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Abstract
We consider the problem of finding the minimizer of a convex functionF : Rd → R
of the form F (w) :=

∑n
i=1 fi(w) + R(w) where a low-rank factorization of

∇2fi(w) is readily available. We consider the regime where n� d. We propose
randomized Newton-type algorithms that exploit non-uniform sub-sampling of
{∇2fi(w)}ni=1, as well as inexact updates, as means to reduce the computational
complexity, and are applicable to a wide range of problems in machine learning.
Two non-uniform sampling distributions based on block norm squares and block
partial leverage scores are considered. Under certain assumptions, we show that
our algorithms inherit a linear-quadratic convergence rate in w and achieve a lower
computational complexity compared to similar existing methods. In addition, we
show that our algorithms exhibit more robustness and better dependence on problem
specific quantities, such as the condition number. We empirically demonstrate that
our methods are at least twice as fast as Newton’s methods on several real datasets.

1 Introduction
Many machine learning applications involve finding the minimizer of optimization problems of the
form

min
w∈C

F (w) :=

n∑
i=1

fi(w) +R(w) (1)

where fi(w) is a smooth convex function, R(w) is a regularizer, and C ⊆ Rd is a convex constraint
set (e.g., `1 ball). Examples include sparse least squares [21], generalized linear models (GLMs) [8],
and metric learning problems [12].

First-order optimization algorithms have been the workhorse of machine learning applications and
there is a plethora of such methods [3, 17] for solving (1). However, for ill-conditioned problems,
it is often the case that first-order methods return a solution far from w∗ albeit a low objective
value. On the other hand, most second-order algorithms prove to be more robust to such adversarial
effects. This is so since, using the curvature information, second order methods properly rescale
the gradient, such that it is a more appropriate direction to follow. For example, take the canonical
second order method, i.e., Newton’s method, which, in the unconstrained case, has updates of the
form wt+1 = wt − [H(wt)]

−1g(wt) (here, g(wt) and H(wt) denote the gradient and the Hessian
of F at wt, respectively). Classical results indicate that under certain assumptions, Newton’s method
can achieve a locally super-linear convergence rate, which can be shown to be problem independent!
Nevertheless, the cost of forming and inverting the Hessian is a major drawback in using Newton’s
method in practice. In this regard, there has been a long line of work aiming at providing sufficient
second-order information more efficiently, e.g., the classical BFGS algorithm and its limited memory
version [14, 17].

As the mere evaluation of H(w) grows linearly in n, a natural idea is to use uniform sub-sampling
{∇2fi(w)}ni=1 as a way to reduce the cost of such evaluation [7, 19, 20]. However, in the presence
of high non-uniformity among {∇2fi(w)}ni=1, the sampling size required to sufficiently capture the
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curvature information of the Hessian can be very large. In such situations, non-uniform sampling can
indeed be a much better alternative and is addressed in this work in detail.

In this work, we propose novel, robust and highly efficient non-uniformly sub-sampled Newton
methods (SSN) for a large sub-class of problem (1), where the Hessian of F (w) in (1) can be
written as H(w) =

∑n
i=1 A

T
i (w)Ai(w) + Q(w), where Ai(w) ∈ Rki×d, i = 1, 2, . . . , n,

are readily available and Q(w) is some positive semi-definite matrix. This situation arises very
frequently in machine learning problems. For example, take any problem where fi(w) = `(xTi w),
`(·) is any convex loss function and xi’s are data points. In such situations, Ai(w) is simply√
`′′(xTi w)xTi . Under this setting, non-uniformly sub-sampling the Hessians now boils down to

building an appropriate non-uniform distribution to sub-sample the most “relevant” terms among
{Ai(w)}ni=1. The approximate Hessian, denoted by H̃(wt), is then used to update the current iterate
as wt+1 = wt − [H̃(wt)]

−1g(wt). Furthermore, in order to improve upon the overall efficiency of
our SSN algorithms, we will allow for the linear system in the sub-problem to be solved inexactly,
i.e., using only a few iterations of any iterative solver such as Conjugate Gradient (CG). Such inexact
updates used in many second-order optimization algorithms have been well studied in [4, 5].

As we shall see (in Section 4), our algorithms converge much faster than other competing methods
for a variety of problems. In particular, on several machine learning datasets, our methods are at least
twice as fast as Newton’s methods in finding a high-precision solution while other methods converge
slowly. Indeed, this phenomenon is well supported by our theoretical findings—the complexity of
our algorithms has a lower dependence on the problem condition number and is immune to any
non-uniformity among {Ai(w)}ni=1 which may cause a factor of n in the complexity (Table 1).
In the following we present details of our main contributions and connections to other prior work.
Readers interested in more details should see the technical report version of this conference paper [23]
for proofs of our main results, additional theoretical results, as well as a more detailed empirical
evaluation.

1.1 Contributions and related work
Recently, within the context of randomized second order methods, many algorithms have been
proposed that aim at reducing the computational costs involving pure Newton’s method. Among
them, algorithms that employ uniform sub-sampling constitute a popular line of work [4, 7, 16, 22].
In particular, [19, 20] consider a more general class of problems and, under a variety of conditions,
thoroughly study the local and global convergence properties of sub-sampled Newton methods where
the gradient and/or the Hessian are uniformly sub-sampled. Our work here, however, is more closely
related to a recent work [18](Newton Sketch), which considers a similar class of problems and
proposes sketching the Hessian using random sub-Gaussian matrices or randomized orthonormal
systems. Furthermore, [1] proposes a stochastic algorithm (LiSSA) that, for solving the sub-problems,
employs some unbiased estimators of the inverse of the Hessian.

In light of these prior works, our contributions can be summarized as follows.

• For the class of problems considered here, unlike the uniform sampling used in [4, 7, 19, 20], we
employ two non-uniform sampling schemes based on block norm squares and a new, and more
general, notion of leverage scores named block partial leverage scores (Definition 1). It can be
shown that in the case of extreme non-uniformity among {Ai(w)}ni=1, uniform sampling might
require Ω(n) samples to capture the Hessian information appropriately. However, we show that our
non-uniform sampling schemes result in sample sizes completely independent of n and immune to
such non-uniformity.

• Within the context of globally convergent randomized second order algorithms, [4, 20] incorporate
inexact updates where the sub-problems are solved only approximately. We extend the study of
inexactness to our local convergence analysis.

• We provide a general structural result (Lemma 2) showing that, as in [7, 18, 19], our main algorithm
exhibits a linear-quadratic solution error recursion. However, we show that by using our non-
uniform sampling strategies, the factors appearing in such error recursion enjoy a much better
dependence on problem specific quantities, e.g., such as the condition number (Table 2). For
example, using block partial leverage score sampling, the factor for the linear term of the error
recursion (5) is of order O(

√
κ) as opposed to O(κ) for uniform sampling.

• We demonstrate that to achieve a locally problem independent linear convergence rate, i.e., ‖wt+1−
w∗‖ ≤ ρ‖wt−w∗‖ for some fixed ρ < 1, our algorithms achieve a lower per-iteration complexity
compared to [1, 18, 20] (Table 1). In particular, unlike Newton Sketch [18], which employs random
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Table 1: Complexity per iteration of different methods to obtain a problem independent local linear
convergence rate. The quantities κ, κ̂, and κ̄ are the local condition numbers, defined in (6), satisfying
κ ≤ κ̂ ≤ κ̄, at the optimum w∗. A is defined in Assumption A3 and sr(A) is the stable rank of A
satisfying sr(A) ≤ d. Here we assume ki = 1, C = Rd, R(w) = 0, and CG is used for solving
sub-problems in our algorithms.

NAME COMPLEXITY PER ITERATION REFERENCE

Newton-CG method Õ(nnz(A)
√
κ) [17]

SSN (leverage scores) Õ(nnz(A) logn+ d2κ3/2) This paper
SSN (row norm squares) Õ(nnz(A) + sr(A)dκ5/2) This paper
Newton Sketch (SRHT) Õ(nd(logn)4 + d2(logn)4κ3/2) [18]

SSN (uniform) Õ(nnz(A) + dκ̂κ3/2) [20]
LiSSA Õ(nnz(A) + dκ̂κ̄2) [1]

projections and fails to preserve the sparsity of {Ai(w)}ni=1, our methods indeed take advantage
of such sparsity. Also, in the presence of high non-uniformity among {Ai(w)}ni=1, factors κ̄ and
κ̂ (see Definition (6)) which appear in SSN (uniform) [19], and LiSSA [1], can potentially be as
large as Ω(nκ); see Section 3.5 for detailed discussions.

• We numerically demonstrate the effectiveness and robustness of our algorithms in recovering the
minimizer of ridge logistic regression on several real datasets (Figures 1 and 2). In particular, our
algorithms are at least twice as fast as Newton’s methods in finding a high-precision solution while
other methods converge slowly.

1.2 Notation and assumptions

Given a function F , the gradient, the exact Hessian and the approximate Hessian are denoted by g, H,
and H̃, respectively. Iteration counter is denoted by subscript, e.g., wt. Unless stated specifically, ‖ ·‖
denotes the Euclidean norm for vectors and spectral norm for matrices. Frobenius norm of matrices
is written as ‖ · ‖F . By a matrix A having n blocks, we mean that A has a block structure and can
be viewed as A =

(
AT

1 · · ·AT
n

)T
, for appropriate size blocks Ai. The tangent cone of constraint

set C at the optimum w∗ is denoted by K and defined as K = {∆|w∗ + t∆ ∈ C for some t > 0}.
Given a symmetric matrix A, the K-restricted minimum and maximum eigenvalues of A are defined,
respectively, as λKmin(A) = minx∈K\{0} x

TAx/xTx and λKmax(A) = maxx∈K\{0} x
TAx/xTx.

The stable rank of a matrix A is defined as sr(A) = ‖A‖2F /‖A‖22.We use nnz(A) to denote number
of non-zero elements in A.

Throughout the paper, we make use of the following assumptions:

A.1 Lipschitz Continuity: F (w) is convex and twice differentiable with L-Lipschitz Hessian, i.e.,
‖H(u)−H(v)‖ ≤ L‖u− v‖, ∀u,v ∈ C.

A.2 Local Regularity: F (x) is locally strongly convex and smooth, i.e., µ = λKmin(H(w∗)) >
0, ν = λKmax(H(w∗)) < ∞. Here we define the local condition number of the problem as
κ := ν/µ.

A.3 Hessian Decomposition: For each fi(w) in (1), define∇2fi(w) := Hi(w) := AT
i (w)Ai(w).

For simplicity, we assume k1 = · · · = kn = k and k is independent of d. Furthermore, we
assume that given w, computing Ai(w), Hi(w), and g(w) takesO(d),O(d2), andO(nnz(A))

time, respectively. We call the matrix A(w) =
(
AT

1 , . . . ,A
T
n

)T ∈ Rnk×d the augmented
matrix of {Ai(w)}. Note that H(w) = A(w)TA(w) + Q(w).

2 Main Algorithm: SSN with Non-uniform Sampling
Our proposed SSN method with non-uniform sampling is given in Algorithm 1. The core of our
algorithm is based on choosing a sampling scheme S that, at every iteration, constructs a non-uniform
sampling distribution {pi}ni=1 over {Ai(wt)}ni=1 and then samples from {Ai(wt)}ni=1 to form the
approximate Hessian, H̃(wt). The sampling sizes s needed for different sampling distributions will be
discussed in Section 3.2. Since H(w) =

∑n
i=1 A

T
i (w)Ai(w) + Q(w), the Hessian approximation

essentially boils down to a matrix approximation problem. Here, we generalize the two popular
non-uniform sampling strategies, i.e., leverage score sampling and row norm squares sampling, which
are commonly used in the field of randomized linear algebra, particularly for matrix approximation
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problems [10, 15]. With an approximate Hessian constructed via non-uniform sampling, we may
choose an appropriate solver A to the solve the sub-problem in Step 11 of Algorithm 1. Below we
elaborate on the construction of the two non-uniform sampling schemes.

Block Norm Squares Sampling This is done by constructing a sampling distribution based on the
Frobenius norm of the blocks Ai, i.e., pi = ‖Ai‖2F /‖A‖2F , i = 1, . . . , n. This is an extension to the
row norm squares sampling in which the intuition is to capture the importance of the blocks based on
the “magnitudes” of the sub-Hessians [10].
Block Partial Leverage Scores Sampling Recall standard leverage scores of a matrix A are
defined as diagonal elements of the “hat” matrix A(ATA)−1AT [15] which prove to be very useful
in matrix approximation algorithms. However, in contrast to the standard case, there are two major
differences in our task. First, blocks, not rows, are being sampled. Second, an additional matrix Q is
involved in the target matrix, i.e., H. In light of this, we introduce a new and more general notion of
leverage scores, called block partial leverage scores.
Definition 1 (Block Partial Leverage Scores). Given a matrix A ∈ Rkn×d viewed as having n
blocks of size k × d and a SPSD matrix Q ∈ Rd×d, let {τi}kn+di=1 be the (standard) leverage scores

of the augmented matrix
(

A

Q
1
2

)
. The block partial leverage score for the i-th block is defined as

τQi (A) =
∑ki
j=k(i−1)+1 τj .

Note that for k = 1 and Q = 0, the block partial leverage score is simply the standard leverage score.
The sampling distribution is defined as pi = τQi (A)/

(∑n
j=1 τ

Q
j (A)

)
, i = 1, . . . , n.

Algorithm 1 Sub-sampled Newton method with Non-uniform Sampling
1: Input: Initialization point w0, number of iteration T , sampling scheme S and solver A.
2: Output: wT

3: for t = 0, . . . , T − 1 do
4: Construct the non-uniform sampling distribution {pi}ni=1 as described in Section 2.
5: for i = 1, . . . , n do
6: qi = min{s · pi, 1}, where s is the sampling size.

7: Ãi(wt) =

{
Ai(wt)/

√
qi, with probability qi,

0, with probability 1− qi.
8: end for
9: H̃(wt) =

∑n
i=1 Ã

T
i (wt)Ãi(wt) + Q(wt).

10: Compute g(wt)
11: Use solver A to solve the sub-problem inexactly

wt+1 ≈ arg min
w∈C
{1

2
〈(w −wt), H̃(wt)(w −wt)〉+ 〈g(wt),w −wt〉}. (2)

12: end for
13: return wT .

3 Theoretical Results
In this section we provide detailed complexity analysis of our algorithm.1 Different choices of
sampling scheme S and the sub-problem solver A lead to different complexities in SSN. More
precisely, total complexity is characterized by the following four factors: (i) total number of iterations
T determined by the convergence rate which is affected by the choice of S and A; see Lemma 2 in
Section 3.1, (ii) the time, tgrad, it takes to compute the full gradient g(wt) (Step 10 in Algorithm 1),
(iii) the time tconst, to construct the sampling distribution {pi}ni=1 and sample s terms at each iteration
(Steps 4-8 in Algorithm 1), which is determined by S; see Section 3.2 for details, and (iv) the time
tsolve needed to (implicitly) form H̃ and (inexactly) solve the sub-problem at each iteration (Steps 9
and 11 in Algorithm 1) which is affected by the choices of both S (manifested in the sampling size s)
and A see Section 3.2&3.3 for details. With these, the total complexity can be expressed as

T · (tgrad + tconst + tsolve). (3)
1In this work, we only focus on local convergence guarantees for Algorithm 1. To ensure global convergence,

one can incorporate an existing globally convergent method, e.g. [20], as initial phase and switch to Algorithm 1
once the iterate is “close enough” to the optimum; see Lemma 2.
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Below we study these contributing factors. Moreover, the per iteration complexity of our algorithm for
achieving a problem independent linear convergence rate is presented in Section 3.4 and comparison
to other related work is discussed in Section 3.5.

3.1 Local linear-quadratic error recursion
Before diving into details of the complexity analysis, we state a structural lemma that characterizes
the local convergence rate of our main algorithm, i.e., Algorithm 1. As discussed earlier, there are
two layers of approximation in Algorithm 1, i.e., approximation of the Hessian by sub-sampling and
inexactness of solving (2). For the first layer, we require the approximate Hessian to satisfy one of
the following two conditions (in Section 3.2 we shall see our construction of approximate Hessian
via non-uniform sampling can achieve these conditions with a sampling size independent of n).

‖H̃(wt)−H(wt)‖ ≤ ε · ‖H(wt)‖, (C1)
or

|xT (H̃(wt)−H(wt))y| ≤ ε ·
√

xTH(wt)x ·
√
yTH(wt)y, ∀x,y ∈ K. (C2)

Note that (C1) and (C2) are two commonly seen guarantees for matrix approximation problems. In
particular, (C2) is stronger in the sense that the spectral of the approximated matrix H(wt) is well
preserved. Below in Lemma 2, we shall see such a stronger condition ensures a better dependence on
the condition number in terms of the convergence rate. For the second layer of approximation, we
require the solver to produce an ε0-approximate solution wt+1 satisfying

‖wt+1 −w∗t+1‖ ≤ ε0 · ‖wt −w∗t+1‖, (4)

where w∗t+1 is the exact optimal solution to (2). Note that (4) implies an ε0-relative error approxima-
tion to the exact update direction, i.e., ‖v− v∗‖ ≤ ε‖v∗‖ where v = wt+1 −wt, v

∗ = w∗t+1 −wt.

Lemma 2 (Structural Result). Let ε ∈ (0, 1/2) and ε0 be given and {wt}Ti=1 be a sequence generated
by (2) which satisfies (4). Also assume that the initial point w0 satisfies ‖w0 −w∗‖ ≤ µ

4L . Under
Assumptions A1 & A2, the solution error satisfies the following recursion

‖wt+1 −w∗‖ ≤ (1 + ε0)Cq · ‖wt −w∗‖2 + (ε0 + (1 + ε0)Cl) · ‖wt −w∗‖, (5)

where Cl and Cq are specified as below.

• Cq =
2L

(1− 2εκ)µ
and Cl =

4εκ

1− 2εκ
, if condition (C1) is met;

• Cq =
2L

(1− ε)µ
and Cl =

3ε
√
κ

1− ε
, if condition (C2) is met.

3.2 Complexities related to the choice of sampling scheme S
The following lemma gives the complexity of constructing the sampling distributions used in this
paper. Here, we adopt the fast approximation algorithm for standard leverage scores, [6], to obtain an
efficient approximation to our block partial leverage scores.
Lemma 3 (Construction Complexity). Under Assumption 3, it takes tconst = O(nnz(A)) time to
construct a block norm squares sampling distribution, and it takes tconst = O(nnz(A) log n) time
to construct, with high probability, a distribution with constant factor approximation to the block
partial leverage scores.

The following theorem indicates that if the blocks of the augmented matrix of {Ai(w)} (see As-
sumption 3) are sampled based on block norm squares or block partial leverage scores with large
enough sampling size, (C1) or (C2) holds, respectively, with high probability.
Theorem 4 (Sufficient Sample Size). Given any ε ∈ (0, 1), the following statements hold:

(i) Let ri = ‖Ai‖2F , i = 1, . . . , n, set pi = ri/(
∑n
j=1 rj) and construct H̃ as in Steps 5-9 of

Algorithm 1. Then if s ≥ 4sr(A) · log (min{4sr(A), d}/δ) /ε2, with probability at least 1− δ,
(C1) holds.

(ii) Let {τ̂Qi (A)}ni=1 be some overestimate of the block partial leverage scores, i.e., τ̂Qi (A) ≥
τQi (A), i = 1, . . . , n and set pi = τ̂Qi (A)/(

∑n
j=1 τ̂

Q
j (A)), i = 1, . . . , n. Construct H̃ as in

Steps 5-9 of Algorithm 1. Then if s ≥ 4
(∑n

i=1 τ̂
Q
i (A)

)
· log (4d/δ) /ε2, with probability at

least 1− δ, (C2) holds.
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Remarks: Part (i) of Theorem 4 is an extension of [10] to our particular augmented matrix setting.
Also, as for the exact block partial leverage scores we have

∑n
i=1 τ

Q
i (A) ≤ d, part (ii) of Theorem 4

implies that, using exact scores, less than O(d log d/ε2) blocks are needed for (C2) to hold.

3.3 Complexities related to the choice of solver A
We now discuss how tsolve in (3) is affected by the choice of the solver A in Algorithm 1. The
approximate Hessian H̃(wt) is of the form ÃT Ã+Q where Ã ∈ Rsk×d. As a result, the complexity
for solving the sub-problem (2) essentially depends on the choice A, the constraint set C, s and d,
i.e., tsolve = T (A, C, s, d). For example, when the problem is unconstrained (C = Rd), CG takes
tsolve = O(sd

√
κt log(1/ε)) to return a solution with approximation quality ε0 =

√
κtε in (4) where

κt = λmax(H̃(wt))/λmin(H̃(wt)).

3.4 Total complexity per iteration
Lemma 2 implies that, by choosing appropriate values for ε and ε0, SSN inherits a local constant
linear convergence rate, i.e., ‖wt+1 −w∗‖ ≤ ρ‖wt −w∗‖ with ρ < 1. The following Corollary
gives the total complexity per iteration of Algorithm 1 to obtain a locally linear rate.
Corollary 5. Suppose C = Rd and CG is used to solve the sub-problem (2). Then under Assump-
tion 3, to obtain a constant local linear convergence rate with a constant probability, the complexity
per iteration of Algorithm 1 using the block partial leverage scores sampling and block norm squares
sampling is Õ(nnz(A) log n+ d2κ3/2) and Õ(nnz(A) + sr(A)dκ5/2), respectively. 2

3.5 Comparison with existing similar methods
As discussed above, the sampling scheme S plays a crucial role in the overall complexity of SSN.
We first compare our proposed non-uniform sampling schemes with the uniform alternative [20],
in terms of complexities tconst and tsolve as well as the quality of the locally linear-quadratic error
recursion (5), measured by Cq and Cl. Table 2 gives a summary of such comparison where, for
simplicity, we assume that k = 1, C = Rd, and a direct solver is used for the linear system sub-
problem (2). Also, throughout this subsection, for randomized algorithms, we choose parameters
such that the failure probability is a constant. One advantage of uniform sampling is its simplicity of
construction. However, as shown in Section 3.2, it takes nearly input-sparsity time to construct the
proposed non-uniform sampling distribution. In addition, when rows of A are very non-uniform, i.e.,
maxi ‖Ai‖ u ‖A‖, uniform scheme requires Ω(n) samples to achieve (C1). It can also be seen that
for a given ε, row norm squares sampling requires the smallest sampling size, yielding the smallest
tsolve in Table 2. More importantly, although either (C1) or (C2) is sufficient to give (5), having (C2)
as in SSN with leverage score sampling yields constants Cq and Cl with much better dependence on
the local condition number, κ, than other methods. This fact can drastically improve the performance
of SSN for ill-conditioned problems; see Figure 1 in Section 4.

Table 2: Comparison between standard Newton’s methods and sub-sampled Newton methods (SSN)
with different sampling schemes. Cq and Cl are the constants appearing in (5), A is the augmented
matrix of {Ai(w)} with stable rank sr(A), κ = ν/µ is the local condition number and κ̃ = L/µ.
Here, we assume that k = 1, C = Rd, and a direct solver is used in Algorithm 1.

NAME tconst tsolve = sd2 Cq Cl
Newton’s method 0 O(nd2) κ̃ 0

SSN (leverage scores) O(nnz(A) logn) Õ((
∑
i τ

Q
i (A))d2/ε2) κ̃

1−ε
ε
√
κ

1−ε
SSN (row norm squares) O(nnz(A)) Õ(sr(A)d2/ε2) κ̃

1−εκ
εκ

1−εκ

SSN (uniform) [20] O(1) Õ
(
nd2 maxi ‖Ai‖2

‖A‖2 /ε2
)

κ̃
1−εκ

εκ
1−εκ

Next, recall that in Table 1, we summarize the per-iteration complexity needed by our algorithm and
other similar methods [20, 1, 18] to achieve a given local linear convergence rate. Here we provide
more details. First, the definition of various notions of condition number used in Table 1 is given
below. For any given w ∈ Rd, define

κ(w) =
λmax(

∑n
i=1 Hi(w))

λmin(
∑n
i=1 Hi(w))

, κ̂(w) = n·maxi λmax(Hi(w))

λmin(
∑n
i=1 Hi(w))

, κ̄(w) =
maxi λmax(Hi(w))

mini λmin(Hi(w))
, (6)

2In this paper, Õ(·) hides logarithmic factors of d, κ and 1/δ.
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assuming that the denominators are non-zero. It is easy to see that κ(w) ≤ κ̂(w) ≤ κ̄(w).
However, the degree of the discrepancy among these inequalities depends on the properties of
Hi(w). Roughly speaking, when all Hi(w)’s are “similar”, one has that λKmax(

∑n
i=1 Hi(w)) ≈∑n

i=1 λ
K
max(Hi(w)) ≈ n ·maxi λ

K
max(Hi(w)), and thus κ(w) ≈ κ̂(w) ≈ κ̄(w). However, in many

real applications, such uniformity doesn’t simply exist. For example, it is not hard to design a matrix
A with non-uniform rows such that for H = ATA, κ̂ and κ̄ are larger than κ by a factor of n. This
implies although SSN with leverage score sampling has a quadratic dependence on d, its dependence
on the condition number is significantly better than all other methods such as SSN (uniform) and
LiSSA. Moreover compared to Newton’s method, all these stochastic variants replace the coefficient
of the leading term, i.e., O(nd), with some lower order terms that only depend on d and condition
numbers (assuming nnz(A) ≈ nd). Therefore, one should expect these algorithms to perform well
when n� d and the problem is moderately conditioned.

4 Numerical Experiments
We consider an estimation problem in GLMs with Gaussian prior. Assume X ∈ Rn×d,Y ∈ Yn are
the data matrix and response vector. The problem of minimizing the negative log-likelihood with
ridge penalty can be written as

min
w∈Rd

n∑
i=1

ψ(xTi w, yi) + λ‖w‖22,

where ψ : R × Y → R is a convex cumulant generating function and λ ≥ 0 is the ridge penalty
parameter. In this case, the Hessian is H(w) =

∑n
i=1 ψ

′′
(xTi w, yi)xix

T
i +λI := XTD2(w)X+λI,

where xi is i-th column of XT and D(w) is a diagonal matrix with the diagonal [D(w)]ii =√
ψ′′(xTi w, yi). The augmented matrix of {Ai(w)} can be written as A(w) = DX ∈ Rn×d where

Ai(w) = [D(w)]iix
T
i .

For our numerical simulations, we consider a very popular instance of GLMs, namely, logistic
regression, where ψ(u, y) = log(1 + exp(−uy)) and Y = {±1}. Table 3 summarizes the datasets
used in our experiments.
Table 3: Datasets used in ridge logistic regression. In the above, κ and κ̄ are the local condition
numbers of ridge logistic regression problem with λ = 0.01 as defined in (6).

DATASET CT slices[9] Forest[2] Adult[13] Buzz[11]
n 53,500 581,012 32,561 59,535
d 385 55 123 78
κ 368 221 182 37
κ̂ 47,078 322,370 69,359 384,580

We compare the performance of the following five algorithms: (i) Newton: the standard Newton’s
method, (ii) Uniform: SSN with uniform sampling, (iii) PLevSS: SSN with partial leverage scores
sampling, (iv) RNormSS: SSN with block (row) norm squares sampling, and (v) LBFGS-k is the
standard L-BFGS method [14] with history size k.

All algorithms are initialized with a zero vector.3 We also use CG to solve the sub-problem approxi-
mately to within 10−6 relative residue error. In order to compute the relative error ‖wt−w∗‖/‖w∗‖,
an estimate of w∗ is obtained by running the standard Newton’s method for sufficiently long time.
Note here, in SSN with partial leverage score sampling, we recompute the leverage scores every 10
iterations. Roughly speaking, these “stale” leverage scores can be viewed as approximate leverage
scores for the current iteration with approximation quality that can be upper bounded by the change
of the Hessian and such quantity is often small in practice. So reusing the leverage scores allows us
to further drive down the running time.

We first investigate the effect of the condition number, controlled by varying λ, on the performance
of different methods, and the results are depicted in Figure 1. It can be seen that in well-conditioned
cases, all sampling schemes work equally well. However, as the condition number worsens, the
performance of uniform sampling deteriorates, while non-uniform sampling, in particular leverage
score sampling, shows a great degree of robustness to such ill-conditioning effect. The experiments
shown in Figure 1 are consistent with the theoretical results of Table 2, showing that the theory
presented here can indeed be a reliable guide to practice.

3Theoretically, the suitable initial point for all the algorithms is the one with which the standard Newton’s
method converges with a unit stepsize. Here, w0 = 0 happens to be one such good starting point.
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Figure 1: Ridge logistic regression on Adult with different λ’s: (a) local condition number κ, (b)
sample size for different SSN methods giving the best overall running time, (c) running time for
different methods to achieve 10−8 relative error.

Next, we compare the performance of various methods as measured by relative-error of the solution
vs. running time and the results are shown in Figure 24. It can be seen that, in most cases, SSN with
non-uniform sampling schemes outperforms the other algorithms, especially Newton’s method. In
particular, uniform sampling scheme performs poorly, e.g., in Figure 2(b), when the problem exhibits
a high non-uniformity among data points which is reflected in the difference between κ and κ̄ shown
in Table 3.
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Figure 2: Iterate relative solution error vs. time(s) for various methods on four datasets with ridge
penalty parameter λ = 0.01. The values in brackets denote the sample size used for each method.

We would like to remind the reader that for the locally strongly convex problems that we consider
here, one can provably show that the behavior of the error in the loss function, i.e., F (wk) −
F (w∗)/|F (w∗)| follows the same pattern as that of the solution error, i.e., ‖wk −w∗‖/‖w∗‖; see
[23] for details. As a result, our algorithms remain to be effective for cases where the primary goal is
to reduce the loss (as opposed to the solution error).

5 Conclusions
In this paper, we propose non-uniformly sub-sampled Newton methods with inexact update for a class
of constrained problems. We show that our algorithms have a better dependence on the condition
number and enjoy a lower per-iteration complexity, compared to other similar existing methods.
Theoretical advantages are numerically demonstrated.
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