
Journal of Machine Learning Research 18 (2018) 1-43 Submitted 1/17; Revised 1/17; Published 4/18

Weighted SGD for `p Regression with Randomized Preconditioning ∗

Jiyan Yang JIYAN@STANFORD.EDU
Institute for Computational and Mathematical Engineering
Stanford University
Stanford, CA 94305, USA

Yin-Lam Chow YCHOW@STANFORD.EDU
Institute for Computational and Mathematical Engineering
Stanford University
Stanford, CA 94305, USA

Christopher Ré CHRISMRE@CS.STANFORD.EDU
Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Michael W. Mahoney MMAHONEY@STAT.BERKELEY.EDU

International Computer Science Institute and Department of Statistics
University of California, Berkeley
Berkeley, CA 94720, USA

Editor: Zhihua Zhang

Abstract
In recent years, stochastic gradient descent (SGD) methods and randomized linear algebra (RLA)
algorithms have been applied to many large-scale problems in machine learning and data analy-
sis. SGD methods are easy to implement and applicable to a wide range of convex optimization
problems. In contrast, RLA algorithms provide much stronger performance guarantees but are
applicable to a narrower class of problems. We aim to bridge the gap between these two meth-
ods in solving constrained overdetermined linear regression problems—e.g., `2 and `1 regression
problems.

• We propose a hybrid algorithm named PWSGD that uses RLA techniques for preconditioning
and constructing an importance sampling distribution, and then performs an SGD-like iterative
process with weighted sampling on the preconditioned system.

• By rewriting a deterministic `p regression problem as a stochastic optimization problem, we con-
nect PWSGD to several existing `p solvers including RLA methods with algorithmic leveraging
(RLA for short).

• We prove that PWSGD inherits faster convergence rates that only depend on the lower dimension
of the linear system, while maintaining low computation complexity. Such SGD convergence
rates are superior to other related SGD algorithm such as the weighted randomized Kaczmarz
algorithm.

• Particularly, when solving `1 regression with size n by d, PWSGD returns an approximate so-
lution with ε relative error in the objective value in O(log n · nnz(A) + poly(d)/ε2) time. This

∗. A conference version of this paper appears under the same title in Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, Arlington, VA, 2016 (Yang et al., 2016a).

c©2018 Jiyan Yang, Yin-Lam Chow, Christopher Re, and Michael W. Mahoney.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/17-044.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-044.html

YANG ET AL.

complexity is uniformly better than that of RLA methods in terms of both ε and d when the
problem is unconstrained. In the presence of constraints, PWSGD only has to solve a sequence
of much simpler and smaller optimization problem over the same constraints. In general this is
more efficient than solving the constrained subproblem required in RLA.

• For `2 regression, PWSGD returns an approximate solution with ε relative error in the objective
value and the solution vector measured in prediction norm inO(log n·nnz(A)+poly(d) log(1/ε)/ε)
time. We show that for unconstrained `2 regression, this complexity is comparable to that of RLA
and is asymptotically better over several state-of-the-art solvers in the regime where the desired
accuracy ε, high dimension n and low dimension d satisfy d ≥ 1/ε and n ≥ d2/ε.

We also provide lower bounds on the coreset complexity for more general regression problems, in-
dicating that still new ideas will be needed to extend similar RLA preconditioning ideas to weighted
SGD algorithms for more general regression problems. Finally, the effectiveness of such algorithms
is illustrated numerically on both synthetic and real datasets, and the results are consistent with our
theoretical findings and demonstrate that PWSGD converges to a medium-precision solution, e.g.,
ε = 10−3, more quickly.

1. Introduction

Many novel algorithms for large-scale data analysis and machine learning problems have emerged in
recent years, among which stochastic gradient descent (SGD) methods and randomized linear alge-
bra (RLA) algorithms have received much attention—both for their strong performance in practical
applications and for their interesting theoretical properties (Bottou, 2010; Mahoney, 2011). Here,
we consider the ubiquitous `1 and `2 regression problems, and we describe a novel RLA-SGD algo-
rithm called PWSGD (preconditioned weighted SGD). Our new algorithm combines the advantages
of both RLA and SGD methods for solving constrained overdetermined `1 and `2 regression prob-
lems.

Consider the overdetermined `p regression problem

min
x∈Z

f(x) = ‖Ax− b‖p, (1)

where p ∈ [1,∞], A ∈ Rn×d, b ∈ Rn and n � d. When Z = Rd, i.e., the solution space
is unconstrained, the cases p ∈ {1, 2} are respectively known as the Least Absolute Deviations
(LAD, or `1) and Least-squares (LS, or `2) regression problems. Classically, the unconstrained
`2 regression problem can be solved by eigenvector-based methods with worst-case running time
O(nd2) (Golub and Van Loan, 1996); or by iterative methods for which the running time depends on
the condition number of A (Barrett et al., 1994; Kelley, 1995; Saad, 2003), while the unconstrained
`1 regression problem can be formulated as a linear program (Portnoy and Koenker, 1997; Chen
et al., 2001) and solved by an interior-point method (Portnoy and Koenker, 1997; Portnoy, 1997).

For these and other regression problems, SGD algorithms are widely used in practice because of
their scalability and efficiency. In contrast, RLA algorithms have better theoretical guarantees but
(thus far) have been less flexible, e.g., in the presence of constraints. For example, they may use an
interior point method for solving a constrained subproblem, and this may be less efficient than SGD.
(Without constraints, RLA methods can be used to construct subproblems to be solved exactly, or
they can be used to construct preconditioners for the original problem; see Yang et al. (2016b) for
details and implementations of these RLA methods to compute low, medium, and high precision
solutions on up to terabyte-sized input data.) In this paper, we combine these two algorithmic
approaches to develop a method that takes advantage of the strengths of both of these approaches.

2

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

1.1 Overview of our main algorithm

Our main algorithm PWSGD is a hybrid method for solving constrained overdetermined `1 and `2
regression problems. It consists of two main steps. First, apply RLA techniques for preconditioning
and construct an importance sampling distribution. Second, apply an SGD-like iterative phase with
weighted sampling on the preconditioned system. Such an algorithm preserves the simplicity of
SGD and the high quality theoretical guarantees of RLA. In particular, we prove that after precon-
ditioning, the number of iterations required to converge to a target accuracy is fully predictable and
only depends on the low dimension d, i.e., it is independent of the high dimension n. We show that,
with a proper choice of preconditioner, PWSGD runs in O(log n · nnz(A) + poly(d)/ε2) time to
return an approximate solution with ε relative error in the objective for constrained `1 regression;
and in O(log n · nnz(A) + poly(d) log(1/ε)/ε) time to return an approximate solution with ε rela-
tive error in the solution vector in prediction norm for constrained `2 regression. Furthermore, for
unconstrained `2 regression, PWSGD runs in O(log n · nnz(A) + d3 log(1/ε)/ε) time to return an
approximate solution with ε relative error in the objective.

To provide a quick overview of how PWSGD compares to existing algorithms, in Tables 1 and 2,
we summarize the complexity required to compute a solution x̂ with relative error, i.e., (f(x̂) −
f(x∗))/f(x∗) = ε, of several solvers for unconstrained `1 and `2 regression. In Table 1, RLA
with algorithmic leveraging (RLA for short) (Clarkson et al., 2013; Yang et al., 2014) is a popular
method for obtaining a low-precision solution and randomized IPCPM is an iterative method for
finding a higher-precision solution (Meng and Mahoney, 2013b) for unconstrained `1 regression.
Clearly, PWSGD has a uniformly better complexity than that of RLA methods in terms of both d
and ε, no matter which underlying preconditioning method is used. This makes PWSGD a more
suitable candidate for getting a medium-precision, e.g., ε = 10−3, solution.

In Table 2, all the methods require constructing a sketch first. Among them, “low-precision”
solvers refer to “sketching + direct solver” type algorithms; see Drineas et al. (2011); Clarkson and
Woodruff (2013) for projection-based examples and Clarkson and Woodruff (2013); Drineas et al.
(2012) for sampling-based examples. “High-precision” solvers refer to “sketching + precondition-
ing + iterative solver” type algorithms; see Avron et al. (2010); Meng et al. (2014) for examples.
One can show that, when d ≥ 1/ε and n ≥ d2/ε, PWSGD is asymptotically better than all the
solvers shown in Table 2. Moreover, although high-precision solvers are more efficient when a
high-precision solution is desired, usually they are designed for unconstrained problems, whereas
PWSGD also works for constrained problems.

We remark that, compared to general SGD algorithms, our RLA-SGD hybrid algorithm PWSGD
works for problems in a narrower range, i.e., `p regression, but inherits the strong theoretical guar-
antees of RLA. When solving `2 regression, for which traditional RLA methods are well designed,
PWSGD has a comparable complexity. On the other hand, when solving `1 regression, due to the
efficiency of SGD update, PWSGD has a strong advantage over traditional RLA methods. See
Sections 4.3 and 4.4 for more detailed discussions.

Finally, in Section 5, empirically we show that PWSGD performs favorably compared to other
competing methods, as it converges to a medium-precision solution more quickly.

3

YANG ET AL.

solver complexity (general) complexity (sparse)

RLA with algorithmic leveraging time(R) +O(nnz(A) logn+ κ̄
5
4
1 d

17
4 /ε

5
2) O(nnz(A) logn+ d

69
8 log

25
8 d/ε

5
2)

randomized IPCPM time(R) + nd2 +O((nd+ poly(d)) log(κ̄1d/ε)) nd2 +O((nd+ poly(d)) log(d/ε))

PWSGD time(R) +O(nnz(A) logn+ d3κ̄1/ε2) O(nnz(A) logn+ d
13
2 log

5
2 d/ε2)

Table 1: Summary of complexity of several unconstrained `1 solvers that use randomized linear algebra.
The target is to find a solution x̂ with accuracy (f(x̂)− f(x∗))/f(x∗) ≤ ε, where f(x) = ‖Ax−
b‖1. In the above, time(R) denotes the time needed to compute a matrix R such that AR−1 is
well-conditioned with condition number κ̄1 (Definition 1). The general complexity bound and the
one using sparse reciprocal exponential transform (Woodruff and Zhang, 2013) as the underlying
sketching method are presented. Here, we assume n� d such that n > d3 log d and the underlying
`1 regression solver in RLA with algorithmic leveraging algorithm takes O(n

5
4 d3) time to return a

solution (Portnoy and Koenker, 1997). The complexity of each algorithm is computed by setting
the failure probability to be a constant.

solver complexity (SRHT) complexity (CW)
low-precision solvers (projection) O

(
nd log(d/ε) + d3 logn(log d+ 1/ε)

)
O
(
nnz(A) + d4/ε2

)
low-precision solvers (sampling) O

(
nd logn+ d3 logn log d+ d3 log d/ε

)
O
(
nnz(A) logn+ d4 + d3 log d/ε

)
high-precision solvers O

(
nd logn+ d3 logn log d+ nd log(1/ε)

)
O
(
nnz(A) + d4 + nd log(1/ε)

)
PWSGD O

(
nd logn+ d3 logn log d+ d3 log(1/ε)/ε

)
O
(
nnz(A) logn+ d4 + d3 log(1/ε)/ε

)
Table 2: Summary of complexity of several unconstrained `2 solvers that use randomized linear algebra. The

target is to find a solution x̂ with accuracy (f(x̂)− f(x∗))/f(x∗) ≤ ε, where f(x) = ‖Ax− b‖2.
Two sketching methods, namely, SRHT (Drineas et al., 2011; Tropp, 2011) and CW (Clarkson and
Woodruff, 2013) are considered. Here, we assume d ≤ n ≤ ed. The complexity of each algorithm
is computed by setting the failure probability to be a constant.

1.2 Connection to related algorithms

As a side point of potentially independent interest, a connection between `p regression and stochas-
tic optimization will allow us to unify our main algorithm PWSGD and some existing `p regression
solvers under the same framework. In Figure 1, we present the basic structure of this framework,
which provides a view of PWSGD from another perspective. To be more specific, we (in Proposi-
tion 4 formally) reformulate the deterministic `p regression problem in (1) as a stochastic optimiza-
tion problem, i.e.,

min
y∈Y
‖Uy − b‖pp = min

y∈Y
Eξ∼P [|Uξy − bξ|p/pξ] ,

where U is a basis for the range space of A and ξ is a random variable over {1, . . . , n} with dis-
tribution P = {pi}ni=1. As suggested in Figure 1, to solve this stochastic optimization problem,
typically one needs to answer the following three questions.
• (C1): How to sample: SAA (Sampling Average Approximation, i.e., draw samples in a batch

mode and deal with the subproblem) or SA (Stochastic Approximation, i.e., draw a mini-batch
of samples in an online fashion and update the weight after extracting useful information)?
• (C2): Which probability distribution P (uniform distribution or not) and which basis U (pre-

conditioning or not) to use?

4

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

`p regression
minx ‖Ax− b‖pp

stochastic optimization
miny Eξ∼P [|Uξy − bξ|p/pξ]

SA

SA

SAA

online

online

batch

(C1): How to sample?

uniform P
U = A

non-uniform P
well-conditioned U

non-uniform P
well-conditioned U

naive

using RLA

using RLA

(C2): Which U and P to use?

gradient descent

gradient descent

exact solution
of subproblem

fast

fast

slow

(C3): How to solve?

vanilla SGD

PWSGD
(this paper)

vanilla RLA with
algorithmic leveraging

resulting solver

Figure 1: An overview of our framework for solving `p regression via stochastic optimization. To
construct a solver, three choices have to be made. For (C1), the answer can be either
SAA (Sampling Average Approximation, i.e., sample a batch of points and deal with
the subproblem) or SA (Stochastic Approximation, i.e., sample a mini-batch in an online
fashion and update the weight vector after extracting useful information). In (C2), the
answer is determined by P , which denotes the underlying sampling distribution (uniform
or nonuniform) and U , which denotes the basis with which to work (original or precon-
ditioned system). Finally, for (C3), the answer determines how we solve the subproblem
(in SAA) or what information we extract and how we update the weight (in SA).

• (C3): Which solver to use (e.g., how to solve the subproblem in SAA or how to update the
weight in SA)?

Some combinations of these choices may lead to existing solvers; see Figure 1 and Section 3 for
more details. A natural question arises: is there a combination of these choices that leverages the
algorithmic benefits of RLA preconditioning to improve the performance of SGD-type algorithms?
Recall that RLA methods (in particular, those that exploit algorithmic averaging; see Appendix B
and also Drineas et al. (2012); Yang et al. (2016b)) inherit strong theoretical guarantees because
the underlying sampling distribution P captures most of the important information of the original
system; moreover, such a carefully constructed leverage-based distribution is defined based on a
well-conditioned basis U , e.g., an orthogonal matrix for p = 2. One immediate idea is to develop
an SGD-like algorithm that uses the same choice of U and P as in RLA methods. This simple idea
leads to our main algorithm PWSGD, which is an online algorithm (C1) that uses a non-uniform
sampling distribution (C2) and performs a gradient descent update (C3) on a preconditioned system
(C2), as Figure 1 suggests.

Indeed, for least-squares problems (unconstrained `2 regression), PWSGD is highly related to
the weighted randomized Kaczmarz (RK) algorithm (Strohmer and Vershynin, 2009; Needell et al.,
2014) in the way that both algorithms are SGD algorithm with non-uniform P but PWSGD runs on
a well-conditioned basis U while randomized RK doesn’t involve preconditioning. In Section 4.5
we show that this preconditioning step dramatically reduces the number of iterations required for
PWSGD to converge to a (fixed) desired accuracy.

1.3 Main contributions

Now we are ready to state our main contributions.

5

YANG ET AL.

• We reformulate the deterministic `p regression problem (1) into a stochastic optimization
problem (4) and make connections to existing solvers including RLA methods with algorith-
mic leveraging and weighted randomized Kaczmarz algorithm (Sections 3 and 4.5).
• We develop a hybrid algorithm for solving constrained overdetermined `1 and `2 regression

called PWSGD, which is an SGD algorithm with preconditioning and a non-uniform sampling
distribution constructed using RLA techniques. We present several choices of the precondi-
tioner and their tradeoffs. We show that with a suitable preconditioner, convergence rate of the
SGD phase only depends on the low dimension d, and is independent of the high dimension
n (Sections 4.1 and 4.2).
• We prove that PWSGD returns an approximate solution with ε relative error in the objective

value inO(log n ·nnz(A)+poly(d)/ε2) time for `1 regression. This complexity is uniformly
better than that of RLA methods in terms of both ε and d when the problem is unconstrained.
In the presence of constraints, PWSGD only has to solve a sequence of much simpler and
smaller optimization problems over the same constraints, which in general can be more effi-
cient than solving the constrained subproblem required in RLA (Sections 4.3 and 4.4).
• We prove that PWSGD returns a solution with ε relative error in the objective value and

the solution vector measured in prediction norm in O(log n · nnz(A) + poly(d) log(1/ε)/ε)
time for `2 regression. We show that for unconstrained `2 regression, this complexity is
asymptotically better than several state-of-the-art solvers in the regime where d ≥ 1/ε and
n ≥ d2/ε (Sections 4.3 and 4.4).
• Empirically, we show that when solving `1 and `2 regression problems, PWSGD inher-

its faster convergence rates and performs favorably in the sense that it obtains a medium-
precision much faster than other competing SGD-like solvers do. Also, theories regarding
several choices of preconditioners are numerically verified (Section 5).
• We show connections between RLA algorithms and coreset methods of empirical optimiza-

tion problems under the framework of Feldman and Langberg (2011). We show that they are
equivalent for `p regression and provide lower bounds on the coreset complexity for some
more general regression problems. We also discuss the difficulties in extending similarly
RLA preconditioning ideas to general SGD algorithms (Section 6).

1.4 Other prior related work

Numerous RLA algorithms have been proposed to solve `p regression problems (Yang et al., 2016b).
RLA theories show that to achieve a relative-error bound, the required sampling size only depends
on d, independent of n, and the running time also depends on the time to implement the random
projection at the first step. Regarding the performance of unconstrained regression problems, in
Dasgupta et al. (2009) the authors provide an algorithm that constructs a well-conditioned basis
by ellipsoid rounding and a subspace-preserving sampling matrix for `p regression problems in
O(nd5 log n) time; a sampling algorithm based on Lewis weights for `p regression have been pro-
posed by Cohen and Peng (2015); the algorithms in Sohler and Woodruff (2011) and Clarkson
et al. (2013) use the “slow” and “fast” Cauchy Transform to compute the low-distortion `1 embed-
ding matrix and solve the over-constrained `1 regression problem in O(nd1.376+) and O(nd log n)
time, respectively; the algorithms in Drineas et al. (2012) estimate the leverage scores up to a small
factor and solve the `2 regression problem in O(nd log n) time respectively; and the algorithms
in Clarkson and Woodruff (2013); Meng and Mahoney (2013a); Nelson and Nguyen (2013), solve
the problem via sparse random projections in nearly input-sparsity time, i.e., O(log n · nnz(A))

6

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

time, plus lower-order terms, and a tighter analysis is provided by Cohen (2016). As for iterative
algorithms, the algorithms in Avron et al. (2010); Meng et al. (2014) use randomized linear algebra
to compute a preconditioner and call iterative solvers such as LSQR to solve the preconditioned
problem.

In contrast, SGD algorithms update the solution vector in an iterative fashion and are simple
to implement and scalable to large datasets (Bottou and Le Cun, 2004; Shalev-Shwartz and Srebro,
2008; Bottou and Bousquet, 2008). Moreover, these methods can be easily extended for problems
with general convex loss functions and constraints, such as Pegasos (Shalev-Shwartz et al., 2007) for
regularized SVM and stochastic coordinate descent (SCD) for `1 regularization (Shalev-Shwartz and
Tewari, 2009). Several techniques, such as SAGE (Hu et al., 2009), AdaGrad (Duchi et al., 2011),
SVRG (Johnson and Zhang, 2013), have recently been proposed to accelerate the convergence rate
of SGD, and Niu et al. (2011) also show that SGD is favorable for parallel/distributed computation.
More recently, several works, e.g., Zhao and Zhang (2015); Needell et al. (2014) regarding SGD
with weighted sampling are proposed, in which the authors show that the performance of SGD can
be improved by using a nonuniform sampling distribution.

In addition, as we point out in Section 4.2, PWSGD has a close relationship to second-order
methods. It can be viewed as an algorithm with approximate Hessians obtained by sketching and
stochastic gradients. This is related to the iterative Hessian sketching algorithm for solving con-
strained least squares problems proposed by Pilanci and Wainwright (2014) which is essentially a
Newton-type algorithm with iterative sketched Hessians and batch gradients. Moreover, the idea of
using approximate Hessians and stochastic gradients have been discussed in several recent papers.
For example, (Moritz et al., 2016; Byrd et al., 2016; Curtis, 2016) exploit the idea of approximating
Hessian with L-BFGS type updates and (variance-reduced) stochastic updates.

2. Preliminaries

For any matrix A ∈ Rn×d, we use Ai and Aj to denote the i-th row and j-th column of A, respec-
tively. We assume A has full rank, i.e., rank(A) = d. Also denote by κ(A) the usual condition
number of A, by nnz(A) the number of nonzero elements in A, and by poly(d) a low-degree poly-
nomial in d. We also use [n] to denote the set of indices 1, . . . , n.

Throughout this subsection, the definitions are applied to general p ∈ [1,∞). We denote by | · |p
the element-wise `p norm of a matrix: |A|p =

(∑n
i=1

∑d
j=1 |Aij |p

)1/p
. In particular, when p = 2,

| · |2 is equivalent to the Frobenius norm.
The following two notions on well-conditioned bases and leverage scores are crucial to our

methods. The first notion is originally introduced by Clarkson (2005) and stated more precisely in
Dasgupta et al. (2009), and it is used to justify the well-posedness of a `p regression problem. These
notions were introduced by Dasgupta et al. (2009).

Definition 1 ((α, β, p)-conditioning and well-conditioned basis) A matrixA ∈ Rn×d is (α, β, p)-
conditioned if |A|p ≤ α and for all x ∈ Rd, β‖Ax‖p ≥ ‖x‖q, where 1/p+ 1/q = 1. Define κ̄p(A)
as the minimum value of αβ such thatA is (α, β, p)-conditioned. We say that a basisU for range(A)
is a well-conditioned basis if κ̄p = κ̄p(U) is a low-degree polynomial in d, independent of n.

The notion of leverage scores captures how important each row in the dataset is, and is used in the
construction of the sampling probability.

7

YANG ET AL.

Definition 2 (`p leverage scores) Given A ∈ Rn×d, suppose U is an (α, β, p) well-conditioned
basis for range(A). Then the i-th leverage score λi of A is defined as λi = ‖Ui‖pp for i = 1, . . . , n.

2.1 Preconditioning

Here, we briefly review the preconditioning methods that will be used in our main algorithms. A
detailed summary of various preconditioning methods can be found in Yang et al. (2014, 2016b).
The procedure for computing a preconditioner can be summarized in the following two steps.

• Given a matrix A ∈ Rn×d with full rank, we first construct a sketch SA ∈ Rs×d for A
satisfying

σS · ‖Ax‖p ≤ ‖SAx‖p ≤ κSσS · ‖Ax‖p, ∀x ∈ Rd, (2)

where κS is the distortion factor independent of n.

• Next, we compute the QR factorization of SA whose size only depends on d. Return R−1.

The following lemma guarantees that the preconditioner satisfies thatAR−1 is well-conditioned
since κS and s depend on d only, independent of n.

Lemma 3 Let R be the matrix returned by the above preconditioning procedure, then we have

κ̄p(AR
−1) ≤ κSdmax{ 1

2
, 1
p
}
s
| 1
p
− 1

2
|
. (3)

Various ways of computing a sketching matrix S satisfying (2) are proposed recently. It is worth
mentioning that sketching algorithms that run in nearly input-sparsity time, i.e., in time proportional
to O(nnz(A)) to obtain such a sketch matrix for p = 1 and p = 2 are available via random
projections composed of sparse matrices; see Clarkson and Woodruff (2013); Meng and Mahoney
(2013a); Woodruff and Zhang (2013); Nelson and Nguyen (2013) for details. In Tables 5 and 6 in
Appendix A we provide a short summary of these sketching methods and the resulting running time
and condition number.

3. A connection to stochastic optimization

In this section, we describe our framework for viewing deterministic `p regression problems from
the perspective of stochastic optimization. This framework will recover both RLA and SGD meth-
ods in a natural manner; and by combining these two approaches in a particular way we will obtain
our main algorithm.

We reformulate overdetermined `p regression problems of the form (1) into a stochastic opti-
mization problem of the form (4) 1, which reformulates a deterministic regression problem into a
stochastic optimization problem. Note that the result holds for general p ∈ [1,∞).

Proposition 4 Let U ∈ Rn×d be a basis of the range space of A in the form U = AF , where
F ∈ Rd×d. The constrained overdetermined `p regression problem (1) is equivalent to

min
y∈Y
‖Uy − b‖pp = min

y∈Y
Eξ∼P [H(y, ξ)] , (4)

1. Technically, this result is straightforward; but this reformulation allows us to introduce randomness—parameterized
by a probability distribution P—into the deterministic problem (1) in order to develop randomized algorithms for it.

8

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

where ξ is a random variable over {1, . . . , n} with distribution P = {pi}ni=1, y is the decision
variable in Y , and H(y, ξ) = |Uξy − bξ|p/pξ. The constraint set of y is Y = {y ∈ Rd|y =
F−1x, x ∈ Z}.

With Proposition 4, as suggested in Figure 1, one can solve the overdetermined `p regression
problem (1) by applying either SAA or SA, i.e., (C1) on the stochastic optimization problem (4). In
addition to the choice of SA versus SAA, one also has to choose U and P , i.e., (C2), and determine
the underlying solver, i.e., (C3).

Assume that if SAA is used, then for (C3) we solve the subproblem exactly, i.e., we compute a
high-precision solution of the subproblem; this leads to a class of randomized linear algebra (RLA)
algorithms for solving `p regression. Alternatively, if we assume that SA is used, then we extract
the first-order information, i.e., sub-gradient of the sample, and update the weight in a gradient
descent fashion; this leads to a family of stochastic gradient descent (SGD) algorithms for solving
`p regression.

For (C2), we need to choose a basis U that converts (1) into an equivalent problem represented
by U and choose a distribution P for which the algorithm samples a row at every iteration accord-
ingly. In general, different choices of U and P lead to different algorithms. In the following two
subsections, we will discuss their effects on SAA and SA and make connections between existing
solvers and our new solution methods. For simplicity, we assume there are no constraints, i.e.,
Z = Rd (although much of this framework generalizes to nontrivial constraints).

3.1 Using RLA (SAA) to solve `p regression

In this subsection, we briefly discuss the algorithms induced by applying SAA to (4) with different
choices of basis U and distribution P in Proposition 4.

We first show that the choice of the basis U has no effect on the resulting sampling algorithm.
Let S ∈ Rs×n be the equivalent sampling matrix in the sampling algorithm. That is,

Sij =

{
1/pj if the j-th row is sampled in the i-th iteration
0 otherwise.

Then the subproblem can be cast as miny∈Y ‖SUy − b‖pp, which is equivalent to minx∈Z ‖SAx−
b‖pp. Therefore, with a given distribution P , applying SAA to the stochastic optimization problem
associated with any basis U is equivalent to applying SAA to the original problem with matrix A.

Next, we discuss the effect of the choice of P , i.e., the sampling distribution in SAA, on the
required sampling size.

Naive choice of P One choice of P is a uniform distribution, i.e., pi = 1/n for i = 1, . . . , n.
The resulting SAA algorithm becomes uniformly sampling s rows from the original n rows and
solving the subproblem induced by the selected rows. If all the rows are equally “important”, such
an algorithm can be expected to work. However, consider the following toy example for which
uniform sampling gives undesirable answers with high probability. Suppose the first row of the
matrix contains the only nonzero element in the first column of the design matrix A. Since the only
measurement of x1 lies in the first row, in order to recover the optimal value, namely x∗1, the first
row in matrix A is crucial. However, when a uniform sampling scheme is used, the sampling size
required in order to sample the first row is Ω(n). This implies that RLA with uniform sampling will
fail with high probability unless the sampling size s = Ω(n).

9

YANG ET AL.

Smarter choice of P In the above example, it is not hard to show that the leverage score of the
first row is 1, i.e., it is much larger than the average value of the leverage scores. This inspires us
to put more weights on “important” rows, i.e., rows with higher leverage scores. An immediate
solution is to define P based on the leverage scores as follows:

pi =
λi∑n
j=1 λj

,

where λi is the i-th leverage score of A (which depends on whether one is working with `1, `2,
or more general `p regression). Applying SAA with this distribution and solving the subprob-
lem exactly recovers the recently proposed RLA methods with algorithmic leveraging for solving
overdetermined `p regression problems; see Mahoney (2011); Dasgupta et al. (2009); Clarkson et al.
(2013); Yang et al. (2014); Clarkson and Woodruff (2013); Meng and Mahoney (2013a); Ma et al.
(2014) for details. (In RLA, this is simply solving the subproblem of the original problem, but in
statistical learning theory, this has the interpretation of Empirirical Risk Minimization.) This algo-
rithm is formally stated in Algorithm 3 in Appendix B. We also include its approximation-of-quality
results from (Dasgupta et al., 2009) in Appendix B, which state that the resulting approximate so-
lution x̂ produces a (1 + ε)-approximation to the objective if the sampling size s is large enough.
(Note, in particular, that “large enough” here means that when the desired accuracy and failure prob-
ability are fixed, the required sampling size only depends on the lower dimension d, independent of
n.)

3.2 Using SGD (SA) to solve `p regression

Applying SA to (4) and updating the weight vector using first-order information results in a SGD
algorithm. It is not hard to show that, given U = AF and P = {pi}ni=1, the update rule is as
follows. Suppose the ξt-th row is sampled; then the weight vector xt is updated by

xt+1 = xt − ηctH−1Aξt ,

where H =
(
FF>

)−1 ∈ Rd×d, η is the step size, and ct is a constant that depends on xt and ξt.
Next, we discuss how different choices of U and P affect the convergence rates of the resulting

SGD algorithms. For simplicity, we restrict our discussions to unconstrained `1 regressions.

Naive choice of U and P Consider the following choices of U and P that lead to undesirable
convergence rates. Let U = A. If we apply the SGD with some distribution P = {pi}ni=1, some
simple arguments in the SGD convergence rate analysis lead to a relative approximation error of

f(x̂)−f(x∗)

f(x̂)
=O

(
‖x∗‖2 max1≤i≤n‖Ai‖1/pi

‖Ax∗ − b‖1

)
, (5)

where f(x) = ‖Ax− b‖1 and x∗ is the optimal solution. When {pi}ni=1 is the uniform distribution,

(5) becomes O
(
n ‖x

∗‖2·M
‖Ax∗−b‖1

)
, where M = max1≤i≤n ‖Ai‖1 is the maximum `1 row norm of A.

Alternatively, if one chooses pi to be proportional to the row norms of A, i.e., pi = ‖Ai‖1
‖A‖1 , then (5)

becomes O
(
‖x∗‖2·‖A‖1
‖Ax∗−b‖1

)
. Consider the following scenario. Given A and b, we continue to append

samples (z, c) satisfying z>x∗ = c and ‖z‖2 ≤ M to A and b, respectively. This process will keep

10

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

x∗, M and ‖Ax∗ − b‖1 unchanged. However, the value of n and ‖A‖1 will increase. Thus, in this
case, the expected time for convergence of SGD with these naive sampling distributions might blow
up as the size of the matrix grows.

Smarter choice of U and P To avoid this problem, we need to precondition the linear regression
problem. If we work with a well-conditioned basis U for the range space of A and choose the
sampling probabilities proportional to the row norms of U , i.e., leverage scores of A, then the
resulting convergence rate on the relative error of the objective becomes O

(
‖y∗‖2·‖U‖1
‖Uy∗−b‖1

)
, where y∗

is an optimal solution to the transformed problem. By Definition 1, if U is a well-conditioned basis,
then one obtains ‖U‖1 ≤ α and ‖y∗‖∞ ≤ β‖Uy∗‖1. Since the condition number αβ of a well-
conditioned basis depends only on d and since ‖Uy∗− b‖1/‖Uy∗‖1 is a constant, it implies that the
resulting SGD inherits a convergence rate in a relative scale that depends on d and is independent
of n.

The idea of using a preconditioner and a sampling distribution according to the leverage scores
leads to our main algorithm.

4. Our Main Algorithm

In this section, we will state our main algorithm PWSGD (Algorithm 1) for solving the constrained
overdetermined `1 and `2 regression problems. We now summarize the main steps of our main
algorithm as follows.

First, we compute a well-conditioned basis U (Definition 1) for the range space of A implicitly
via a conditioning method; see Tables 5 and 6 in Appendix A for a summary of recently proposed
randomized conditioning methods. We refer this as the “implicit” method, i.e., it focuses on com-
puting R ∈ Rd×d such that U = AR−1. A typical way of obtaining R is via the QR decomposition
of SA where SA is a sketch of A; see Appendix A for more details.

Second, we either exactly compute or quickly approximate the leverage scores (Definition 2),
i.e., the row norms of U as {λi}ni=1. To compute {λi}ni=1 exactly, we have to form the matrix
U explicitly, which takes time O(nd2). Alternatively, we can estimate the row norms of U with-
out computing the product between A and R−1, in order to further reduce the running time; see
Appendix A for more details. We assume that {λi}ni=1 satisfy

(1− γ)‖Ui‖pp ≤ λi ≤ (1 + γ)‖Ui‖pp, (6)

where γ is the approximation factor of estimation. When the leverage scores are exact, the approx-
imation factor γ = 0. From that, we can define a distribution P over {1, . . . , n} based on {λi}ni=1

as follows:
pi =

λi∑n
j=1 λj

. (7)

Third, in each iteration a new sample corresponding to a row of A is drawn according to distri-
bution P and we apply an SGD process to solve the following equivalent problem with a specific
choice of F ∈ Rd×d:

min
y∈Y

h(y) = ‖AFy − b‖pp = Eξ∼P [|AξFy − bξ|p/pξ] . (8)

Here the matrix F is called the preconditioner for the linear system being solved; see Section 4.2 for
several choices of F . Below, we show that with a suitable choice of F , the convergence rate of the

11

YANG ET AL.

Algorithm 1 PWSGD— preconditioned weighted SGD for over-determined `1 and `2 regression
1: Input: A ∈ Rn×d, b ∈ Rn with rank(A) = d, x0 ∈ Z , η and T .
2: Output: An approximate solution vector to problem minx∈Z ‖Ax− b‖pp for p = 1 or 2.
3: Compute R ∈ Rd×d such that U = AR−1 is a well-conditioned basis U as described in Sec-

tion 2.1.
4: Compute or estimate ‖Ui‖pp with leverage scores λi, for i ∈ [n], that satisfies (6).
5: Let pi = λi∑n

j=1 λj
, for i ∈ [n].

6: Construct the preconditioner F ∈ Rd×d based on R; see Section 4.2 for details.
7: for t = 0, . . . , T do
8: Pick ξt from [n] based on distribution {pi}ni=1.
9:

ct =

{
sgn (Aξtxt − bξt) /pξt if p = 1;

2 (Aξtxt − bξt) /pξt if p = 2.

10: Update x by

xt+1 =

xt − ηctH
−1Aξt if Z = Rd;

arg min
x∈Z

ηctAξtx+ 1
2‖xt − x‖

2
H otherwise. (11)

where H =
(
FF>

)−1.
11: end for
12: Return x̄ for p = 1 or xT for p = 2.

SGD phase can be improved significantly. Indeed, we can perform the update rule in the original
domain (with solution vector x instead of y), i.e., (11). Notice that if Z = Rd and F = I , then the
update rule can be simplified as

xt+1 = xt − ηctAξt . (9)

If Z = Rd and F = R−1, then the update rule becomes

xt+1 = xt − ηctH−1Aξt , (10)

where H = (R>R)−1. In the presence of constraints, (11) only needs to solve an optimization
problem with a quadratic objective over the same constraints whose size is independent of n.

Finally, the output is the averaged value over all iterates, i.e., x̄ = 1
T

∑>
t=1 xt, for `1 regression,

or the last iterate, i.e., xT , for `2 regression.

4.1 Main results for `1 and `2 regression problems

The quality-of-approximation of Algorithm 1 is presented in Proposition 5 and Proposition 6 for `1
and `2 regression, respectively, in which we give the expected number of iterations that PWSGD
needs for convergence within small tolerance. We show that PWSGD inherits a convergence rate
of O

(
1/
√
T
)

for `1 regression and O (log T/T) for `2 regression and the constant term only

depends on the lower dimension d when F = R−1. Worth mentioning is that for `2 regression,
our bound on the solution vector is measured in prediction norm, i.e., ‖Ax‖2. For completeness, we

12

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

present the non-asymptotic convergence analysis of PWSGD in Proposition 14 and Proposition 15
in Appendix A. All the proofs can be found in Appendix C. The analysis of these results is based
on the convergence properties of SGD; see Appendix D for technical details.

In the following results, R is the matrix computed in step 3 in Algorithm 1, {λi}i∈[n], are the
leverage scores computed in step 4, F is the preconditioner chosen in step 6 in Algorithm 1 and
H =

(
FF>

)−1. Denote by κ̄p(U) the condition number of the well-conditioned basis U = AR−1

and γ the approximation factor of the leverage scores λi, i ∈ [n], that satisfies (6). For any vector
x ∈ Rd, denote by ‖x‖2H = x>Hx the ellipsoidal norm of x induced by matrix H = H> � 0. For
any non-singular matrix A, denote κ(A) = ‖A‖2‖A−1‖2 and κ̂(A) = |A|1|A−1|1. The exact form
of the step-sizes used can be found in the proofs 2.

Proposition 5 ForA ∈ Rn×d and b ∈ Rn, define f(x) = ‖Ax−b‖1 and suppose f(x∗) > 0. Then
there exists a step-size η such that after

T = dκ̄2
1(U)κ̂2(RF)

c2
1c2c

2
3

ε2

iterations, Algorithm 1 with p = 1 returns a solution vector estimate x̄ that satisfies the expected
relative error bound

E [f(x̄)]− f(x∗)

f(x∗)
≤ ε.

Here, the expectation is taken over all the samples ξ1, . . . , ξT and x∗ is the optimal solution to
the problem minx∈Z f(x). The constants in T are given by c1 = 1+γ

1−γ , c2 =
‖x∗−x0‖2H
‖x∗‖2H

and c3 =

‖Ax∗‖1/f(x∗).

Proposition 6 ForA ∈ Rn×d and b ∈ Rn, define f(x) = ‖Ax−b‖2 and suppose f(x∗) > 0. Then
there exists a step-size η such that after

T = c1κ̄
2
2(U)κ2(RF) · log

(
2c2κ

2(U)κ2(RF)

ε

)
·
(

1 +
κ2(U)κ2(RF)

c3ε

)
iterations, Algorithm 1 with p = 2 returns a solution vector estimate xT that satisfies the expected
relative error bound

E
[
‖A(xT − x∗)‖22

]
‖Ax∗‖22

≤ ε.

Furthermore, when Z = Rd and F = R−1, there exists a step-size η such that after

T = c1κ̄
2
2(U) · log

(
c2κ

2(U)

ε

)
·
(

1 +
2κ2(U)

ε

)
iterations, Algorithm 1 with p = 2 returns a solution vector estimate xT that satisfies the expected
relative error bound

E [f(xT)]− f(x∗)

f(x∗)
≤ ε.

2. The exact expression of the optimal stepsize contains unknown quantities such as x∗. In fact, this is also the case for
many SGD-type algorithms. In practice, standard techniques for searching stepsizes can be used. In our experiments,
we evaluate our algorithm using theoretically optimal stepsizes as well as stepsizes after grid searching.

13

YANG ET AL.

Here, the expectation is taken over all the samples ξ1, . . . , ξT , and x∗ is the optimal solution to
the problem minx∈Z f(x). The constants in T are given by c1 = 1+γ

1−γ , c2 =
‖x∗−x0‖2H
‖x∗‖2H

, c3 =

‖Ax∗‖22/f(x∗)2.

The above results indicate two important properties of PWSGD. First recall that the condition
number 3 κ̄p(U) of the well-conditioned basis U is a polynomial of d that is independent of n. Thus
with a preconditioner F = R−1 and an appropriate step-size in PWSGD, the number of iterations
T required to achieve an arbitrarily low relative error only depends on the low dimension d of the
input matrix A. Second, PWSGD is robust to leverage score approximations, i.e., the expected
convergence rate will only be affected by a small distortion factor even when the approximation has
low accuracy, such as γ = 0.5.
Remark. For constrained `2 regression, the bound is on the solution vector measured in prediction
norm. By the triangular inequality, this directly implies (E [f(xT)]− f(x∗))/f(x∗) ≤ √c3ε.
Remark. Our approach can also be applied to other type of linear regression problems such as ridge
regressions in which SGD can be invoked in a standard way. In this case, the “condition number”
of SGD is lower than κ due to the regularization term. The randomized preconditioning methods
discussed in Section 2.1 can be used but it is an “overkill’. More sophisticated preconditioning
methods can be devised, e.g., based on ridge leverage scores (Cohen et al., 2015b).

4.2 The choice of the preconditioner F

As we can see, the preconditioner F plays an important role in our algorithm. It converts the
original regression problem in (1) to the stochastic optimization problem in (8). From Proposition 5
and Proposition 6, clearly, different choices of F will lead to different convergence rates in the SGD
phase (reflected in κ(RF)4) and additional computational costs (reflected in H in (11)).

When F = R−1, the effect of κ2(RF) on T vanishes. In this case, H is also a good approxi-
mation to the Hessian A>A. This is because usually R is the R-factor in the QR decomposition of
SA, where SA is a “sketch” of A satisfying (2) that shares similar properties with A. Together we
have H = R>R = (SA)>(SA) ≈ A>A. This implies (10) is close to the Newton-type update.
However, as a tradeoff, since H−1 is a d× d dense matrix, an additional O(d2) cost per iteration is
required to perform SGD update (11).

On the other hand, when F = I , no matrix-vector multiplication is needed in updating x. How-
ever, based on the discussion above, one should expect κ(R) = κ(SA) to be close to κ(A). Then
the term κ(RF) = κ(R) can be large if A is poorly conditioned, which might lead to undesirable
performance in SGD phase.

Besides the obvious choices of F such as R−1 and I , one can also choose F to be a diagonal
preconditioner D that scales R to have unit column norms. According to van der Sluis (1969), the
condition number after preconditioning κ(RD) is always upper bounded by the original condition
number κ(R), while the additional cost per iteration to perform SGD updates with diagonal pre-
conditioner is only O(d). In Section 5 we will illustrate the tradeoffs among these three choices of
preconditioners empirically.

3. One can show that κ̄2 is a scaled version of the standard condition number κ. κ̄1 is also related to κ with κ̄1 ≥
κ/
√
nd. This implies that in general κ̄1 can be large without preconditioning, e.g., the buzz dataset used in our

experiments.
4. It is also reflected in κ̂(RF); however, it depends on κ(RF) because one can show m1κ(RF) ≤ κ̂(RF) ≤
m2κ(RF), where m1,m2 are constants derived using matrix norm equivalences.

14

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

4.3 Complexities

Here, we discuss the complexity of PWSGD with F = R−1. The running time of Algorithm 1
consists of three parts. First, for computing a matrix R such that U = AR−1 is well-conditioned,
Appendix A provides a brief overview of various recently proposed preconditioning methods for
computing R for both `1 and `2 norms; see also Table 5 and Table 6 for their running time time(R)
and preconditioning quality κ̄p(U). Particularly, there are several available sparse preconditioning
methods that run in O(nnz(A)) plus lower order terms in d time (Clarkson and Woodruff, 2013;
Meng and Mahoney, 2013a; Nelson and Nguyen, 2013; Yang et al., 2016b; Woodruff and Zhang,
2013). Second, to estimate the leverage scores, i.e., the row norms of AR−1, Drineas et al. (2012);
Clarkson et al. (2013) proposed several algorithms for approximating the `1 and `2 leverage scores
without forming matrix U . For a target constant approximation quality, e.g., γ = 0.5 and c1 =
1+γ
1−γ = 3, the running time of these algorithms is O(log n · nnz(A)). Third, Proposition 5 and
Proposition 6 provide upper bounds for the expected algorithmic complexity of our proposed SGD
algorithm when a target accuracy is fixed. Combining these, we have the following results.

Proposition 7 Suppose the preconditioner in step 3 of Algorithm 1, is chosen from Table 5 or
Table 6, with constant probability, one of the following events holds for PWSGD with F = R−1. To
return a solution x̃ with relative error ε on the objective,
• It runs in time(R) +O(log n · nnz(A) + d3κ̄1(U)/ε2) for unconstrained `1 regression.
• It runs in time(R)+O(log n·nnz(A)+timeupdate·dκ̄1(U)/ε2) for constrained `1 regression.
• It runs in time(R) +O(log n · nnz(A) + d3 log(1/ε)/ε) for unconstrained `2 regression.
• It runs in time(R) + O(log n · nnz(A) + timeupdate · d log(1/ε)/ε2) for constrained `2

regression.
In the above, time(R) denotes the time for computing the matrixR and timeupdate denotes the time
for solving the optimization problem in (11).

Notice that, since timeupdate only depends on d, an immediate conclusion is that by using sparse
preconditioning methods, to find an ε-approximate solution, PWSGD runs in O(log n · nnz(A) +
poly(d)/ε2) time for `1 regression and in O(log n · nnz(A) + poly(d) log(1/ε)/ε) time for `2
regression (in terms of solution vector in prediction norm for constrained problems or objective
value for unconstrained problems).

Also, as can be seen in Proposition 7, for the complexity for `1 regression, the tradeoffs in
choosing preconditioners from Table 5 are reflected here. On the other hand, for `2 regression, as all
the preconditioning methods in Table 5 provide similar preconditioning quality, i.e., κ(U) = O(1),
time(R) becomes the key factor for choosing a preconditioning method. In Table 3, we summarize
the complexity of PWSGD using various sketching methods for solving unconstrained `1 and `2
regression problems. The results are obtained by a direct combination of Tables 2, 5 and 6. We
remark that, with decaying step-sizes, it is possible to improve the dependence on ε from log(1/ε)/ε
to 1/ε (Rakhlin et al., 2012).

Finally, we remind readers that Table 1 and 2 summarize the complexities of several related
algorithms for unconstrained `1 and `2 regression. As we can see, PWSGD is more suitable for
finding a medium-precision, e.g., ε = 10−3, solution. In particular, it has a dependency uniformly
better than RLA methods for `1 regression. Moreover, unlike the high-precision solvers, PWSGD
also works for constrained problems, in which case each iteration of PWSGD only needs to solve
an optimization problem with quadratic objective over the same constraints.

15

YANG ET AL.

type sketch complexity

`1 Dense Cauchy (Sohler and Woodruff, 2011) O(nd2 logn+ d3 log d+ d
11
2 log

3
2 d/ε2)

`1 Fast Cauchy (Clarkson et al., 2013) O(nd logn+ d3 log5 d+ d
17
2 log

9
2 d/ε2)

`1 Sparse Cauchy (Meng and Mahoney, 2013a) O(nnz(A) logn+ d7 log5 d+ d
19
2 log

11
2 d/ε2)

`1 Reciprocal Exponential (Woodruff and Zhang, 2013) O(nnz(A) logn+ d3 log d+ d
13
2 log

5
2 d/ε2)

`1 Lewis Weights (Cohen and Peng, 2015) O(nnz(A) logn+ d3 log d+ d
9
2 log

1
2 d/ε2)

`2 Gaussian Transform O(nd2 + d3 log(1/ε)/ε)
`2 SRHT (Tropp, 2011) O(nd logn+ d3 logn log d+ d3 log(1/ε)/ε)
`2 Sparse `2 embedding (Cohen, 2016) O(nnz(A) logn+ d3 log d+ d3 log(1/ε)/ε)
`2 Refinement Sampling (Cohen et al., 2015a) O(nnz(A) log(n/d) log d+ d3 log(n/d) log d+ d3 log(1/ε)/ε)

Table 3: Summary of complexity of PWSGD with different sketching methods for computing the precondi-
tioner when solving unconstrained `1 and `2 regression problems. The target is to return a solution
x̃ with relative error ε on the objective. Here, the complexity of each algorithm is calculated by
setting the failure probability to be a constant.

4.4 Complexity comparison between PWSGD and RLA

As we pointed out in Section 3, PWSGD and RLA methods with algorithmic leveraging (Ap-
pendix B) (RLA for short) are closely related as they can be viewed as methods using SA and
SAA to solve the stochastic optimization problem (4). Omitting the time for computing basis U
and sampling distribution P , the comparison of complexity boils down to comparing timesub(s, d)
(for RLA) and timeupdate · T (for PWSGD) where timesub(s, d) is the time needed to solve the
same constrained regression problem with size s by d and timeupdate denotes the time needed
for to solve the optimization problem in (11). According to the theory, for the same target accu-
racy, the required s (sampling size) and T (number of iterations) are the same asymptotically, up
to logarithmic factors; see Dasgupta et al. (2009); Yang et al. (2014); Drineas et al. (2011) and
Section B for expression of s. When the problem is unconstrained, due to the efficiency of SGD,
timeupdate = O(d2) as indicated in (11). For `2 regression, due to the efficiency of the direct solver,
timesub(s, d) = O(sd2). This explains why PWSGD and RLA (low-precision solvers (sampling))
have similar complexities as shown in Table 2. On the other hand, for unconstrained `1 regression,
a typical `1 regression solver requires time timesub(s, d) > sd2. For example, if an interior point
method is used (Portnoy and Koenker, 1997), timesub(s, d) is not even linear in s. This explains
the advantage PWSGD has over RLA as shown in Table 1. We also note that in the presence of
constraints, PWSGD may still be more efficient for solving `1 regression because roughly speaking,
timesub(s, d)/s > timeupdate.

4.5 Connection to weighted randomized Kaczmarz algorithm

As mentioned in Section 1, our algorithm PWSGD for least-squares regression is related to the
weighted randomized Kaczmarz (RK) algorithm (Strohmer and Vershynin, 2009; Needell et al.,
2014). To be more specific, weighted RK algorithm can be viewed as an SGD algorithm with con-
stant step-size that exploits a sampling distribution based on row norms ofA, i.e., pi = ‖Ai‖22/‖A‖2F .
In PWSGD, if the preconditioner F = R−1 is used and the leverage scores are computed exactly,
the resulting algorithm is equivalent to applying the weighted randomized Karczmarz algorithm on
a well-conditioned basis U = AR−1 since leverage scores are defined as the row norms of U .

16

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

Since the matrix A itself can be a basis for its range space, setting U = A and F = R = I
in Proposition 6 indicates that weighted RK algorithm inherits a convergence rate that depends on
condition number κ(A) times the scaled condition number κ̄2(A). Notice that in PWSGD, the
preconditioning step implicitly computes a basis U such that both κ(U) and κ̄(U) are low. One
should expect the SGD phase in PWSGD inherits a faster convergence rate, as verified numerically
in Section 5.

5. Experiments

In this section, we provide empirical evaluations of our main algorithm PWSGD. We evaluate its
convergence rate and overall running time on both synthetic and real datasets. For PWSGD, we im-
plement it with three different choices of the preconditioner F . Herein, throughout the experiments,
by PWSGD-full, PWSGD-diag, PWSGD-noco, we respectively mean PWSGD with preconditioner
F = R−1, D, I; see Section 4.2 for details. Note that, for PWSGD, we use the methods from Clark-
son and Woodruff (2013) for preconditioning. Also, we exactly compute the row norms of AR−1

and use them as the leverage scores. In each experiment, the initial solution vector estimate is set
as zero. The above algorithms are then run in the following manner. Each epoch contains dn/10e
iterations. At the beginning of each epoch, we sample dn/10e indices according to the underlying
distribution without replacement and update the weight using the dn/10e row samples from the data
matrix. Finally, the plots are generated by averaging the results over 20 independent trials.

5.1 Empirical evaluations on synthetic datasets

Theoretically the major advantage of PWSGD is the fast convergence rate. To evaluate its perfor-
mance, we compare the convergence rate of relative error, i.e., |f̂ − f∗|/f∗, with other competing
algorithms including vanilla SGD and fully weighted randomized Kaczmarz (weighted-RK) algo-
rithm (Needell et al. (2014); Strohmer and Vershynin (2009)) for solving least-squares problem
(unconstrained `2 regression). For each of these methods, given a target relative error ε = 0.1 on
the objective, i.e., (f̂ − f∗)/f∗ = 0.1, we use the optimal step-size suggested in the theory. In par-
ticular, for PWSGD, we are showing the convergence rate of the SGD phase after preconditioning.
We stop the algorithm when the relative error reaches ε. In this task, we use synthetic datasets for
better control over the properties on input matrices A and b. Each dataset has size 1000 by 10 and
is generated in one of the following two ways.

Synthetic 1 The design matrix A has skewed row norms and skewed leverage scores. That is,
5 rows have leverage scores and row norms significantly larger than the rest5.

Synthetic 2 The design matrix A is of the form A = UΣV > where U ∈ R1000×10 and V ∈
R10×10 are random orthonormal matrices and Σ ∈ R10×10 is a diagonal matrix that controls κ(A).

In both cases, the true solution x∗ is a standard Gaussian vector and the response vector b is set to
be Ax∗ corrupted by some Gaussian noise with standard deviation 0.1.

In Figure 2, we present the results on two Synthetic 1 datasets with condition number
around 1 and 5. From the plots we can clearly see that among the methods we used, PWSGD-full

5. Note that, in general, there is no correlation between row norms and leverage scores unless the matrix has nearly
orthonormal columns. For construction details of Synthetic 1, see the construction of NG matrices Section 5.3
in Yang et al. (2016b).

17

YANG ET AL.

and PWSGD-diag exhibit superior speed in terms of achieving the target accuracy. The relative or-
dering within PWSGD with three different preconditioners is consistent with the theory according to
our discussions in Section 4.2. Since the datasets considered here are well-conditioned, the precon-
ditioning phases in PWSGD-diag and PWSGD-full have similar effects and both methods perform
well. However as suggested in Corollary 6, as the condition number increases (in comparison of
the results in Figure 2(a) versus Figure 2(b)), other methods show degradations in convergence.
Furthermore Figure 2(a) shows that the weighted-RK algorithm outperforms standard SGD. This is
due to the fact that A in this dataset is well-conditioned but with non-uniform row norms.

We further investigate the relation between the condition number ofA and convergence rate. As
suggested in Proposition 6, for weighted SGD algorithm, the number of iterations required to solve
an `2 regression problem is proportional to κ̄2

2(A)κ2(A) = ‖(A>A)−1‖22‖A‖22‖A‖2F ≤ κ̄4
2(A).

To verify this hypothesis, we generate a sequence of A matrices using Synthetic 2 dataset with
increasing κ̄4

2(A) values such thatU and V in the sequence are constants.6 This construction ensures
that all other properties such as leverage scores and coherence (the largest leverage score) remain
unchanged. Similar to Figure 2, we present the experimental results (number of iterations required
for different methods versus κ̄4

2(A)) for the Synthetic 2 dataset in Figure 3.
As shown in Figure 3, the required number of iterations of all the methods except for PWSGD-

full scales linearly in κ̄4
2(A). This phenomenon matches the result predicted in theory. A significant

advantage of PWSGD-full over other methods is its robust convergence rate against variations in
κ̄4

2(A). This is mainly because its SGD phase operates on a well-conditioned basis after precondi-
tioning and the preconditioning quality of PWSGD-full depends only on the low-dimension of A;
thus increasing κ̄4

2(A) has little effect on changing its convergence rate. Also, while the diagonal
preconditioner in PWSGD-diag reduces the condition number, i.e., κ(RD) ≤ κ(R), its convergence
rate still suffers from the increase of κ̄4

2(A).

5.2 Time-accuracy tradoeffs

Next, we present the time-accuracy tradeoffs among these methods on the following two datasets
described in Table 4.

name #rows # columns κ(A)
Year7 5× 105 90 2× 103

Buzz8 5× 105 77 108

Table 4: Summary of the two real datasets we evaluate in the experiments.

Here we test the performance of various methods in solving unconstrained `1 and `2 regression
problems. Although there are no theoretical results to support the solution vector convergence on
`1 regression problems with PWSGD, we still evaluate relative error in the solution vector. To
further examine the performance of PWSGD methods, we also include AdaGrad, SVRG, and RLA
methods with algorithmic leveraging (RLA for short) mentioned in Section 3 and Appendix B for
comparisons. For AdaGrad, we use diagonal scaling and mirror descent update rule. For SVRG,
we compute the full gradient every [n/2] iterations. As for implementation details, in all SGD-like

6. In Synthetic 2, U and V are fixed. Σ is of the form diag(σ1, . . . , σd) where σi = 1 + (i− 1)q for i ∈ [d]. We
solve for q such that

∑d
i=1 σ

2
i = κ̄2

2(U) for any desired value κ̄2
2(U).

7. https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
8. https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+

18

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

algorithms, step-size tuning is done by grid-searching where at each trial the algorithm is run with
a candidate step-size for enough iterations. Then the step-size that yields the lowest error within 10
seconds is used. The time/accuracy pair at every 2000 iterations is recorded. For RLA, we choose
s from a wide range of values and record the corresponding time/accuracy pairs. The results on the
two datasets are presented in Figures 4 and 5, respectively.

As we can see in Figures 4 and 5, in our algorithm PWSGD, a faster convergence comes with
the additional cost of preconditioning. For example, the preconditioning phase of PWSGD takes
approximately 0.5 seconds. Nevertheless, with a faster convergence rate in a well-conditioned basis,
PWSGD-full still outperforms other methods in converging to a higher-precision solution at a given
time span. As PWSGD-diag balances convergence rate and computational cost, it outperforms
PWSGD-full at the early stage and yields comparable results to AdaGrad. As expected, due to the
poor conditioning, SGD, weighted-RK, SVRG, and PWSGD-noco suffer from slow convergence
rates. As for RLA methods, they have the same first step as in PWSGD, i.e., preconditioning and
constructing the sampling distribution. For `1 regression, to obtain a fairly high-precision solution,
the sampling size has to be fairly large, which might drastically increase the computation time for
solving the sampled subproblem. This explains the advantage of PWSGD-full over RLA methods
in Figure 4. It is worth mentioning that, although for `2 regression our theory provides relative error
bound on the solution vector measured in the prediction norm, here we also see that PWSGD-full
and PWSGD-diag display promising performance in approximating the solution vector measured in
`2 norm.

We also notice that on Buzz (Figure 5), all the methods except for PWSGD-full and PWSGD-
diag have a hard time converging to a solution with low solution error. This is due to the fact that
Buzz has a high condition number. The advantage of applying a preconditioner is manifested.

Finally, notice that RLA uses a high performance direct solver to solve the mid-size subsampled
problem for `2 regression. In this case PWSGD methods do not show significant advantages over
RLA in terms of speed. For this reason we have not included RLA results in Figure 4(a) and 4(b).
Nevertheless, PWSGD methods may still be favorable over RLA in terms of speed and feasibility
when the size of the dataset becomes increasingly larger, e.g., 107 by 500.

19

YANG ET AL.

Number of iterations/10
0 50 100 150 200 250 300

(f
(x

k
)
−
f
(x

∗
))
/f

(x
∗
)

10
-1

10
0

pwSGD-full
pwSGD-diag
pwSGD-noco
weighted-RK
SGD

(a) κ(A) ≈ 1
Number of iterations/10

0 500 1000 1500 2000

(f
(x

k
)
−
f
(x

∗
))
/f

(x
∗
)

10
-1

10
0

10
1

pwSGD-full
pwSGD-diag
pwSGD-noco
weighted-RK
SGD

(b) κ(A) ≈ 5

Figure 2: Convergence rate comparison of several SGD-type algorithms including PWSGD with
three different choices of preconditioners for solving `2 regression on Synthetic 1
datasets with condition number around 1 and 5, respectively. For each method, the opti-
mal step-size is set according to the theory with target accuracy |f(x̂)− f(x∗)|/f(x∗) =
0.1. The y-axis is showing the relative error on the objective, i.e., |f(x̂)− f(x∗)|/f(x∗).

(‖A‖F‖A
−1‖2)

4
200 400 600 800 1000 1200

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

0

500

1000

1500

2000

2500

3000
pwSGD-full
pwSGD-diag
pwSGD-noco
weighted-RK
SGD

Figure 3: Convergence rate comparison of several SGD-type algorithms including PWSGD with
three different choices of preconditioners for solving `2 regression on Synthetic 2
datasets with increasing condition number. For each method, the optimal step-size is set
according to the theory with target accuracy |f(x̂) − f(x∗)|/f(x∗) = 0.1. The y-axis is
showing the minimum number of iterations for each method to find a solution with the
target accuracy.

5.3 Empirical evaluations with sparse `2 regression

Finally, we evaluate our algorithm on a constrained problem — sparse `2 regression, which is a
special case of (1). The problem formulation is as follows. Given a matrix A ∈ Rn×d and a vector

20

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

0 2 4 6 8 10 12

Running time (s)

10
-5

10
0

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

weighted-RK

(a) `2 regression

0 2 4 6 8 10 12

Running time (s)

10
-4

10
-2

10
0

10
2

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

weighted-RK

(b) `2 regression

0 2 4 6 8 10 12

Running time (s)

10
-5

10
0

10
5

10
10

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

RLA

(c) `1 regression

0 2 4 6 8 10 12

Running time (s)

10
-4

10
-2

10
0

10
2

10
4

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

RLA

(d) `1 regression

Figure 4: Time-accuracy tradeoffs of several algorithms including PWSGD with three different
choices of preconditioners on year dataset. Both `1 and `2 regressions are tested and
the relative error on both the objective value, i.e., |f(x̂)− f(x∗)|/f(x∗), and the solution
vector, i.e., ‖x̂− x∗‖22/‖x∗‖22, are measured.

b ∈ Rn, we want to solve the following constrained problem

min
‖x‖1≤R

‖Ax− b‖2, (12)

where R controls the size of the `1-ball constraint.
When using PWSGD, according to (11) in Algorithm 1, at each iteration, a sparse `2 regression

problem with size d by d needs to be solved. Here, to use the samples more efficiently, we use a
mini-batch version of PWSGD. That is, in Step 8-10 of Algorithm 1, rather than picking only one
row from A to compute the noisy gradient, we select m rows and average the scaled version of
them. Doing this allows us to reduce the variance of the noisy gradient. In our experiments, we set
m = 200.

In this task, the observation model is generated in the following manner, b = Ax∗ + e where
A ∈ Rn×d has independent standard normal entries, x∗ has s nonzero entries and noise vector
e ∈ Rn has independent standard normal entries. We evaluate both the optimization error ‖x̂ −

21

YANG ET AL.

0 2 4 6 8 10

Running time (s)

10
-3

10
-2

10
-1

10
0

10
1

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

weighted-RK

(a) `2 regression

0 2 4 6 8 10

Running time (s)

10
-4

10
-2

10
0

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

weighted-RK

(b) `2 regression

0 2 4 6 8 10

Running time (s)

10
-2

10
0

10
2

10
4

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

RLA

(c) `1 regression

0 2 4 6 8 10

Running time (s)

10
-4

10
-2

10
0

pwSGD-full

pwSGD-diag

pwSGD-noco

AdaGrad

SVRG

SGD

RLA

(d) `1 regression

Figure 5: Time-accuracy tradeoffs of several algorithms including PWSGD with three different
choices of preconditioners on buzz dataset. Both `1 and `2 regressions are tested and
the relative error on both the objective value, i.e., |f(x̂)− f(x∗)|/f(x∗), and the solution
vector, i.e., ‖x̂− x∗‖22/‖x∗‖22, are measured.

xLS‖2 and statistical error ‖x̂ − x∗‖2 of PWSGD-full with several choices of stepsize η where
xLS the optimal solution of problem (12). It is known that the least squares error of xLS is ‖xLS −
x∗‖2 ≈

√
s log(ed/s)/n (Hastie et al., 2015). The statistical error can be bounded using the triangle

inequality as shown below,

‖x̂− x∗‖2 ≤ ‖x̂− xLS‖2 + ‖xLS − x∗‖2.

Therefore, the statistical error ‖x̂−x∗‖2 is dominated by the least squares error ‖xLS −x∗‖2 when
the optimization error ‖x̂− xLS‖2 is small.

In Figure 6, we show the results on a data instance with n = 1e4, d = 400 and s = 30. Here
R is set to be R = ‖x∗‖1 for the experimental purpose. First, we briefly describe the effect of
stepsize η. When a constant stepsize is used, typically, a smaller η allows the algorithm to converge
to a more accurate solution with a slower convergence rate. This is verified by Figure 6(a) in which
the performance of PWSGD-full with larger η’s saturates earlier at a coarser level while η = 0.001
allows the algorithm to achieve a finer solution. Nevertheless, as discussed above, the statical error

22

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

is typically dominated by the least squares error. For our choice of (n, d, s), one can show that the
least squares error ‖xLS − x∗‖22 ≈ 0.01. Therefore, the statistical error shown in Figure 6(b) is
around 0.01 when the optimization error is small enough.

0 500 1000 1500 2000 2500
Number of iterations

10
-4

10
-3

10
-2

10
-1

10
0

‖x
k
−

x
L
S
‖2 2

pwSGD-full-0.001
pwSGD-full-0.002
pwSGD-full-0.003
pwSGD-full-0.004

(a) Optimization error ‖xk − xLS‖22

0 500 1000 1500 2000 2500
Number of iterations

10
-2

10
-1

10
0

‖x
k
−

x
∗
‖2 2

pwSGD-full-0.001
pwSGD-full-0.002
pwSGD-full-0.003
pwSGD-full-0.004

(b) Statistical error ‖xk − x∗‖22

Figure 6: Performance of PWSGD-full on a synthetic sparse `2 regression problem with difference
choices of stepsize η. Both optimization error and statistical error are shown.

6. Connection with Coreset Methods

After viewing RLA and SGD from the stochastic optimization perspective and using that to develop
our main algorithm, a natural question arises: can we do this for other types of problems? To do
so, we need to define “leverage scores” for them, since they play a crucial role in this stochastic
framework. Here, we first describe the coreset framework of Feldman and Langberg (2011). Then
we show that—on `p regression problems—two key notions (leverage scores from RLA and sensi-
tivities from coresets) correspond. Finally we will show what amounts to a negative result (i.e., a
lower bound) for other problems. Note here, in this section, we work on constrained `p regression
(1) with p ∈ [1,∞) and we use Ā to denote the augmented linear system

(
A b

)
.

6.1 Short summary of coreset methods

In Feldman and Langberg (2011), the authors propose a framework for computing a coreset of F to
a given optimization problem of the form,

cost(F , x) = min
x∈X

∑
f∈F

f(x),

where F is a set of functions from a set X to [0,∞). By Proposition 4, it is not hard to see, the `p
regression problem (1) can be written as

min
x∈C

n∑
i=1

fi(x),

23

YANG ET AL.

Algorithm 2 Compute ε-coreset
1: Input: A class of functions F , sampling size s.
2: Output: An ε-coreset to F .
3: Initialize D as an empty set.
4: Compute the sensitivity m(f) for each function f ∈ F .
5: M(F)←

∑
f∈F m(f).

6: for f ∈ F do
7: Compute probabilities p(f) = m(f)

M(F) .
8: end for
9: for i = 1, . . . , s do

10: Pick f from F with probability p(f).
11: Add f/(s · p(f)) to D.
12: end for
13: Return D.

where fi(x) = |Āix|p and C = {x ∈ Rd+1|xd+1 = −1}, in which case one can define a set of
functions F = {fi}ni=1.
Central to the coreset method of Feldman and Langberg (2011) is the following notion of sensitivity,
which is used to construct importance sampling probabilities, as shown in Algorithm 2, and the
dimension of the given class of function, which is based as Definition 6.1 in Feldman and Langberg
(2011). They are defined as below.

Definition 8 Given a set of function F = {fi}ni=1, the sensitivity m(f) of each function is defined
as m(f) = bsupx∈X n ·

f(x)
cost(F ,x)c + 1, and the total sensitivity M(F) of the set of functions is

defined as M(F) =
∑

f∈F m(f).

Definition 9 The dimension of F is defined as the smallest integer d such that for any G ⊂ F ,

|{Range(G, x, r) | x ∈ X , r ≥ 0}| ≤ |G|d,

where Range(G, x, r) = {g ∈ G | g(x) ≤ r}.

The algorithm proposed in Feldman and Langberg (2011) is summarized in Algorithm 2 below,
and the corresponding result of quality of approximation is presented in Theorem 10.

Theorem 10 Given a set of functions F from X to [0,∞], if s ≥ cM(F)
ε2

(dim(F ′) + log
(

1
δ

)
), then

with probability at least 1− δ, Algorithm 2 returns an ε-coreset for F . That is,

(1− ε)
∑
f∈F

f(x) ≤
∑
f∈D

f(x) ≤ (1 + ε)
∑
f∈F

f(x),

where F ′ = {f/s(f) | f ∈ F} is a rescaled version of F .

24

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

6.2 Connections between RLA and coreset methods

In the following, we present two results on the connection between RLA with algorithmic leverag-
ing, i.e., with sampling based on exact or approximate leverage scores, and coreset methods. These
results originally appeared in Varadarajan and Xiao (2012). We include them here and give different
proofs.

The first result shows that the sensitivities are upper bounded by a constant factor times the `p
leverage scores. With this connection between leverage scores and sensitivities, it is not hard to
see that applying Algorithm 2 to `p regression is exactly the same as applying Algorithm 3 (RLA
sampling algorithm described in Appendix B).

Proposition 11 Given Ā ∈ Rn×(d+1), let fi(x) = |Āix|p, for i ∈ [n]. Let λi be the i-th leverage
score of Ā. Then, the i-th sensitivity

m(fi) ≤ nβpλi + 1,

for i ∈ [n] and the total sensitivity

M(F) ≤ n((αβ)p + 1).

The second result is that, for the `p regression problem, the dimension of the class of functions
dim(F ′) is the same as the dimension of the subspace being considered, which isO(d). To be more
specific, since all the f ∈ F ′ here are of the form f(x) = |aTx|p for some vector a ∈ Rd, we
consider a broader class of functions, namelyA = {|aTx|p | a ∈ Rd}, and compute its dimension.

Proposition 12 Let A = {|aTx|p | a ∈ Rd}. We have

dim(A) ≤ d+ 1.

With these results, in combination with Theorem 10, we can see that to compute a coreset D,
which leads to a

(
1+ε
1−ε

)
-approximate solution the `p regression using coreset method of (Feldman

and Langberg, 2011), the required sampling complexity is the same (up to constants) as that of RLA
sampling algorithm, as indicated by Theorem 16 (assuming γ = 0) in Appendix B.

6.3 Limitation of our approach

From the above, we see that for `p regression, a small coreset whose size only depends on d exists,
and by solving it we can get a (1 + ε)-approximation solution. This results in the same sampling
algorithm as in RLA. Also, the sensitivities defined in the framework can be used as a distribution
when one converts a deterministic problem into a stochastic optimization problem. We want to see
whether we can extend this scheme to other problems. Indeed, beyond `p regression, the coreset
methods work for any kind of convex loss function (Feldman and Langberg, 2011). However, since
it depends on the total sensitivity, the size of the coreset is not necessarily small. For RLA, this
translates into requiring a very large sample size to construct a good subproblem. For example, for
hinge loss, we have the following example showing that the size of the coreset has an exponential
dependency on d.

Proposition 13 Define fi(x) = f(x, ai) = (xTai)
+, where x, ai ∈ Rd for i ∈ [n]. There exists a

set of vectors {ai}di=1 such that the total sensitivity of F = {fi}ni=1 is approximately 2d.

25

YANG ET AL.

This result indicates that new ideas will be needed to extend similarly RLA preconditioning ideas
to weighted SGD algorithms for other types of convex optimization problems. This should not be
surprising, since RLA methods have been developed for randomized linear algebra problems, but it
suggests several directions for follow-up work.

7. Conclusion

In this paper, we propose a novel RLA-SGD hybrid algorithm called PWSGD. We show that after a
preconditioning step and constructing a non-uniform sampling distribution using RLA techniques,
its SGD phase inherits fast convergence rates that only depend on the lower dimension of the input
matrix. For `1 regression, PWSGD displays strong advantages over RLA methods in terms of the
overall complexity. For `2 regression, it has a complexity comparable to that of several state-of-the-
art solvers. Empirically we show that PWSGD is preferable when a medium-precision solution is
desired. Finally, we provide lower bounds on the coreset complexity for more general regression
problems, which point to specific directions for future work to extend our main results.

Acknowledgments. We would like to acknowledge the Army Research Office, the Defense
Advanced Research Projects Agency, and the Department of Energy for providing partial support
for this work.

References

H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK’s least-squares
solver. SIAM J. on Scientific Computing, 32(3):1217–1236, 2010.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, Philadelphia, 1994.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Computational Statis-
tics (COMPSTAT), 2010.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Neural Information Processing
Systems (NIPS), 2008.

L. Bottou and Y. Le Cun. Large scale online learning. In Neural Information Processing Systems
(NIPS), 2004.

R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for large-
scale optimization. SIAM J. on Optimization, 26(2):1008–1031, 2016.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
Review, 43(1):129–159, 2001.

K. L. Clarkson. Subgradient and sampling algorithms for `1 regression. In Symposium on Discrete
Algorithms (SODA), 2005.

26

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time.
In Symposium on Theory of Computing (STOC), 2013.

K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S. Teng. Approximating center points
with iterated radon points. In Symposium on Computational Geometry, 1993.

K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Mahoney, X. Meng, and D. P. Woodruff. The
Fast Cauchy Transform and faster robust linear regression. In Symposium on Discrete Algorithms
(SODA), 2013.

M. B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Symposium on
Discrete Algorithms (SODA), 2016.

M. B. Cohen and R. Peng. `p row sampling by Lewis weights. In Symposium on the Theory of
Computing (STOC), 2015.

M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform sampling for
matrix approximation. In Conference on Innovations in Theoretical Computer Science (ITCS),
2015a.

M. B. Cohen, C. Musco, and C. Musco. Ridge leverage scores for low-rank approximation. CoRR,
abs/1511.07263, 2015b.

F. Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In International
Conference on Machine Learning (ICML), 2016.

A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Mahoney. Sampling algorithms and coresets
for `p regression. SIAM J. on Computing, 38(5):2060–2078, 2009.

P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster least squares approximation.
Numer. Math., 117(2):219–249, 2011.

P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast approximation of matrix
coherence and statistical leverage. J. Machine Learning Research, 13:3441–3472, 2012.

J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror descent. In
Conference on Learning Theory (COLT), 2010.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochas-
tic optimization. J. Machine Learning Research, 12:2121–2159, 2011.

D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In
Symposium on Theory of Computing (STOC), 2011.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
1996.

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso and
Generalizations. CRC Press, 2015.

27

YANG ET AL.

C. Hu, J. T. Kwok, and W. Pan. Accelerated gradient methods for stochastic optimization and online
learning. In Neural Information Processing Systems (NIPS), 2009.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduc-
tion. In Neural Information Processing Systems (NIPS), 2013.

C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia,
1995.

P. Ma, M. W. Mahoney, and B. Yu. A statistical perspective on algorithmic leveraging. In Interna-
tional Conference on Machine Learning (ICML), 2014.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends in Machine
Learning. NOW Publishers, Boston, 2011.

X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Symposium on the Theory of Computing (STOC),
2013a.

X. Meng and M. W. Mahoney. Robust regression on MapReduce. In International Conference on
Machine Learning (ICML), 2013b.

X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel iterative solver for strongly over-
or under-determined systems. SIAM J. on Scientific Computing, 36(2):C95–C118, 2014.

P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic L-BFGS algorithm. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

D. Needell, R. Ward, and N. Srebro. Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm. In Neural Information Processing Systems (NIPS), 2014.

J. Nelson and H. L. Nguyen. OSNAP: faster numerical linear algebra algorithms via sparser sub-
space embeddings. In Symposium on Foundations of Computer Science (FOCS), 2013.

F. Niu, B. Recht, C. Ré, and J. S Wright. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Neural Information Processing Systems (NIPS), 2011.

M. Pilanci and M. J. Wainwright. Iterative Hessian sketch: Fast and accurate solution approximation
for constrained least-squares. ArXiv e-prints, 2014.

S. Portnoy. On computation of regression quantiles: Making the Laplacian tortoise faster. Lecture
Notes-Monograph Series, Vol. 31, L1-Statistical Procedures and Related Topics, pages 187–200,
1997.

S. Portnoy and R. Koenker. The Gaussian hare and the Laplacian tortoise: Computability of squared-
error versus absolute-error estimators, with discussion. Statistical Science, 12(4):279–300, 1997.

A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In International Conference on Machine Learning (ICML), 2012.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

28

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

N. Sauer. On the density of families of sets. J. Combinatorial Theory, Series A, 13(1):145–147.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In
International Conference on Machine Learning (ICML), 2008.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for `1 regularized loss minimization. In
International Conference on Machine Learning (ICML), 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub–gradient solver for
SVM. In International Conference on Machine Learning (ICML), 2007.

C. Sohler and D. P. Woodruff. Subspace embedding for the `1-norm with applications. In Sympo-
sium on Theory of Computing (STOC), 2011.

T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence.
J. Fourier Anal. Appl., 15(2), 2009.

J. A. Tropp. Improved analysis of the subsampled randomized Hadamard transform. Adv. Adapt.
Data Anal., 3(1-2):115–126, 2011.

A. van der Sluis. Condition numbers and equilibration of matrices. Numerische Mathematik, 14(1):
14–23, 1969.

K. Varadarajan and X. Xiao. On the sensitivity of shape fitting problems. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 2012.

D. P. Woodruff and Q. Zhang. Subspace embeddings and `p-regression using exponential random
variables. Conference on Learning Theory (COLT), 2013.

J. Yang, X. Meng, and M. W. Mahoney. Quantile regression for large-scale applications. SIAM J.
Scientific Computing, 36(5):S78–S110, 2014.

J. Yang, Y. Chow, C. Ré, and M. W. Mahoney. Weighted SGD for `p regression with randomized
preconditioning. In Symposium on Discrete Algorithms (SODA), 2016a.

J. Yang, X. Meng, and M. W. Mahoney. Implementing randomized matrix algorithms in parallel
and distributed environments. Proceedings of the IEEE, 104(1):58–92, 2016b.

P. Zhao and T. Zhang. Stochastic optimization with importance sampling. In International Confer-
ence on Machine Learning (ICML), 2015.

Appendix A. Supplementary Details of Algorithm 1

As we discussed, we need to compute a well-conditioned basis implicitly and estimate its row
norms, i.e., AR−1 and {λi}ni=1 in Steps 3 and 4 in Algorithm 1.

In Section 2.1 we have summarized the major steps for computing the preconditioner using
sketching. Below in Table 5 we provide a short summary of preconditioning methods using various
sketches along with the resulting running time and condition number. Note that the running time
here denotes the total running for computing the matrix R which is the sketching time plus the time

29

YANG ET AL.

for QR factorization of the sketch. Again, below κ̄p(U) is the condition number of U = AR−1 as
defined in Definition 1 and κ(U) is the standard condition number of U .

name running time κ̄1(U)

Dense Cauchy Transform (Sohler and Woodruff, 2011) O(nd2 log d+ d3 log d) O(d5/2 log3/2 d)

Fast Cauchy Transform (Clarkson et al., 2013) O(nd log d+ d3 log d) O(d11/2 log9/2 d)

Sparse Cauchy Transform (Meng and Mahoney, 2013a) O(nnz(A) + d7 log5 d) O(d
13
2 log

11
2 d)

Reciprocal Exponential Transform (Woodruff and Zhang, 2013) O(nnz(A) + d3 log d) O(d
7
2 log

5
2 d)

Lewis Weights (Cohen and Peng, 2015) O(nnz(A) logn+ d3 log d) O(d
3
2 log

1
2 d)

Table 5: Summary of running time and condition number, for several different `1 conditioning
methods. The failure probability of each chmethod is set to be a constant.

name running time κ2(U) κ̄2(U)

Gaussian Transform O(nd2) O(1) O(
√
d)

SRHT (Tropp, 2011) O(nd logn+ d3 logn log d) O(1) O(
√
d)

Sparse `2 Embedding (Clarkson and Woodruff, 2013) O(nnz(A) + d4) O(1) O(
√
d)

Sparse `2 Embedding9 (Cohen, 2016) O(nnz(A) log d+ d3 log d) O(1) O(
√
d)

Refinement Sampling (Cohen et al., 2015a) O(nnz(A) log(n/d) log d+ d3 log(n/d) log d) O(1) O(
√
d)

Table 6: Summary of running time and condition number, for several different `2 conditioning
methods. Here, we assume d ≤ n ≤ ed. The failure probability of each method is set
to be a constant.

Next, given the implicit representation of U byR, to compute the leverage scores ‖Ui‖pp exactly,
one has to compute U which takes O(nd2) time. Instead of forming U explicitly and “reading off”
the row norms for computing the leverage scores, one can estimate the row norms of U up to a small
factor by post-multiplying a random projection matrix; see Clarkson et al. (2013); Drineas et al.
(2012) for the cases when p = 1, 2 respectively. The above process can be done inO(nnz(A)·log n)
time.

Finally, we present two additional results regarding the non-asymptotic convergence rate of
PWSGD on `1 and `2 regression, respectively. Notation is similar to the one used in Proposition 5
and Proposition 6.

Proposition 14 For A ∈ Rn×d and b ∈ Rn, define f(x) = ‖Ax − b‖1. Algorithm 1 with p = 1
returns a solution vector estimate x̄ that satisfies the following expected error bound

E [f(x̄)]− f(x∗) ≤ 1

2ηT
‖x∗ − x1‖2H +

η

2
(c1α‖RF‖1)2 . (13)

Hereby, the expectation is taken over all the samples ξ1, . . . , ξT and x∗ is an optimal solution to the
problem minx∈Z f(x). The constant in the error bound is given by c1 = 1+γ

1−γ .

9. In Cohen (2016), the author analyzes a more general version of the original count-sketch like sparse `2 embed-
ding (Clarkson and Woodruff, 2013). By setting the sparsity parameter differently, different running time complexi-
ties can be achieved.

30

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

Proposition 15 For A ∈ Rn×d and b ∈ Rn, define f(x) = ‖Ax − b‖2. Algorithm 1 with p = 2
returns a solution vector estimate xT that satisfies the following expected error bound

E
[
‖xt − x∗‖2H

]
≤

(
1− 4η

(
1− 2ηc1α

2‖RF‖22
)

β2‖(RF)−1‖22

)T
‖x0 − x∗‖2H +

2c1ηκ̄
2
2(U)κ2(RF)h(y∗)

1− 2c1ηα2‖RF‖22
.

(14)
Hereby,H = (F−1)>F−1 is the weighs of the ellipsoidal norm and the expectation is taken over all
the samples ξ1, . . . , ξT and x∗ is an optimal solutions to the problem minx∈Z f(x). The constant in
the error bound is given by c1 = 1+γ

1−γ .

Appendix B. RLA Methods with Algorithmic Leveraging

In this section, we present the RLA sampling algorithms with algorithmic leveraging for solving `p
regression problems mentioned in Section 3. The main idea in this class of algorithms is to sample
rows based on the leverage scores of

(
A b

)
and solve the sample average approximation of the `p

regression problem. This method is formally stated in Algorithm 3.
The following theorem (from Dasgupta et al. (2009)) states that if the sampling size s is large

enough, the resulting approximation solution x̂ produces a
(

1+ε
1−ε

)
-approximation to the original

solution vector. The following theorem also shows that when the desired accuracy and confidence
interval are fixed, the required sampling size only depends on the lower dimension d since α and β
are independent of n.

Theorem 16 Given input matrixA ∈ Rn×d and vector b ∈ Rn, let α, β be the condition numbers of
the well-conditioned basis U for the range space of

(
A b

)
and γ be the quality of approximation to

the leverage scores satisfying (6). Then when ε < 1/2 and the sampling size satisfies the following
condition

s ≥ 1 + γ

1− γ
(32αβ)p

p2ε2

(
(d+ 1) log

(
12

ε

)
+ log

(
2

δ

))
, (15)

Algorithm 3 returns a solution vector x̂ that satisfies the following inequality with probability at
least 1− δ,

‖Ax̂− b‖p ≤
(

1 + ε

1− ε

)
‖Ax∗ − b‖p, (16)

where x∗ ∈ Z is an optimal solution to the original problem minx∈Z ‖Ax− b‖p.

Remark. Compared to the RLA algorithm described in Section 3, the algorithm described here
computes the leverage scored based on a basis for the range space of the augmented linear system
Ā =

(
A b

)
rather than A. One can show similar results if the basis is computed for the range

space of A.
Remark. As can be seen, the sampling size is s = O(poly(d) log(1/ε)/ε2) for a target accu-
racy ε. For unconstrained `2 regression, however, it can be shown that a sampling size s =
O(poly(d) log(1/ε)/ε) is sufficient to compute an ε-approximate solution; see Drineas et al. (2011);
Clarkson and Woodruff (2013) for details.

Appendix C. Proofs

Here, we present the proofs of the theoretical results in the main text.

31

YANG ET AL.

Algorithm 3 RLA methods with algorithmic leveraging for constrained `p regression

1: Input: A ∈ Rn×d, b ∈ Rn with rank(Ā) = k where Ā =
(
A b

)
, Z and s > 0.

2: Output: An approximate solution x̂ ∈ Rd to problem minimizex∈Z ‖Ax− b‖pp.
3: Compute R ∈ Rk×(d+1) such that Ā = UR and U is an (α, β) well-conditioned basis U for the

range space of Ā.
4: Compute or estimate ‖Ui‖pp by λi satisfying (6) with γ, for i ∈ [n].
5: Let pi = λi∑n

j=1 λj
, for i ∈ [n].

6: Let S ∈ Rs×n be a zero matrix.
7: for i = 1, . . . , s do
8: Pick ξt from [n] based on distribution {pi}ni=1.

9: Set Si,ξt =
(

1
pξt

) 1
p .

10: end for
11: Return x̂ = arg minx∈Z ‖SAx− Sb‖p.

C.1 Proof of Proposition 7

Consider the following three events:

• E1: Compute a matrix R such that U = AR−1 has condition number κ̄p, and then compute
F = R−1 and H =

(
FF>

)−1.

• E2: Given R−1, compute {λi}ni=1 as an estimation of row norms of AR−1 satisfying (6) with
γ = 0.5.

• E3: For a given basis U with condition number κ̄p(U) and {λi}ni=1 with approximation qual-
ity γ, PWSGD returns a solution with the desired accuracy with iterations 10T where T is
specified in Proposition 5 or Proposition 6.

Since each preconditioning method shown in Table 5 successes with constant probability, E1

holds with a constant probability. Also, as introduced in Appendix A, E2 has a constant failure
probability. Finally, by Markov inequality, we know that E3 holds with probability at least 0.9. As
setting the failure probability of E1 and E2 to be arbitrarily small will not alter the results in big-O
notation, we can ensure that, with constant probability, E1 ∩ E2 ∩ E3 holds.

Conditioned on the fact that E1 ∩ E2 ∩ E3 holds, to converge to the desired solution, for `1
regression, PWSGD runs in O(dκ̄1(U)/ε2) iterations. Since all the preconditioning methods in
Table 6 provide κ(U) = O(1) and κ̄2(U) = O(

√
d), for unconstrained `2 regression, it runs in

O(d log(1/ε)/ε) iterations. For constrained `2 regression, since an ε-approximate solution in terms
of the solution vector measured in the prediction norm implies a

√
ε-approximate solution on the

objective, it runs in O(d log(1/ε)/ε2) iterations to return an ε-solution in the objective value.
The overall complexity is the sum of the complexity needed in each of the above events. For

E1, it is time(R) since the time for computing F and H isO(d3) which can absorbed into time(R)
and they only have to be computed once. For E2, it is O(nnz(A) · log n). Finally, for E3, when the
problem is unconstrained, timeupdate = O(d2); when the problem is constrained, timeupdate =
poly(d). Combining these, we get the complexities shown in the statement. This completes the
proof.

32

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

C.2 Proof of Proposition 14

The proof of this proposition is structured as follows. First we reformulate the problem using Propo-
sition 4. Second we show that the sequence of solution vector estimates {xt}Tt=1 in Algorithm 1 is
equivalent to the solution vector estimates {yt}Tt=1 obtained by running SGD on the equivalent
problem. Third, we analyze the convergence rate of {yt}Tt=1 and conclude the error bound analysis.

Problem reformulation Suppose U is an `p well-conditioned basis for the range space of A and
A = UR for some nonsingular matrix R. Let P be the distribution defined based on the estimation
of the corresponding leverage scores. That is, for i ∈ [n],

pi =
λi∑n
j=1 λj

, (17)

where λi is an estimation of ‖Ui‖pp satisfying

(1− γ)‖Ui‖pp ≤ λi ≤ (1 + γ)‖Ui‖pp. (18)

This implies
1− γ
1 + γ

‖Ui‖pp
‖U‖pp

≤ pi ≤
1 + γ

1− γ
‖Ui‖pp
‖U‖pp

. (19)

From Proposition 4, recall that for any non-singular matrix F ∈ R(d+1)×(d+1), the constrained `p
regression problem

min
x∈Z

f(x) := ‖Ax− b‖pp (20)

can be equivalently written as the following stochastic optimization problem,

min
y∈Y

h(y) = ‖URFy − b‖pp = Eξ∼P [|UξRFy − bξ|p/pξ] . (21)

Notice that by comparing to the objective function defined in (1) where f(x) = ‖Ax − b‖p, we
rewrite f(x) into the form of the sum of subfunctions, i.e., f(x) = ‖Ax− b‖pp, so that SGD can be
applied.

Equivalence of sequences By using the following linear transformation, one notices that the se-
quence {xt}Tt=1 obtained by (11) in Algorithm 1 has a one-to-one correspondence to the sequence
{yt}Tt=1 obtained by running SGD on problem (21):

Fyt = xt,

F ȳ = x̄,

Fy∗ = x∗. (22)

Thus with condition (22), immediately the objective function value has the following equivalence
as well:

h(yt) = f(xt),

h(ȳ) = f(x̄),

h(y∗) = f(x∗), (23)

33

YANG ET AL.

where x̄ = 1
T

∑T
i=1 xt, ȳ = 1

T

∑T
i=1 yt and x∗ and y∗ are the optimal point to optimization problem

(20) and (21) respectively.
Now we prove (22) by induction. By defining Fy0 = x0, one immediately shows that the

equivalence condition holds at the base case (t = 0). Now by induction hypothesis, assume (22)
holds for case t = k. Now for t = k + 1, we show that xk+1 returned by Algorithm 1 and yk+1

returned by the update rule of SGD satisfy (22).
For simplicity, assume that at k-th iteration, the i-th row is picked. For subfunction hk(y) =

|UiRFy|p − bi/pi, its (sub)gradient is

gk(y) = p · sgn(UiRFy − bi) · (UiRFy − bi)p−1 · UiRF/pi, (24)

for which the SGD update rule becomes

yk+1 = arg min
y∈Y

η〈y − yk, ckUiRF 〉+
1

2
‖yk − y‖22, (25)

where ck = p · sgn(UiRFy − bi) · (UiRFy − bi)p−1/pi is the corresponding (sub)gradient. Recall
the linear transformation Fyk = xk, feasible set Y = {y ∈ Rk|y = F−1x, x ∈ Z} and input matrix
Ai = UiR, the update rule (25) becomes

xk+1 = arg min
x∈Z

ηckAix+
1

2
‖F−1(xk − x)‖22. (26)

The equation above is exactly the update performed in (11). In particular, when Z = Rd, i.e., in the
unconstrained case, (26) has a closed-form solution as shown in (11). From the above analysis on
the equivalence between (25) and (26), one notices xk+1 and yk+1 satisfy the relationship defined
in (22), i.e., the induction hypothesis holds at t = k + 1.

Therefore by induction, we just showed that condition (22), and therefore condition (23), hold
for any t.

Convergence rate Based on the equivalence condition in (23), it is sufficient to analyze the per-
formance of sequence {yt}Tt=1. When p = 1, the objective function is non-differentiable. Thus by
substituting the subgradient of an `1 objective function to the update in (25), one notices that the SA
method simply reduces to stochastic subgradient descent. We now analyze the convergence rate of
running stochastic subgradient descent on problem (21) with p = 1.

Suppose the i-th row is picked at the t-th iteration. Recall that the (sub)gradient of the sample
objective |UiRFy − bi|/pi in (25) is expressed as

gt(y) = sgn(UiRFy − bi) · UiRF/pi. (27)

Hence, by inequality (19), the norm of gt(y) is upper-bounded as follows:

‖gt(y)‖1 = ‖UiRF · sgn(UiRFy − bi)‖1/pi

≤ |RF |1‖Ui‖1
1 + γ

1− γ
· |U |1
‖Ui‖1

≤ α|RF |1
1 + γ

1− γ
. (28)

34

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

In above, we use the property of the well-conditioned basis U . Furthermore by Proposition 17 and
the equivalence condition in (23), for H =

(
FF>

)−1 we have

E [f(x̄)]− f(x∗) = E [h(ȳ)]− h(y∗) (29)

≤ 1

2η(T + 1)
‖y∗ − y0‖22 +

η

2

(
α|RF |1

1 + γ

1− γ

)2

=
1

2η(T + 1)
‖x∗ − x0‖2H +

η

2

(
α|RF |1

1 + γ

1− γ

)2

, (30)

which completes the proof.

C.3 Proof of Proposition 5

By Proposition 17, when the step-size equals to

η =
‖y∗ − y0‖2

α|RF |1
√
T + 1

1− γ
1 + γ

,

the expected error bound is given by

E [h(ȳ)]− h(y∗) ≤ α|RF |1
‖y∗ − y0‖2√

T + 1

1 + γ

1− γ
. (31)

By simple algebraic manipulations, we have that

1√
d
‖y∗‖2 ≤ ‖y∗‖∞ = ‖(RF)−1RFy∗‖∞ ≤ |(RF)−1|1‖RFy∗‖∞

≤ β|(RF)−1|1‖URFy∗‖1 = c3β|(RF)−1|1h(y∗), (32)

where c3 = ‖URFy∗‖1/h(y∗). In above, we use the property of the well-conditioned basis U .
Furthermore from inequality (31) and the equivalence condition in (23), the expected relative

error bound can be upper-bounded by

E [f(x̄)]− f(x∗)

f(x∗)
=

E [h(ȳ)]− h(y∗)

h(y∗)

≤ c3

√
dβ|(RF)−1|1
‖y∗‖2

(
α|RF |1

‖y∗ − y0‖2√
T + 1

1 + γ

1− γ

)
≤ |RF |1|(RF)−1|1

‖y∗ − y0‖2
‖y∗‖2

(
c3

√
dαβ√

T + 1

1 + γ

1− γ

)
. (33)

Since the right hand side of the above inequality is a function of stopping time T > 0, for any
arbitrarily given error bound threshold ε > 0, by setting the right hand side to be ε, one obtains the
following stopping condition:

√
dαβ√
T + 1

=
ε

c1c3
√
c2|RF |1|(RF)−1|1

, (34)

35

YANG ET AL.

where the above constants are given by

c1 =
1 + γ

1− γ
, c2 =

‖x0 − x∗‖2H
‖x∗‖2H

=
‖y0 − y∗‖22
‖y∗‖22

.

Rearranging the above terms we know that after

T ≥ dα2β2c2
1c2c

2
3

ε2
|RF |21|(RF)−1|21 (35)

iterations, the relative expected error is upper-bounded by ε > 0, i.e.,

E [f(x̄)]− f(x∗)

f(x∗)
≤ ε. (36)

This completes the proof.

C.4 Proof of Proposition 15

Similar to the proof of Proposition 14, the proof of this proposition is split into three parts: Problem
reformulation, Equivalence of sequences and Convergence rates. From the proof of Proposi-
tion 14, one notices that the proofs in Problem reformulation and Equivalence of sequences hold
for general p, and thus the proofs hold for the case when p = 2 as well. Now we proceed to the
proof of the convergence rate. Again by the equivalence condition, we can show the convergence
rate of solution vector estimate {xt} by showing the convergence rate achieved by the sequence
{yt}, i.e., the convergence rate of SGD of problem (21) for p = 2.

Throughout the rest of the proof, we denote

f(x) = ‖Ax− b‖22, h(y) = ‖AFy − b‖22. (37)

Denote by H =
(
FF>

)−1 the weighs of the ellipsoidal norm. Also recall that when the leverage
scores satisfy the error condition in (6), we have the following condition

1− γ
1 + γ

‖Ui‖22
‖U‖22

≤ pi ≤
1 + γ

1− γ
‖Ui‖22
‖U‖22

. (38)

Also, we assume that U is (α, β)-conditioned with κ̄2(U) = αβ. Based on Definition 1, we have

α2 = ‖U‖2F , (39)

β2 = ‖(U>U)−1‖2, (40)

and thus
κ̄2

2(U) = ‖(U>U)−1‖2 · ‖U‖2F = α2β2. (41)

Before deriving the convergence rate, we compute a few constants.

µ = 2σ2
min(AF) =

2∥∥∥((URF)>URF)
−1
∥∥∥2

2

≥ 2∥∥∥(U>U)
−1
∥∥∥

2
· ‖(RF)−1‖22

=
2

β2 · ‖(RF)−1‖22
,

(42)

36

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

and

sup
i
Li = sup

i

2‖AiF‖22
pi

= sup
i

2‖UiRF‖22
pi

≤ 2c1‖U‖2F · ‖RF‖22 = 2c1α
2 · ‖RF‖22, (43)

and

σ2 = Ei∼D
[
‖gi(y∗)‖2

]
= 4

n∑
i=1

(AiFy
∗ − bi)2‖AiF‖2/pi

= 4
n∑
i=1

(UiRFy
∗ − bi)2‖UiRF‖2/pi

≤ 4c1‖RF‖22‖U‖2F

(
n∑
i=1

(UiRFy
∗ − bi)2

)
= 4c1‖U‖2F · ‖RF‖22 · h(y∗)

= 4c1α
2 · ‖RF‖22 · h(y∗). (44)

Equipped with these constant and from Proposition 18, we have the following error bound of
the solution vector estimate {yt}Tt=1 generated by the weighted SGD algorithm

E
[
‖xT − x∗‖2H

]
= E

[
‖yT − y∗‖22

]
≤
(

1− 4ησ2
min(AF)

(
1− η sup

i

2‖AiF‖22
pi

))T
‖y0 − y∗‖22

+
2η
∑n

i=1(AiFy
∗ − bi)2‖AiF‖22/pi

σ2
min(AF)(1− η supi

2‖AiF‖22
pi

)

=

(
1− 4ησ2

min(AF)

(
1− η sup

i

2‖AiF‖22
pi

))T
‖x0 − x∗‖2H

+
2η
∑n

i=1(AiFy
∗ − bi)2‖AiF‖22/pi

σ2
min(AF)(1− η supi

2‖AiF‖22
pi

)

≤

(
1− 4η

(
1− 2ηc1α

2‖RF‖22
)

β2‖(RF)−1‖22

)T
‖x0 − x∗‖2H +

2c1ηκ̄
2
2(U)κ2(RF)h(y∗)

1− 2ηc1α2‖RF‖22
. (45)

Notice that the above equalities follow from the equivalence condition in (23). Combining the
results from the above parts completes the proof of this lemma.

C.5 Proof of Proposition 6

Throughout the proof, we denote

f(x) = ‖Ax− b‖22, h(y) = ‖AFy − b‖22. (46)

Denote by H =
(
FF>

)−1 the weights of the ellipsoidal norm. Also recall the following constants
defined in the statement of proposition

c1 =
1 + γ

1− γ
, c2 =

‖y0 − y∗‖22
‖y∗‖22

=
‖x0 − x∗‖2H
‖x∗‖2H

, c3 =
‖Ax∗‖22
f(x∗)

. (47)

37

YANG ET AL.

Before diving into the detailed proof, we first show a useful inequality.

c3h(y∗) = c3f(x∗) = ‖Ax∗‖22 = ‖URFy∗‖22 ≥ µ‖y∗‖22/2. (48)

Now we show the first part. For an arbitrary target error ε > 0, using (42), (43), (44) and setting

c3ε · h(y∗)

‖AF‖22
→ ε (49)

in Corollary 19 we have that when the step-size is set to be

η =
1

4

c3ε · σ2
min(AF) · h(y∗)/‖AF‖22∑n

i=1(AiFy∗ − bi)2‖AiF‖22/pi + c3

(
ε · h(y∗)/‖AF‖22

)
σ2

min(AF) supi
‖AiF‖22
pi

, (50)

then after

log

(
2‖y0 − y∗‖22

c3ε · h(y∗)/(‖U‖22‖RF‖22)

)
·(

c1α
2β2‖RF‖22‖(RF)−1‖22 +

c1α
2β4‖U‖22‖RF‖42‖(RF)−1‖42

c3ε

)
≤ log

(
2‖U‖22‖RF‖22 · ‖y0 − y∗‖22

c3ε · h(y∗)

)(
c1κ̄

2
2(U)κ2(RF) +

c1κ̄
2
2(U)κ2(U)κ4(RF)

c3ε

)
≤ log

(
2c2κ

2(U)κ2(RF))

ε

)(
c1κ̄

2
2(U)κ2(RF)

)(
1 +

κ2(U)κ2(RF)

c3ε

)
(51)

iterations, the sequence {yt}Tk=1 generated by running weighted SGD algorithm satisfies the error
bound

‖yT − y∗‖22 ≤
c3ε · h(y∗)

‖AF‖22
. (52)

Notice that in (51), we used (48). From this, we have

‖A(xT − x∗)‖22 = ‖AFF−1(xT − x∗)‖22
≤ ‖AF‖22 · ‖xT − x∗‖2H
= ‖AF‖22 · ‖yT − y∗‖22
= c3ε · h(y∗)

= ε‖Ax∗‖22. (53)

For the second part, we show the result for general choice of F . The proof is basically the same
as that of the first part except that we set

2εh(y∗)

‖AF‖22
→ ε (54)

in Corollary 19. The resulting step-size η and number of iterations required T become

η =
1

4

2ε · σ2
min(AF) · h(y∗)/‖AF‖22∑n

i=1(AiFy∗ − bi)2‖AiF‖22/pi +
(
2ε · h(y∗)/‖AF‖22

)
σ2

min(AF) supi
‖AiF‖22
pi

(55)

38

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

and

T = log

(
c2κ

2(U)κ2(RF))

ε

)(
c1κ̄

2
2(U)κ2(RF)

)(
1 +

κ2(U)κ2(RF)

2ε

)
. (56)

Setting F = R−1 recovers the value of T shown in Proposition 6. The sequence {yt}Tk=1 generated
by running weighted SGD algorithm satisfies the error bound

‖yT − y∗‖22 ≤
2εh(y∗)

‖AF‖22
. (57)

Notice that when the problem is unconstrained, by smoothness of the objective h(y), we have

h(yT)− h(y∗) ≤ ‖AF‖22 · ‖yT − y∗‖22 ≤ 2εh(y∗). (58)

Then by (23), we have

f(xT) ≤ (1 + 2ε)f(x∗) ≤ (1 + 2ε+ ε2)f(x∗). (59)

This implies √
f(xT) ≤ (1 + ε)

√
f(x∗). (60)

This completes the proof since
√
f(x) = ‖Ax− b‖2.

C.6 Proof of Theorem 10

Let Gf consist of mf copies of gf and G =
⋃
f∈F Gf . We may view the sampling step in Algo-

rithm 2 as follows. Sample s items uniformly from G independently with replacement and denote
the corresponding subset of samples by S. Then rescale every function in S by M(F)/s and obtain
D.

By Theorem 4.1 in Feldman and Langberg (2011), we know that if the above intermediate set S
is an (ε · n/M(F))−approximation of the set G, then the resulting set D is a desired ε-coreset for
F . Indeed, S is such a set according to Theorem 6.10 in Feldman and Langberg (2011).

C.7 Proof of Proposition 11

We use A to denote Ā for the sake of simplicity. Also define the sensitivity at row index i ∈ [n] as

si = n · sup
x∈C

|Aix|p∑n
j=1 |Ajx|p

. (61)

Suppose U ∈ Rn×k is an (α, β) well-conditioned basis of the range space of A satisfying A = UR,
where k = rank(A) and R ∈ Rk×(d+1). Then from (61), we have that

si
n

= sup
x∈C

|Aix|p

‖Ax‖pp
= sup

x∈C

|UiRx|p

‖URx‖pp
= sup

y∈C′

|Uiy|p

‖Uy‖pp
≤ sup

y∈C′

‖Ui‖pp‖y‖pq
‖y‖pq/βp

= βp‖Ui‖pp = βp · λi, (62)

where C′ = {y ∈ Rd|y = Rx, x ∈ C} is a one-to-one mapping. The first inequality follows from
Hölder’s inequality with 1

p + 1
q = 1 and the properties of well-conditioned bases. According to the

definition of sensitivity m(fi) = bsic+ 1, the above property implies

m(fi) ≤ nβpλi + 1. (63)

which implies M(F) =
∑n

i=1 si ≤ (nβp
∑n

i=1 λi) + n = n((αβ)p + 1), and completes the proof.

39

YANG ET AL.

C.8 Proof of Proposition 12

According to Definition 9, we only have to show that for any arbitrary constant n and set of points
G = {a1, . . . , an} ⊆ Rd, the following condition holds:

|{Range(G, x, r)|x ∈ X , r ≥ 0}| ≤ nd+1,

where Range(G, x, r) = {ai||a>i x|p ≤ r} is the region located in the p−norm ellipsoid |a>i x|p = r.

Since the following condition holds: {ai||a>i x|p ≤ r} = {ai||a>i x| ≤ r
1
p } and the constant r is

non-negative and arbitrary. Without loss of generality, we assume p = 1 in the above definition, i.e.,
Range(G, x, r) = {ai||a>i x| ≤ r}.

Notice that for every x and r, Range(G, x, r) is a subset of G. Hence, we may view it as a
binary classifier on G, denoted by cx,r. Given x ∈ X and r ≥ 0, for any ai ∈ G we have that

cx,r(ai) =

{
1, if |a>i x| ≤ r;
0, otherwise.

Therefore, one immediately sees that |{Range(G, x, r)|x ∈ X , r ≥ 0}| is the shattering coefficient
of C := {cx,r|x ∈ X , r ≥ 0} on n points, denoted by s(C, n). To bound the shattering coefficient
of C, we provide an upper bound based on its VC dimension.

We claim that the VC dimension of C is at most d + 1. By contradiction, suppose there exists
n + 2 points such that any labeling on these n + 2 points can be shattered by C. By Radon’s
Theorem (Clarkson et al., 1993), we can partition these points into two disjoint subsets, namely, V
and W with size n1 and n2 respectively, where the intersection of their convex hulls is nonempty.
Let b be a point located in the intersection of the convex hulls of V and W , which in general can be
written as

b =

n1∑
i=1

λivi =

n2∑
i=1

σiwi, (64)

where λi ≥ 0, σi ≥ 0 and
∑n1

i=1 λi =
∑n2

i=1 σi = 1.
By the above assumption, we can find vector x ∈ Rn and nonnegative constant r such that the

following conditions hold:

−r ≤ x>vi ≤ r, i = 1, . . . , n1; (65)

x>wi > r or x>wi < −r, i = 1, . . . , n2. (66)

By combining the conditions in (64), (65) and (66), we further obtain both inequalities

−r ≤ b>x ≤ r, (67)

and
b>x < −r or b>x > r, (68)

which is clearly paradoxical! This concludes that the VC dimension of C is less than or equal to
d + 1. Furthermore, by Sauer’s Lemma (Sauer), for n ≥ 2 the shattering coefficient s(C, n) =
|{Range(G, x, r)|x ∈ X , r ≥ 0}| is less than nd+1, which completes the proof of this proposition.

40

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

C.9 Proof of Proposition 13

Without loss of generality, assume the low dimension d is even (because if d is odd, we can always
add an extra arbitrary row to input matrixA and upper bound the size of the original total sensitivity
set by the same analysis). Let ai ∈ [0, 1]d be a vector with exactly d/2 elements to be 1. For each
i ∈ [n], let Bi = {j|aij = 1}, where aij denotes the j-th element of vector ai. For fixed i, define x
as follows,

xj =

{
2/d, if j ∈ Bi,
−d, otherwise.

(69)

One immediately notices from the above expression that x>ai = 1. Thus for j 6= i, aj 6= ai, there
exists an index k ∈ [d] such that ajk = 1 but aik = 0. Furthermore the above condition implies

x>aj =
d∑
l=1

xlajl =
d∑

l∈Bj ,l 6=k
xlajl +

d∑
l 6=Bj

xlajl + xkajk ≤ (d/2− 1)(2/d)− d < 0, (70)

which further implies fj(x) = x>aj = 0; Therefore, the i-th sensitivity becomes

si = sup
x

fi(x)∑n
i=j fj(x)

≥ 1. (71)

Since the above condition holds for arbitrary index i ∈ [n], and we have
(
d
d/2

)
number of vectors

ai, i.e., n =
(
d
d/2

)
, this concludes that the size of the total sensitivity set is at least

(
d
d/2

)
≈ 2d.

Appendix D. Stochastic Gradient Descent

Consider minimizing the following objective

minimizex∈X f(x) = Ei∼P [fi(x)] . (72)

Stochastic gradient descent (SGD) exploits the following update rule

xt+1 = arg min
x∈X

η〈x− xt, gξt(xt)〉+
1

2
‖x− xt‖22, (73)

where ξt ∈ [n] is an index drawn according to P , gξt(x) = ∇fξt(x) and Eξt∼P [fξt(x)] = f(x).
When X = Rd, the update rule (73) boils down to xt+1 = xt− ηgξt(xt). Note here, if fξt(x) is not
differentiable, we take gξt(xt) to be one of its sub-gradients, i.e., gξt(xt) ∈ ∂fξt(xt). In this case,
SGD boils down to stochastic sub-gradient method. For simplicity, we still refer to the algorithms
as SGD.

In the following, we present two results regarding the convergence rate of SGD on problem with
non-strongly convex objective and strongly convex objective, respectively.

D.1 Non-strongly convex case

Here we analyze the case where the objective function f(x) is not strongly convex. Also, each
sub-function is not necessary differentiable. That is, gi(x) can be a sub-gradient of function fi at x.

41

YANG ET AL.

Proposition 17 Assume that 1
2‖·‖

2
2 ≥ λ

2‖·‖
2 for some norm ‖·‖2. Also assume that ‖gt(xt)‖∗ ≤M

for any t > 0 where ‖ · ‖∗ is the dual norm of ‖ · ‖. The output x̄ = 1
T+1

∑T
t=1 xt of SGD satisfies,

for any y ∈ X ,

E [f(x̄)]− f(y) ≤ ‖y − x0‖22
2η(T + 1)

+
η

2λ
M2. (74)

In particular, when η = ‖y−x0‖2
M

√
λ

T+1 , we have

E [f(x̄)]− f(y) ≤M‖y − x0‖2

√
1

(T + 1)λ
. (75)

Proof From Lemma 1 in Duchi et al. (2010), at step t, we have that

η(ft(xt)− ft(y)) ≤ 1

2
‖y − xt‖22 −

1

2
‖y − xt+1‖22 +

η2

2λ
‖gt(xt)‖2∗. (76)

Conditioned on xt, taking the conditional expectation with respect to ξt on both sides, we have

E [η(ft(xt)− ft(y))|xt] ≤ E
[

1

2
‖y − xt‖22 −

1

2
‖y − xt+1‖22 +

η2

2λ
‖gt(xt)‖2∗|xt

]
. (77)

Noticing that Eξt∼P [ft(x)] = f(x), we have

ηf(xt)− ηf(y) ≤ 1

2
‖y − xt‖22 + E

[
−1

2
‖y − xt+1‖22 +

η2

2λ
‖gt(xt)‖2∗|xt

]
. (78)

Then by taking the expectation over xt and using the fact that ‖gt(xt)‖∗ ≤M , we have

E [ηf(xt)]− ηf(y) ≤ E
[

1

2
‖y − xt‖22

]
− E

[
1

2
‖y − xt+1‖22

]
+
η2

2λ
M2. (79)

Summing up the above equation with t = 0, . . . , T and noticing ‖y − xt+1‖22 ≥ 0, we have

η

T∑
t=0

E [f(xt)]− η(T + 1)f(y) ≤ 1

2
‖y − x0‖22 +

η2(T + 1)

2λ
M2. (80)

Finally by convexity of f , we have that

E [f(x̄)]− f(y) ≤ ‖y − x0‖22
2η(T + 1)

+
η

2λ
M2. (81)

In particular with η = ‖y−y1‖2
M

√
λ

T+1 , we have

E [f(x̄)]− f(y) ≤M‖y − x0‖2

√
1

(T + 1)λ
, (82)

which completes the proof.

42

PRECONDITIONED WEIGHTED SGD FOR `p REGRESSION

D.2 Strongly convex case

Here we analyze the case where the objective function f(x) is strongly convex. We make the
following two assumptions:

(A1) Function f(x) is strongly convex with modulus µ. That is, for any x, y ∈ X ,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22. (83)

(A2) For each i ∈ [n], the gradient of each sub-function ∇fi(x) is Lipschitz continuous with
constant Li. That is, for any x, y ∈ X ,

‖∇fi(y)−∇fi(x)‖2 ≤ Li‖y − x‖2. (84)

The following results also appeared in Needell et al. (2014).

Proposition 18 Under assumption (A1), (A2), the sequence {xt} generated by SGD satisfies

E
[
‖xT − x∗‖22

]
≤ (1− 2ηµ(1− η supLi))

T ‖x0 − x∗‖22 +
ησ2

µ(1− η supLi)
, (85)

where σ2 = Ei∼D
[
‖∇fi(x∗)‖22

]
and x∗ is the optimal solution to (72).

Proof The proof essentially follows the same lines of arguments as in Needell et al. (2014). The
only difference is that, here we are working on the constrained problem where update rule (73) is
equivalent to

xt+1 = ΠX (xt − ηgt(xt)). (86)

Notice that ΠX (x) is a projection operator to the feasible set X and it is non-expansive. This further
implies

‖xt+1 − x∗‖22 = ‖ΠX (xt − ηgt(xt))− x∗‖22 ≤ ‖xt − ηgt(xt)− x∗‖22. (87)

The rest of the proof follows analogous arguments in Needell et al. (2014).

Corollary 19 Given a target accuracy ε > 0, and let the step-size be η = εµ
2σ2+2εµ supLi

. Then after

T ≥ log

(
2‖x0 − x∗‖2

ε

)(
σ2

εµ2
+

supLi
µ

)
(88)

iterations, we have that
E
[
‖xT − x∗‖22

]
≤ ε. (89)

Proof The proof can be found in Needell et al. (2014).

43

	Introduction
	Overview of our main algorithm
	Connection to related algorithms
	Main contributions
	Other prior related work

	Preliminaries
	Preconditioning

	A connection to stochastic optimization
	Using RLA (SAA) to solve p regression
	Using SGD (SA) to solve p regression
	Our Main Algorithm
	Main results for 1 and 2 regression problems
	The choice of the preconditioner F
	Complexities
	Complexity comparison between pwSGD and RLA
	Connection to weighted randomized Kaczmarz algorithm
	Experiments
	Empirical evaluations on synthetic datasets
	Time-accuracy tradoeffs
	Empirical evaluations with sparse 2 regression

	Connection with Coreset Methods
	Short summary of coreset methods
	Connections between RLA and coreset methods
	Limitation of our approach

	Conclusion
	Supplementary Details of Algorithm 1
	RLA Methods with Algorithmic Leveraging
	Proofs
	Proof of Proposition 7
	Proof of Proposition 14
	Proof of Proposition 5
	Proof of Proposition 15
	Proof of Proposition 6
	Proof of Theorem 10
	Proof of Proposition 11
	Proof of Proposition 12
	Proof of Proposition 13
	Stochastic Gradient Descent
	Non-strongly convex case
	Strongly convex case

