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Abstract

In recent years, stochastic gradient descent (SGD) methods

and randomized linear algebra (RLA) algorithms have been

applied to many large-scale problems in machine learning

and data analysis. SGD methods are easy to implement

and applicable to a wide range of convex optimization prob-

lems. In contrast, RLA algorithms provide much stronger

worst-case performance guarantees but are applicable to a

narrower class of problems. We aim to bridge the gap be-

tween these two classes of methods in solving constrained

overdetermined linear regression problems—e.g., ℓ2 and ℓ1
regression problems.

• We propose a hybrid algorithm named PWSGD that

uses RLA techniques for preconditioning and construct-

ing an importance sampling distribution, and then per-

forms an SGD-like iterative process with weighted sam-

pling on the preconditioned system.

• By rewriting the ℓp regression problem into a stochastic

optimization problem, we connect PWSGD to several

existing ℓp solvers including RLA methods with algo-

rithmic leveraging (RLA for short).

• We prove that PWSGD inherits faster convergence rates

that only depend on the lower dimension of the linear

system, while maintaining low computation complex-

ity. Such SGD convergence rate is superior to other re-

lated SGD algorithms such as the weighted randomized

Kaczmarz algorithm.

• Particularly, when solving ℓ1 regression with size n by

d, PWSGD returns an approximate solution with ǫ rela-

tive error on the objective value in O(log n · nnz(A) +
poly(d)/ǫ2) time. This complexity is uniformly bet-

ter than that of RLA methods in terms of both ǫ and

d when the problem is unconstrained. In the presence

of constraints, PWSGD only has to solve a sequence of

much simpler and smaller optimization problem over

the same constraints. In general this is more efficient

than solving the constrained subproblem required in

RLA.
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• For ℓ2 regression, PWSGD returns an approximate so-

lution with ǫ relative error on the objective value and so-

lution vector in prediction norm in O(log n · nnz(A) +
poly(d) log(1/ǫ)/ǫ) time. We show that when solving

unconstrained ℓ2 regression, this complexity is compa-

rable to that of RLA and is asymptotically better over

several state-of-the-art solvers in the regime where the

desired accuracy ǫ, high dimension n and low dimen-

sion d satisfy d ≥ 1/ǫ and n ≥ d2/ǫ.
Finally, the effectiveness of such algorithms is illustrated nu-

merically on both synthetic and real datasets, and the results

are consistent with our theoretical findings and demonstrate

that PWSGD converges to a medium-precision solution, e.g.,

ǫ = 10−3, more quickly than other methods.

1 Introduction

Many novel algorithms for large-scale data analysis and

machine learning problems have emerged in recent years,

among which stochastic gradient descent (SGD) methods

and randomized linear algebra (RLA) algorithms have re-

ceived much attention—both for their strong performance

in practical applications and for their interesting theoretical

properties [3, 18]. Here, we consider the ubiquitous ℓ1 and

ℓ2 regression problems, and we describe a novel RLA-SGD

algorithm called PWSGD. Our new algorithm combines the

advantages of both RLA and SGD methods for solving con-

strained overdetermined ℓ1 and ℓ2 regression problems.

Consider the overdetermined ℓp regression problem

(1.1) min
x∈Z

f(x) = ‖Ax− b‖p,

where p ∈ [1,∞], A ∈ R
n×d, b ∈ R

n and n ≫ d. When

Z = R
d, i.e., the solution space is unconstrained, the cases

p ∈ {1, 2} are respectively known as the Least Absolute De-

viations (LAD, or ℓ1) and Least-squares (LS, or ℓ2) regres-

sion problems. Classically, the unconstrained ℓ2 regression

problem can be solved by eigenvector-based methods with

worst-case running time O(nd2) [14]; or by iterative meth-

ods for which the running time depends on the condition

number of A [2, 17, 27], while the unconstrained ℓ1 regres-

sion problem can be formulated as a linear program [26, 6]

and solved by an interior-point method [26, 25].

For these and other regression problems, SGD algo-

rithms are widely used in practice because of their scalabil-

ity and efficiency. In contrast, RLA algorithms have better
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theoretical guarantees but (thus far) have been less flexible,

e.g., in the presence of constraints. For example, they may

use an interior point method for solving a constrained sub-

problem, and this may be less efficient than SGD. (Without

constraints, RLA methods can be used to construct subprob-

lems to be solved exactly, or they can be used to construct

preconditioners for the original problem; see [38] for details

and implementations of these RLA methods to compute low,

medium, and high precision solutions on up to terabyte-sized

input data.) In this paper, we combine these two algorithmic

approaches to develop a method that takes advantage of the

strengths of both of these approaches.

This conference paper presents our main results; and

more details on our proofs, our empirical evaluations, and

connections between our results and stochastic optimization

and coreset methods may be found in the longer technical

report version of this paper [36].

1.1 Overview of our main algorithm.

Our main algorithm PWSGD is a hybrid method for solving

constrained overdetermined ℓ1 and ℓ2 regression problems.

It consists of two main steps. First, apply RLA techniques

for preconditioning and construct an importance sampling

distribution. Second, apply an SGD-like iterative phase with

weighted sampling on the preconditioned system. Such an

algorithm preserves the simplicity of SGD and the high

quality theoretical guarantees of RLA. We show that, with

a proper choice of preconditioner, PWSGD runs in O(log n ·
nnz(A)+poly(d)/ǫ2) time to return an approximate solution

with ǫ relative error in the objective for constrained ℓ1
regression or in O(log n · nnz(A) + poly(d) log(1/ǫ)/ǫ)
time to return an approximate solution with ǫ relative error

in the solution vector in prediction norm for constrained ℓ2
regression. Furthermore, for unconstrained ℓ2 regression,

PWSGD runs in O(log n · nnz(A) + d3 log(1/ǫ)/ǫ) time to

return an approximate solution with ǫ relative error in the

objective.

To provide a quick overview of how PWSGD com-

pares to existing algorithms, in Tables 1 and 2, we sum-

marize the complexity required to compute a solution x̂
with relative error (f(x̂) − f(x∗))/f(x∗) = ǫ, of several

solvers for unconstrained ℓ1 and ℓ2 regression. In Table 1,

RLA with algorithmic leveraging (RLA for short) [8, 37]

is a popular method for obtaining a low-precision solution,

and randomized IPCPM is an iterative method for finding a

higher-precision solution [20] for unconstrained ℓ1 regres-

sion. Clearly, PWSGD has a uniformly better complexity

than that of RLA methods in terms of both d and ǫ, no

matter which underlying preconditioning method is used.

This makes PWSGD a more suitable candidate for getting

a medium-precision, e.g., ǫ = 10−3, solution.

In Table 2, all the methods require constructing a

sketch first. Among them, “low-precision” solvers refer

to “sketching + direct solver” type algorithms; see [12, 9]

for projection-based examples and [9, 11] for sampling-

based examples. “High-precision” solvers refer to “sketch-

ing + preconditioning + iterative solver” type algorithms; see

[1, 21] for examples. One can show that, when d ≥ 1/ǫ
and n ≥ d2/ǫ, PWSGD is asymptotically better than all the

solvers shown in Table 2. Moreover, although high-precision

solvers are more efficient when a high-precision solution is

desired, usually they are designed for unconstrained prob-

lems, whereas PWSGD also works for constrained problems.

See Section 3.3 for a more detailed discussion.

We remark that, compared to general SGD algorithms,

our RLA-SGD hybrid algorithm PWSGD works for prob-

lems in a narrower range, i.e., ℓp regression, but inherits the

strong theoretical guarantees of RLA. When solving ℓ2 re-

gression, for which traditional RLA methods are well de-

signed, PWSGD has a comparable complexity. On the other

hand, when solving ℓ1 regression, due to the efficiency of

SGD updates, PWSGD has a strong advantage over tradi-

tional RLA methods. See Sections 3.3 and 3.4 for more de-

tailed discussions.

Finally, in Section 4, empirically we show that PWSGD

performs favorably compared to other competing methods,

as it converges to a medium-precision solution more quickly.

More details on this can be found in the technical report

version of this paper [36].

1.2 Connection to related algorithms.

As an interesting point of potentially-independent interest, a

connection between ℓp regression and stochastic optimiza-

tion will allow us to unify our main algorithm PWSGD and

some existing ℓp regression solvers under the same frame-

work. In Figure 1, we present the basic structure of this

framework, which provides a view of PWSGD from an-

other perspective. To be more specific, we reformulate (de-

terministic) overdetermined ℓp regression problems of the

form (1.1) into a stochastic optimization problem of the form

(1.2).

PROPOSITION 1.1. Let U ∈ R
n×d be a basis of the range

space of A in the form of U = AF , where F ∈ R
d×d. The

constrained overdetermined ℓp regression problem (1.1) is

equivalent to

(1.2) min
y∈Y

‖Uy − b‖pp = min
y∈Y

Eξ∼P [H(y, ξ)] ,

where ξ is a random variable over {1, . . . , n} with distri-

bution P = {pi}ni=1, y is the decision variable in Y and

H(y, ξ) = |Uξy − bξ|p/pξ. The constraint set of y is given

by Y = {y ∈ R
d|y = F−1x, x ∈ Z}.

As suggested in Figure 1, to solve this stochastic optimiza-

tion problem, typically one needs to answer the following

three questions.
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solver complexity (general) complexity (sparse)

RLA with algorithmic leveraging time(R) +O(nnz(A) log n+ κ̄
3

2

1
d

9

2 /ǫ3) O(nnz(A) log n+ d
69

8 log
25

8 d/ǫ
5

2 )
randomized IPCPM time(R) + nd2 +O((nd+ poly(d)) log(κ̄1d/ǫ)) O(nd log(d/ǫ))

PWSGD time(R) +O(nnz(A) log n+ d3κ̄1/ǫ
2) O(nnz(A) log n+ d

13

2 log
5

2 d/ǫ2)

Table 1: Summary of complexity of several unconstrained ℓ1 solvers that use randomized linear algebra. The target is to find a solution

x̂ with accuracy (f(x̂) − f(x∗))/f(x∗) ≤ ǫ, where f(x) = ‖Ax − b‖1. In the above, time(R) denotes the time needed to compute a

matrix R such that AR−1 is well-conditioned with condition number κ̄1 (see Definition 1). The general complexity bound and the one

using sparse reciprocal exponential transform [35] as the underlying sketching method are presented. Here, we assume n ≫ d such that

n > d3 log3 d and the underlying ℓ1 regression solver in RLA with algorithmic leveraging algorithm takes O(n
5

4 d3) time to return a

solution [26]. The complexity of each algorithm is computed by setting the failure probability to be a constant.

solver complexity (SRHT) complexity (CW)

low-precision solvers (projection) O
(

nd log(d/ǫ) + d3 log(nd)/ǫ
)

O
(

nnz(A) + d4/ǫ2
)

low-precision solvers (sampling) O
(

nd log n+ d3 log d+ d3 log d/ǫ
)

O
(

nnz(A) log n+ d4 + d3 log d/ǫ
)

high-precision solvers O
(

nd log d+ d3 log d+ nd log(1/ǫ)
)

O
(

nnz(A) + d4 + nd log(1/ǫ)
)

PWSGD O
(

nd log n+ d3 log d+ d3 log(1/ǫ)/ǫ
)

O
(

nnz(A) log n+ d4 + d3 log(1/ǫ)/ǫ
)

Table 2: Summary of complexity of several unconstrained ℓ2 solvers that use randomized linear algebra. The target is to find a solution

x̂ with accuracy (f(x̂) − f(x∗))/f(x∗) ≤ ǫ, where f(x) = ‖Ax − b‖2. Two sketching methods, namely, SRHT [12, 33] and CW [9]

are considered. Here, the complexity of each algorithm is computed by setting the failure probability to be a constant.

• (C1): How to sample: SAA (Sampling Average Ap-

proximation, i.e., draw samples in a batch mode and

deal with the subproblem) or SA (Stochastic Approxi-

mation, i.e., draw a mini-batch of samples in an online

fashion and update the weight after extracting useful in-

formation)?

• (C2): Which probability distribution P (uniform dis-

tribution or not) and which basis U (preconditioning or

not) to use?

• (C3): Which solver to use (e.g., how to solve the sub-

problem in SAA or how to update the weight in SA)?

Some combinations of these choices may lead to existing

solvers; see Figure 1 (as well as [36]) for more details. In

the following, we briefly outline several connections. Using

the SAA approach with a naive choice of U = A and uni-

form distribution P leads to the vanilla subsampling algo-

rithm. Importantly, such a simple algorithm might fail (un-

gracefully) for worst-case input. On the other hand, RLA

methods (in particular, those that exploit algorithmic averag-

ing; see Appendix B and also [11, 38]) inherit strong theoret-

ical guarantees because the underlying sampling distribution

P captures most of the important information of the origi-

nal system; moreover, such a carefully constructed leverage-

based distribution is defined based on a well-conditioned ba-

sis U , e.g., an orthogonal matrix for p = 2.

A natural question arises: can we leverage the algorith-

mic benefits of RLA preconditioning to improve the perfor-

mance of SGD-type algorithms? One immediate idea is to

develop an SGD-like algorithm that uses the same choice of

U and P as in RLA methods. Indeed, this simple idea leads

to our main algorithm PWSGD, which is an online algorithm

(C1) that uses a non-uniform sampling distribution (C2) and

performs a gradient descent update (C3) on a preconditioned

system (C2), as Figure 1 suggests.

Indeed, for least-squares problems (unconstrained ℓ2 re-

gression), PWSGD is highly related to the weighted random-

ized Kaczmarz (RK) algorithm [32, 22] in the way that both

algorithms perform SGD updates with non-uniform sam-

pling distribution P . An important difference is that PWSGD

runs on a well-conditioned basis U while randomized RK

doesn’t involve preconditioning. In Section 3.5 we show that

this preconditioning step dramatically reduces the number of

iteration required for PWSGD to converge to a (fixed) de-

sired accuracy.

1.3 Main contributions.

Now we are ready to state our main contributions.

• We reformulate the deterministic ℓp regression

problem (1.1) into a stochastic optimization prob-

lem (1.2) and make connections to existing solvers

including RLA methods with algorithmic leverag-

ing and weighted randomized Kaczmarz algorithm

(Sections 1.2 and 3.5).

• We develop a hybrid algorithm for solving constrained

overdetermined ℓ1 and ℓ2 regression called PWSGD,

which is an SGD algorithm with preconditioning and

a non-uniform sampling distribution constructed using

RLA techniques. We present several choices of the

preconditioner and their tradeoffs. We show that with

a suitable preconditioner, the convergence rate of the

SGD phase only depends on the low dimension d, and

is independent of the high dimension n (Sections 3.1

and 3.2).

• We prove that PWSGD returns an approximate so-
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ℓp regression

minx ‖Ax− b‖pp

stochastic optimization

miny Eξ∼P [|Uξy − bξ|p/pξ]

SA

SA

SAA

onlin
e

online

batch

(C1): How to sample?

uniform P
U = A

non-uniform P
well-conditioned U

non-uniform P
well-conditioned U

naive

using RLA

using RLA

(C2): Which U and P to use?

gradient descent

gradient descent

exact solution

of subproblem

fast

fast

slow

(C3): How to solve?

vanilla SGD

PWSGD

(this paper)

vanilla RLA with

algorithmic leveraging

resulting solver

Figure 1: An overview of our framework for solving ℓp regression via stochastic optimization. To construct a solver,

three choices have to be made. For (C1), the answer can be either SAA (Sampling Average Approximation, i.e., sample

a batch of points and deal with the subproblem) or SA (Stochastic Approximation, i.e., sample a mini-batch in an online

fashion and update the weight vector after extracting useful information). In (C2), the answer is determined by P , which

denotes the underlying sampling distribution (uniform or nonuniform), and U , which denotes the basis with which to work

(original or preconditioned system). Finally, for (C3), the answer determines how we solve the subproblem (in SAA) or

what information we extract and how we update the weight (in SA).

lution with ǫ relative error in the objective value in

O(log n · nnz(A) + poly(d)/ǫ2) time for ℓ1 regres-

sion. This complexity is uniformly better than that of

RLA methods in terms of both ǫ and d when the prob-

lem is unconstrained. In the presence of constraints,

PWSGD only has to solve a sequence of much sim-

pler and smaller optimization problems over the same

constraints, which in general can be more efficient than

solving the constrained subproblem required in RLA

(Sections 3.3 and 3.4).

• We prove that PWSGD returns an approximate solu-

tion with ǫ relative error in the objective value and

the solution vector measured in prediction norm in

O(log n · nnz(A) + poly(d) log(1/ǫ)/ǫ) time for ℓ2
regression. We show that for unconstrained ℓ2 regres-

sion, this complexity is asymptotically better than sev-

eral state-of-the-art solvers in the regime where d ≥ 1/ǫ
and n ≥ d2/ǫ (Sections 3.3 and 3.4).

• Empirically, we show that when solving ℓ1 and ℓ2 re-

gression problems, PWSGD inherits faster convergence

rates and performs favorably in the sense that it ob-

tains a medium-precision much faster than other com-

peting SGD-like solvers do. Also, theories regarding

several choices of preconditioners are numerically ver-

ified (Section 4).

1.4 Other prior related work.

Numerous RLA algorithms have been proposed to solve

ℓp regression problems [38]. RLA theories show that to

achieve a relative-error bound (with either sampling-based

or projection-based methods), the required sketch size only

depends on d, independent of n, and the running time also

depends on the time to implement the random projection at

the first step. Regarding the performance of unconstrained

regression problems, in [10] the authors provide an algo-

rithm that constructs a well-conditioned basis by ellipsoid

rounding and a subspace-preserving sampling matrix for ℓp
regression problems in O(nd5 log n) time; the algorithms

in [9, 19, 23] solve the problem via sparse random projec-

tions in nearly input-sparsity time, i.e., O(log n · nnz(A))
time, plus lower-order terms. Finally, the algorithms in

[1, 21] use RLA to compute a preconditioner and call itera-

tive solvers such as LSQR to solve the preconditioned prob-

lem.

In contrast, SGD algorithms update the solution vector

in an iterative fashion and are simple to implement and scal-

able to large datasets [5, 29, 4]. Moreover, these methods

can be easily extended for problems with general convex loss

functions and constraints, such as Pegasos [28] for regular-

ized SVM and stochastic coordinate descent (SCD) for ℓ1
regularization [30]. Several techniques, such as SAGE [15],

AdaGrad [13], and SVRG [16], have recently been proposed

to accelerate the convergence rate of SGD, and [24] also

show that SGD is favorable for parallel/distributed compu-

tation. More recently, several works, e.g., [39, 22], regard-

ing SGD with weighted sampling, have been proposed, in

which the authors show that the performance of SGD can be

improved by using a nonuniform sampling distribution.

2 Preliminaries

For any matrix A ∈ R
n×d, we use Ai and Aj to denote the i-

th row and j-th column of A, respectively. We assume A has

full rank, i.e., rank(A) = d. Also denote by κ(A) the usual

condition number of A, by nnz(A) the number of nonzero

561 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

8/
15

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



elements in A, and by poly(d) a low-degree polynomial

in d. Throughout this section, the definitions are applied

to general p ∈ [1,∞). We denote by | · |p the element-

wise ℓp norm of a matrix: |A|p =
(

∑n
i=1

∑d
j=1 |Aij |p

)1/p

.

In particular, when p = 2, | · |2 is equivalent to the

Frobenius norm.

The following two notions of well-conditioned bases

and leverage scores are crucial to our methods. The first

notion was originally introduced by [7] and stated more pre-

cisely in [10], and it is used to justify the well-posedness of

a ℓp regression problem. The second notion was introduced

by [10].

DEFINITION 1. (WELL-CONDITIONED BASIS) A matrix

A ∈ R
n×d is (α, β, p)-conditioned if |A|p ≤ α and for

all x ∈ R
d, β‖Ax‖p ≥ ‖x‖q , where 1/p + 1/q = 1.

Define κ̄p(A) as the minimum value of αβ such that A is

(α, β, p)-conditioned. We say that a basis U for range(A)
is a well-conditioned basis if κ̄p = κ̄p(U) is a low-degree

polynomial in d, independent of n.

The notion of leverage scores captures how important each

row in the dataset is, and is used in the construction of the

sampling probability.

DEFINITION 2. (ℓp LEVERAGE SCORES) Given a matrix

A ∈ R
n×d, suppose U is an (α, β, p) well-conditioned basis

for range(A). Then the i-th leverage score λi of A is defined

as λi = ‖Ui‖pp for i = 1, . . . , n.

3 Our Main Algorithm

In this section, we will state our main algorithm PWSGD

(Algorithm 1) for solving the constrained overdetermined ℓ1
and ℓ2 regression problems. We now summarize the main

steps of this algorithm as follows.

First, we compute a well-conditioned basis U (Defini-

tion 1) for the range space of A implicitly via a conditioning

method; see Table 4 and Table 5 in Appendix A for a sum-

mary of recently proposed randomized conditioning meth-

ods. We refer this as the “implicit” method, i.e., it focuses

on computing R ∈ R
d×d such that U = AR−1. A typi-

cal way of obtaining R is via the QR decomposition of SA
where SA is a sketch of A; see Appendix A for more details.

Second, we either exactly compute or quickly approxi-

mate the leverage scores (Definition 2), i.e., the row norms of

U as {λi}ni=1. To compute {λi}ni=1 exactly, we have to form

the matrix U explicitly, which takes time O(nd2). Alterna-

tively, in order to further reduce the running time, we can

estimate the row norms of U without computing the product

between A and R−1; see Appendix A for more details. We

assume that {λi}ni=1 satisfy

(3.3) (1− γ)‖Ui‖pp ≤ λi ≤ (1 + γ)‖Ui‖pp,

where γ is the approximation factor of estimation. When the

leverage scores are exact, the approximation factor γ = 0.

From that, we can define a distribution P over {1, . . . , n}
based on {λi}ni=1 as follows:

(3.4) pi =
λi

∑n
j=1 λj

.

Third, in each iteration a new sample corresponding to a

row of A is drawn according to distribution P and we apply

an SGD process to solve the following equivalent problem

with a specific choice of F ∈ R
d×d:

(3.5)

min
y∈Y

h(y) = ‖AFy − b‖pp = Eξ∼P [|AξFy − bξ|p/pξ] .

Here the matrix F is called the preconditioner for the linear

system being solved; see Section 3.2 for several choices

of F . Below, we show that with a suitable choice of F ,

the convergence rate of the SGD phase can be improved

significantly. Indeed, we can perform the update rule in the

original domain (with solution vector x instead of y), i.e.,

(3.8). Notice that if Z = R
d and F = I , then the update rule

can be simplified as

(3.6) xt+1 = xt − ηctAξt .

If Z = R
d and F = R−1, then the update rule becomes

(3.7) xt+1 = xt − ηctH
−1Aξt ,

where H = (R⊤R)−1. In the presence of constraints,

(3.8) only needs to solve an optimization problem with a

quadratic objective over the same constraints whose size is

independent of n.

Finally, the output is the averaged value over all iterates,

i.e., x̄ = 1
T

∑⊤
t=1 xt, for ℓ1 regression, or the last iterate, i.e.,

xT , for ℓ2 regression.

3.1 Main results for ℓ1 and ℓ2 regression problems.

The quality-of-approximation of Algorithm 1 is presented in

Proposition 3.1 and Proposition 3.2 for ℓ1 and ℓ2 regression,

respectively, in which we give the expected number of

iterations that PWSGD needs for convergence within small

tolerance. We show that PWSGD inherits a convergence

rate of O
(

1/
√
T
)

for ℓ1 regression and O (log T/T ) for ℓ2

regression and the constant term only depends on the lower

dimension d when F = R−1. Worth mentioning is that for

ℓ2 regression, our bound on the solution vector is measured

in prediction norm, i.e., ‖Ax‖2. For completeness, we

present the non-asymptotic convergence results of PWSGD

in Proposition A.1 and Proposition A.2 in Appendix A. All

the proofs can be found in the technical report version of this

paper [36]. The analysis of these results is based on the usual

convergence properties of SGD methods [36].
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Algorithm 1 PWSGD— preconditioned weighted SGD for

over-determined ℓ1 and ℓ2 regression

1: Input: A ∈ R
n×d, b ∈ R

n with rank(A) = d, x0 ∈ Z ,

η and T .

2: Output: An approximate solution vector to problem

minx∈Z ‖Ax− b‖pp for p = 1 or 2.

3: Compute R ∈ R
d×d such that U = AR−1 is an (α, β)

well-conditioned basis U for the range of A.

4: Compute or estimate ‖Ui‖pp with leverage scores λi, for

i ∈ [n], that satisfies (3.3).

5: Let pi =
λi∑

n
j=1

λj
, for i ∈ [n].

6: Construct the preconditioner F ∈ R
d×d based on R; see

Section 3.2 for details.

7: for t = 0, . . . , T do

8: Pick ξt from [n] based on distribution {pi}ni=1.

9:

ct =

{

sgn (Aξtxt − bξt) /pξt if p = 1;

2 (Aξtxt − bξt) /pξt if p = 2.

10: Update x by

(3.8)

xt+1 =







xt − ηctH
−1Aξt if Z = R

d;

argmin
x∈Z

ηctAξtx+ 1
2‖xt − x‖2H o.w.

where H =
(

FF⊤
)−1

.

11: end for

12: Return x̄ for p = 1 or xT for p = 2.

In the following results, R is the matrix computed in

step 3 in Algorithm 1, {λi}i∈[n], are the leverage scores

computed in step 4, F is the preconditioner chosen in step 6

in Algorithm 1, and H =
(

FF⊤
)−1

. Denote by κ̄p(U) the

condition number of the well-conditioned basis U = AR−1

and γ the approximation factor of the leverage scores λi,

i ∈ [n], that satisfies (3.3). For any vector x ∈ R
d, denote by

‖x‖2H = x⊤Hx the ellipsoidal norm of x induced by matrix

H = H⊤ ≻ 0. For any non-singular matrix A, denote

κ(A) = ‖A‖2‖A−1‖2 and κ̂(A) = |A|1|A−1|1. The exact

form of the step-sizes used can be found in the proofs.

PROPOSITION 3.1. For A ∈ R
n×d and b ∈ R

n, define

f(x) = ‖Ax − b‖1 and suppose f(x∗) > 0. Then there

exists a step-size η such that after

T = dκ̄2
1(U)κ̂2(RF )

c21c2c
2
3

ǫ2

iterations, Algorithm 1 with p = 1 returns a solution vector

estimate x̄ that satisfies the expected relative error bound

E [f(x̄)]− f(x∗)

f(x∗)
≤ ǫ.

Here, the expectation is taken over all the samples ξ1, . . . , ξT
and x∗ is the optimal solution to the problem minx∈Z f(x).

The constants in T are given by c1 = 1+γ
1−γ , c2 =

‖x∗−x0‖
2

H

‖x∗‖2

H

and c3 = ‖Ax∗‖1/f(x∗).

PROPOSITION 3.2. For A ∈ R
n×d and b ∈ R

n, define

f(x) = ‖Ax − b‖2 and suppose f(x∗) > 0. Then there

exists a step-size η such that after

T = c1κ̄
2
2(U)κ2(RF )

· log
(

2c2κ(U)κ2(RF )

ǫ

)

·
(

1 +
κ2(U)κ2(RF )

c3ǫ

)

iterations, Algorithm 1 with p = 2 returns a solution vector

estimate xT that satisfies the expected relative error bound

E
[

‖A(xT − x∗)‖22
]

‖Ax∗‖22
≤ ǫ.

Furthermore, when Z = R
d and F = R−1, there exists a

step-size η such that after

T = c1κ̄
2
2(U) · log

(

c2κ(U)

ǫ

)

·
(

1 +
2κ2(U)

ǫ

)

iterations, Algorithm 1 with p = 2 returns a solution vector

estimate xT that satisfies the expected relative error bound

E [f(xT )]− f(x∗)

f(x∗)
≤ ǫ.

Here, the expectation is taken over all the samples

ξ1, . . . , ξT , and x∗ is the optimal solution to the problem

minx∈Z f(x). The constants in T are given by c1 = 1+γ
1−γ ,

c2 =
‖x∗−x0‖

2

H

‖x∗‖2

H

, c3 = ‖Ax∗‖22/f(x∗)2.

The above results indicate two important properties of

PWSGD. First recall that the condition number κ̄p(U) of

the well-conditioned basis U is a polynomial of d that is

independent of n. Thus with a preconditioner F = R−1 and

an appropriate step-size in PWSGD, the number of iterations

T required to achieve an arbitrarily low relative error only

depends on the low dimension d of the input matrix A.

Second, PWSGD is robust to leverage score approximations,

i.e., the expected convergence rate will only be affected by a

small distortion factor even when the approximation has low

accuracy, such as γ = 0.5.

Remark. For constrained ℓ2 regression, the bound is

on the solution vector measured in prediction norm. By

the triangular inequality, this directly implies (E [f(xT )] −
f(x∗))/f(x∗) ≤ √

c3ǫ.
Remark. With decaying step-sizes, it is possible to improve

the dependence on ǫ from log(1/ǫ)/ǫ to 1/ǫ for ℓ2 regres-

sion.
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3.2 The choice of the preconditioner F .

As we can see, the preconditioner F plays an important role

in our algorithm. It converts the original regression problem

in (1.1) to the stochastic optimization problem in (3.5). From

Proposition 3.1 and Proposition 3.2, clearly, different choices

of F will lead to different convergence rates in the SGD

phase (reflected in κ(RF )1) and additional computational

costs (reflected in H in (3.8)).

When F = R−1, the effect of κ2(RF ) on T vanishes.

In this case, H is also a good approximation to the Hessian

A⊤A. This is because usually R is the R-factor in the QR

decomposition of SA, where SA is a “sketch” of A satisfy-

ing (A.1) that shares similar properties with A. Together we

have H = R⊤R = (SA)⊤(SA) ≈ A⊤A. This implies (3.7)

is close to the Newton-type update. However, as a tradeoff,

since H−1 is a d× d dense matrix, an additional O(d2) cost

per iteration is required to perform SGD update (3.8).

On the other hand, when F = I , no matrix-vector

multiplication is needed in updating x. However, based on

the discussion above, one should expect κ(R) = κ(SA) to

be close to κ(A). Then the term κ(RF ) = κ(R) can be large

if A is poorly conditioned, which might lead to undesirable

performance in SGD phase.

Besides the obvious choices of F such as R−1 and I ,

one can also choose F to be a diagonal preconditioner D
that scales R to have unit column norms. According to [34],

the condition number after preconditioning κ(RD) is always

upper bounded by the original condition number κ(R), while

the additional cost per iteration to perform SGD updates

with diagonal preconditioner is only O(d). In Section 4

we will illustrate the tradeoffs among these three choices of

preconditioners empirically.

3.3 Complexities.

Here, we discuss the complexity of PWSGD with F = R−1.

The running time of Algorithm 1 consists of three parts.

First, for computing a matrix R such that U = AR−1

is well-conditioned, Appendix A provides a brief overview

of various recently proposed preconditioning methods for

computing R for both ℓ1 and ℓ2 norms; see also Table 4 and

Table 5 for their running time time(R) and preconditioning

quality κ̄p(U). Particularly, there are several available sparse

preconditioning methods that run in O(nnz(A)) plus lower

order terms in d time [9, 19, 23, 38, 35] . Second, to estimate

the leverage scores, i.e., the row norms of AR−1, [11, 8]

proposed several algorithms for approximating the ℓ1 and

ℓ2 leverage scores without forming matrix U . For a target

constant approximation quality, e.g., γ = 0.5 and c1 =
1+γ
1−γ = 3, the running time of these algorithms is O(log n ·

1It is also reflected in κ̂(RF ); however, it depends on κ(RF ) because

one can show m1κ(RF ) ≤ κ̂(RF ) ≤ m2κ(RF ), where m1,m2 are

constants derived using matrix norm equivalences.

nnz(A)). Third, Proposition 3.1 and Proposition 3.2 provide

upper bounds for the expected algorithmic complexity of our

proposed SGD algorithm when a target accuracy is fixed.

Combining these, we have the following results.

PROPOSITION 3.3. Suppose the preconditioner in step 3 of

Algorithm 1, is chosen from Table 4 or Table 5, with constant

probability, one of the following events holds for PWSGD

with F = R−1. To return a solution x̃ with relative error ǫ
on the objective,

• It runs in time(R) +O(log n · nnz(A) + d3κ̄1(U)/ǫ2)
for unconstrained ℓ1 regression.

• It runs in time(R) +O(log n · nnz(A) + timeupdate ·
dκ̄1(U)/ǫ2) for constrained ℓ1 regression.

• It runs in time(R)+O(log n ·nnz(A)+d3 log(1/ǫ)/ǫ)
for unconstrained ℓ2 regression.

• It runs in time(R) +O(log n · nnz(A) + timeupdate ·
d log(1/ǫ)/ǫ2) for constrained ℓ2 regression.

In the above, time(R) denotes the time for computing the

matrix R and timeupdate denotes the time for solving the

optimization problem in (3.8).

Notice that, since timeupdate only depends on d, an im-

mediate conclusion is that by using sparse preconditioning

methods, to find an ǫ-approximate solution, PWSGD runs in

O(log n · nnz(A) + poly(d)/ǫ2) time for ℓ1 regression and

in O(log n · nnz(A) + poly(d) log(1/ǫ)/ǫ) time for ℓ2 re-

gression (in terms of solution vector in prediction norm for

constrained problems or objective value for unconstrained

problems).

Also, as can be seen in Proposition 3.3, for the com-

plexity for ℓ1 regression, the tradeoffs between time(R) and

κ̄1(U) in choosing preconditioners from Table 4 are reflected

here. On the other hand, for ℓ2 regression, as all the precon-

ditioning methods in Table 4 provide similar preconditioning

quality, i.e., κ(U) = O(1), time(R) becomes the key fac-

tor for choosing a preconditioning method. In Table 3, we

summarize the complexity of PWSGD using various sketch-

ing methods for solving unconstrained ℓ1 and ℓ2 regression

problems. The results are obtained by a direct combination

of Table 2 and Tables 4 and 5.

Finally, we remind readers that Tables 1 and 2 summa-

rize the complexities of several related algorithms for un-

constrained ℓ1 and ℓ2 regression. As we can see, PWSGD

is more suitable for finding a medium-precision, e.g., ǫ =
10−3, solution. In particular, it has a dependency uniformly

better than RLA methods for ℓ1 regression. Moreover, un-

like the high-precision solvers, PWSGD also works for con-

strained problems, in which case one only needs to solve an

optimization problem with quadratic objective over the same

constraints at each iteration of PWSGD.
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type sketch complexity

ℓ1 Sparse O(nnz(A) log n+ d
13

2 log
5

2 d/ǫ2)

ℓ1 FT O(nd log n+ d
17

2 log
9

2 d/ǫ2)

ℓ1 DT O(nd2 log n+ d
11

2 log
3

2 d/ǫ2)
ℓ2 Sparse O

(

nnz(A) log n+ d4 + d3 log(1/ǫ)/ǫ
)

ℓ2 SRHT O
(

nd log n+ d3 log d+ d3 log(1/ǫ)/ǫ
)

ℓ2 Gaussian O
(

nd2 + d3 log(1/ǫ)/ǫ
)

Table 3: Summary of complexity of PWSGD with different

sketching methods for computing the preconditioner when solving

unconstrained ℓ1 and ℓ2 regression problems. The target is to

return a solution x̃ with relative error ǫ on the objective. Here,

the complexity of each algorithm is calculated by setting the failure

probability to be a constant.

3.4 Complexity comparison between PWSGD and

RLA.

As we pointed out in Section 1.2, PWSGD and RLA methods

with algorithmic leveraging (Appendix B) (RLA for short)

are closely related, as they can be viewed as methods us-

ing SA and SAA to solve the stochastic optimization prob-

lem (1.2). Omitting the time for computing the basis U
and sampling distribution P , the comparison of complex-

ity boils down to comparing timesub(s, d) (for RLA) and

timeupdate · T (for PWSGD), where timesub(s, d) is the

time needed to solve the same constrained regression prob-

lem with size s by d and timeupdate denotes the time needed

for to solve the optimization problem in (3.8). According to

the theory, for the same target accuracy, the required s (sam-

pling size) and T (number of iterations) are equal asymptot-

ically, up to logarithmic factors; see [10, 37, 12] and Sec-

tion B for expression of s. When the problem is uncon-

strained, due to the efficiency of SGD, timeupdate = O(d2)
as indicated in (3.8). For ℓ2 regression, due to the efficiency

of the direct solver, timesub(s, d) = O(sd2). This explains

why PWSGD and RLA (low-precision solvers (sampling))

have similar complexities as shown in Table 2. On the other

hand, for unconstrained ℓ1 regression, a typical ℓ1 regression

solver requires time timesub(s, d) > sd2. For example, if

an interior point method is used [26], timesub(s, d) is not

even linear in s. This explains the advantage of PWSGD

over RLA as shown in Table 1. We also note that in the

presence of constraints, PWSGD may still be more effi-

cient for solving ℓ1 regression because, roughly speaking,

timesub(s, d)/s > timeupdate.

3.5 Connection to weighted randomized Kaczmarz al-

gorithm.

As mentioned in Section 1, our algorithm PWSGD for least-

squares regression is related to the weighted randomized

Kaczmarz (RK) algorithm [32, 22]. To be more specific,

weighted RK algorithm can be viewed as an SGD algorithm

with constant step-size that exploits a sampling distribution

based on row norms of A, i.e., pi = ‖Ai‖22/‖A‖2F . In

PWSGD, if the preconditioner F = R−1 is used and the

leverage scores are computed exactly, the resulting algorithm

is equivalent to applying the weighted randomized Karcz-

marz algorithm on a well-conditioned basis U = AR−1

since leverage scores are defined as the row norms of U .

Since the matrix A itself can be a basis for its range

space, setting U = A and F = R = I in Proposition 3.2

indicates that weighted RK algorithm inherits a convergence

rate that depends on condition number κ(A) times the scaled

condition number κ̄2(A). Notice that in PWSGD, the pre-

conditioning step implicitly computes a basis U such that

both κ(U) and κ̄(U) are low. One should expect the SGD

phase in PWSGD inherits a faster convergence rate, as veri-

fied numerically in Section 4.

With proof techniques as for Proposition 3.1, one

can also show that for ℓ1 regression, when using SGD

with weighted sampling distribution proportional to the row

norms, the convergence rate depends on ℓ1 condition num-

ber (Definition 1) of the linear system. Thus preconditioning

becomes essential to accelerate the convergence.

4 Experiments

In this section, we provide empirical evaluations of our main

algorithm PWSGD on a real dataset Year2 with size 5×105

by 90. (Again, more details can be found in the techni-

cal report version of this paper [36].) We present the time-

accuracy tradeoffs among various methods in solving uncon-

strained ℓ1 and ℓ2 regression problems. For PWSGD, we

implement it with three different choices of the precondi-

tioner F . Herein, throughout the experiments, by PWSGD-

full, PWSGD-diag, PWSGD-noco, we respectively mean

PWSGD with preconditioner F = R−1, D, I; see Sec-

tion 3.2 for details. Note that, for PWSGD, we use the meth-

ods from [9] for preconditioning. Also, we exactly com-

pute the row norms of AR−1 and use them as the lever-

age scores. As comparisons, we also implemented stan-

dard SGD, weighted randomized Kaczmarz (RK) [32], Ada-

grad [13] and RLA methods with algorithmic leveraging

(RLA for short) described in Appendix B for comparisons.

For AdaGrad, we use diagonal scaling and mirror descent

update rule.

As for implementation details, in all SGD-like algo-

rithms, step-size tuning is done by grid-searching where at

each trial the algorithm is run with a candidate step-size for

3n iterations. Then the step-size that yields the lowest er-

ror is used. The initial solution vector estimate is set as

zero. The algorithms are then run in the following man-

ner. Each epoch contains 1000 iterations. At the begin-

ning of each epoch, we sample 1000 indices according to

2https://archive.ics.uci.edu/ml/datasets/

YearPredictionMSD
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the underlying distribution without replacement and update

the weight using the 1000 row samples from the data matrix.

The time/accuracy pair at every 1000 iterations is recorded.

For RLA, we choose s from a wide range of values and

record the corresponding time/accuracy pairs. Finally, the

plots are generated by averaging the results over 20 indepen-

dent trials. The results are presented in Figure 2.

We note that in [36] we also include a set of empirical

results on the behavior of the convergence rate of PWSGD

and several related SGD-like algorithms on various synthetic

datasets, in which we demonstrate the superior convergence

rate of PWSGD and its stable performance on problems with

increasing condition number.

In our algorithm PWSGD, a faster convergence comes

with the additional cost of preconditioning. For example,

the preconditioning phase of PWSGD takes approximately 3
seconds. Nevertheless, with a faster convergence rate in a

well-conditioned basis, PWSGD-full still outperforms other

methods in converging to a higher-precision solution at a

given time span. As PWSGD-diag balances convergence rate

and computational cost, it outperforms PWSGD-full at the

early stage and yields comparable results to AdaGrad. As ex-

pected, due to the poor conditioning, SGD, weighted-RK and

PWSGD suffer from slow convergence rates. As for RLA

methods, they have the same first step as in PWSGD, i.e.,

preconditioning and constructing the sampling distribution.

For ℓ1 regression, to obtain a fairly high-precision solution,

the sampling size has to be fairly large, which might dras-

tically increase the computation time for solving the sam-

pled subproblem. This explains the advantage of PWSGD-

full over RLA methods in Figure 2. It is worth mentioning

that, although for ℓ2 regression our theory provides relative

error bound on the solution vector measured in the prediction

norm, here we also see that PWSGD-full and PWSGD-diag

display promising performance in approximating the solu-

tion vector measure in ℓ2 norm. Also, although there are no

theoretical results to support the solution vector convergence

on ℓ1 regression problems with PWSGD, the sequence gen-

erated by PWSGD converges to the optimal point favorably.

Finally, notice that RLA uses a high performance direct

solver to solve the mid-size subsampled problem for ℓ2 re-

gression. In this case PWSGD methods do not show signifi-

cant advantages over RLA in terms of speed. For this reason

we have not included RLA results in Figures 2(a) and (b).

Nevertheless, PWSGD methods may still be favorable over

straightforward RLA in terms of speed and feasibility when

the size of the dataset becomes increasingly larger, e.g., 107

by 500 (or even much larger [38]).
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A Supplementary Details of Algorithm 1

As we discussed, we need to compute a well-conditioned

basis implicitly and estimate its row norms, i.e., AR−1 and

{λi}ni=1 in step 3 in Algorithm 1.

A summary of various preconditioning methods can be

found in [37, 38]. Here, we describe the QR-type method. A

high-level summary for these methods is given as follows:

• Given a matrix A ∈ R
n×d with full rank, we first

construct a sketch ΠA ∈ R
poly(d)×d for A satisfying

(A.1)

σS · ‖Ax‖p ≤ ‖SAx‖p ≤ κSσS · ‖Ax‖p, ∀x ∈ R
d,

where κS is the distortion factor independent of n.

• Next, we compute the QR factorization of SA whose

size only depends on d. The resulting R satisfies

that AR−1 is a well-conditioned basis with condition

number κ̄(AR−1) depending on d, κS , and thus on d
solely.

Various ways of computing a sketching matrix S satisfying

(A.1) have been proposed recently. It is worth mentioning

that sketching algorithms that run in nearly input-sparsity

time, i.e., in time proportional to O(nnz(A)) plus lower

order terms in d, to obtain such a sketch matrix for p = 1
and p = 2 are available via random projections composed of

sparse matrices; see [9, 19, 23] for details. See Table 4 for

a short summary of preconditioning methods using various

sketching matrices. Note that the running time here denotes

the total running for computing the matrix R. Again, below

κ̄p(U) is the condition number of U = AR−1 as defined

in Definition 1 and κ(U) is the standard condition number

of U .

Next, given the implicit representation of U by R,

to compute the leverage scores ‖Ui‖pp exactly, one has to

compute U which takes O(nd2) time. Instead of forming

U explicitly and “reading off” the row norms for computing

the leverage scores, one can estimate the row norms of U
up to a small factor by post-multiplying a random projection

matrix; see [8, 11] for the cases when p = 1, 2 respectively.

The above process can be done in O(nnz(A) · log n) time.

Finally, we present two additional results regarding the

non-asymptotic convergence rate of PWSGD on ℓ1 and ℓ2
regression, respectively. Notation is similar to the one used

in Proposition 3.1 and Proposition 3.2.

PROPOSITION A.1. For A ∈ R
n×d and b ∈ R

n, define

f(x) = ‖Ax − b‖1. Algorithm 1 with p = 1 returns

a solution vector estimate x̄ that satisfies the following

expected error bound

E [f(x̄)]− f(x∗) ≤ 1

2ηT
‖x∗ − x1‖2H +

η

2
(c1α‖RF‖1)2 .

(A.2)

Hereby, the expectation is taken over all the samples

ξ1, . . . , ξT and x∗ is an optimal solution to the problem

minx∈Z f(x). The constant in the error bound is given by

c1 = 1+γ
1−γ .

PROPOSITION A.2. For A ∈ R
n×d and b ∈ R

n, define

f(x) = ‖Ax − b‖22. Algorithm 1 with p = 2 returns

a solution vector estimate xT that satisfies the following

expected error bound

E
[

‖xt − x∗‖2H
]

≤
(

1− 4η
(

1− 2ηc1α
2‖RF‖22

)

β2‖(RF )−1‖22

)T

‖x0 − x∗‖2H

+
2c1ηκ̄

2
2(U)κ2(RF )h(y∗)

1− 2c1ηα2‖RF‖22
.(A.3)

Hereby, H = (F−1)⊤F−1 is the weights of the ellipsoidal

norm and the expectation is taken over all the samples

ξ1, . . . , ξT and x∗ is an optimal solutions to the problem

minx∈Z f(x). The constant in the error bound is given by

c1 = 1+γ
1−γ .

B RLA Methods with Algorithmic Leveraging

In this section, we present the RLA sampling algorithm with

algorithmic leveraging for solving ℓp regression problems

mentioned in Section 1.2. The main idea in this class

of algorithms is to sample rows based on the leverage

scores of the input matrix A and solve the sample average
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name running time κ̄p(U)

Dense Cauchy [31] O(nd2 log d) O(d5/2 log3/2 d)

Fast Cauchy [8] O(nd log d+ d3 log d) O(d11/2 log9/2 d)

Sparse Cauchy [19] O(nnz(A) + d7 log5 d) O(d
13

2 log
11

2 d)

Table 4: Summary of running time and condition number, for several different ℓ1 conditioning methods. The failure

probability of each method is set to be a constant.

name running time κp(U) κ̄p(U)

Gaussian O(nd2) O(1) O(
√
d)

SRHT [33] O(nd log n+ d3 log d) O(1) O(
√
d)

Sparse ℓ2 Embedding [9] O(nnz(A) + d4) O(1) O(
√
d)

Table 5: Summary of running time and condition number, for several different ℓ2 conditioning methods. The failure

probability of each method is set to be a constant.

approximation (SAA) of the ℓp regression problem. This

method is formally stated in Algorithm 2.

The following theorem (from [10]) states that if the

sampling size s is large enough, the resulting approximation

solution x̂ produces a
(

1+ǫ
1−ǫ

)

-approximation to the original

solution vector. The following theorem also shows that in

a fixed budget setup, i.e., when the desired accuracy and

confidence interval are fixed, the required sampling size

only depends on the lower dimension d since α and β are

independent of n.

THEOREM B.1. Given input matrix A ∈ R
n×d and vector

b ∈ R
n, let α, β be the condition numbers of the well-

conditioned basis U and γ be the quality of approximation

to the leverage scores satisfying (3.3). Then when ǫ < 1/2
and the sampling size satisfies the following condition

(B.4)

s ≥ 1 + γ

1− γ

(32αβ)p

p2ǫ2

(

(d+ 1) log

(

12

ǫ

)

+ log

(

2

δ

))

,

Algorithm 2 returns a solution vector x̂ that satisfies the

following inequality with probability at least 1− δ,

(B.5) ‖Ax̂− b‖p ≤
(

1 + ε

1− ε

)

‖Ax∗ − b‖p,

where x∗ ∈ Z is an optimal solution to the original problem

minx∈Z ‖Ax− b‖p.

Remark. As can be seen, the sampling size is s =
O(poly(d) log(1/ǫ)/ǫ2 for a target accuracy ǫ. When solv-

ing unconstrained ℓ2 regression, however, it can be shown

that a sampling size s = O(poly(d) log(1/ǫ)/ǫ) is sufficient

to compute an ǫ-approximate solution; see [9] for details.

Algorithm 2 RLA methods with algorithmic leveraging for

constrained ℓp regression

1: Input: A ∈ R
n×d, b ∈ R

n with rank(Ā) = k, Z and

s > 0.

2: Output: An approximate solution x̂ ∈ R
d to problem

minimizex∈Z ‖Ax− b‖pp.

3: Compute R ∈ R
k×(d+1) such that Ā = UR and U is

an (α, β) well-conditioned basis U for the range space

of Ā.

4: Compute or estimate ‖Ui‖pp by λi satisfying (3.3) with

γ, for i ∈ [n].
5: Let pi =

λi∑
n
j=1

λj
, for i ∈ [n].

6: Let S ∈ R
s×n be a zero matrix.

7: for i = 1, . . . , s do

8: Pick ξt from [n] based on distribution {pi}ni=1.

9: Set Si,ξt =
(

1
pξt

)
1

p

.

10: end for

11: Return x̂ = argminx∈Z ‖SAx− Sb‖p.
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