k)) < 0, we can obtain
decrease in the objective function. As in the proof of Theorem 1, we first need to show
that there exists an iteration-independent step-size, α̃ > 0, such that (18b) holds for
any 0 ≤ α ≤ α̃. For any 0 ≤ α, define xα = x(k) + αpk . By Assumption (6b), we
have

F(xα) − F(x(k)) ≤ αpTk ∇F(x(k)) + α2 K

2
‖pk‖2

≤ αpTk g(x
(k)) + α‖∇F(x(k)) − g(x(k))‖‖pk‖ + α2 K

2
‖pk‖2

≤ −αpTk H(x(k))pk + αε2‖pk‖ + α2 K

2
‖pk‖2.

As a result, we need to find α such that−αpTk H(x(k))pk +ε2α‖pk‖+α2K‖pk‖2/2 ≤
−αβpTk H(x(k))pk , which follows if ε2 + αK‖pk‖/2 ≤ (1 − β)(1 − ε1)γ ‖pk‖. This
latter inequality holds if α = (1 − β)(1 − ε1)γ /K and ε2 = (1−β)(1−ε1)γ ‖pk‖/2.
From H(x(k))pk = −g(x(k)), it is implied that to guarantee an iteration-independent
lower bound for α as above, we need ε2 ≤ (1 − β)(1 − ε1)γ ‖g(x(k))‖/(2K̂|S |),
which, by the choice of σ and ε1, is imposed by the algorithm. If the stopping criterion
succeeds, then by ‖g(x(k))‖ ≥ ‖∇F(x(k))‖ − ε2, we have ‖∇F(x(k))‖ < (1 + σ) ε2.
Otherwise, by ‖g(x(k))‖ ≤ ‖∇F(x(k))‖ + ε2, we get (σ − 1)ε2 ≤ ‖∇F(x(k))‖. Since
σ ≥ 4, the latter inequality implies that

2‖∇F(x(k))‖/3 ≤ (σ − 2)‖∇F(x(k))‖/(σ − 1) ≤ ‖∇F(x(k))‖ − ε2.

From H(x(k))pk = −g(x(k)), it follows that
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pTk H(x(k))pk = g(x(k))T [H(x(k))]−1
g(x(k)) ≥ ‖g(x(k))‖2/K̂|S |

≥ (‖∇F(x(k))‖ − ε2)
2/K̂|S | ≥ 4‖∇F(x(k))‖2/(9K̂|S |).

By Assumption (6b), the result follows as in the end of the proof of Theorem 1. ��
Theorem 3 only guarantees approximate optimality, where ‖∇F(x(k))‖ is small,

and no iterate from Algorithm 2 is ensured to be exactly optimal, where ‖∇F(x(k))‖
vanishes. However, by (6b), in order to obtain sub-optimality in objective function as
F(x(k)) − F(x�) ≤ ς for some ς ≤ 1, it is sufficient to require that upon termination
‖∇F(x(k))‖2 < 2ςγ , which, in turn, requires ε2 ≤ √

2ςγ /(1 + σ); further related
complexities are given in Table 3. It has been also well-established, e.g., [5,8,19], that
without increasing sample sizes for gradient estimation, one can, at best, hope for
convergence to a neighborhood of the solution. This is indeed inline with Theorem 3;
see also Theorems 11, 12, and 14.

Inexact update For some 0 ≤ θ1, θ2 < 1, consider the inexact version of (18a), as a
solution of

‖H(x(k))pk + g(x(k))‖ ≤ θ1‖g(x(k))‖, (19a)

pTk g(x
(k)) ≤ −(1 − θ2)pTk H(x(k))pk . (19b)

Theorem 4 gives the global convergence of Algorithm 2with update (19). The proof
is given by combining the arguments used to prove Theorems 2 and 3, and hence, is
omitted here.

Theorem 4 (Global convergence of Algorithm 2: inexact update) Let Assumptions (6)
hold, and 0 < θ1, θ2 < 1 be given. For any x(k) ∈ R

p, using Algorithm 2 with
ε1 ≤ 1/2, the “inexact” update (19) instead of (18a), andσ ≥ 4κ̃/

(
(1−θ1)(1−θ2)(1−

β)
)
, the following holds with probability (1 − δ)2. If “STOP”, then ‖∇F(x(k))‖ <

(1 + σ) ε2. Otherwise (14) holds in which case if θ1 ≤ √(1 − ε1)/(4κ̃), then ρk =
4αkβ/9κ̃ , else ρk = 8αkβ(1 − θ2)(1 − θ1)

2(1 − ε1)/9κ̃2, with κ̃ defined as in (9c).
Moreover, for both cases, αk ≥ (1 − θ2)(1 − β)(1 − ε1)/κ , with κ as in (8).

Although Algorithm 2 employs sub-sampled gradients, the step-size αk , at each
iteration, is chosen using exact evaluations of F in (18b). For most problems, the cost
of evaluating a gradient is of the same order as that of the corresponding function. In
this light, gradient sub-sampling in Algorithm 2 might, in fact, not contribute much
in reducing the overall computational costs. However, in many problems, this can be
remedied. Indeed, from theproof ofTheorems3, and4, it is clear thatwe can simply, but
conservatively, replace (18b) with α ≤ 2((β −1)pTk g(x

(k))−ε2‖pk‖)/(K‖pk‖2), and
Theorems 3, and 4 would stay the same. In this case, at each iteration, the step size can
be readily chosen, although potentially smaller than what we could obtain from (18b),
without having to resort to any functional evaluations. However, this requires the
knowledge of K , which might not be available for all problems. Fortunately, there are
many important instances, in particular in machine learning, in which an estimate of
K can easily be obtained, e.g., most popular generalized linear models (GLMs) such
as ridge regression, logistic regression, and Poisson regression.
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3.2 Local convergence

While the classical Newton’s method has seen great practical success in many appli-
cation areas, the theoretical appeal mainly lies in its local convergence behavior. The
folklore notion that “Newton method converges quadratically” is, in fact, a statement
about its local theoretical guarantee. Indeed, any method striving to be Newton-type
must enjoy similar superior local convergence properties. In this section, we set out
to do that by showing that, locally, variants of SSN with Newton’s method’s “natural”
step size, i.e., αk = 1, can achieve linear or superlinear convergence rates. Moreover,
we show that such rates are problem-independent, i.e., the rates are prescribed by the
user and are not affected by the problem under consideration.

3.2.1 Local convergence: sub-sampled Hessian and full gradient

We now consider the framework (2) with αk = 1, where, for a given x(k) ∈ D ∩ C ,
we set g(x(k)) = ∇F(x(k)) and H(x(k)) is sub-sampled as in (10).

Exact update We first study the case where, at every iteration, (2a) is solved exactly.
Lemma 4 which will be the foundation of our main results for this Section.

Lemma 4 (Structural LemmaA) Let Assumption (7) hold. Also, for H(x(k)) as in (10),
assume that

pT H(x(k))p > 0, ∀ p ∈ K \{0}. (20)

For the update (2) with αk = 1, g(x(k)) = ∇F(x(k)) and H(x(k)), we have ‖x(k+1) −
x�‖ ≤ ρ0‖x(k) − x�‖ + ξ‖x(k) − x�‖2, where ξ � 0.5L/λKmin(H(x(k))), and ρ0 �
‖H(x(k)) − ∇2F(x(k))‖K /λKmin(H(x(k))).

Proof Define Δk � x(k) − x�. From (2), since αk = 1, we get x(k+1) = x̂(k). By
optimality of x(k+1) in (2a), we have for any x ∈ D ∩ C , (x − x(k+1))T∇F(x(k)) +
(x − x(k+1))T H(x(k))(x(k+1) − x(k)) ≥ 0. In particular, setting x = x�, and noting
that x(k+1) − x(k) = Δk+1 − Δk , we get ΔT

k+1H(x(k))Δk+1 ≤ ΔT
k+1H(x(k))Δk −

ΔT
k+1∇F(x(k)). Optimality of x� gives ∇F(x�)T (x(k+1) − x�) ≥ 0, which implies

ΔT
k+1H(x(k))Δk+1 ≤ ΔT

k+1H(x(k))Δk − ΔT
k+1∇F(x(k)) + ΔT

k+1∇F(x�). Now, by
the mean value theorem

∇F(x(k)) − ∇F(x�) =
(∫ 1

0
∇2F
(
x� + t(x(k) − x�)

)
dt

)
(x(k) − x�),

we have

ΔT
k+1H(x(k))Δk+1≤ΔT

k+1H(x(k))Δk−ΔT
k+1

(∫ 1

0
∇2F
(
x� + t(x(k) − x�)

)
dt

)
Δk

= ΔT
k+1H(x(k))Δk − ΔT

k+1∇2F(x(k))Δk

+ΔT
k+1∇2F(x(k))Δk − ΔT

k+1

(∫ 1

0
∇2F
(
x� + t(x(k) − x�)

)
dt

)
Δk
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312 F. Roosta-Khorasani, M. W. Mahoney

≤
∥∥∥H(x(k)) − ∇2F(x(k))

∥∥∥
K

‖Δk‖‖Δk+1‖

+
∫ 1

0
‖∇2F(x(k)) − ∇2F

(
x� + t(x(k) − x�)

)‖K dt‖Δk‖‖Δk+1‖

≤
∥∥∥H(x(k)) − ∇2F(x(k))

∥∥∥
K

‖Δk‖‖Δk+1‖ + L

2
‖Δk‖2‖Δk+1‖,

where ‖A‖K is as in (4).We also haveΔT
k+1H(x(k))Δk+1 ≥ λKmin

(
H(x(k))

)‖Δk+1‖2.
Assumption (20) implies λKmin

(
H(x(k))

)
> 0, and the result follows. ��

Note that for the case of H(x(k)) = ∇2F(x(k)), we exactly recover the convergence
rate of the classical Newton’s method [3, Proposition 1.4.1].

Using Sampling Lemma 2 and Structural Lemma 4, we are now in the position to
present the main results of this section.

Algorithm 3 Locally Linearly Convergent SSN with Hessian Sub-Sampling

1: Input: x(0), 0 < δ < 1, 0 < ε < 1
2: - Set the sample size, |S |, with ε and δ as described in Lemma 2
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, S , of size |S | and H(x(k)) as in (10)
5: - Update x(k+1) as in (2) with g(x(k)) = ∇F(x(k)), H(x(k)), and αk = 1
6: end for

Theorem 5 (Error recursion of (2) with ∇F(x(k)) and H(x(k))) Let Assumptions (6)
and (7) hold and let 0 < δ < 1 and 0 < ε < 1 be given. Set |S | as in Lemma 2, and
let H(x(k)) be as in (10). Then, for the update (2) with g(x(k)) = ∇F(x(k)), H(x(k)),
and αk = 1 , with probability 1 − δ, we have

‖x(k+1) − x�‖ ≤ ρ0‖x(k) − x�‖ + ξ‖x(k) − x�‖2, (21a)

where

ρ0 = ε

(1 − ε)
, and ξ = L

2(1 − ε)γ
. (21b)

Proof By Lemma 2, we get ‖H(x) − ∇2F(x)‖K /λKmin (H(x)) ≤ ε/(1 − ε). Now the
results follow immediately by applying Lemma 4. ��

Bounds given here exhibit a composite behavior where the error recursion, when
far from the optimum, is first dominated by a quadratic term and then by a linear term
near the optimum. Notably, the coefficient of the linear term, ρ0, is indeed independent
of any problem-related quantities, and only depends on the sub-sampling accuracy, ε.
Of course, such problem dependent quantities indeed appear in the lower bound for
the sample size, in the form of p and κ1; see Lemma 2.

Now we establish sufficient conditions for Q-linear convergence of Algorithm 3.
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Theorem 6 (Q-linear convergence of Algorithm 3) Let Assumptions (6) and (7) hold
and consider any 0 < ρ0 < ρ < 1. Using Algorithm 3 with ε ≤ ρ0/(1 + ρ0), if

‖x(0) − x�‖ ≤ ρ − ρ0

ξ
, (22)

with ξ as in Theorem 5, we get Q-linear convergence

‖x(k) − x�‖ ≤ ρ‖x(k−1) − x�‖, k = 1, . . . , k0 (23)

with probability (1 − δ)k0 .

Proof Using this particular choice of ε, Theorem 5, for every k, yields ‖x(k+1)−x�‖ ≤
ρ0‖x(k) − x�‖ + ξ‖x(k) − x�‖2. The result follows by requiring that ρ0‖x(0) − x�‖ +
ξ‖x(0) − x�‖2 ≤ ρ‖x(0) − x�‖. Finally, let Ak denote the event that ‖x(k) − x�‖ ≤
ρ‖x(k−1) − x�‖. The overall success probability is

Pr

⎛

⎝
k0⋂

k=1

Ak

⎞

⎠ = Pr

⎛

⎝Ak0 |
k0−1⋂

k=1

Ak

⎞

⎠Pr

⎛

⎝
k0−1⋂

k=1

Ak

⎞

⎠ = · · · =
k0∏

k=1

Pr

⎛

⎝Ak |
k−1⋂

i=1

Ai

⎞

⎠ = (1 − δ)k0 ,

since for every k, the conditional probability of a successful update x(k+1), given the
past successful iterations {xi }ki=1, is 1 − δ. ��

If the Hessian approximation accuracy increases as the iterations progress, we can
also obtain Q-superlinear rate. In fact, it seems reasonable to expect that the rate
at which the Hessian estimation accuracy increases, determines the actual rate of
Q-superlinear convergence. To verify this, Theorems 7 and 8 consider, respectively,
geometric and logarithmic increase in the Hessian approximation accuracy. These,
in turn, give rise to Q-superlinearly convergent iterates where the actual speed of
convergence from one iteration to the next increases, respectively, at geometric and
logarithmic rates; cf. ρ(k) in the definition of Q-superlinear convergence in Sect. 1.4.

Algorithm 4 Locally Superlinearly Convergent SSN with Hessian Sub-Sampling

1: Input: x(0), 0 < δ < 1, 0 < ε < 1, 0 < ρ < 1
2: for k = 0, 1, 2, · · · until termination do
3: - Set ε(k), for example as in Theorems 7 or 8
4: - Set the sample size, |S (k)|, with ε(k) and δ as in Lemma 2
5: - Select a sample set, S (k), of size |S (k)| and H(x(k)) as in (10)
6: - Update x(k+1) as in (2) with g(x(k)) = ∇F(x(k)), H(x(k)), and αk = 1
7: end for

Theorem 7 (Q-superlinear convergence of Algorithm 4: geometric growth) Let the
assumptions of Theorem6hold.UsingAlgorithm4, with ε(k) = ρkε, k = 0, 1, . . . , k0,
if x(0) satisfies (22) with ρ, ρ0, and ξ (0), we get Q-superlinear convergence
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‖x(k) − x�‖ ≤ ρk‖x(k−1) − x�‖, k = 1, . . . , k0, (24)

with probability (1 − δ)k0 , where ξ (0) is as in (21b) with ε(0).

Proof Theorem 5, for each k, gives ‖x(k+1)−x�‖ ≤ ρ
(k)
0 ‖x(k)−x�‖+ξ (k)‖x(k)−x�‖2,

where ρ
(k)
0 and ξ (k) are as in (21b) using ε(k). Note that, by ε(k) = ρkε and ε set as in

Theorem 6, it follows that ρ
(0)
0 ≤ ρ0, ρ

(k)
0 ≤ ρkρ0, and ξ (k) ≤ ξ (k−1). We prove the

result by inductionon k.DefineΔk � x(k)−x�. For k = 0, by assumptions onρ,ρ0, and
ξ (0), we have ‖Δ1‖ ≤ ρ

(0)
0 ‖Δ0‖+ξ (0)‖Δ0‖2 ≤ ρ0‖Δ0‖+ξ (0)‖Δ0‖2 ≤ ρ‖Δ0‖. Now

assume that (24) holds up to the iteration k. For k + 1, we get ‖Δk+1‖ ≤ ρ
(k)
0 ‖Δk‖ +

ξ (k)‖Δk‖2 ≤ ρkρ0‖Δk‖ + ξ (k)‖Δk‖2 ≤ ρkρ0‖Δk‖ + ξ (0)‖Δk‖2. By induction
hypothesis, we have ‖Δk−1‖ ≤ ‖Δ0‖, and ‖Δk‖ ≤ ρk‖Δk−1‖ < ρk(ρ − ρ0)/ξ

(0),
hence it follows that ‖Δk+1‖ ≤ ρk+1‖Δk‖. ��
Theorem 8 (Q-superlinear convergence of Algorithm 4: logarithmic growth) Let
Assumptions (6) and (7) hold. Using Algorithm 4with ε(k) = 1/(1+2 ln(4+k)), k =
0, 1, . . . , k0, if x(0) satisfies ‖x(0)−x�‖ ≤ 2γ /((1 + 4 ln(2)) L), we get Q-superlinear
convergence

‖x(k) − x�‖ ≤ 1

ln(3 + k)
‖x(k−1) − x�‖, k = 1, . . . , k0, (25)

with probability (1 − δ)k0 .

Proof By the choice of ε(k) in (21b), we have ρ
(k)
0 = 1/(2 ln(4 + k)), and as before

ρ
(k)
0 < ρ

(k−1)
0 and ξ (k) ≤ ξ (k−1). We again prove the result by induction on k. For

k = 0, by assumptions on x(0) and the choice of ε(0), we have ‖Δ1‖ ≤ ρ
(0)
0 ‖Δ0‖ +

ξ (0)‖Δ0‖2 = ‖Δ0‖/(2 ln(4)) + ξ (0)‖Δ0‖2 ≤ ‖Δ0‖/ ln(4). Now assume that (25)
holds up to the iteration k. For k + 1, we get

‖Δk+1‖ ≤ ρ
(k)
0 ‖Δk‖ + ξ (k)‖Δk‖2 ≤ ‖Δk‖/(2 ln(4 + k)) + ξ (k)‖Δk‖2. (26)

Now considerφ(x) = ln(4 + x)/ln(3 + x). Sinceφ(0) < 2 ln(2) and dφ(x)/dx < 0,
∀x ≥ 0, i.e., φ(x) is decreasing, it follows that ln(4+ k) ≤ 2 ln(2) ln(3+ k), ∀k ≥ 0.
Since ln(3 + k) ≥ 1, we get (1 + 2 ln(4 + k)) ≤ ln(3 + k) (1 + 4 ln(2)). By
induction hypothesis, we have ‖Δk−1‖ ≤ ‖Δ0‖, and so ‖Δk‖ ≤ ‖Δk−1‖/ ln(3 +
k) < 2γ /(ln(3 + k) (1 + 2 ln(4)) L), which by above implies that ‖Δk‖ ≤
2γ /((1 + 2 ln(4 + k)) L) = 1/(2 ln(4 + k)ξ (k)). As a result, from (26), we get
‖Δk+1‖ ≤ ‖Δk‖/(ln(4 + k)). ��

Theorems 7 and 8 require that the sample-sizes increase across iterations at some
prescribed rates. Consequently, sooner or later, onewill require sample sizes that are of
the same order as n. In this light, the results of Theorems 7 and 8 are more applicable
in early stages of the algorithms where the samples sizes are small (relative to n).
However, sub-sampling, even if done at intermediary steps and prior to switching to

123



Sub-sampled Newton methods 315

a full algorithm, can still offer valuable computational savings, e.g., see [36,37] and
references therein for hybrid approaches to solve large-scale inverse problems.

Inexact update We now consider the unconstrained case, where D = C = R
p, and

study iterations generated by inexact solutions to (2a) with α = 1, i.e., x(k+1) =
x(k) + pk , where pk is as in (15a). In Theorem 2, we showed that a reasonably mild
inexactness condition on θ1 still gives a globally convergent method with convergence
rate similar to that of the method with exact update (13a). We now show that similar
inexactness condition is, indeed, sufficient to also guarantee a problem-independent
local Q-linear convergence rate.

Theorem 9 (Q-Linear convergence of Algorithm 3: inexact update) Let Assump-
tions (6) and (7) hold and D = C = R

p. Consider any 0 < ρ0 < ρ < 1 and

θ1 ≤ ρ0
√

(1 − ε)/4κ̃ .

Consider Algorithm 3 with inexact update (15a) in place of (13a), and ε ≤
ρ0/(2 + ρ0). Further assume that, to solve (15a), we use CG initialized at zero. Then
if (22) holds, we get Q-linear convergence as in (23), with probability (1 − δ)k0 .

Proof For such inexact iterationwe have ‖x(k+1)−x�‖ = ‖x(k)+pk−p�
k+p�

k−x�‖ ≤
‖pk−p�

k‖+‖Δk+1‖ ≤ ‖pk−p�
k‖+ρ0‖x(k)−x�‖+ξ‖x(k)−x�‖2, whereΔk+1, ρ0, and

ξ are as in Lemma 4 and p�
k is the exact solution, i.e., p

�
k = −[H(x(k))]−1∇F(x(k)).

Recall that by Lemma 2, with high probability, we have vT H(x(k))v ≥ (1− ε)γ ‖v‖2.
Now, CG with p(0)

k = 0, gives

‖p(t)
k − p�

k‖ ≤ 2√
(1 − ε)γ

(√
κ̃/(1 − ε) − 1√
κ̃/(1 − ε) + 1

)t
‖p�

k‖H(x(k)),

where p(t)
k is the t th iterate of CG, κ̃ is as in (9c), and ‖p‖A = √pT Ap. We

have ‖p�
k‖H(x(k)) =

√
∇F(x(k))T [H(x(k))]−1∇F(x(k)) ≤ ‖∇F(x(k))‖/√(1 − ε)γ .

By (6b), ‖∇F(x(k))‖ = ‖∇F(x(k)) − ∇F(x�)‖ ≤ K‖x(k) − x�‖. Hence,

‖p(t)
k − p�

k‖ ≤ 2

(1 − ε)
κ

(√
κ̃/(1 − ε) − 1√
κ̃/(1 − ε) + 1

)t
‖x(k) − x�‖,

where κ is as in (8). Now t as in (16) gives ‖p(t)
k −p�

k‖ ≤ θ1κ‖x(k)−x�‖/(√(1 − ε)κ̃).

The assumption on θ1, and noting κ ≤ κ̃ , implies ‖p(t)
k −p�

k‖ ≤ ρ0‖x(k) −x�‖/2. The
rest of the proof follows by assumption on ε and similar to Theorem 6. ��

3.2.2 Local convergence: sub-sampled Hessian and gradient

We now study (2) with both Hessian and gradient sub-sampling. We consider the
setting where the gradient and Hessian are sub-sampled independently of each other.
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The alternative is to use the same collection of indices and perform simultaneous
sub-sampling for both. This latter case is not considered here, as in our opinion and
experience, it does not seem to offer any practical and theoretical advantages.

We now present Lemma 5, as a structural lemma, followed by our main theorems.

Lemma 5 (Structural LemmaB) Let Assumptions (7) and (20) hold. For the update (2)
with αk = 1, H(x(k)) and g(x(k)) as in (10) and (11), respectively, we have ‖x(k+1) −
x�‖ ≤ η + ρ0‖x(k) − x�‖ + ξ‖x(k) − x�‖2, where ρ0, ξ are as in Lemma 4 and
η = ‖∇F(x(k)) − g(x(k))‖K /λKmin(H(x(k))), with ‖v‖K as in (4).

Proof The result follows as in the proof of Lemma 4, and using the identity g(x(k)) =
g(x(k)) − ∇F(x(k)) + ∇F(x(k)), and noting that |ΔT

k+1(g(x
(k)) − ∇F(x(k)))| ≤

‖g(x(k)) − ∇F(x(k))‖K ‖Δk+1‖, simply follows from the definition of ‖.‖K in (4).
��

Theorem 10 (Error recursion of (2) with g(x(k)) and H(x(k))) Let Assumptions (6)
and (7) hold, and let 0 < δ, ε1, ε2 < 1 be given. Set |SH | as in Lemma 2 with (ε1, δ)

and |Sg| as in Lemma 3 with (ε2, δ) and G(x(k)). Independently, chooseSH andSg,
and let H(x(k)) and g(x(k)) be as in (10) and (11), respectively. For the update (2)
with αk = 1, with probability (1− δ)2 we have ‖x(k+1) − x�‖ ≤ η + ρ0‖x(k) − x�‖ +
ξ‖x(k) −x�‖2, where η = ε2/((1−ε1)γ ), ρ0 = ε1/(1−ε1), and ξ = L/(2(1−ε1)γ ).

Similar to Theorem 5, the bounds given here exhibit a composite behavior where the
error is, at first, dominated by a quadratic term, which transitions to a linear term, and
finally is dominated by the approximation error in the gradient. R-linear convergence
of Algorithms 5 is given in Theorem 11.

Algorithm 5 Locally Linearly Convergent SSN with Hessian and Gradient Sub-Sampling

1: Input: x(0), 0 < δ < 1, 0 < ε1 < 1, 0 < ε2 < 1 and 0 < ρ < 1
2: - Set the sample size, |SH |, with ε1 and δ as in Lemma 2
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, SH , of size |SH | and form H(x(k)) as in (10)

5: - Set ε(k)
2 = ρkε2

6: - Set the sample size, |S (k)
g |, with ε

(k)
2 , δ and x(k) as in Lemma 3 with G(x(k))

7: - Select a sample set, S (k)
g of size |S (k)

g | and form g(x(k)) as in (11)

8: - Update x(k+1) as in (2) with H(x(k)), g(x(k)) and αk = 1
9: end for

Theorem 11 (R-linear convergence of Algorithm 5) Let Assumptions (6) and (7) hold.
Consider any 0 < ρ, ρ0, ρ1 < 1 such that ρ0 + ρ1 < ρ. Let ε1 ≤ ρ0/(1 + ρ0), and
define c � 2

(
ρ − (ρ0 + ρ1)

)
(1 − ε1)γ /L. Using Algorithm 5with ε2 ≤ (1−ε1)γρ1c,

if the initial iterate, x(0), satisfies ‖x(0) − x�‖ ≤ c, we get R-linear convergence

‖x(k) − x�‖ ≤ cρk, (27)

with probability (1 − δ)2k .
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Proof Using Theorem 10, the particular choice of ε1 and ε
(k)
2 = ρkε2, for each k,

gives ‖x(k+1) − x�‖ ≤ η(k) + ρ0‖x(k) − x�‖ + ξ‖x(k) − x�‖2, where η(k) = ρη(k−1)

and η(0) ≤ ρ1c. We prove the result by induction on k. Define Δk � x(k) − x�. For
k = 0, by the assumption on x(0) and the definition of c = (ρ − (ρ0 + ρ1)

)
/ξ , we have

‖Δ1‖ ≤ η(0) + ρ0‖Δ0‖ + ξ‖Δ0‖2 ≤ ρ1c + ρ0c + ξc2 = ρc. Now assume that (27)
holds for k. For k + 1, we get ‖Δk+1‖ ≤ η(k) + ρ0‖Δk‖ + ξ‖Δk‖2 = ρkη(0) +
ρ0‖Δk‖ + ξ‖Δk‖2 ≤ ρkρ1c + ρ0ρ

kc + ξρ2kc2 ≤ ρk
(
ρ1c + ρ0c + ξc2

) = ρk+1c,
where the first and the second inequalities follow, respectively, from the induction
hypothesis and ρ < 1, and the final equality is by definition of c. ��

Theorem 11 implies that, to get linear convergence rate, estimation of the gradient
must be done, progressively, more accurately, whereas the sample size for the Hessian
can remain unchanged across iterations. This is in line with the common knowledge
where, as the iterations get closer to the optimal solution, the accuracy of the gradient
estimation is more important than that of the Hessian.

Similar to Theorem 9, it is possible to obtain results for a variant of Algorithm 5
with inexact updates. We simply state the following result and we omit the proof.

Theorem 12 (R-linear convergence of Algorithm 5: inexact update) Let Assump-
tions (6) and (7) hold and D = C = R

p. Consider any 0 < ρ, ρ0, ρ1 < 1 such
that ρ0 + ρ1 < ρ and

θ1 ≤ ρ0
√

(1 − ε)/4κ̃ .

Let ε1 ≤ ρ0/(2 + ρ0), define c � 2
(
ρ − (ρ0 + ρ1)

)
(1 − ε1)γ /L and set ε2 ≤ (1 −

ε1)γρ1c. Consider Algorithm 5 with inexact update (19) in place of (18a) and, assume
that, to solve (19), we use CG initialized at zero. If ‖x(0) − x�‖ ≤ c, we get locally
R-linear convergence as in (27), with probability (1 − δ)2k .

3.3 Putting it all together

Theorem 1 guarantees the global convergence of Algorithm 1 with a linear rate that
depends on the problem specific quantities i.e., κ and κ̃ . However, by Theorem 6, the
locally linear convergence rate of such SSN variant with αk = 1 is indeed problem-
independent. In fact, it is possible to combine both results to show that Algorithm 1 is
globally convergent with a (super)linear and problem-independent local rate. We also
show that after certain number of iterations, Armijo line search automatically adopts
the natural step size of the classical Newton’s method, i.e., αk = 1, for all subsequent
iterations. We note that here, we give unifying results for the case of exact update.
Since the extensions to inexact updates is done similarly, we omit the details.

Theorem 13 (Global convergence of Algorithm 1 with problem-independent local
rate) Let Assumptions (6) and (7) hold, and consider any 0 < ρ0 < ρ < 1. Using
Algorithm 1 with any x(0) ∈ R

p,

ε ≤ min
{
(1 − 2β)/(2(1 − β)), ρ0/(4(1 + ρ0)

√
κ1)
}
,
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and 0 < β < 1/2, after at most k ∈ O(κκ̃/(1−ε)) iterations, with probability (1−δ)k

we get problem-independent Q-linear convergence, i.e., ‖x(k)−x�‖ ≤ ρ‖x(k−1)−x�‖,
where κ , κ1 and κ̃ are defined in (8), (9a) and (9c), respectively. Moreover, the step
size of αk = 1 is selected in (13b) for all subsequent iterations.

Proof The choice of ε is tomeet a requirement of Theorem 6 and account for the differ-
ences between Lemmas 1 and 2. The rest of the proof follows similar line of reasoning
as in [6, Section 9.5.3]. Define xα = x(k) + αpk . By (7), we get pTk (∇2F(xα) −
∇2F(x(k)))pk ≤ αL‖pk‖3, which, gives pTk ∇2F(xα)pk ≤ pTk ∇2F(x(k))pk +
αL‖pk‖3. Defining F̂(α) � F(x(k) + αpk), we get F̂

′′
(α) ≤ F̂

′′
(0) + αL‖pk‖3.

Integrating this inequality gives F̂
′
(α) ≤ F̂

′
(0)+α F̂

′′
(0)+α2L‖pk‖3/2. Integrating

again yields F̂(α) ≤ F̂(0) + α F̂
′
(0) + α2 F̂

′′
(0)/2+ α3L‖pk‖3/6. We also have that

‖pk‖2 = ‖[H(x(k))]−1∇F(x(k))‖2 ≤ ∇F(x(k))T [H(x(k))]−1∇F(x(k))/((1− ε)γ ). In
addition, we get F̂

′
(0) = pTk ∇F(x(k)) = −∇F(x(k))T [H(x(k))]−1∇F(x(k)) and

F̂
′′
(0) = pTk ∇2F(x(k))pk = ∇F(x(k))T [H(x(k))]−1∇2F(x(k))[H(x(k))]−1∇F(x(k))

≤ ∇F(x(k))T [H(x(k))]−1∇F(x(k))/(1 − ε).

For the last inequality, recall that by the choice of ε and Lemma 2, we have ‖H(x(k))−
∇2F(x(k))‖ ≤ εγ . Hence, for any v, we get

vT [H(x(k))]−1∇2F(x(k))[H(x(k))]−1
v − vT [H(x(k))]−1

v ≤ εγ vT [H(x(k))]−2v

≤ εvT [H(x(k))]−1
v/(1−ε).

This latter inequality in turn gives

vT [H(x(k))]−1∇2F(x(k))[H(x(k))]−1
v ≤ vT [H(x(k))]−1

v/(1 − ε).

Hence, with α = 1 and denoting c(x) � ∇F(x)T [H(x)]−1∇F(x), we have

F(x(k) + pk) ≤ F(x(k)) +
(

1

2(1 − ε)
− 1

)
c(x(k)) + L

6

(
1

(1 − ε)γ
c(x(k))

)3/2

≤ F(x(k)) + c(x(k))

(
1

2(1 − ε)
− 1 + L

6

(
1

(1 − ε)γ

)3/2
c(x(k))1/2

)
.

From c(x) ≤ ‖∇F(x)‖2/((1 − ε)γ ), we see that if

‖∇F(x(k))‖ ≤ 3(1 − ε)γ 2(1 − 2ε − 2(1 − ε)β
)
/L, (28)

then we get F(x(k) +pk) ≤ F(x(k))−β∇F(x(k))T [H(x(k))]−1∇F(x(k)) = F(x(k))+
βpTk ∇F(x(k)), which implies that (13b) is satisfied with α = 1.

The proof is complete if we can find k such that both the sufficient condition of
Theorem6 aswell as (28) is satisfied. First, note that fromTheorem1,Assumption (6b)
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and the iteration-independent lower bound on αk , we get ‖∇F(x(k))‖2 ≤ 2K (1 −
ρ̂)k(F(x(0)) − F(x�)), where ρ̂ = 4β(1 − β)(1 − ε)/(κ̃κ). In order to satisfy (28),
we require that

2K (1−ρ̂)k(F(x(0)) − F(x�))≤4L−2(1 − ε)2γ 4(1 − 2ε − 2(1 − ε)β
)2

(ρ1 − ρ0)
2,

which is satisfied as long as k ∈ Ω(κκ̃/(1 − ε)). From Theorem 1 and Assump-
tion (6b),we get ‖x(k) − x�‖2 ≤ 2(1 − ρ̂)k(F(x(0)) − F(x�))/γ , which implies that

‖x(k) − x�‖2 ≤ 4(1 − ε)2γ 3(1 − 2ε − 2(1 − ε)β
)2

(ρ1 − ρ0)
2/(K L2)

≤ 4L−2(1 − ε)2γ 2(ρ1 − ρ0)
2.

Hence, the condition of Theorem 6 holds and the results follow. ��
Note that the ε required by Theorem 13 implies a sample size of Õ(κ2

1 ). It is also
possible to obtain a globally convergent algorithm with locally superlinear rate of
convergence using Algorithm 1 with iteration dependent ε̂(k) as ε̂(k) ≤ ε(k)/(4

√
κ1),

where ε(k) is chosen as in Theorems 7 or 8. The details are similar to Theorem 13 and
are omitted here.

We now give similar results for Algorithm 2.

Theorem 14 (Global convergence of Algorithm 2 with problem-independent local
rate) Let Assumptions (6) and (7) hold. Consider any 0 < ρ0, ρ1, ρ2 < 1 such that
ρ0 + ρ1 < ρ2, β ≤ 1/2, σ ≥ 4κ̃/(1 − β), and

ε1 ≤ min
{
(1 − 2β)/(2(1 − β)), ρ0/(4(1 + ρ0)

√
κ1)
}
,

ε
(0)
2 ≤

{
εγ 2/(L

√
κ̃), If γ 2 ≤ L

√
κ̃,

εL
√

κ̃/γ 2, Otherwise,

ε
(k)
2 = ρ2ε

(k−1)
2 , k = 1, 2, . . . ,

where ε ≤ (1 − ε1)
2(1 − 2ε1 − 2(1 − ε1)β)2ρ1(ρ2 − (ρ0 + ρ1))/3. Using Algo-

rithm 2 with any x(0) ∈ R
p and Step 7 replaced by ‖g(x(k))‖ < σ

√
ρk
2ε, after at most

k0 ∈ O(κκ̃/(1 − ε1)) iterations, we have the following with probability (1 − δ)2k for

k ≥ k0: if “STOP”, then ‖∇F(x(k))‖ < (1 + σ)

√
ρk
2ε, otherwise, we get problem-

independent R-linear convergence, i.e., ‖x(k) − x�‖ ≤ cρ(k−k0)
2 , where c is as defined

in Theorem 11. Moreover, αk = 1 is selected in (18b) for all subsequent iterations.

Proof The choice of ε1 and ε
(k)
2 is to meet a requirement of Theorem 11 and account

for the differences between Lemma 1 and 2. As in the proof of Theorem 13, we
get F̂(α) ≤ F̂(0) + α F̂

′
(0) + α2 F̂

′′
(0)/2 + α3L‖pk‖3/6. We also have ‖pk‖2 =

‖[H(x(k))]−1
g(x(k))‖2 ≤ g(x(k))T [H(x(k))]−1

g(x(k))/
(
(1− ε1)γ

)
. By self-duality of

the vector �2 norm, i.e., ‖v‖2 = sup{wT v; ‖w‖2 = 1}, and ‖∇F(x(k)) − g(x(k))‖ ≤
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ε
(k)
2 , we get pTk ∇F(x(k)) ≤ pTk g(x

(k)) + ε
(k)
2 ‖pk‖, and so

F̂
′
(0) = pTk ∇F(x(k)) ≤ −g(x(k))T [H(x(k))]−1

g(x(k)) + ε
(k)
2 ‖pk‖.

As in the proof of Theorem 13, we also have

F̂
′′
(0) = pTk ∇2F(x(k))pk ≤ g(x(k))T [H(x(k))]−1

g(x(k))/(1 − ε1).

Hence, with α = 1 and denoting h(x) � g(x)T [H(x)]−1
g(x), we get

F(xα) ≤ F(x(k)) +
( 1

2(1 − ε1)
− 1
)
h(x(k)) + L

6

( h(x(k))

(1 − ε1)γ

)3/2 + ε
(k)
2

( h(x(k))

(1 − ε1)γ

)1/2

≤ F(x(k)) + h(x(k))

[
1

2(1 − ε1)
− 1 + L

6

(h(x(k))1/3

(1 − ε1)γ

)3/2 + ε
(k)
2

( h(x(k))
−1

(1 − ε1)γ

)1/2
]

≤ F(x(k)) + h(x(k))

[
1

2(1 − ε1)
− 1 + L‖g(x(k))‖

6(1 − ε1)
2γ 2 + ε

(k)
2

( κ̃‖g(x(k))‖−2

1 − ε1

)1/2
]

,

where the last inequality follows from ‖g(x)‖2/K̂|S | ≤ h(x) ≤ ‖g(x)‖2/((1−ε1)γ ).
Now denoting y � ‖g(x(k))‖ and A � L/(6(1− ε1)

2γ 2), B � 0.5/(1− ε1) − 1+ β,
and C � ε

(k)
2 (κ̃/(1− ε1))

1/2, we require that Ay2 + By + C ≤ 0. After a little bit of
algebra, the roots of this polynomial can be written as

y1, y2 = 3(1 − ε1)γ
2(1 − 2ε1 − 2(1 − ε1)β)

2L

±
√
9(1 − ε1)2γ 4(1 − 2ε1 − 2(1 − ε1)β)2 − 24(1 − ε1)3/2γ 2Lε

(k)
2 κ̃1/2

2L
.

Let us define q1(ε1, ε
(k)
2 , β, κ̃, L) � (q −√q2 − r)/(2L) and q2(ε1, ε

(k)
2 , β, κ̃, L) �

(q + √q2 − r)/(2L), where q � 3(1 − ε1)γ
2(1 − 2ε1 − 2(1 − ε1)β) and also

r � 24(1− ε1)
3/2γ 2Lε

(k)
2 κ̃1/2. It is easy to see that q1(ε1, ε

(k)
2 , β, κ̃, L) is increasing

with ε
(k)
2 and q1(ε1, 0, β, κ̃, L) = 0, while q2(ε1, ε

(k)
2 , β, κ̃, L) is decreasing with ε

(k)
2

and also q2(ε1, 0, β, κ̃, L) is equal to the right hand side of (28). In order to ensure
that q1 and q2 are real, we also need to have ε

(k)
2 ≤ 3

√
(1 − ε1)γ

2(1 − 2ε1 − 2(1 −
ε1)β)2/(8L

√
κ̃). Now if

q1(ε1, ε
(k)
2 , β, κ̃, L) ≤ ‖g(x(k))‖ ≤ q2(ε1, ε

(k)
2 , β, κ̃, L), (29)

we get F(x(k) + pk) ≤ F(x(k)) − βg(x(k))T [H(x(k))]−1
g(x(k)) = F(x(k)) +

βpTk g(x
(k)), which implies that (18b) is satisfied with α = 1. The left hand side

of (29) is enforced by the stopping criterion of the algorithm as for any ε
(k)
2 ,
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q1(ε1, ε
(k)
2 , β, κ̃, L) ≤ σ

√
ε
(k)
2 . Indeed, from

√
q2 − r ≥ q − √

r , it implies that

q1(ε1, ε
(k)
2 , β, κ̃, L) ≤ √

r/(2L) ≤
√
6γ 2ρk

2ε
(0)
2 κ̃/(L

√
κ̃) =
√
6ρk

2εκ̃ ≤ σ

√
ρk
2ε.

The proof is complete if we can find k such that both the sufficient condition of
Theorem 11 as well as the right hand side of (29) is satisfied. First note that from
Theorem 3, Assumption (6b) and by using the iteration-independent lower bound
on αk , it follows that ‖∇F(x(k))‖2 ≤ 2K (1 − ρ̂)k(F(x(0)) − F(x�)), where ρ̂ =
8β(1 − β)(1 − ε1)/(9κ̃κ). If the stopping criterion succeeds, then since ε

(k)
2 ≤ 1, by

‖g(x(k))‖ ≥ ‖∇F(x(k))‖ − ε
(k)
2 , we get ‖∇F(x(k))‖ < (1 + σ)

√
ρk
2ε. Otherwise,

by ‖g(x(k))‖ ≤ ‖∇F(x(k))‖ + ε
(k)
2 ≤ ‖∇F(x(k))‖ +

√
ε
(k)
2 , we get (σ − 1)

√
ε
(k)
2 ≤

‖∇F(x(k))‖, which implies that ‖g(x(k))‖ ≤ σ‖∇F(x(k))‖/(σ − 1) ≤ 2‖∇F(x(k))‖.
Now, to satisfy the right hand side of (29), we require that

8K (1 − ρ̂)k(F(x(0)) − F(x�)) ≤ 16(ρ2 − (ρ0 + ρ1))
2q22 (ε1, ε

(k)
2 , β, κ̃, L)/9,

which is satisfied as long as k ∈ Ω(κκ̃/(1 − ε1)). Again, from Theorem 3 and
Assumption (6b), we get ‖x(k) − x�‖2 ≤ 2(1 − ρ̂)k(F(x(0)) − F(x�))/γ , which
implies that

‖x(k) − x�‖2 ≤ 16(ρ2 − (ρ0 + ρ1))
2q22 (ε1, ε

(k)
2 , β, κ̃, L)

36γ K

≤ 4(ρ2 − (ρ0 + ρ1))
2(1 − ε1)

2γ 4(1 − 2ε1 − 2(1 − ε1)β)2

γ K L2

≤ 4(ρ2 − (ρ0 + ρ1))
2(1 − ε1)

2γ 2

L2 = c2.

Hence, the sufficient condition of Theorem 11 is also satisfied. ��
Sampling complexities implied by Theorem 14 can be made more explicit as follows.
For simplicity, assume that ρ0 = ρ1 = 1/8, ρ2 = 1/2, γ 2 ≤ L

√
κ̃ and β ≤ 1/10,

for which we have (1 − ε1)
2(1 − 2ε1 − 2(1 − ε1)β)2 ≥ 1/4, ∀ε1 ≤ 1/10, i.e.,

ε ∈ O(1). Further, for G(x) in Lemma 3, assume that we have a uniform estimate as
G(x) ≤ G < ∞. The requirements on ε1 and ε

(k)
2 inTheorem14 imply |SH | ∈ Õ(κ2

1 ),

and |S (k)
g | ∈ Õ(4kG2L2κ̃/γ 4), respectively.

3.4 Comparison of computational complexities

We now present a brief overview of the computational complexities implied by the
main results of this paper. We consider both exact and inexact variants of all these
algorithms for unconstrained variant of (1), i.e.,D = C = R

p. For inexact solutions,
we consider the tolerances of θ1 ≤ √(1 − ε)/(4κ̃) and θ2 = 1/2 in (15) and (19). We
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Table 3 Complexity comparison of various Newton-type methods for unconstrained version of (1) to
achieve sub-optimality F(x(k)) − F(x�) ≤ ς for some ς ≤ 1. For step-size, we consider iterations with
the worst-case αk , as prescribed by the corresponding theorem. The notation Õ implies hidden logarithmic
factors, e.g., ln(κ), ln(κ̃), ln(p), and ln(1/δ). Constants γ, κ, κ̃ and κ1 are defined in Sect. 1.5. Also, ε is
the Hessian approximation accuracy parameter from Lemma 1. For G(x) in Lemma 3, we assume that we
have a uniform estimate as G(x) ≤ G < ∞

Table 4 Complexity comparison of various Newton-type methods for unconstrained version of (1) to
achieve sub-optimality ‖x(k)) − x�‖ ≤ ς for some ς ≤ 1, assuming x(0) is close enough to x�. For the
local convergence rate as in (23) and (27), we set ρ = 1/e, where e is the Euler’s number. The notation
Õ implies hidden logarithmic factors, e.g., ln(κ), ln(κ̃), ln(p), and ln(1/δ). Constants γ, κ, κ̃ and κ1 are
defined in Sect. 1.5. Also, ε is the Hessian approximation accuracy parameter from Lemma 2. For G(x) in
Lemma 3, we assume that we have a uniform estimate as G(x) ≤ G < ∞

assume that the cost of one Hessian-vector product is of the same order as evaluating a
gradient, e.g, [20,34–36,42]. From Tables 3 and 4, the overall worst-case running-time
of an algorithm to achieve the prescribed sub-optimality is estimated as

(
Column #2+

Column #3 × Column #4
) × Column #5. We remind that the complexity results for

the proposed algorithms in Tables 3 and 4 are given assuming that the underlying
probabilistic events occur successfully over the required finite number of iterations to
achieve the desired sub-optimality.
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In Tables 3 and 4, ε is the Hessian approximation accuracy parameter from Lem-
mas 1 and 2. As for the overall failure probability, recall that in order to get an
accumulative success probability of 1 − δ0 for k ∈ O(T ) iterations, the per-iteration
failure probability is set as δ = 1− T

√
(1 − δ0) ∈ Ω(δ0/T ). Since the overall iteration

complexity is affected by ε (see Table 3), the per-iteration failure probability, δ, should
also be chosen in relation to ε (of course, the overall failure probability, δ0, can be cho-
sen arbitrarily). However, since this dependence manifest itself only logarithmically,
it is of negligible consequence in overall complexity.

Here, we only compare worst-case complexities of the algorithms studied in this
paper with their deterministic counterparts, i.e., Newton’s method; see e.g., [5,42] for
tables which include complexities of other methods. We note that these complexities
are, not only, for worst-case analysis, but also they are very pessimistic. For example,
the worst-case complexity required to incorporate gradient sub-sampling might give
the impression that such sampling is advantageous merely in some marginal cases.
However, this unfortunate impression is a by-product of our analysis more so than it is
an inherent property of an algorithm that incorporates gradient sampling. In this light,
any conclusions from these tables should be made with great care.

Table 3 gives complexities involved in various algorithms for achieving sub-
optimality in objective value, i.e., F(x(k)) − F(x�) ≤ ς for some ς ≤ 1. We consider
complexity of iterations with the worst-case step-size, αk , as prescribed by the cor-
responding theorem, which alleviates the need to perform line-search. One can make
several observations regarding Table 3. As expected, it is advisable to perform gra-
dient and Hessian sub-sampling only when n � 1; Table 3, very pessimistically,
suggests that gradient and Hessian sub-sampling offer computational savings when
n ≥ G2κ̃2/(ςγ ) and n ≥ κ1ε

−2, respectively. Also, if n ∈ O(κ1ε
−2 p), then one

can consider using the full gradient. Notice that, as expected, gradient sampling com-
plexity depends on the sub-optimality parameter ς . Uniform sampling gives similar
worst-case iteration complexity as classical Newton’s method only if κ̃ ∈ O(κ), where
κ and κ̃ are as in (8) and (9c), respectively. Otherwise, if problem admits favorable
structure, non-uniform sampling can offer better iteration complexity than uniform
sampling; see [42]. From Table 3, one can make comparisons among these methods
in terms of total worst-case running-time. For example, if n ≤ κ1κ̃/(ε2(1 − ε)κ),
then the exact variant of Newton’s method, has lower worst-case running-time than
Algorithm 1 using (13a), i.e., Hessian sub-sampling might not help!

Table 4 gives similar results to achieve sub-optimality in iterates, i.e., ‖x(k) −x�‖ ≤
ς for some ς ≤ 1. For this. we assume that x(0) is close enough to x�, and the local
convergence rates in (23) and (27) are set to ρ = 1/e, where e is the Euler’s number.
Although, Newton-CG can be made super-linearly convergent [17], in Table 4, for
simplicity, we also do not consider super-linearly convergent algorithms. As a result,
computational costs of Algorithms 4 is not considered. In Step 5 of Algorithm 5,
the gradient accuracy is increased at every iteration. Hence, to calculate the gradient
sampling complexity in Table 4, we consider the accuracy at the final iteration, i.e.,
ε
(k)
2 for k ∈ O(ln(1/ς)). From Table 4, one can also make similar observations.
In Table 3, there is a noteworthy trade-off in choosing ε in terms of its effect on

sampling and iteration complexities. Indeed, smaller ε yields larger samples but this,
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in turn, not only implies fewer iterations of CG (if (2a) is solved inexactly), but also
it involves fewer overall iterations to achieve a desired sub-optimality. More subtly,
if the distribution of Hessians are very skewed and we perform sampling without
replacement, decreasing ε would also decrease κ̃ , which helps with many aspects of
underlying complexities. For local convergence, however, as indicated by Table 4,
as long as ε is chosen small enough (so we can appeal to the corresponding theo-
rems), overall iteration complexity is unaffected by ε (this is indeed implied by the
problem-independent local rates); although there is still a trade-off between sampling
complexity and CG iterations.

From Tables 3 and 4, it is also clear that in the absence of a good preconditioner, if
κ̃ ≥ (1 − ε)p2, solving (2a) exactly can be potentially more efficient than resorting
to any inexact method.

4 Conclusions and further thoughts

Our primary objective herewas to contribute in painting amore complete picture of the
theory of sub-sampled Newton-type algorithms. For that, we considered large-scale
optimization problems of the form (1) where n, p � 1, and we theoretically studied
the global as well as local convergence behavior of Newton-type algorithms, where
the Hessian and/or gradient are sub-sampled. We studied sub-sampling strategies to
obtain an algorithm which enjoys desirable theoretical properties, in that, not only
it is globally convergent, but also it enjoys a fast and problem-independent local
convergence rate. We also showed that when the sub-problem is solved approximately
to a milder inexactness tolerance than what is found in the similar literature, we can
maintain the convergence properties of the methods with exact updates.

An important distinction of the “high-probability” style of analysis from classical
convergence results is that, here, no sensible statement about the asymptotic conver-
gence of an infinite sequence of these random iterates can be made. More specifically,
it is clear that the overall success probability for T iterations, each having failure
probability of δ is (1 − δ)k . Now for an infinite number of iterations, i.e., k → ∞,
this probability goes to zero, implying that, regardless of how small δ is chosen, at
some point along the way, the Hessian and/or gradient approximations fail to deliver
the desired estimates. Arguably, this can be regarded as a disadvantage for such style
of analysis. However, in practice, one almost always terminates the iterations either if
a certain algorithmic condition is met or after a pre-prescribed maximum number of
iterations is reached. In this case, the overall failure probability can be set as small as
desired to fit one’s required level of confidence.

Even in a finite number of iterations, one might still wonder what can happen when,
at any one iteration, sub-sampled approximations fail to deliver the required properties,
i.e., when the “good” probabilistic events do not occur. After all, regardless of how
small δ is, there is always a positive probability that “bad” events happen. Fortunately,
the algorithms incorporating line-search are inherently resilient to misestimation of
the Hessian. More specifically, if at some point the sub-sampled Hessian fails to sat-
isfy the invertibility promised by Lemma 1, then Algorithms 1 or 2 do not fail, e.g.,
do not diverge. In such as an unfortunate situation where the sub-sampled Hessian
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contains a non-trivial null-space, (augmented) CG algorithm [23,24] can reliably be
used to either find a solution of the underlying linear system (a solution exists when
the gradient is orthogonal to the null space of Hessian) or the corresponding pseudo-
inverse solution. In either case, since the sub-sampled matrix is positive semi-definite,
even if the obtained direction cannot not yield a sufficient decrease in the objective
function, it will certainly not cause an increase, and with high probability, in the very
next iteration, the algorithm will recover from such a stall. Misestimation of the gra-
dient at any step, however, can be quite serious and result in divergence. In this case,
additional safeguards needs to be put in place to avoid such unwanted behavior, e.g.,
restarting from the previous iterate if the objective is to increase. Investigating alter-
native strategies to line-search, e.g., trust-region [13], which can potentially provide
more robustness to such misestimations is an interesting direction for future research.

Finally, an alternative to the high-probability style of analysis considered here, is
the convergence in expectation, e.g., [5], which has the advantage of giving asymptotic
results. However, convergence in expectation has its own disadvantages among which,
to interpret the results, it is implied that onemust run the algorithm (possibly infinitely)
many times, and then average all the outcomes. In other words, unlike high-probability
analysis, convergence in expectation provides no statement on the results of individual
runs. We believe that these two styles of analysis are, not only, related in many ways,
but also they are complementary and, together, can paint amuchmore complete picture
of the behavior of these randomized algorithms.

References

1. Agarwal, N., Bullins, B., Hazan, E.: Second order stochastic optimization in linear time. arXiv preprint
arXiv:1602.03943 (2016)

2. Berahas, A.S., Bollapragada, R., Nocedal, J.: An investigation of Newton-sketch and subsampled
Newton methods. arXiv preprint arXiv:1705.06211 (2017)

3. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
4. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)
5. Bollapragada, R., Byrd, R., Nocedal, J.: Exact and inexact subsampled Newton methods for optimiza-

tion. arXiv preprint arXiv:1609.08502 (2016). (To appear in IMA Journal of Numerical Analysis)
6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
7. Byrd, R.H., Chin, G.M., Neveitt, W., Nocedal, J.: On the use of stochastic Hessian information in

optimization methods for machine learning. SIAM J. Optim. 21(3), 977–995 (2011)
8. Byrd, R.H., Chin,G.M.,Nocedal, J.,Wu,Y.: Sample size selection in optimizationmethods formachine

learning. Math. Program. 134(1), 127–155 (2012)
9. Byrd, R.H., Nocedal, J., Oztoprak, F.: An inexact successive quadratic approximation method for

convex L-1 regularized optimization. arXiv preprint arXiv:1309.3529 (2013)
10. Cartis, C., Gould, N.I.M., Toint, PhL: On the complexity of steepest descent, Newton’s and regularized

Newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim. 20(6), 2833–
2852 (2010)

11. Cartis, C., Gould, N.I.M., Toint, Ph.L.: An example of slow convergence for Newton’s method on
a function with globally Lipschitz continuous Hessian. Technical report, ERGO 13-008, School of
Mathematics, Edinburgh University (2013)

12. Cohen, M.B., Lee, Y.T., Musco, C., Musco, C., Peng, R., Sidford, A.: Uniform sampling for matrix
approximation. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Sci-
ence, pp. 181–190. ACM (2015)

13. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust Region Methods. SIAM, Philadelphia (2000)
14. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2),

400–408 (1982)

123

http://arxiv.org/abs/1602.03943
http://arxiv.org/abs/1705.06211
http://arxiv.org/abs/1609.08502
http://arxiv.org/abs/1309.3529


326 F. Roosta-Khorasani, M. W. Mahoney

15. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices I: approximating
matrix multiplication. SIAM J. Comput. 36(1), 132–157 (2006)

16. Eisen, M., Mokhtari, A., Ribeiro, A.: Large scale empirical risk minimization via truncated adaptive
Newtonmethod. In: Proceedings of the Twenty-First International Conference onArtificial Intelligence
and Statistics, PMLR,vol. 84, pp. 1447–1455 (2018)

17. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci.
Comput. 17(1), 16–32 (1996)

18. Erdogdu, M.A., Montanari, A.: Convergence rates of sub-sampled Newton methods. Adv. Neural Inf.
Process. Syst. 28, 3034–3042 (2015)

19. Friedlander, M.P., Schmidt, M.: Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci.
Comput. 34(3), A1380–A1405 (2012)

20. Griewank, A.: Some Bounds on the Complexity of Gradients, Jacobians, and Hessians. Complexity in
Nonlinear Optimization, pp. 128–161. World Scientific Publisher, Singapore (1993)

21. Gross, D., Nesme, V.: Note on sampling without replacing from a finite collection of matrices. arXiv
preprint arXiv:1001.2738 (2010)

22. Haber, E., Chung, M.: Simultaneous source for non-uniform data variance and missing data. arXiv
preprint arXiv:1404.5254 (2014)

23. Hestenes, M.R.: Pseudoinversus and conjugate gradients. Commun. ACM 18(1), 40–43 (1975)
24. Hestenes, M.R.: Conjugate Direction Methods in optimization, vol. 12. Springer, Berlin (2012)
25. Holodnak, J.T., Ipsen, I.C.: Randomized approximation of the Gram matrix: exact computation and

probabilistic bounds. SIAM J. Matrix Anal. Appl. 36(1), 110–137 (2015)
26. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for minimizing composite func-

tions. SIAM J. Optim. 24(3), 1420–1443 (2014)
27. Liu, X., Hsieh, C.J., Lee, J.D., Sun, Y.: An inexact subsampled proximal Newton-type method for

large-scale machine learning. arXiv preprint arXiv:1708.08552 (2017)
28. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends® Mach. Learn. 3(2),

123–224 (2011)
29. Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of the 27th International

Conference on Machine Learning (ICML-10), pp. 735–742 (2010)
30. McCullagh, P., Nelder, J.A.: Generalized Linear Models, vol. 37. CRC Press, Boca Raton (1989)
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