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Abstract

In many applications, one has side information, e.g., labels that are provided
in a semi-supervised manner, about a specific target region of a large data set,
and one wants to perform machine learning and data analysis tasks “nearby”
that pre-specified target region. Locally-biased problems of this sort are partic-
ularly challenging for popular eigenvector-based machine learning and data anal-
ysis tools. At root, the reason is that eigenvectors are inherently global quanti-
ties. In this paper, we address this issue by providing a methodology to construct
semi-supervised eigenvectors of a graph Laplacian, and we illustrate how these
locally-biased eigenvectors can be used to perform locally-biased machine learn-
ing. These semi-supervised eigenvectors capture successively-orthogonalized di-
rections of maximum variance, conditioned on being well-correlated with an input
seed set of nodes that is assumed to be provided in a semi-supervised manner. We
also provide several empirical examples demonstrating how these semi-supervised
eigenvectors can be used to perform locally-biased learning.

1 Introduction

We consider the problem of finding a set of locally-biased vectors that inherit many of the “nice”
properties that the leading nontrivial global eigenvectors of a graph Laplacian have—for example,
that capture “slowly varying” modes in the data, that are fairly-efficiently computable, that can be
used for common machine learning and data analysis tasks such as kernel-based and semi-supervised
learning, etc.—so that we can perform what we will call locally-biased machine learning in a prin-
cipled manner.

By locally-biased machine learning, we mean that we have a very large data set, e.g., represented as
a graph, and that we have information, e.g., given in a semi-supervised manner, that certain “regions”
of the data graph are of particular interest. In this case, we may want to focus predominantly on those
regions and perform data analysis and machine learning, e.g., classification, clustering, ranking, etc.,
that is “biased toward” those pre-specified regions. Examples of this include the following.

• Locally-biased community identification. In social and information network analysis, one
might have a small “seed set” of nodes that belong to a cluster or community of interest [2,
13]; in this case, one might want to perform link or edge prediction, or one might want to
“refine” the seed set in order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a large corpus
of images along with a “ground truth” set of pixels as provided by a face detection algo-
rithm [7, 14, 15]; in this case, one might want to segment entire heads from the background
for all the images in the corpus in an automated manner.
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• Locally-biased neural connectivity analysis. In functional magnetic resonance imaging ap-
plications, one might have small sets of neurons that “fire” in response to some external
experimental stimulus [16]; in this case, one might want to analyze the subsequent tem-
poral dynamics of stimulation of neurons that are “nearby,” either in terms of connectivity
topology or functional response.

These examples present considerable challenges for spectral techniques and traditional eigenvector-
based methods. At root, the reason is that eigenvectors are inherently global quantities, thus limiting
their applicability in situations where one is interested in very local properties of the data.

In this paper, we provide a methodology to construct what we will call semi-supervised eigenvectors
of a graph Laplacian; and we illustrate how these locally-biased eigenvectors inherit many of the
properties that make the leading nontrivial global eigenvectors of the graph Laplacian so useful in
applications. To achieve this, we will formulate an optimization ansatz that is a variant of the usual
global spectral graph partitioning optimization problem that includes a natural locality constraint as
well as an orthogonality constraint, and we will iteratively solve this problem.

In more detail, assume that we are given as input a (possibly weighted) data graph G = (V,E), an
indicator vector s of a small “seed set” of nodes, a correlation parameter κ ∈ [0, 1], and a positive
integer k. Then, informally, we would like to construct k vectors that satisfy the following bicriteria:
first, each of these k vectors is well-correlated with the input seed set; and second, those k vectors
describe successively-orthogonalized directions of maximum variance, in a manner analogous to the
leading k nontrivial global eigenvectors of the graph Laplacian. (We emphasize that the seed set s
of nodes, the integer k, and the correlation parameter κ are part of the input; and thus they should
be thought of as being available in a semi-supervised manner.) Somewhat more formally, our main
algorithm, Algorithm 1 in Section 3, returns as output k semi-supervised eigenvectors; each of these
is the solution to an optimization problem of the form of GENERALIZED LOCALSPECTRAL in Fig-
ure 1, and thus each “captures” (say) κ/k of the correlation with the seed set. Our main theoretical
result states that these vectors define successively-orthogonalized directions of maximum variance,
conditioned on being κ/k-well-correlated with an input seed set s; and that each of these k semi-
supervised eigenvectors can be computed quickly as the solution to a system of linear equations.

From a technical perspective, the work most closely related to ours is that of Mahoney et al. [14].
The original algorithm of Mahoney et al. [14] introduced a methodology to construct a locally-biased
version of the leading nontrivial eigenvector of a graph Laplacian and showed (theoretically and em-
pirically in a social network analysis application) that the resulting vector could be used to partition
a graph in a locally-biased manner. From this perspective, our extension incorporates a natural or-
thogonality constraint that successive vectors need to be orthogonal to previous vectors. Subsequent
to the work of [14], [15] applied the algorithm of [14] to the problem of finding locally-biased cuts
in a computer vision application. Similar ideas have also been applied somewhat differently. For
example, [2] use locally-biased random walks, e.g., short random walks starting from a small seed
set of nodes, to find clusters and communities in graphs arising in Internet advertising applications;
[13] used locally-biased random walks to characterize the local and global clustering structure of
a wide range of social and information networks; [11] developed the Spectral Graph Transducer
(SGT), that performs transductive learning via spectral graph partitioning. The objectives in both
[11] and [14] are considered constrained eigenvalue problems, that can be solved by finding the
smallest eigenvalue of an asymmetric generalized eigenvalue problem, but in practice this procedure
can be highly unstable [8]. The SGT reduces the instabilities by performing all calculations in a sub-
space spanned by the d smallest eigenvectors of the graph Laplacian, whereas [14] perform a binary
search, exploiting the monotonic relationship between a control parameter and the corresponding
Lagrange multiplier.

In parallel, [3] and a large body of subsequent work including [6] used eigenvectors of the graph
Laplacian to perform dimensionality reduction and data representation, in unsupervised and semi-
supervised settings. Many of these methods have a natural interpretation in terms of kernel-based
learning [18]. Many of these diffusion-based spectral methods also have a natural interpretation
in terms of spectral ranking [21]. “Topic sensitive” and “personalized” versions of these spectral
ranking methods have also been studied [9, 10]; and these were the motivation for diffusion-based
methods to find locally-biased clusters in large graphs [19, 1, 14]. Our optimization ansatz is a
generalization of the linear equation formulation of the PageRank procedure [17, 14, 21], and the
solution involves Laplacian-based linear equation solving, which has been suggested as a primitive
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of more general interest in large-scale data analysis [20]. Finally, the form of our optimization
problem has similarities to other work in computer vision applications: e.g., [23] and [7] find good
conductance clusters subject to a set of linear constraints.

2 Background and Notation

Let G = (V,E,w) be a connected undirected graph with n = |V | vertices and m = |E| edges,
in which edge {i, j} has non-negative weight wij . In the following, AG ∈ RV×V will denote the
adjacency matrix of G, while DG ∈ RV×V will denote the diagonal degree matrix of G, i.e.,
DG(i, i) = di =

∑
{i,j}∈E wij , the weighted degree of vertex i. Moreover, for a set of vertices

S ⊆ V in a graph, the volume of S is vol(S)
def
=
∑
i∈S di. The Laplacian of G is defined as

LG
def
= DG − AG. (This is also called the combinatorial Laplacian, in which case the normalized

Laplacian of G is LG
def
= D

−1/2
G LGD

−1/2
G .)

The Laplacian is the symmetric matrix having quadratic form xTLGx =
∑
ij∈E wij(xi − xj)

2,
for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector 1 ∈ RV is
the eigenvector corresponding to the smallest eigenvalue 0. The generalized eigenvalues of LGx =
λiDGx are 0 = λ1 < λ2 ≤ · · · ≤ λN . We will use v2 to denote smallest non-trivial eigenvector,
i.e., the eigenvector corresponding to λ2; v3 to denote the next eigenvector; and so on. Finally, for
a matrix A, let A+ denote its (uniquely defined) Moore-Penrose pseudoinverse. For two vectors
x, y ∈ Rn, and the degree matrix DG for a graph G, we define the degree-weighted inner product
as xTDGy

def
=
∑n
i=1 xiyidi. In particular, if a vector x has unit norm, then xTDGx = 1. Given a

subset of vertices S ⊆ V , we denote by 1S the indicator vector of S in RV and by 1 the vector in
RV having all entries set equal to 1.

3 Optimization Approach to Semi-supervised Eigenvectors

3.1 Motivation for the Program

Recall the optimization perspective on how one computes the leading nontrivial global eigenvectors
of the normalized Laplacian LG. The first nontrivial eigenvector v2 is the solution to the problem
GLOBALSPECTRAL that is presented on the left of Figure 1. Equivalently, although GLOBALSPEC-
TRAL is a non-convex optimization problem, strong duality holds for it and it’s solution may be
computed as v2, the leading nontrivial generalized eigenvector of LG. The next eigenvector v3 is
the solution to GLOBALSPECTRAL, augmented with the constraint that xTDGv2 = 0; and in gen-
eral the tth generalized eigenvector of LG is the solution to GLOBALSPECTRAL, augmented with
the constraints that xTDGvi = 0, for i ∈ {2, . . . , t − 1}. Clearly, this set of constraints and the
constraint xTDG1 = 0 can be written as xTDGQ = 0, where 0 is a (t − 1)-dimensional all-zeros
vector, and where Q is an n× (t− 1) orthogonal matrix whose ith column equals vi (where v1 = 1,
the all-ones vector, is the first column of Q).

Also presented in Figure 1 is LOCALSPECTRAL, which includes a constraint requiring the solution
to be well-correlated with an input seed set. This LOCALSPECTRAL optimization problem was in-
troduced in [14], where it was shown that the solution to LOCALSPECTRAL may be interpreted as
a locally-biased version of the second eigenvector of the Laplacian. In particular, although LOCAL-
SPECTRAL is not convex, it’s solution can be computed efficiently as the solution to a set of linear
equations that generalize the popular Personalized PageRank procedure; in addition, by performing
a sweep cut and appealing to a variant of Cheeger’s inequality, this locally-biased eigenvector can
be used to perform locally-biased spectral graph partitioning [14].

3.2 Our Main Algorithm

We will formulate the problem of computing semi-supervised vectors in terms of a primitive op-
timization problem of independent interest. Consider the GENERALIZED LOCALSPECTRAL opti-
mization problem, as shown in Figure 1. For this problem, we are given a graph G = (V,E), with
associated Laplacian matrix LG and diagonal degree matrix DG; an indicator vector s of a small
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GLOBALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LOCALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

GENERALIZED LOCALSPECTRAL

minimize xTLGx

s.t xTDGx = 1

xTDGQ = 0

xTDGs ≥
√
κ

Figure 1: Left: The usual GLOBALSPECTRAL partitioning optimization problem; the vector achiev-
ing the optimal solution is v2, the leading nontrivial generalized eigenvector of LG with respect
to DG. Middle: The LOCALSPECTRAL optimization problem, which was originally introduced
in [14]; for κ = 0, this coincides with the usual global spectral objective, while for κ > 0, this
produces solutions that are biased toward the seed vector s. Right: The GENERALIZED LOCAL-
SPECTRAL optimization problem we introduce that includes both the locality constraint and a more
general orthogonality constraint. Our main algorithm for computing semi-supervised eigenvectors
will iteratively compute the solution to GENERALIZED LOCALSPECTRAL for a sequence of Q ma-
trices. In all three cases, the optimization variable is x ∈ Rn.

“seed set” of nodes; a correlation parameter κ ∈ [0, 1]; and an n×ν constraint matrixQ that may be
assumed to be an orthogonal matrix. We will assume (without loss of generality) that s is properly
normalized and orthogonalized so that sTDGs = 1 and sTDG1 = 0. While s can be a general unit
vector orthogonal to 1, it may be helpful to think of s as the indicator vector of one or more vertices
in V , corresponding to the target region of the graph.

In words, the problem GENERALIZED LOCALSPECTRAL asks us to find a vector x ∈ Rn that min-
imizes the variance xTLGx subject to several constraints: that x is unit length; that x is orthogonal
to the span of Q; and that x is

√
κ-well-correlated with the input seed set vector s. In our applica-

tion of GENERALIZED LOCALSPECTRAL to the computation of semi-supervised eigenvectors, we
will iteratively compute the solution to GENERALIZED LOCALSPECTRAL, updating Q to contain
the already-computed semi-supervised eigenvectors. That is, to compute the first semi-supervised
eigenvector, we let Q = 1, i.e., the n-dimensional all-ones vector, which is the trivial eigenvector of
LG, in which case Q is an n×1 matrix; and to compute each subsequent semi-supervised eigenvec-
tor, we let the columns of Q consist of 1 and the other semi-supervised eigenvectors found in each
of the previous iterations.

To show that GENERALIZED LOCALSPECTRAL is efficiently-solvable, note that it is a quadratic
program with only one quadratic constraint and one linear equality constraint. In order to remove the
equality constraint, which will simplify the problem, let’s change variables by defining the n×(n−ν)
matrix F as {x : QTDGx = 0} = {x : x = Fy}. That is, F is a span for the null space of QT ;
and we will take F to be an orthogonal matrix. Then, with respect to the y variable, GENERALIZED
LOCALSPECTRAL becomes

minimize
y

yTFTLGFy

subject to yTFTDGFy = 1,

yTFTDGs ≥
√
κ.

(1)

In terms of the variable x, the solution to this optimization problem is of the form

x∗ = cF
(
FT (LG − γDG)F

)+
FTDGs

= c
(
FFT (LG − γDG)FF

T
)+
DGs, (2)

for a normalization constant c ∈ (0,∞) and for some γ that depends on
√
κ. The second line follows

from the first since F is an n×(n−ν) orthogonal matrix. This so-called “S-procedure” is described
in greater detail in Chapter 5 and Appendix B of [4]. The significance of this is that, although it is
a non-convex optimization problem, the GENERALIZED LOCALSPECTRAL problem can be solved
by solving a linear equation, in the form given in Eqn. (2).

Returning to our problem of computing semi-supervised eigenvectors, recall that, in addition to the
input for the GENERALIZED LOCALSPECTRAL problem, we need to specify a positive integer k
that indicates the number of vectors to be computed. In the simplest case, we would assume that
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we would like the correlation to be “evenly distributed” across all k vectors, in which case we will
require that each vector is

√
κ/k-well-correlated with the input seed set vector s; but this assumption

can easily be relaxed, and thus Algorithm 1 is formulated more generally as taking a k-dimensional
vector κ = [κ1, . . . , κk]

T of correlation coefficients as input.

To compute the first semi-supervised eigenvector, we will let Q = 1, the all-ones vector, in which
case the first nontrivial semi-supervised eigenvector is

x∗1 = c (LG − γ1DG)
+
DGs, (3)

where γ1 is chosen to saturate the part of the correlation constraint along the first direction. (Note
that the projections FFT from Eqn. (2) are not present in Eqn. (3) since by design sTDG1 = 0.)
That is, to find the correct setting of γ1, it suffices to perform a binary search over the possible
values of γ1 in the interval (−vol(G), λ2(G)) until the correlation constraint is satisfied, that is,
until (sTDGx)

2 is sufficiently close to κ21, see [8, 14].

To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k if one ultimately
wants a total of k semi-supervised eigenvectors, then one lets Q be the n× (t− 1) matrix with first
column equal to 1 and with jth column, for i = 2, . . . , t − 1, equal to x∗j−1 (where we emphasize
that x∗j−1 is a vector not an element of a vector). That is, Q is of the form Q = [1, x∗1, . . . , x

∗
t−1],

where x∗i are successive semi-supervised eigenvectors, and the projection matrix FFT is of the
form FFT = I −DGQ(QTDGDGQ)−1QTDG, due to the degree-weighted inner norm. Then, by
Eqn. (2), the tth semi-supervised eigenvector takes the form

x∗t = c
(
FFT (LG − γtDG)FF

T
)+
DGs. (4)

Algorithm 1 Semi-supervised eigenvectors
Input: LG, DG, s, κ = [κ1, . . . , κk]

T , ε
Require: sTDG1 = 0, sTDGs = 1, κT 1 ≤ 1

1: Q = [1]
2: for t = 1 to k do
3: FFT ← I −DGQ(QTDGDGQ)−1QTDG

4: > ← λ2 where FFTLGFFT v2 = λ2FF
TDGFF

T v2
5: ⊥ ← −vol(G)
6: repeat
7: γt ← (⊥+>)/2 (Binary search over γt)
8: xt ← (FFT (LG − γtDG)FF

T )+FFTDGs
9: Normalize xt such that xTt DGxt = 1

10: if (xTt DGs)
2 > κt then ⊥ ← γt else > ← γt end if

11: until ‖(xTt DGs)
2 − κt‖ ≤ ε or ‖(⊥+>)/2− γt‖ ≤ ε

12: Augment Q with x∗t by letting Q = [Q, x∗t ].
13: end for

In more detail, Algorithm 1 presents pseudo-code for our main algorithm for computing semi-
supervised eigenvectors. Several things should be noted about our implementation. First, note
that we implicitly compute the projection matrix FFT . Second, a naı̈ve approach to Eqn. (2) does
not immediately lead to an efficient solution, since DGs will not be in the span of (FFT (LG −
γDG)FF

T ), thus leading to a large residual. By changing variables so that x = FFT y, the solu-
tion becomes x∗ ∝ FFT (FFT (LG − γDG)FF

T )+FFTDGs. Since FFT is a projection matrix,
this expression is equivalent to x∗ ∝ (FFT (LG − γDG)FF

T )+FFTDGs. Third, we exploit that
FFT (LG − γiDG)FF

T is an SPSD matrix, and we apply the conjugate gradient method, rather
than computing the explicit pseudoinverse. That is, in the implementation we never represent the
dense matrix FFT , but instead we treat it as an operator and we simply evaluate the result of ap-
plying a vector to it on either side. Fourth, we use that λ2 can never decrease (here we refer to
λ2 as the smallest non-zero eigenvalue of the modified matrix), so we only recalculate the upper
bound for the binary search when an iteration saturates without satisfying ‖(xTt DGs)

2 − κt‖ ≤ ε.
In case of saturation one can for instance recalculate λ2 iteratively by using the inverse iteration
method, vk+1

2 ∝ (FFTLGFF
T − λest

2 FF
TDGFF

T )+FFTDGFF
T vk2 , and normalizing such

that (vk+1
2 )T vk+1

2 = 1.
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4 Illustrative Empirical Results

In this section, we will provide a detailed empirical evaluation of our method of semi-supervised
eigenvectors and how they can be used for locally-biased machine learning. Our goal will be two-
fold: first, to illustrate how the “knobs” of our method work; and second, to illustrate the usefulness
of the method in a real application. To do so, we will consider:

• Toy data. In Section 4.1, we will consider one-dimensional examples of the popular “small
world” model [22]. This is a parameterized family of models that interpolates between
low-dimensional grids and random graphs; and, as such, it will allow us to illustrate the
behavior of our method and it’s various parameters in a controlled setting.

• Handwritten image data. In Section 4.2, we will consider the data from the MNIST digit
data set [12]. These data have been widely-studied in machine learning and related areas
and they have substantial “local heterogeneity”; and thus these data will allow us to illus-
trate how our method may be used to perform locally-biased versions of common machine
learning tasks such as smoothing, clustering, and kernel construction.

4.1 Small-world Data

To illustrate how the “knobs” of our method work, and in particular how κ and γ interplay, we con-
sider data constructed from the so-called small-world model. To demonstrate how semi-supervised
eigenvectors can focus on specific target regions of a data graph to capture slowest modes of local
variation, we plot semi-supervised eigenvectors around illustrations of (non-rewired and rewired)
realizations of the small-world graph; see Figure 2.

p = 0,
λ2 = 0.000011,
λ3 = 0.000011,
λ4 = 0.000046,
λ5 = 0.000046.

(a) Global eigenvectors

p = 0.01,
λ2 = 0.000149,
λ3 = 0.000274,
λ4 = 0.000315,
λ5 = 0.000489.

(b) Global eigenvectors

p = 0.01, κ = 0.005,
γ1 = 0.000047,
γ2 = 0.000052,
γ3 = −0.000000,
γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367,
γ2 = −0.001778,
γ3 = −0.001665,
γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 2: In each case, (a-d) the data consist of 3600 nodes, each connected to it’s 8 nearest-
neighbors. In the center of each subfigure, we show the nodes (blue) and edges (black and light
gray are the local edges, and blue are the randomly-rewired edges). In each subfigure, we wrap a
plot (black x-axis and gray background) visualizing the 4 smallest semi-supervised eigenvectors,
allowing us to see the effect of random edges (different values of rewiring probability p) and degree
of localization (different values of κ). Eigenvectors are color coded as blue, red, yellow, and green,
starting with the one having the smallest eigenvalue. See the main text for more details.

In Figure 2.a, we show a graph with no randomly-rewired edges (p = 0) and a locality parameter
κ such that the global eigenvectors are obtained. This yields a symmetric graph with eigenvectors
corresponding to orthogonal sinusoids, i.e., for all eigenvectors, except the all-ones with eigenvalue
0, the algebraic multiplicity is 2, i.e., the first two capture the slowest mode of variation and cor-
respond to a sine and cosine with equal random phase-shift (rotational ambiguity). In Figure 2.b,
random edges have been added with probability p = 0.01 and the locality parameter κ is still cho-
sen such that the global eigenvectors of the rewired graph are obtained. In particular, note small
kinks in the eigenvectors at the location of the randomly added edges. Since the graph is no longer
symmetric, all of the visualized eigenvectors have algebraic multiplicity 1. Moreover, note that the
slow mode of variation in the interval on the top left; a normalized-cut based on the leading global
eigenvector would extract this region since the remainder of the ring is more well-connected due
to the degree of rewiring. In Figure 2.c, we see the same graph realization as in Figure 2.b, except
that the semi-supervised eigenvectors have a seed node at the top of the circle and the correlation
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parameter κt = 0.005. Note that, like the global eigenvectors, the local approach produces modes
of increasing variation. In addition, note that the neighborhood around “11 o-clock” contains more
mass, when compared with Figure 2.b; the reason for this is that this region is well-connected with
the seed via a randomly added edge. Above the visualization we also show the γt that saturates κt,
i.e., γt is the Lagrange multiplier that defines the effective correlation κt. Not shown is that if we
kept reducing κ, then γt would tend towards λt+1, and the respective semi-supervised eigenvector
would tend towards the global eigenvector. Finally, in Figure 2.d, the desired correlation is increased
to κ = 0.05 (thus decreasing the value of γt), making the different modes of variation more local-
ized in the neighborhood of the seed. It should be clear that, in addition to being determined by the
locality parameter, we can think of γ as a regularizer biasing the global eigenvectors towards the
region near the seed set.

4.2 MNIST Digit Data

We now demonstrate the semi-supervised eigenvectors as a feature extraction preprocessing step in
a machine learning setting. We consider the well-studied MNIST dataset containing 60000 training
digits and 10000 test digits ranging from 0 to 9. We construct the complete 70000 × 70000 k-NN
graph with k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2

i being
the Euclidean distance to it’s nearest neighbor, and we define the graph Laplacian in the usual way.
We evaluate the semi-supervised eigenvectors in a transductive learning setting by disregarding the
majority of labels in the entire training data. We then use a few samples from each class to seed
our semi-supervised eigenvectors, and a few others to train a downstream classification algorithm.
Here we choose to apply the SGT of [11] for two main reasons. First, the transductive classifier is
inherently designed to work on a subset of global eigenvectors of the graph Laplacian, making it
ideal for validating that our localized basis constructed by the semi-supervised eigenvectors can be
more informative when we are solely interested in the “local heterogeneity” near a seed set. Second,
using the SGT based on global eigenvectors is a good point of comparison, because we are only
interested in the effect of our subspace representation. (If we used one type of classifier in the local
setting, and another in the global, the classification accuracy that we measure would obviously be
biased.) As in [11], we normalize the spectrum of both global and semi-supervised eigenvectors
by replacing the eigenvalues with some monotonically increasing function. We use λi = i2

k2 , i.e.,
focusing on ranking among smallest cuts; see [5]. Furthermore, we fix the regularization parameter
of the SGT to c = 3200, and for simplicity we fix γ = 0 for all semi-supervised eigenvectors,
implicitly defining the effective κ = [κ1, . . . , κk]

T . Clearly, other correlation distributions and
values of γ may yield subspaces with even better discriminative properties1.

#Semi-supervised eigenvectors for SGT #Global eigenvectors for SGT
Labeled points 1 2 4 6 8 10 1 5 10 15 20 25

1 : 1 0.39 0.39 0.38 0.38 0.38 0.36 0.50 0.48 0.36 0.27 0.27 0.19
1 : 10 0.30 0.31 0.25 0.23 0.19 0.15 0.49 0.36 0.09 0.08 0.06 0.06
5 : 50 0.12 0.15 0.09 0.08 0.07 0.06 0.49 0.09 0.08 0.07 0.05 0.04

10 : 100 0.09 0.10 0.07 0.06 0.05 0.05 0.49 0.08 0.07 0.06 0.04 0.04
50 : 500 0.03 0.03 0.03 0.03 0.03 0.03 0.49 0.10 0.07 0.06 0.04 0.04

Table 1: Classification error for the SGT based on respectively semi-supervised and global eigenvec-
tors. The first column from the left encodes the configuration, e.g., 1:10 interprets as 1 seed and 10
training samples from each class (total of 22 samples - for the global approach these are all used for
training). When the seed is well determined and the number of training samples moderate (50:500)
a single semi-supervised eigenvector is sufficient, where for less data we benefit from using multiple
semi-supervised eigenvectors. All experiments have been repeated 10 times.

Here, we consider the task of discriminating between fours and nines, as these two classes tend to
overlap more than other combinations. (A closed four usually resembles nine more than an “open”
four.) Hence, we expect localization on low order global eigenvectors, meaning that class separation
will not be evident in the leading global eigenvector, but instead will be “buried” further down the
spectrum. Thus, this will illustrate how semi-supervised eigenvectors can represent relevant hetero-
geneities in a local subspace of low dimensionality. Table 1 summarizes our classification results
based on respectively semi-supervised and global eigenvectors. Finally, Figure 3 and 4 illustrates
two realizations for the 1:10 configuration, where the training samples are fixed, but where we vary

1A thorough analysis regarding the importance of this parameter will appear in the journal version.
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the seed nodes, to demonstrate the influence of the seed. See the caption in these figures for further
details.

s+ = { }
←−
−−
−−
−−
−−
−

Te
st

da
ta
−−
−−
−−
−−
−−
→

l+ = { }

s− = { }

l− = { }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.08 0.07 0.06 0.05 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Classification error
Unexplained correlation

1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5

2 vs. 3 2 vs. 4 2 vs. 5

3 vs. 4 3 vs. 5

4 vs. 5

#Semi-supervised eigenvectors

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 3: Left: Shows a subset of the classification results for the SGT based on 5 semi-supervised
eigenvectors seeded in s+ and s−, and trained using samples l+ and l−. Misclassifications are
marked with black frames. Right: Visualizes all test data spanned by the first 5 semi-supervised
eigenvectors, by plotting each component as a function of the others. Red (blue) points correspond
to 4 (9), whereas green points correspond to remaining digits. As the seed nodes are good repre-
sentatives, we note that the eigenvectors provide a good class separation. We also plot the error as
a function of local dimensionality, as well as the unexplained correlation, i.e., initial components
explain the majority of the correlation with the seed (effect of γ = 0). The particular realization
based on the leading 5 semi-supervised eigenvectors yields an error of ≈ 0.03 (dashed circle).
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Figure 4: See the general description in Figure 3. Here we illustrate an instance where the s+ shares
many similarities with s−, i.e., s+ is on the boundary of the two classes. This particular realization
achieves a classification error of ≈ 0.30 (dashed circle). In this constellation we first discover
localization on low order semi-supervised eigenvectors (≈ 12 eigenvectors), which is comparable
to the error based on global eigenvectors (see Table 1), i.e., further down the spectrum we recover
from the bad seed and pickup the relevant mode of variation.

In summary: We introduced the concept of semi-supervised eigenvectors that are biased towards
local regions of interest in a large data graph. We demonstrated the feasibility on a well-studied
dataset and found that our approach leads to more compact subspace representations by extracting
desired local heterogeneities. Moreover, the algorithm is scalable as the eigenvectors are computed
by the solution to a sparse system of linear equations, preserving the low O(m) space complexity.
Finally, we foresee that the approach will prove useful in a wide range of data analysis fields, due to
the algorithm’s speed, simplicity, and stability.
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