
Journal of Machine Learning Research 15 (2014) 3691-3734 Submitted 4/13; Revised 4/14; Published 11/14

Semi-Supervised Eigenvectors for Large-Scale
Locally-Biased Learning

Toke J. Hansen tjha@dtu.dk
Department of Applied Mathematics and Computer Science
Technical University of Denmark
Richard Petersens Plads, 2800 Lyngby, Denmark

Michael W. Mahoney mmahoney@stat.berkeley.edu

International Computer Science Institute and Dept. of Statistics

University of California

Berkeley, CA 94720-1776, USA

Editor: Mikhail Belkin

Abstract

In many applications, one has side information, e.g., labels that are provided in a semi-
supervised manner, about a specific target region of a large data set, and one wants to
perform machine learning and data analysis tasks “nearby” that prespecified target region.
For example, one might be interested in the clustering structure of a data graph near a
prespecified “seed set” of nodes, or one might be interested in finding partitions in an image
that are near a prespecified “ground truth” set of pixels. Locally-biased problems of this
sort are particularly challenging for popular eigenvector-based machine learning and data
analysis tools. At root, the reason is that eigenvectors are inherently global quantities, thus
limiting the applicability of eigenvector-based methods in situations where one is interested
in very local properties of the data.

In this paper, we address this issue by providing a methodology to construct semi-
supervised eigenvectors of a graph Laplacian, and we illustrate how these locally-biased
eigenvectors can be used to perform locally-biased machine learning. These semi-supervised
eigenvectors capture successively-orthogonalized directions of maximum variance, condi-
tioned on being well-correlated with an input seed set of nodes that is assumed to be
provided in a semi-supervised manner. We show that these semi-supervised eigenvectors
can be computed quickly as the solution to a system of linear equations; and we also de-
scribe several variants of our basic method that have improved scaling properties. We
provide several empirical examples demonstrating how these semi-supervised eigenvectors
can be used to perform locally-biased learning; and we discuss the relationship between our
results and recent machine learning algorithms that use global eigenvectors of the graph
Laplacian.

Keywords: semi-supervised learning, spectral clustering, kernel methods, large-scale
machine learning, local spectral methods, locally-biased learning

1. Introduction

In many applications, one has information about a specific target region of a large data
set, and one wants to perform common machine learning and data analysis tasks “nearby”
the pre-specified target region. In such situations, eigenvector-based methods such as those

c©2014 Toke J. Hansen and Michael W. Mahoney.

Hansen and Mahoney

that have been popular in machine learning in recent years tend to have serious difficulties.
At root, the reason is that eigenvectors, e.g., of Laplacian matrices of data graphs, are
inherently global quantities, and thus they might not be sensitive to very local information.
Motivated by this, we consider the problem of finding a set of locally-biased vectors—we will
call them semi-supervised eigenvectors—that inherit many of the “nice” properties that the
leading nontrivial global eigenvectors of a graph Laplacian have—for example, that capture
“slowly varying” modes in the data, that are fairly-efficiently computable, that can be
used for common machine learning and data analysis tasks such as kernel-based and semi-
supervised learning, etc.—so that we can perform what we will call locally-biased machine
learning in a principled manner.

1.1 Locally-Biased Learning

By locally-biased machine learning, we mean that we have a data set, e.g., represented
as a graph, and that we have information, e.g., given in a semi-supervised manner, that
certain “regions” of the data graph are of particular interest. In this case, we may want to
focus predominantly on those regions and perform data analysis and machine learning, e.g.,
classification, clustering, ranking, etc., that is “biased toward” those pre-specified regions.
Examples of this include the following.

• Locally-biased community identification. In social and information network analysis,
one might have a small “seed set” of nodes that belong to a cluster or community
of interest (Andersen and Lang, 2006; Leskovec et al., 2008); in this case, one might
want to perform link or edge prediction, or one might want to “refine” the seed set in
order to find other nearby members.

• Locally-biased image segmentation. In computer vision, one might have a large corpus
of images along with a “ground truth” set of pixels as provided by a face detection
algorithm (Eriksson et al., 2007; Mahoney et al., 2012; Maji et al., 2011); in this case,
one might want to segment entire heads from the background for all the images in the
corpus in an automated manner.

• Locally-biased neural connectivity analysis. In functional magnetic resonance imag-
ing applications, one might have small sets of neurons that “fire” in response to
some external experimental stimulus (Norman et al., 2006); in this case, one might
want to analyze the subsequent temporal dynamics of stimulation of neurons that are
“nearby,” either in terms of connectivity topology or functional response, members of
the original set.

In each of these examples, the data are modeled by a graph—which is either “given” from the
application domain or is “constructed” from feature vectors obtained from the application
domain—and one has information that can be viewed as semi-supervised in the sense that
it consists of exogeneously-specified “labels” for the nodes of the graph. In addition, there
are typically a relatively-small number of labels and one is interested in obtaining insight
about the data graph nearby those labels.

These examples present considerable challenges for standard global spectral techniques
and other traditional eigenvector-based methods. (Such eigenvector-based methods have re-
ceived attention in a wide range of machine learning and data analysis applications in recent

3692

Semi-supervised Eigenvectors

years. They have been useful, for example, in non-linear dimensionality reduction Belkin
and Niyogi 2003; Coifman et al. 2005; in kernel-based machine learning Schölkopf and Smola
2001; in Nyström-based learning methods Williams and Seeger 2001; Talwalkar and Ros-
tamizadeh 2010; spectral partitioning Pothen et al. 1990; Shi and Malik 2000; Ng et al.
2001, and so on.) At root, the reason is that eigenvectors are inherently global quantities,
thus limiting their applicability in situations where one is interested in very local properties
of the data. That is, very local information can be “washed out” and essentially invisible
to these globally-optimal vectors. For example, a sparse cut in a graph may be poorly
correlated with the second eigenvector and thus invisible to a method based only on eigen-
vector analysis. Similarly, if one has semi-supervised information about a specific target
region in the graph, as in the above examples, one might be interested in finding clusters
near this prespecified local region in a semi-supervised manner; but this local region might
be essentially invisible to a method that uses only global eigenvectors. Finally, one might
be interested in using kernel-based methods to find “local correlations” or to regularize
with respect to a “local dimensionality” in the data, but this local information might be
destroyed in the process of constructing kernels with traditional kernel-based methods.

1.2 Semi-Supervised Eigenvectors

In this paper, we provide a methodology to construct what we will call semi-supervised
eigenvectors of a graph Laplacian; and we illustrate how these locally-biased eigenvectors
(locally-biased in the sense that they will be well-correlated with the input seed set of
nodes or that most of their “mass” will be on nodes that are “near” that seed set) inherit
many of the properties that make the leading nontrivial global eigenvectors of the graph
Laplacian so useful in applications. In order to make this method useful, there should
ideally be a “knob” that allows us to interpolate between very local and the usual global
eigenvectors, depending on the application at hand; we should be able to use these vectors
in common machine learning pipelines to perform common machine learning tasks; and the
intuitions that make the leading k nontrivial global eigenvectors of the graph Laplacian
useful should, to the extent possible, extend to the locally-biased setting. To achieve this,
we will formulate an optimization ansatz that is a variant of the usual global spectral graph
partitioning optimization problem that includes a natural locality constraint as well as an
orthogonality constraint, and we will iteratively solve this problem.

In more detail, assume that we are given as input a (possibly weighted) data graph
G = (V,E), an indicator vector s of a small “seed set” of nodes, a correlation parameter
κ ∈ [0, 1], and a positive integer k. Then, informally, we would like to construct k vectors
that satisfy the following bicriteria: first, each of these k vectors is well-correlated with the
input seed set; and second, those k vectors describe successively-orthogonalized directions
of maximum variance, in a manner analogous to the leading k nontrivial global eigenvectors
of the graph Laplacian. (We emphasize that the seed set s of nodes, the integer k, and the
correlation parameter κ are part of the input; and thus they should be thought of as being
available in a semi-supervised manner.) Somewhat more formally, our main algorithm,
Algorithm 1 in Section 3, returns as output k semi-supervised eigenvectors; each of these
is the solution to an optimization problem of the form of Generalized LocalSpectral
in Figure 1, and thus each “captures” (say) κ/k of the correlation with the seed set. Our

3693

Hansen and Mahoney

main theoretical result, described in Section 3, states that these vectors define successively-
orthogonalized directions of maximum variance, conditioned on being κ/k-well-correlated
with an input seed set s; and that each of these k semi-supervised eigenvectors can be
computed quickly as the solution to a system of linear equations. To extend the practical
applicability of this basic result, we will in Section 4 describe several heuristic extensions
of our basic framework that will make it easier to apply the method of semi-supervised
eigenvectors at larger size scales. These extensions involve using the so-called Nyström
method, computing one locally-biased eigenvector and iteratively “peeling off” successive
components of interest, as well as performing random walks that are “local” in a stronger
sense than our basic method considers.

Finally, in order to illustrate how the method of semi-supervised eigenvectors performs
in practice, we also provide a detailed empirical evaluation using a wide range of both
small-scale as well as larger-scale data.

1.3 Related Work

From a technical perspective, the work most closely related to ours is the recently-developed
“local spectral method” of Mahoney et al. (2012). The original algorithm of Mahoney et al.
(2012) introduced a methodology to construct a locally-biased version of the leading non-
trivial eigenvector of a graph Laplacian and also showed (theoretically and empirically in a
social network analysis application) that that the resulting vector could be used to parti-
tion a graph in a locally-biased manner. From this perspective, our extension incorporates
a natural orthogonality constraint that successive vectors need to be orthogonal to previous
vectors. Subsequent to the work of Mahoney et al. (2012), Maji et al. (2011) applied the
algorithm of Mahoney et al. (2012) to the problem of finding locally-biased cuts in a com-
puter vision application. Similar ideas have also been applied somewhat differently. For
example, Andersen and Lang (2006) use locally-biased random walks, e.g., short random
walks starting from a small seed set of nodes, to find clusters and communities in graphs
arising in Internet advertising applications; Leskovec et al. (2008) used locally-biased ran-
dom walks to characterize the local and global clustering structure of a wide range of social
and information networks; and Joachims (2003) developed the Spectral Graph Transducer,
which performs transductive learning via spectral graph partitioning.

The objectives in both (Joachims, 2003) and (Mahoney et al., 2012) are constrained
eigenvalue problems that can be solved by finding the smallest eigenvalue of an asymmetric
generalized eigenvalue problem; but in practice this procedure can be highly unstable (Gan-
der et al., 1989). The algorithm of Joachims (2003) reduces the instabilities by performing
all calculations in a subspace spanned by the d smallest eigenvectors of the graph Lapla-
cian; whereas the algorithm of Mahoney et al. (2012) performs a binary search, exploiting
the monotonic relationship between a control parameter and the corresponding Lagrange
multiplier. The form of our optimization problem also has similarities to other work in
computer vision applications: e.g., (Yu and Shi, 2002) and (Eriksson et al., 2007) find good
conductance clusters subject to a set of linear constraints.

In parallel, Belkin and Niyogi (2003) and a large body of subsequent work including
(Coifman et al., 2005) used (the usual global) eigenvectors of the graph Laplacian to per-
form dimensionality reduction and data representation, in unsupervised and semi-supervised

3694

Semi-supervised Eigenvectors

settings (Tenenbaum et al., 2000; Roweis and Saul, 2000; Zhou et al., 2004). Typically, these
methods construct some sort of local neighborhood structure around each data point, and
they optimize some sort of global objective function to go “from local to global” (Saul et al.,
2006). In some cases, these methods can be understood in terms of data drawn from an
hypothesized manifold (Belkin and Niyogi, 2008), and more generally they have proven use-
ful for denoising and learning in semi-supervised settings (Belkin and Niyogi, 2004; Belkin
et al., 2006). These methods are based on spectral graph theory (Chung, 1997); and thus
many of these methods have a natural interpretation in terms of diffusions and kernel-based
learning (Schölkopf and Smola, 2001; Kondor and Lafferty, 2002; Szummer and Jaakkola,
2002; Chapelle et al., 2003; Ham et al., 2004). These interpretations are important for
the usefulness of these global eigenvector methods in a wide range of applications. As we
will see, many (but not all) of these interpretations can be ported to the “local” setting,
an observation that was made previously in a different context (Cucuringu and Mahoney,
2011).

Many of these diffusion-based spectral methods also have a natural interpretation in
terms of spectral ranking (Vigna, 2009). “Topic sensitive” and “personalized” versions of
these spectral ranking methods have also been studied (Haveliwala, 2003; Jeh and Widom,
2003); and these were the motivation for diffusion-based methods to find locally-biased
clusters in large graphs (Spielman and Teng, 2004; Andersen et al., 2006; Mahoney et al.,
2012). Our optimization ansatz is a generalization of the linear equation formulation of the
PageRank procedure (Page et al., 1999; Mahoney et al., 2012; Vigna, 2009); and its solution
involves Laplacian-based linear equation solving, which has been suggested as a primitive
is of more general interest in large-scale data analysis (Teng, 2010).

1.4 Outline of the Paper

In the next section, Section 2, we will provide notation and some background and discuss
related work. Then, in Section 3 we will present our main algorithm and our main theoretical
result justifying the algorithm; and in Section 4 we will present several extensions of our
basic method that will help for certain larger-scale applications of the method of semi-
supervised eigenvectors. In Section 5, we present an empirical analysis, including both toy
data to illustrate how the “knobs” of our method work, as well as applications to realistic
machine learning and data analysis problems.

2. Background and Notation

Let G = (V,E,w) be a connected undirected graph with n = |V | vertices and m = |E|
edges, in which edge {i, j} has weight wij . For a set of vertices S ⊆ V in a graph, the

volume of S is vol(S)
def
=
∑

i∈S di, in which case the volume of the graph G is vol(G)
def
=

vol(V) = 2m. In the following, AG ∈ RV×V will denote the adjacency matrix of G, while
DG ∈ RV×V will denote the diagonal degree matrix of G, i.e., DG(i, i) = di =

∑
{i,j}∈E wij ,

the weighted degree of vertex i. The Laplacian of G is defined as LG
def
= DG − AG. (This

is also called the combinatorial Laplacian, in which case the normalized Laplacian of G is

LG def
= D

−1/2
G LGD

−1/2
G .)

3695

Hansen and Mahoney

The Laplacian is the symmetric matrix having quadratic form xTLGx =
∑

ij∈E wij(xi−
xj)

2, for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector
1 ∈ RV is the eigenvector corresponding to the smallest eigenvalue 0. The generalized
eigenvalues of LGx = λiDGx are 0 = λ1 < λ2 ≤ · · · ≤ λN . We will use v2 to denote
smallest non-trivial eigenvector, i.e., the eigenvector corresponding to λ2; v3 to denote the
next eigenvector; and so on. We will overload notation to use λ2(A) to denote the smallest
non-zero generalized eigenvalue of A with respect to DG. Finally, for a matrix A, let A+

denote its (uniquely defined) Moore-Penrose pseudoinverse. For two vectors x, y ∈ Rn,
and the degree matrix DG for a graph G, we define the degree-weighted inner product as

xTDGy
def
=
∑n

i=1 xiyidi. In particular, if a vector x has unit norm, then xTDGx = 1. Given
a subset of vertices S ⊆ V , we denote by 1S the indicator vector of S in RV and by 1 the
vector in RV having all entries set equal to 1.

3. Optimization Approach to Semi-Supervised Eigenvectors

In this section, we provide our main technical results: a motivation and statement of our
optimization ansatz; our main algorithm for computing semi-supervised eigenvectors; and
an analysis that our algorithm computes solutions of our optimization ansatz.

3.1 Motivation for the Program

Recall the optimization perspective on how one computes the leading nontrivial global
eigenvectors of the normalized Laplacian LG or, equivalently, of the leading nontrivial gen-
eralized eigenvectors of LG. The first nontrivial eigenvector v2 is the solution to the problem
GlobalSpectral that is presented on the left of Figure 1. Equivalently, although Glob-
alSpectral is a non-convex optimization problem, strong duality holds for it and it’s
solution may be computed as v2, the leading nontrivial generalized eigenvector of LG. (In
this case, the value of the objective is λ2, and global spectral partitioning involves then doing
a “sweep cut” over this vector and appealing to Cheeger’s inequality.) The next eigenvector
v3 is the solution to GlobalSpectral, augmented with the constraint that xTDGv2 = 0;
and in general the tth generalized eigenvector of LG is the solution to GlobalSpectral,
augmented with the constraints that xTDGvi = 0, for i ∈ {2, . . . , t − 1}. Clearly, this set
of constraints and the constraint xTDG1 = 0 can be written as xTDGX = 0, where 0 is a
(t− 1)-dimensional all-zeros vector, and where X is an n× (t− 1) orthogonal matrix whose
ith column equals vi (where v1 = 1, the all-ones vector, is the first column of X).

Also presented in Figure 1 is LocalSpectral, which includes a constraint that the
solution be well-correlated with an input seed set. This LocalSpectral optimization
problem was introduced in Mahoney et al. (2012), where it was shown that the solution to
LocalSpectral may be interpreted as a locally-biased version of the second eigenvector of
the Laplacian.1 In particular, although LocalSpectral is not convex, it’s solution can be
computed efficiently as the solution to a set of linear equations that generalize the popular

1. In Mahoney et al. (2012), the locality constraint was actually a quadratic constraint, and thus a somewhat
involved analysis was required. In retrospect, given the form of the solution, and in light of the discussion
below, it is clear that the quadratic part was not “real,” and thus we present this simpler form of
LocalSpectral here. This should make the connections with our Generalized LocalSpectral
objective more immediate.

3696

Semi-supervised Eigenvectors

GlobalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDG1 = 0

xTDGs ≥
√
κ

Generalized
LocalSpectral

minimize xTLGx

s.t xTDGx = 1

xTDGX = 0

xTDGs ≥
√
κ

Figure 1: Left: The usual GlobalSpectral partitioning optimization problem; the vector
achieving the optimal solution is v2, the leading nontrivial generalized eigenvector
of LG with respect to DG. Middle: The LocalSpectral optimization problem,
which was originally introduced in Mahoney et al. (2012); for κ = 0, this co-
incides with the usual global spectral objective, while for κ > 0, this produces
solutions that are biased toward the seed vector s. Right: The Generalized Lo-
calSpectral optimization problem we introduce that includes both the locality
constraint and a more general orthogonality constraint. Our main algorithm for
computing semi-supervised eigenvectors will iteratively compute the solution to
Generalized LocalSpectral for a sequence of X matrices. In all three cases,
the optimization variable is x ∈ Rn.

Personalized PageRank procedure; in addition, by performing a sweep cut and appealing
to a variant of Cheeger’s inequality, this locally-biased eigenvector can be used to perform
locally-biased spectral graph partitioning (Mahoney et al., 2012).

3.2 Our Main Algorithm

We will formulate the problem of computing semi-supervised vectors in terms of a primitive
optimization problem of independent interest. Consider the Generalized LocalSpec-
tral optimization problem, as shown in Figure 1. For this problem, we are given a graph
G = (V,E), with associated Laplacian matrix LG and diagonal degree matrix DG; an in-
dicator vector s of a small “seed set” of nodes; a correlation parameter κ ∈ [0, 1]; and an
n × ν constraint matrix X that may be assumed to be an orthogonal matrix. We will as-
sume (without loss of generality) that s is properly normalized and orthogonalized so that
sTDGs = 1 and sTDG1 = 0. While s can be a general unit vector orthogonal to 1, it may
be helpful to think of s as the indicator vector of one or more vertices in V , corresponding
to the target region of the graph.

In words, the problem Generalized LocalSpectral asks us to find a vector x ∈ Rn
that minimizes the variance xTLGx subject to several constraints: that x is unit length;
that x is orthogonal to the span of X; and that x is

√
κ-well-correlated with the input seed

set vector s. In our application of Generalized LocalSpectral to the computation
of semi-supervised eigenvectors, we will iteratively compute the solution to Generalized
LocalSpectral, updating X to contain the already-computed semi-supervised eigenvec-
tors. That is, to compute the first semi-supervised eigenvector, we let X = 1, i.e., the

3697

Hansen and Mahoney

n-dimensional all-ones vector, which is the trivial eigenvector LG, in which case X is an
n × 1 matrix; and to compute each subsequent semi-supervised eigenvector, we let the
columns of X consist of 1 and the other semi-supervised eigenvectors found in each of the
previous iterations.

To show that Generalized LocalSpectral is efficiently-solvable, note that it is a
quadratic program with only one quadratic constraint and one linear equality constraint.2

In order to remove the equality constraint, which will simplify the problem, let’s change
variables by defining the n× (n− ν) matrix F as

{x : XTDGx = 0} = {x : x = Fx̂}.

That is, F is a span for the null space of XT ; and we will take F to be an orthogonal
matrix. In particular, this implies that F TF is an (n− ν)× (n− ν) Identity and FF T is an
n × n Projection. Then, with respect to the x̂ variable, Generalized LocalSpectral
becomes

minimize
y

x̂TF TLGFy

subject to x̂TF TDGFx̂ = 1,

x̂TF TDGs ≥
√
κ.

(1)

In terms of the variable x, the solution to this optimization problem is of the form

x∗ = cF
(
F T (LG − γDG)F

)+
F TDGs

= c
(
FF T (LG − γDG)FF T

)+
DGs, (2)

for a normalization constant c ∈ (0,∞) and for some γ that depends on
√
κ. The second

line follows from the first since F is an n × (n − ν) orthogonal matrix. This so-called
“S-procedure” is described in greater detail in Chapter 5 and Appendix B of (Boyd and
Vandenberghe, 2004). The significance of this is that, although it is a non-convex opti-
mization problem, the Generalized LocalSpectral problem can be solved by solving
a linear equation, in the form given in Eqn. (2).

Returning to our problem of computing semi-supervised eigenvectors, recall that, in
addition to the input for the Generalized LocalSpectral problem, we need to specify
a positive integer k that indicates the number of vectors to be computed. In the simplest
case, we would assume that we would like the correlation to be “evenly distributed” across
all k vectors, in which case we will require that each vector is

√
κ/k-well-correlated with the

input seed set vector s; but this assumption can easily be relaxed, and thus Algorithm 1 is
formulated more generally as taking a k-dimensional vector κ = [κ1, . . . , κk]

T of correlation
coefficients as input.

To compute the first semi-supervised eigenvector, we will let X = 1, the all-ones vector,
in which case the first nontrivial semi-supervised eigenvector is

x∗1 = c (LG − γ1DG)+DGs, (3)

2. Alternatively, note that it is an example of an constrained eigenvalue problem (Gander et al., 1989).
We thank the numerous individuals who pointed this out to us subsequent to our dissemination of the
original version of this paper.

3698

Semi-supervised Eigenvectors

where γ1 is chosen to saturate the part of the correlation constraint along the first direction.
(Note that the projections FF T from Eqn. 2 are not present in Eqn. 3 since by design
sTDG1 = 0.) That is, to find the correct setting of γ1, it suffices to perform a binary
search over the possible values of γ1 in the interval (−vol(G), λ2(G)) until the correlation
constraint is satisfied, that is, until (sTDGx1)

2 is sufficiently close to κ1.
To compute subsequent semi-supervised eigenvectors, i.e., at steps t = 2, . . . , k if one

ultimately wants a total of k semi-supervised eigenvectors, then one lets X be the n × t
matrix of the form

X = [1, x∗1, . . . , x
∗
t−1], (4)

where x∗1, . . . , x
∗
t−1 are successive semi-supervised eigenvectors; and the projection matrix

FF T is of the form
FF T = I −DGX(XTDGDGX)−1XTDG,

due to the the degree-weighted inner norm.
Then, by Eqn. (2), the tth semi-supervised eigenvector takes the form

x∗t = c
(
FF T (LG − γtDG)FF T

)+
DGs.

Algorithm 1 Main algorithm to compute semi-supervised eigenvectors
Require: LG, DG, s, κ = [κ1, . . . , κk]

T , ε such that sTDG1 = 0, sTDGs = 1, κT 1 ≤ 1
1: X = [1]
2: for t = 1 to k do
3: FFT ← I −DGX(XTDGDGX)−1XTDG
4: > ← λ2 where FFTLGFF

T v2 = λ2FFTDGFF
T v2

5: ⊥ ← −vol(G)
6: repeat
7: γt ← (⊥+>)/2 (Binary search over γt)
8: xt ← (FFT (LG − γtDG)FFT)+FFTDGs
9: Normalize xt such that xTt DGxt = 1
10: if (xTt DGs)

2 > κt then ⊥ ← γt else > ← γt end if
11: until ‖(xTt DGs)2 − κt‖ ≤ ε or ‖(⊥+>)/2− γt‖ ≤ ε
12: Augment X with x∗t by letting X = [X,x∗t].
13: end for

In more detail, Algorithm 1 presents pseudo-code for our main algorithm for computing
semi-supervised eigenvectors. The algorithm takes as input a graph G = (V,E), a seed
set s (which could be a general vector s ∈ Rn, subject for simplicity to the normalization
constraints sTDG1 = 0 and sTDGs = 1, but which is most easily thought of as an indicator
vector for the local “seed set” of nodes), a number k of vectors we want to compute, and
a vector of locality parameters (κ1, . . . , κk), where κi ∈ [0, 1] and

∑k
i=1 κi = 1 (where, in

the simplest case, one could choose κi = κ/k, ∀i, for some κ ∈ [0, 1]). Several things should
be noted about our implementation of our main algorithm. First, as we will discuss in
more detail below, we compute the projection matrix FF T only implicitly. Second, a näıve
approach to Eqn. (2) does not immediately lead to an efficient solution, since DGs will not
be in the span of (FF T (LG − γDG)FF T), thus leading to a large residual. By changing
variables so that x = FF T y, the solution becomes

x∗t ∝ FF T (FF T (LG − γtDG)FF T)+FF TDGs.

3699

Hansen and Mahoney

Since FF T is a projection matrix, this expression is equivalent to

x∗t ∝
(
FF T (LG − γtDG)FF T

)+
FF TDGs. (5)

Third, regarding the solution xi, we exploit that FF T (LG−γiDG)FF T is an SPSD matrix,
and we apply the conjugate gradient method, rather than computing the explicit pseudoin-
verse. That is, in the implementation we never explicitly represent the dense matrix FF T ,
but instead we treat it as an operator and we simply evaluate the result of applying a vector
to it on either side. Fourth, we use that λ2 can never decrease (here we refer to λ2 as the
smallest non-zero eigenvalue of the modified matrix), so we only recalculate the upper bound
for the binary search when an iteration saturates without satisfying ‖(xTt DGs)

2 − κt‖ ≤ ε.
Estimating the bound is critical for the semi-supervised eigenvectors to be able to inter-
polate all the way to the global eigenvectors of the graph, so in Section 3.4 we return to
a discussion on efficient strategies for computing the leading nontrivial eigenvalue of LG
projected down onto the space perpendicular to the previously computed solutions.

From this discussion, it should be clear that Algorithm 1 solves the semi-supervised
eigenvector problem by solving in an iterative manner optimization problems of the form
of Generalized LocalSpectral; and that the running time of Algorithm 1 boils down
to solving a sequence of linear equations.

3.3 Discussion of Our Main Algorithm

There is a natural “regularization” interpretation underlying our construction of semi-
supervised eigenvectors. To see this, recall that the first step of our algorithm can be
computed as the solution of a set of linear equations

x∗ = c (LG − γDG)+DGs, (6)

for some normalization constant c and some γ that can be determined by a binary search
over (−vol(G), λ2(G)); and that subsequent steps compute the analogous quantity, sub-
ject to additional constraints that the solution be orthogonal to the previously-computed
vectors. The quantity (LG − γDG)+ can be interpreted as a “regularized” version of the
pseudoinverse of L, where γ ∈ (−∞, λ2(G)) serves as the regularization parameter. This
interpretation has recently been made precise: Mahoney and Orecchia (2011) show that
running a PageRank computation—as well as running other diffusion-based procedures—
exactly optimizes a regularized version of the GlobalSpectral (or LocalSpectral,
depending on the input seed vector) problem; and (Perry and Mahoney, 2011) provide a
precise statistical framework justifying this.

The usual interpretation of PageRank involves “random walkers” who uniformly (or
non-uniformly, in the case of Personalized PageRank) “teleport” with a probability α ∈
(0, 1). As described in (Mahoney et al., 2012), choosing α ∈ (0, 1) corresponds to choosing
γ ∈ (−∞, 0). By rearranging Eqn. (6) as

x∗ = c ((DG −AG)− γDG)+DGs

=
c

1− γ

(
DG −

1

1− γAG
)+

DGs

=
c

1− γD
−1
G

(
I − 1

1− γAGD
−1
G

)+

DGs,

3700

Semi-supervised Eigenvectors

we recognize AGD
−1
G as the standard random walk matrix, and it becomes immediate that

the solution based on random walkers,

x∗ =
c

1− γD
−1
G

(
I +

∞∑
i=1

(
1

1− γD
−1
G AG

)i)
DGs,

is divergent for γ > 0. Since γ = λ2(G) corresponds to no regularization and γ → −∞
corresponds to heavy regularization, viewing this problem in terms of solving a linear equa-
tion is formally more powerful than viewing it in terms of random walkers. That is, while
all possible values of the regularization parameter—and in particular the (positive) value
λ2(·)—are achievable algorithmically by solving a linear equation, only values in (−∞, 0)
are achievable by running a PageRank diffusion. In particular, if the optimal value of γ
that saturates the κ-dependent locality constraint is negative, then running the PageRank
diffusion could find it; otherwise, the “best” one could do will still not saturate the locality
constraint, in which case some of the intended correlation is “unused.”

An important technical and practical point has to do with the precise manner in which
the ith vector is well-correlated with the seed set s. In our formulation, this is captured
by a locality parameter γi that is chosen (via a binary search) to “saturate” the correlation
condition, i.e., so that the ith vector is κ/k-well-correlated with the input seed set. As a
general rule, successive γis need to be chosen that successive vectors are less well-localized
around the input seed set. (Alternatively, depending on the application, one could choose
this parameter so that successive γis are equal; but this will involve “sacrificing” some
amount of the κ/k correlation, which will lead to the last or last few eigenvectors being
very poorly-correlated with the input seed set. These tradeoffs will be described in more
detail below.) Informally, if s is a seed set consisting of a small number of nodes that
are “nearby” each other, then to maintain a given amount of correlation, we must “view”
the graph over larger and larger size scales as we compute more and more semi-supervised
eigenvectors. More formally, we need to let the value of the regularization parameter γ at
the ith round, we call it γi, vary for each i ∈ {1, . . . , k}. That is, γi is not pre-specified, but
it is chosen via a binary search over the region (−vol(G), λ2(·)), where λ2(·) is the leading
nontrivial eigenvalue of LG projected down onto the space perpendicular to the previously-
computed vectors (which is in general larger than λ2(G)). In this sense, our semi-supervised
eigenvectors are both “locally-biased”, in a manner that depends on the input seed vector
and correlation parameter, and “regularized”, in a manner that depends on the local graph
structure.

To illustrate the previous discussion, Figure 2 considers the two-dimensional grid. In
each subfigure, the blue curve shows the correlation with a single seed node as a function
of γ for the leading semi-supervised eigenvector, and the black dot illustrates the value of
γ for three different values of the locality parameter κ. This relationship between κ and γ
is in general non-convex, but it is monotonic for γ ∈ (−vol(G), λ2(G)). The red curve in
each subfigure shows the decay for the second semi-supervised eigenvector. Recall that it
is perpendicular to the first semi-supervised eigenvector, that the decay is monotonic for
γ ∈ (−vol(G), λ′2(G)), and that λ2 < λ′2 ≤ λ3. In Figure 2(a), the first semi-supervised
eigenvector is not “too” close to λ2, and so λ′2 (i.e., the second eigenvalue of the next
semi-supervised eigenvector) increases just slightly. In Figure 2(b), we consider a locality

3701

Hansen and Mahoney

κ

γ
−0.05 0 0.05 0.1
0

0.1

0.2

0.3

0.4

0.5

Grid graph

λ2
λ′
2

1st solution

PageRank

3 λ′
3 ≈ λ3

(a) (xT1 DGs)
2 = 0.3

γ
−0.05 0 0.05 0.1

λ′
2

(b) (xT1 DGs)
2 = 0.2

γ
−0.05 0 0.05 0.1

λ′
2 ≈ λ3

(c) (xT1 DGs)
2 = 0.1

Figure 2: Interplay between the γ parameter and the correlation κ that a semi-supervised
eigenvector has with a seed s on a two-dimensional grid. In Figure 2(a)-2(c),
we vary the locality parameter for the leading semi-supervised eigenvector, which
in each case leads to a value of γ which is marked by the black dot on the blue
curve. This allows us to illustrate the influence on the relationship between γ and
κ on the next semi-supervised eigenvector. Figure 2(a) also highlights the range
(γ < 0) in which Personalized PageRank can be used for computing solutions to
semi-supervised eigenvectors.

parameter that leads to a value of γ that is closer to λ2, thereby increasing the value of
λ′2. Finally, in Figure 2(c), the locality parameter is such that the leading semi-supervised
eigenvector almost coincides with v2; this results in λ′2 ≈ λ3, as required if we were to
compute the global eigenvectors.

3.4 Bounding the Binary Search

For the following derivations it is more convenient to consider the normalized graph Lapla-
cian, in which case we define the first solution as

y1 = c (LG − γ1I)+D
1/2
G s, (7)

where x∗1 = D
−1/2
G y1. This approach is convenient since the projection operator with null

space defined by previous solutions can be expressed as FF T = I − Y Y T , assuming that
Y TY = 1. That is, Y is of the form

Y = [D
1/2
G , y∗1, . . . , y

∗
t−1],

where y∗i are successive solutions to Eqn. (7). In the following the type of projection opera-
tor will be implicit from the context, i.e., when working with the combinatorial graph Lapla-
cian FF T = I −DGX(XTDGDGX)−1XTDG, whereas for the normalized graph Laplacian
FF T = I − Y Y T .

For the normalized graph Laplacian LG, the eigenvalues of LGv = λv equal the eigenval-
ues of the generalized eigenvalue problem LGv = λDGv. The binary search employed in Al-
gorithm 1 uses a monotonic relationship between the γ ∈ (−vol(G), λ2(·)) parameter and the

3702

Semi-supervised Eigenvectors

correlation with the seed xTDGs, that can be deduced from the KKT-conditions (Mahoney
et al., 2012). Note, that if the upper bound for the binary search > = λ2(FF

TLGFF T)
is not determined with sufficient precision, the search will (if we underestimate >) fail to
satisfy the constraint, or (if we overestimate >) fail to converge because the monotonic
relationship no longer hold.

By Lemma 1 in Appendix A it follows that λ2(FF
TLGFF T) = λ2(LG + ωY Y T) when

ω →∞. Since the latter term is a sum of two PSD matrices, the value of the upper bound
can only increase as stated by Lemma 2 in Appendix A. This is an important property,
because if we do not recalculate >, the previous value is guaranteed to be an underestimate,
meaning that the objective will remain convex. Thus, it may be more efficient to first
recompute > when the binary search fails to satisfy (xTDGs)

2 = κ, meaning that > must
be recomputed to increase the search range.

We compute the value for the upper bound of the binary search by transforming the
problem in such a way that we can determine the greatest eigenvalue of a new system (fast
and robust), and from that, deduce the new value of > = λ2(FF

TLGFF T). We do so by
expanding the expression as

FF TLGFF T = FF T
(
I −D−1/2G AGD

−1/2
G

)
FF T

= FF T − FF TD−1/2G AGD
−1/2
G FF T

= I −
(
FF TD

−1/2
G AGD

−1/2
G FF T + Y Y T

)
.

Since all columns of Y will be eigenvectors of FF TLGFF T with zero eigenvalue, these

will all be eigenvectors of FF TD
−1/2
G AGD

−1/2
G FF T + Y Y T with eigenvalue 1. Hence, the

largest algebraic eigenvalue λLA(FF TD
−1/2
G AGD

−1/2
G FF T) can be used to compute the

upper bound for the binary search as

> = λ2(FF
TLGFF T) = 1− λLA(FF TD

−1/2
G AGD

−1/2
G FF T). (8)

The reason for not considering the largest magnitude eigenvalue, is that AG may be in-
definite. Finally, with respect to our implementation we emphasize that FF T is used as a
projection operator, and not represented explicitly.

4. Extension of Our Main Algorithm And Implementation Details

In this section, we present two variants of our main algorithm that are more well-suited for
very large-scale applications; the first uses a column-based low-rank approximation, and the
second uses random walk ideas. In Section 4.1, we describe how to use the Nyström method,
which constructs a low-rank approximation to the kernel matrix by sampling columns, to
construct a general solution for semi-supervised eigenvectors, where the low-rankness is
exploited for very efficient computation. Then, in Section 4.2, we describe a “Push-peeling
heuristic,” based on the efficient Push algorithm by Andersen et al. (2006). The basic idea is
that if, rather than iteratively computing locally-biased semi-supervised eigenvectors using
the procedure described in Algorithm 1, we instead compute solutions to LocalSpectral
and then construct the semi-supervised eigenvectors by “projecting away” pieces of these
solutions, then we can take advantage of local random walks that have improved algorithmic
properties.

3703

Hansen and Mahoney

4.1 A Nyström-Based Low-rank Approach

Here we describe the use of the recently-popular Nyström method to speed up the compu-
tation of semi-supervised eigenvectors. We do so by considering how a low-rank decompo-
sition can be exploited to yield solutions to the Generalized LocalSpectral objective
in Figure 1, where the running time largely depends on a matrix-vector product. These
methods are most appropriate when the kernel matrix is reasonably well-approximated by
a low-rank matrix (Drineas and Mahoney, 2005; Gittens and Mahoney, 2012; Williams and
Seeger, 2000).

Given some low-rank approximation LG ≈ I − V ΛV T , we apply the Woodbury matrix
identity, and we derive an explicit solution for the leading semi-supervised eigenvector

y1 ≈ c
(
(1− γ)I − V ΛV T

)+
D

1/2
G s

≈ c
(

1

1− γ I +
1

(1− γ)2
V

(
Λ−1 − 1

1− γ I
)−1

V T

)
D

1/2
G s

≈ c

1− γ
(
I + V ΣV T

)
D

1/2
G s,

where Σii = 1
1−γ
λi
−1 . In order to compute efficiently the subsequent semi-supervised eigen-

vectors we must accommodate for the projection operator FF T = I − Y Y T , while yet
exploiting the explicit closed-form inverse (LG − γI)+ ≈ 1

1−γ
(
I + V ΣV T

)
. However, the

projection operator complicates the expression, since the previous solution can be spanned
by multiple global eigenvectors, so leveraging from the low-rank decomposition is more
difficult for the inverse (FF T (LG − γI)FF T)+.

Conveniently, we can decouple the projection operator by treating the orthogonality
constraint using a Lagrangian approach, such that the solution can be expressed as

yt = c
(
LG − γI + ωY Y T

)+
D

1/2
G s,

where ω ≥ 0 denotes the associated Lagrange multiplier, and where the sign is deduced
from the KKT conditions. Applying the Woodbury matrix identity is now straightforward(

Pγ + ωY Y T
)+

= Pγ
+ − ωPγ+Y

(
I + ωY TPγ

+Y
)+
Y TPγ

+,

where for notational convenience we have introduced Pγ = LG − γI. By decomposing
Y TPγ

+Y with an eigendecomposition USUT the equation simplifies as follows(
Pγ + ωY Y T

)+
= Pγ

+ − ωPγ+Y
(
I + ωUSUT

)+
Y TPγ

+

= Pγ
+ − Pγ+Y UΩUTY TPγ

+,

where Ωii = 1
1
ω
+Sii

. Note how this result gives a well defined way of controlling the amount

of “orthogonality”, and by Lemma 1 in Appendix A, we get exact orthogonality in the limit
of ω →∞, in which case the expression simplifies to(

Pγ + ωY Y T
)+

= Pγ
+ − Pγ+Y (Y TPγ

+Y)+Y TPγ
+.

3704

Semi-supervised Eigenvectors

Using the explicit expression for Pγ
+, the solution now only involves matrix-vector products

and the inverse of a small matrix

yt = c
(
Pγ

+ − Pγ+Y (Y TPγ
+Y)+Y TPγ

+
)
D

1/2
G s. (9)

To conclude this section, let us also consider how we can optimize the efficiency of the cal-
culation of λ2(FF

TLGFF T) used for bounding the binary search in Algorithm 1. According

to Eqn. (8) the bound can be calculated efficiently as> = 1−λLA(FF TD
−1/2
G AGD

−1/2
G FF T).

However, by substituting with D
−1/2
G AGD

−1/2
G ≈ V ΛV T , we can exploit low-rankness since

> = 1− λLA(FF TV ΛV TFF T) = 1− λLA(Λ1/2V TFF TV Λ1/2),

where the latter is a much smaller system.

4.2 A Push-Peeling Heuristic

Here we present a variant of our main algorithm that exploits the connections between
diffusion-based procedures and eigenvectors, allowing semi-supervised eigenvectors to be
efficiently computed for large networks. This is most well-known for the leading nontrivial
eigenvectors of the graph Laplacian (Chung, 1997); but recent work has exploited these
connections in the context of performing locally-biased spectral graph partitioning (Spiel-
man and Teng, 2004; Andersen et al., 2006; Mahoney et al., 2012). In particular, we can
compute the locally-biased vector using the first step of Algorithm 1, or alternatively we
can compute it using a locally-biased random walk of the form used in (Spielman and Teng,
2004; Andersen et al., 2006). Here we present a heuristic that works by peeling off com-
ponents from a solution to the PageRank problem, and by exploiting the regularization
interpretation of γ, we can from these components obtain the subsequent semi-supervised
eigenvectors.

Specifically, we focus on the Push algorithm by Andersen et al. (2006). This algorithm
approximates the solution to PageRank very efficiently, by exploiting the local modifications
that occur when the seed is highly concentrated. This makes our algorithm very scalable
and applicable for large-scale data, since only the local neighborhood near the seed set will
be touched by the algorithm. In comparison, by solving the linear system of equations we
explicitly touch all nodes in the graph, even though most spectral rankings will be below
the computational precision (Boldi and Vigna, 2011).

We adapt a similar notation as in Andersen et al. (2006) and start by defining the usual
PageRank vector pr(α, spr) as the unique solution of the linear system

pr(α, spr) = αspr + (1− α)AGD
−1
G pr(α, spr), (10)

where α is the teleportation parameter, and spr is the sparse starting vector. For comparison,
the push algorithm by Andersen et al. (2006) computes an approximate PageRank vector
prε(α

′, spr) for a slightly different system

prε(α
′, spr) = α′spr + (1− α′)Wprε(α

′, spr),

where W = 1
2(I + AGD

−1
G) and not the usual random walk matrix AD−1G as used in Eqn.

(10). However, these equations are only superficially different, and equivalent up to a change

3705

Hansen and Mahoney

of the respective teleportation parameter. Thus, it is straightforward to verify that these
teleportation parameters and the γ parameter of Eqn. (6) are related as

α =
2α′

1 + α′
⇔ α′ =

α

2− α ⇔ α′ =
γ

γ − 2
,

and that the leading semi-supervised eigenvector for γ ∈ (−∞, 0) can be approximated as

x∗1 ≈
c

−γD
−1
G prε

(
γ

γ − 2
, DGs

)
.

To generalize subsequent semi-supervised eigenvectors to this diffusion based framework,
we need to accommodate for the projection operator such that subsequent solutions can
be expressed in terms of graph diffusions. By requiring distinct values of γ for all semi-
supervised eigenvectors, we may use the solution for the leading semi-supervised eigenvector
and then systematically “peel off” components, thereby obtaining the solution of one of the
consecutive semi-supervised eigenvectors. By Lemma 5, in Appendix A the general solution
in Eqn. (5) can be approximated by

x∗t ≈ c
(
I −XXTDG

)
(LG − γtDG)+DGs, (11)

under the assumption that all γk for 1 < k ≤ t are sufficiently apart. If we think about
γk as being distinct eigenvalues of the generalized eigenvalue problem LGxk = γkDGxk,
then it is clear that Eqn. (11), correctly computes the sequence of generalized eigenvectors.
This is explained by the fact that (LG − γtDG)+DGs can be interpreted as the first step
of the Rayleigh quotient iteration, where γt is the estimate of the eigenvalue, and DGs is
the estimate of the eigenvector. Given that the estimate of the eigenvalue is right, this
algorithm will in the initial step compute the corresponding eigenvector, and the operator(
I −XXTDG

)
will be superfluous, as the global eigenvectors are already orthogonal in the

degree-weighted norm. To quantify the failure modes of the approximation, let us consider
what happens when γ2 starts to approach γ1. What constitutes the second solution for a
particular value of γ2 is the perpendicular component with respect to the projection onto
the solution given by γ1. As γ2 approaches γ1, this perpendicular part diminishes and the
solution becomes ill-posed. Fortunately, we can easily detect such issues during the binary
search in Algorithm 1, and in general the approximation has turned out to work very well
in practice as our experimental results in Section 5 show.

In terms of the approximate PageRank vector prε(α
′, spr) , the general approximate

solution takes the following form

x∗t ≈ c
(
I −XXTDG

)
D−1G prε

(
γt

γt − 2
, DGs

)
. (12)

As already stated in Section 3.3, the impact of using a diffusion based procedure is that
we cannot interpolate all the way to the global eigenvectors, and that the main challenge
is that the solutions do not become too localized. The ε parameter of the Push algorithm
controls the threshold for propagating mass away from the seed set and into the adjacent
nodes in the graph. If the threshold is too high, the solution will be very localized and
make it difficult to find more than a few semi-supervised eigenvectors, as characterized by

3706

Semi-supervised Eigenvectors

Lemma 3 in Appendix A, because the leading ones will then span the entire space of the
seed set. As the choice of ε is important for the applicability of our algorithm, we will in
Section 5 investigate the influence of this parameter on large data graphs.

To conclude this section, we consider an important implementation detail that have
been omitted so far. In the work of Mahoney et al. (2012) the seed vector was defined
to be perpendicular to the all-ones vector, and for the sake of consistency we have chosen
to define it in the same way. The impact of projecting the seed set to a space that is
perpendicular to the all-ones vector is that the resulting seed vector is no longer sparse,
making the use of the Push algorithm in Eqn. (12) inefficient. The seed vector can, however,

without loss of generality, be defined as s ∝ D
−1/2
G

(
I − v0vT0

)
s0 where s0 is the sparse

seed, and v0 ∝ diag
(
D

1/2
G

)
is the leading eigenvector of the normalized graph Laplacian

(corresponding to the all-ones vector of the combinatorial graph Laplacian). If we substitute
with this expression for the seed in Eqn. (12), it follows by plain algebra (see Appendix B)
that

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
. (13)

Now the Push algorithm is only defined on the sparse seed set making the the expression
very scalable. Finally, the Push algorithm maintains a queue of high residual nodes that are
yet to be processed. The order in which nodes are processed influences the overall running
time, and in Boldi and Vigna (2011) preliminary experiments showed that a FIFO queue
resulted in the best performance for large values of γ, as compared to a priority queue
that scales logarithmically. For this reason we have chosen to use a FIFO queue in our
implementation.

5. Empirical Results

In this section, we provide a detailed empirical evaluation of the method of semi-supervised
eigenvectors and how it can be used for locally-biased machine learning. Our goal is two-
fold: first, to illustrate how the “knobs” of the method work; and second, to illustrate the
usefulness of the method in real applications. To do this, we consider several classes of data.

• Toy data. In Section 5.1, we consider one-dimensional examples of the popular
“small world” model (Watts and Strogatz, 1998). This is a parameterized family of
models that interpolates between low-dimensional grids and random graphs; and, as
such, it allows us to illustrate the behavior of the method and its various parameters
in a controlled setting.

• Congressional voting data. In Section 5.2, we consider roll call voting data from
the United States Congress that are based on (Poole and Rosenthal, 1991). This is an
example of realistic data set that has relatively-simple global structure but nontrivial
local structure that varies with time (Cucuringu and Mahoney, 2011); and thus it
allows us to illustrate the method in a realistic but relatively-clean setting.

• Handwritten image data. In Section 5.3, we consider data from the MNIST digit
data set (Lecun and Cortes). These data have been widely-studied in machine learn-
ing and related areas and they have substantial “local heterogeneity.” Thus, these

3707

Hansen and Mahoney

data allow us to illustrate how the method may be used to perform locally-biased
versions of common machine learning tasks such as smoothing, clustering, and kernel
construction.

• Large-scale network data. In Section 5.4, we consider large-scale network data,
and demonstrate significant performance improvements of the push-peeling heuris-
tic compared to solving the same equations using a conjugate gradient solver. These
improvements are demonstrated on data sets from the DIMACS implementation chal-
lenge, as well as on large web-crawls with more then 3 billion non-zeros in the adja-
cency matrix (Paolo et al., 2004, 2011; Paolo and Sebastiano, 2004).

5.1 Small-World Data

The first data sets we consider are networks constructed from the so-called small-world
model. This model can be used to demonstrate how semi-supervised eigenvectors focus on
specific target regions of a large data graph to capture slowest modes of local variation; and
it can also be used to illustrate how the “knobs” of the method work, e.g., how κ and γ
interplay, in a practical setting. In Figure 3, we plot the usual global eigenvectors, as well as
locally-biased semi-supervised eigenvectors, around illustrations of non-rewired and rewired
realizations of the small-world graph, i.e., for different values of the rewiring probability p
and for different values of the locality parameter κ.

To start, in Figure 3(a) that we show a graph with no randomly-rewired edges (p = 0)
and a parameter κ such that the global eigenvectors are obtained. This yields a symmetric
graph with eigenvectors corresponding to orthogonal sinusoids, i.e., the first two capture
the slowest mode of variation and correspond to a sine and cosine with equal random phase-
shift (up to a rotational ambiguity). In Figure 3(b), random edges have been added with
probability p = 0.01 and the parameter κ is still chosen such that the global eigenvectors—
now of the rewired graph—are obtained. Note the many small kinks in the eigenvectors
at the location of the randomly added edges. Note also the slow mode of variation in
the interval on the top left; a normalized-cut based on the leading global eigenvector would
extract this region, since the remainder of the ring is more well-connected due to the random
rewiring.

In Figure 3(c), we see the same graph realization as in Figure 3(b), except that the semi-
supervised eigenvectors have a seed node at the top of the circle, i.e., at “12 o-clock,” and
the locality parameter κt = 0.005, which corresponds to moderately well-localized eigenvec-
tors. As with the global eigenvectors, the locally-biased semi-supervised eigenvectors are
of successively-increasing (but still localized) variation. Note also that the neighborhood
around “11 o-clock” contains more mass, e.g., when compared with the same parts of the
circle in Figure 3(b) or with other parts of the circle in Figure 3(c), even though it is not
very near the seed node in the original graph geometry. The reason for this is that this
region is well-connected with the seed via a randomly added edge, and thus it is close in
the modified graph topology. Above this visualization, we also show the value of γt that
saturates κt, i.e., γt is the Lagrange multiplier that defines the effective locality κt. Not
shown is that if we kept reducing κt, then γt would tend towards λt+1, and the respective
semi-supervised eigenvectors would tend towards the global eigenvectors that are illustrated
in Figure 3(b). Finally, in Figure 3(d), the desired locality is increased to κ = 0.05 (which

3708

Semi-supervised Eigenvectors

p = 0,
λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011λ2 = 0.000011, λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011λ3 = 0.000011,
λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046λ4 = 0.000046, λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046λ5 = 0.000046.

(a) Global eigenvectors (p = 0)

p = 0.01,
λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149λ2 = 0.000149, λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274λ3 = 0.000274,
λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315λ4 = 0.000315, λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489λ5 = 0.000489.

(b) Global eigenvectors (p = 0.01)

p = 0.01, κ = 0.005,
γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047γ1 = 0.000047, γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052γ2 = 0.000052,

γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000γ3 = −0.000000, γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000γ4 = −0.000000.

(c) Semi-supervised eigenvectors

p = 0.01, κ = 0.05,
γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367γ1 = −0.004367, γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778γ2 = −0.001778,
γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665γ3 = −0.001665, γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822γ4 = −0.000822.

(d) Semi-supervised eigenvectors

Figure 3: Illustration of small-world graphs with rewiring probability of p = 0 or p = 0.01
and with different values of the κ parameter. For each subfigure, the data consist
of 3600 nodes, each connected to it’s 8 nearest-neighbors. In the center of each
subfigure, we show the nodes (blue) and edges (black and light gray are the local
edges, and blue are the randomly-rewired edges). We wrap around the plots
(black x-axis and gray background), visualizing the 4 smallest semi-supervised
eigenvectors. Eigenvectors are color coded as blueblueblueblueblueblueblueblueblueblueblueblueblueblueblueblueblue, redredredredredredredredredredredredredredredredred, yellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellowyellow, and greengreengreengreengreengreengreengreengreengreengreengreengreengreengreengreengreen, starting
with the one having the smallest eigenvalue.

3709

Hansen and Mahoney

has the effect of decreasing the value of γt), making the semi-supervised eigenvectors more
localized in the neighborhood of the seed. It should be clear that, in addition to being
determined by the locality parameter, we can think of γ as a regularizer biasing the global
eigenvectors towards the region near the seed set. That is, variation in eigenvectors that are
near the initial seed (in the modified graph topology) are most important, while variation
that is far away from the initial seed matters much less.

5.2 Congressional Voting Data

The next data set we consider is a network constructed from a time series of roll call voting
patterns from the United States Congress that are based on Poole and Rosenthal (1991).
This is a particularly well-structured social network for which there is a great deal of meta-
information, and it has been studied recently with graph-based methods (Mucha et al., 2010;
Waugh et al., 2009; Cucuringu and Mahoney, 2011). Thus, it permits a good illustration
of the method of semi-supervised eigenvectors in a real application (Poole, Fall 2005). This
data set is known to have nontrivial time-varying structure at different time steps, and we
will illustrate how the method of semi-supervised eigenvectors can perform locally-biased
classification with a traditional kernel-based algorithm.

In more detail, we evaluate our method by considering the known Congress data-set
containing the roll call voting patterns in the U.S Senate across time. We considered Senates
in the 70th Congress through the 110th Congress, thus covering the years 1927 to 2008.
During this time, the U.S went from 48 to 50 states, hence the number of senators in each
of these 41 Congresses was roughly the same. We constructed an N ×N adjacency matrix,
with N = 4196 (41 Congresses each with ≈ 100 Senators) where Aij ∈ [0, 1] represents
the extent of voting agreement between legislators i and j, and where identical senators in
adjacent Congresses are connected with an inter-Congress connection strength. We then
considered the Laplacian matrix of this graph, constructed in the usual way (Cucuringu
and Mahoney, 2011).

95th Congress Congress adjacency matrix99th Congress 103th Congress 107th Congress

A

B 20000 4000

Figure 4: Shows the Congress adjacency matrix, along with four of the individual Con-
gresses. Nodes are scaled according to their degree, blue nodes correspond to
Democrats, red to Republicans, and green to Independents.

3710

Semi-supervised Eigenvectors

Figure 4 visualizes the adjacency matrix, along with four of the individual Congresses,
color coded by party. This illustrates that these data should be viewed—informally—as
a structure (depending on the specific voting patterns of each Congress) evolving along a
one-dimensional temporal axis, confirming the results of Cucuringu and Mahoney (2011).
Note that the latter two Congresses are significantly better described by a simple two-
clustering than the former two Congresses, and an examination of the clustering properties
of each of the 40 Congresses reveals significant variation in the local structure of individual
Congresses, in a manner broadly consistent with Poole (Fall 2005) and Poole and Rosenthal
(1991). In particular, the more recent Congresses are significantly more polarized.

v2

0 2000 4000

x1, κ= 0.001

0 2000 4000

x1, κ= 0.1

0 2000 4000

x1, κ= 0.1

0 2000 4000

v3

0 2000 4000

x2, κ= 0.001

0 2000 4000

x2, κ= 0.1

0 2000 4000

x2, κ= 0.1

0 2000 4000

v4

0 2000 4000

x3, κ= 0.001

0 2000 4000

x3, κ= 0.1

0 2000 4000

x3, κ= 0.1

0 2000 4000

Figure 5: First column: The leading three nontrivial global eigenvectors. Second column:
The leading three semi-supervised eigenvectors seeded (circled node) in an artic-
ulation point between the two parties in the 99th Congress (see Figure 4), for
correlation κ = 0.001. Third column: Same seed as previous column, but for
a correlation of κ = 0.1. Notice the localization on the third semi-supervised
eigenvector. Fourth column: Same correlation as the previous column, but for
another seed node well within the cluster of Republicans. Notice the localization
on all three semi-supervised eigenvectors.

The first vertical column of Figure 5 illustrates the first three global eigenvectors of
the full data set, illustrating fluctuations that are sinusoidal and consistent with the one-

3711

Hansen and Mahoney

dimensional temporal scaffolding. Also shown in the first column are the values of that
eigenfunction for the members of the 99th Congress, illustrating that there is not a good
separation based on party affiliations. The next three vertical columns of Figure 5 illus-
trate various localized eigenvectors computed by starting with a seed node in the 99th

Congress. For the second column, we visualize the semi-supervised eigenvectors for a very
low correlation (κ = 0.001), which corresponds to only a weak localization—in this case one
sees eigenvectors that look very similar to the global eigenvectors, and the elements of the
eigenvector on that Congress do not reveal partitions based on the party cuts.

The third and fourth column of Figure 5 illustrate the semi-supervised eigenvectors
for a much higher correlation (κ = 0.1), meaning a much stronger amount of locality. In
particular, the third column starts with the seed node marked A in Figure 4, which is at
the articulation point between the two parties, while the fourth column starts with the seed
node marked B, which is located well within the cluster of Republicans. In both cases the
eigenvectors are much more strongly localized on the 99th Congress near the seed node,
and in both cases one observes the partition into two parties based on the elements of the
localized eigenvectors. Note, however, that when the initial seed is at the articulation point
between two parties then the situation is much noisier: in this case, this “partitionability”
is seen only on the third semi-supervised eigenvector, while when the initial seed is well
within one party then this is seen on all three eigenvectors. Intuitively, when the seed set
is strongly within a good cluster, then that cluster tends to be found with semi-supervised
eigenvectors (and we will observe this again below). This is consistent with the diffusion
interpretation of eigenvectors. This is also consistent with Cucuringu and Mahoney (2011),
who observed that the properties of eigenvector localization depended on the local structure
of the data around the seed node, as well as the larger scale structure around that local
cluster.

N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Global eigenvectors

70 80 90 100 110
0

1

4

1

2

3

4

1

N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Global eigenvectors, single Congress

70 80 90 100 110
0

1

4

1

2

3

4

1

N
th Congress

C
la

s
s
ifi

c
a
t
io

n
a
c
c
u
r
a
c
y

Semi-supervised eigenvectors

70 80 90 100 110
0

1

4

1

2

3

4

1

Figure 6: Classification accuracy measured in individual Congresses. For each Congress
we perform 5-fold cross validation based on ≈ 80 samples and leave out the
remaining 20 samples to estimate an unbiased test error. Error bars are obtained
by resampling and they correspond to 1 standard deviation. For each approach
we consider features based on the 1st (blue), 2nd (green), and 3rd (red) smallest
eigenvector(s), excluding the all-one vector. We also plot the probability of the
most probable class as a baseline measure (black) as some Congresses are very
imbalanced.

3712

Semi-supervised Eigenvectors

To illustrate how these structural properties manifest themselves in a more traditional
machine learning task, we also consider the classification task of discriminating between
Democrats and Republicans in single Congresses, i.e., we measure to what extent we can ex-
tract local discriminative features. To do so, we apply L2-regularized L2-loss support vector
classification with a linear kernel, where features are extracted using the global eigenvec-
tors of the entire data set, global eigenvectors from a single Congress (best case measure),
and our semi-supervised eigenvectors. Figure 6 illustrates the classification accuracy for
1, 2, and 3 eigenvectors. As reported by Cucuringu and Mahoney (2011), locations that
exhibit discriminative information are best found on low-order eigenvectors of this data,
explaining why the classifier based global eigenvectors performs poorly. In the classifier
based on global eigenvectors in the single Congress we exploit a priori knowledge to extract
the relevant data, that in a usual situation would be impossible. Hence, this is simply to
define a baseline point of reference for the best case classification accuracy. The classifier
based on semi-supervised eigenvectors is seeded using a few training samples and performs
in-between the two other approaches. Compared to our point of reference, Congresses in the
range 88 to 96 do worse with the semi-supervised eigenvectors; whereas for Congresses after
100 the semi-supervised approach almost performs on par, even for a single single eigenvec-
tor. This is consistent with the visualization in Figure 4 illustrating that earlier Congresses
are less cleanly separable, as well as with empirical evidence indicating heterogeneity due to
Southern Democrats in earlier Congresses and the recent increase in party polarization in
more recent Congresses, as described in Poole (Fall 2005) and Poole and Rosenthal (1991).

5.3 MNIST Digit Data

The next data set we consider is the well-studied MNIST data set containing 60, 000 training
digits and 10, 000 test digits ranging from 0 to 9; and, with these data, we demonstrate the
use of semi-supervised eigenvectors as a feature extraction preprocessing step in a traditional
machine learning setting. We construct the full 70, 000× 70, 000 k-NN graph, with k = 10
and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2), where σ2i is the Euclidean

distance of the ith node to it’s nearest neighbor; and from this we define the graph Laplacian
in the usual way. We then evaluate the semi-supervised eigenvectors in a transductive
learning setting by disregarding the majority of labels in the entire training data. We
use a few samples from each class to seed our semi-supervised eigenvectors as well as a
few others to train a downstream classification algorithm. For this evaluation, we use the
Spectral Graph Transducer (SGT) of Joachims (2003); and we choose to use it for two
main reasons. First, the transductive classifier is inherently designed to work on a subset of
global eigenvectors of the graph Laplacian, making it ideal for validating that the localized
basis constructed by the semi-supervised eigenvectors can be more informative when we are
solely interested in the “local heterogeneity” near a seed set. Second, using the SGT based
on global eigenvectors is a good point of comparison, because we are only interested in the
effect of our subspace representation. (If we used one type of classifier in the local setting,
and another in the global, the classification accuracy that we measure would obviously be
confounded.) As in Joachims (2003), we normalize the spectrum of both global and semi-
supervised eigenvectors by replacing the eigenvalues with some monotonically increasing
function. We use λi = i2

k2
, i.e., focusing on ranking among smallest cuts; see (Chapelle

3713

Hansen and Mahoney

et al., 2003). Furthermore, we fix the regularization parameter of the SGT to c = 3200,
and for simplicity we fix γ = 0 for all semi-supervised eigenvectors, implicitly defining the
effective κ = [κ1, . . . , κk]

T . Clearly, other correlation distributions κ and other values of
γ parameter may yield subspaces with even better discriminative properties (which is an
issue to which we will return in Section 5.3.2 in greater detail).

#Semi-supervised eigenvectors for SGT #Global eigenvectors for SGT
Labeled points 1 2 4 6 8 10 1 5 10 15 20 25

1 : 1 0.39 0.39 0.38 0.38 0.38 0.36 0.50 0.48 0.36 0.27 0.27 0.19
1 : 10 0.30 0.31 0.25 0.23 0.19 0.15 0.49 0.36 0.09 0.08 0.06 0.06
5 : 50 0.12 0.15 0.09 0.08 0.07 0.06 0.49 0.09 0.08 0.07 0.05 0.04

10 : 100 0.09 0.10 0.07 0.06 0.05 0.05 0.49 0.08 0.07 0.06 0.04 0.04
50 : 500 0.03 0.03 0.03 0.03 0.03 0.03 0.49 0.10 0.07 0.06 0.04 0.04

Table 1: Classification error for discriminating between 4s and 9s for the SGT based on,
respectively, semi-supervised eigenvectors and global eigenvectors. The first col-
umn from the left encodes the configuration, e.g., 1:10 interprets as 1 seed and
10 training samples from each class (total of 22 samples—for the global approach
these are all used for training). When the seed is well-determined and the number
of training samples moderate (50:500), then a single semi-supervised eigenvector
is sufficient; whereas for less data, we benefit from using multiple semi-supervised
eigenvectors. All experiments have been repeated 10 times.

5.3.1 Discriminating Between Pairs of Digits

Here, we consider the task of discriminating between two digits; and, in order to address
a particularly challenging task, we work with 4s and 9s. (This is particularly challenging
since these two classes tend to overlap more than other combinations since, e.g., a closed
4 can resemble a 9 more than an open 4.) Hence, we expect that the class separation
axis will not be evident in the leading global eigenvector, but instead it will be “buried”
further down the spectrum; and we hope to find a “locally-biased class separation axis”
with locally-biased semi-supervised eigenvectors. Thus, this example will illustrate how
semi-supervised eigenvectors can represent relevant heterogeneities in a local subspace of
low dimensionality. See Table 1, which summarizes our classification results based on,
respectively, semi-supervised eigenvectors and global eigenvectors, when we use the SGT.
See also Figure 7 and Figure 8, which illustrate two realizations for the 1:10 configuration.
In these two figures, the training samples are fixed; and, to demonstrate the influence of the
seed, we have varied the seed nodes. In particular, in Figure 7 the seed nodes s+ and s− are
located well-within the respective classes; while in Figure 8, they are located much closer
to the boundary between the two classes. As intuitively expected, when the seed nodes fall
well within the classes to be differentiated, the classification is much better than when the
seed nodes are located closer to the boundary between the two classes. See the caption in
these figures for further details.

5.3.2 Effect of Choosing The κ Correlation/Locality Parameter

Here, we discuss the effect of the choice of the correlation/locality parameter κ at different
steps of Algorithm 1, e.g., how {κt}kt=1 should be distributed among the k components.

3714

Semi-supervised Eigenvectors

s+ = { }
←−
−−
−−
−−
−−

T
es
t
d
a
ta
−−
−−
−−
−−
−→

l+ = { }
s− = { }

l− = { }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.08 0.07 0.06 0.05 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Classification error
Unexplained correlation

1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5

2 vs. 3 2 vs. 4 2 vs. 5

3 vs. 4 3 vs. 5

4 vs. 5

#Semi-supervised eigenvectors

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7: Discrimination between 4s and 9s. Left: Shows a subset of the classification re-
sults for the SGT based on 5 semi-supervised eigenvectors seeded in s+ and s−,
and trained using samples l+ and l−. Misclassifications are marked with black
frames. Right: Visualizes all test data spanned by the first 5 semi-supervised
eigenvectors, by plotting each component as a function of the others. Red (blue)
points correspond to 4 (9), whereas green points correspond to remaining digits.
As the seed nodes are good representatives, we note that the eigenvectors provide
a good class separation. We also plot the error as a function of local dimen-
sionality, as well as the unexplained correlation, i.e., initial components explain
the majority of the correlation with the seed (effect of γ = 0). The particular
realization based on the leading 5 semi-supervised eigenvectors yields an error of
≈ 0.03 (dashed circle).

For example, will the downstream classifier benefit the most from a uniform distribution
or will there exist some other nonuniform distribution that is better? Although this will
be highly problem specific, one might hope that in realistic applications the classification
performance is not too sensitive to the actual choice of distribution. To investigate the
effect in our example of discriminating between 4s and 9s, we consider 3 semi-supervised
eigenvectors for various κ distributions. Our results are summarized in Figure 9.

Figures 9(a), 9(b), and 9(c) show, for the global eigenvectors and for semi-supervised
eigenvectors, where the κ vector has been chosen to be very nonuniform and very uniform,
the top three (global or semi-supervised) eigenvectors plotted against each other as well as
the ROC curve for the SGT classifier discriminating between 4s and 9s; and Figure 9(d)
shows the test error as the κ vector is varied over the unit simplex. In more detail, red
(respectively, blue) corresponds to 4s (respectively, 9s), and green points are the remaining
digits; and, for Figures 9(b) and 9(c), the semi-supervised eigenvectors are seeded using 50
samples from each target class (4s vs. 9s) and having a non-uniform distribution of κ, as
specified. As seen from the visualization of the semi-supervised eigenvectors in Figures 9(b)
and 9(c), the classes are much better separated than by using the global eigenvectors, which
are shown in Figure 9(a). For example, this is supported by the Area Under the Curve

3715

Hansen and Mahoney

s+ = { }
←−
−−
−−
−−
−−

T
es
t
d
a
ta
−−
−−
−−
−−
−→

l+ = { }
s− = { }

l− = { }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.48

0.31 0.30 0.30 0.30 0.29 0.27
0.24

0.20
0.15

0.10
0.04 0.04 0.04 0.04

Classification error
Unexplained correlation

1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5

2 vs. 3 2 vs. 4 2 vs. 5

3 vs. 4 3 vs. 5

4 vs. 5

#Semi-supervised eigenvectors

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 8: Discrimination between 4s and 9s. See the general description in Figure 7. Here
we illustrate an instance where the s+ shares many similarities with s−, i.e.,
s+ is on the boundary of the two classes. This particular realization achieves a
classification error of ≈ 0.30 (dashed circle). In this constellation we first discover
localization on low order semi-supervised eigenvectors (≈ 12 eigenvectors), which
is comparable to the error based on global eigenvectors (see Table 1), i.e., further
down the spectrum we recover from the bad seed and pickup the relevant mode
of variation.

(AUC) and Error Rate (ERR), being the point on the Receiver Operating Characteristic
(ROC) curve that corresponds to having an equal probability of miss-classifying a positive
or negative sample, which is a fair estimate as the classes in the MNIST data set is fairly
balanced. For Figure 9(c), where we use a uniform distribution of κ, the classifier performs
slightly better than in Figure 9(b), which uses the non-uniform κ distribution (but both
semi-supervised approaches are significantly better than the using the global eigenvectors).
For Figure 9(d), we see the test error on the simplex defined by κ. To obtain this plot we
sampled 500 different κ distributions according to a uniform Dirichlet distribution. With
the exception of one extreme very nonuniform corner, the classification accuracy is not too
sensitive to the choice of κ distribution. Thus, if we think of the semi-supervised eigenvec-
tors as a locally-regularized version of the global eigenvectors, the desired discriminative
properties are not too sensitive to the details of the locally-biased regularization.

5.3.3 Effect of Approximately Computing Semi-Supervised Eigenvectors

Here, we discuss of the push-peeling procedure from Section 4 that is designed to compute
efficient approximations to the semi-supervised eigenvectors by using local random walks to
compute an approximation to personalized PageRank vectors. Consider Figure 10, which
shows results for two values of the ε parameter (i.e., the parameter in the push algorithm
that implicitly determines how many nodes will be touched). Using the same graph as
defined previously, we compute 3 semi-supervised eigenvectors seeding using 50 samples
from each class (4s vs. 9s). However, in this case, we fix the regularization parameter

3716

Semi-supervised Eigenvectors

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 83.10, ERR: 22.81 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Global eigenvectors

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 98.75, ERR: 5.60 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) Semi-supervised, with κ(1) = (1
10
, 1
10
, 8
10
)

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 99.40, ERR: 3.97 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(c) Semi-supervised, with κ(2) = (1
3
, 1
3
, 1
3
) (d) Test error on the κ simplex

Figure 9: The effect of varying the correlation/locality parameter κ on the classification
accuracy. 9(a), 9(b), 9(c) show the top three (global or semi-supervised) eigen-
vectors plotted against each other as well as the ROC curve for the SGT classifier
discriminating between 4s and 9s; and 9(d) shows the test error as the κ vector
is varied over the unit simplex.

vector as γ = [−0.0150,−0.0093,−vol(G)]; and note that choosing these specific values
correspond to the solutions visualized in Figure 9(c) when the equations are solved exactly.
Figure 10(a) shows the results for ε = 0.001. This approximation gives us sparse solutions,

3717

Hansen and Mahoney

and the histogram in the second row illustrates the digits that are assigned a nonzero value
in the respective semi-supervised eigenvector. In particular, note that most of the mass
of the eigenvector is distributed on 4s and 9s; but, for this choose of ε, only few digits of
interest (≈ 2.8243%, meaning, in particular, that not all of the 4s and 9s) have been touched
by the algorithm. This results in the lack of a clean separation between the two classes as
one sweeps along the leading semi-supervised eigenvector, as illustrated in the first row; the
very uniform correlation distribution κ = [0.8789, 0.0118, 0.1093]; and the high classification
error, as shown in the ROC curve in the bottom panel.

Consider, next, Figure 10(b), which shows the results for ε = 0.0001. In this case,
the algorithm reproduces the solution by touching only ≈ 25.177% of the nodes in the
graph, i.e., basically all of the 4s and 9s and only a few other digits. This leads to a much
cleaner separation between the two classes as one sweeps over the leading semi-supervised
eigenvector; a much more uniform distribution over κ; and a classification accuracy that is
much better and is similar to what we saw in Figure 9(c). This example illustrates that
this push-peeling approximation provides a principled manner to generalize the concept of
semi-supervised eigenvectors to large-scale settings, where it will be infeasible to touch all
nodes of the graph.

5.3.4 Effect of Low-Rank Nyström Approximation

Here we discuss the use of the low-rank Nyström approximation which is commonly used in
large-scale kernel-based machine learning. The memory requirements for representing the
explicit kernel matrix, that we here take to be our graph, scales with O(N2), whereas invert-
ing the matrix scales with O(N3), which, in large-scale settings, is infeasible. The Nyström
technique subsamples the data set to approximate the kernel matrix, and the memory re-
quirements scales with O(nN) and runs in O(n2N), where n is size of the subsample. For
completeness we include the derivation of the Nyström approximation for the normalized
graph Laplacian in Appendix C.

In the beginning of Section 5.3 we constructed the 70, 000× 70, 000 k-nearest neighbor
graph, with k = 10 and with edge weights given by wij = exp(− 4

σ2
i
‖xi − xj‖2). Such a sparse

construction reduces the effect of “hubs”, as well as being fairly insensitive to the choice of
kernel parameter, as the 10 nearest neighbors are likely to be very close in the Euclidean
norm. Because the Nyström method will approximate the dense kernel matrix, the choice
of kernel parameter is more important, so in the following we will consider the interplay
between this parameter, as well as the rank parameter n of the Nyström approximation.
Moreover, to allow us to compare a rank-n Nyström approximation with the full rank-N
kernel matrix, we choose to subsample the data set for all of the following experiments, due
to the O(N2) memory requirements. Thus, to provide a baseline, Figure 11 shows results
based on a k-nearest neighbor graph constructed from 5% and 10% percent of the training
data, where in both cases we used 10% for the test data. For both cases, when compared
with the results of Figure 9(c), the classification quality is degraded, and so we emphasize
that the goal of the following results are not to outperform the results reported in Figure
9(c), but to be comparable with this baseline.

In light of this baseline, Figure 12 provides a thorough analysis for the choices of σ2i
that we used. Figures 12(a) and 12(b) show the classification error when using the global

3718

Semi-supervised Eigenvectors

Test data sorted along x1.

0 500 1000 1500

−0.01

0

0.01

0.02

0.03

0.04

0.05

Touched ≈ 2.824% of nodes.

Digit

N
on

ze
ro

en
tr
ie
s

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

κ = [0.8789, 0.0118, 0.1093]

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 60.08, ERR: 45.62 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Locality parameter ε = 0.001

Test data sorted along x1.

0 500 1000 1500

−0.01

0

0.01

0.02

0.03

0.04

Touched ≈ 25.177% of nodes.

Digit

N
on

ze
ro

en
tr
ie
s

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

κ = [0.3333, 0.3334, 0.3333]

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 99.39, ERR: 3.47 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) Locality parameter ε = 0.0001

Figure 10: Illustration of the push-peeling procedure to compute 3 semi-supervised eigen-
vectors for γ = [−0.0150,−0.0093,−vol(G)]. 10(a) shows results for ε = 0.001;
and 10(b) shows results for ε = 0.0001. First row shows the entries in the leading
semi-supervised eigenvector corresponding to test points, color-coded and sorted
according to magnitude; second row shows the distribution of digits touched in
the full graph when executing the push algorithm; and bottom panels provide
visualizations similar to the ones in Figure 9 (and shown above these is the
correlation vector κ obtained for the fixed choice of γ.

3719

Hansen and Mahoney

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 78.84, ERR: 30.00 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) 5% of MNIST

ROC rand.

ROCtr
u
e
p
os
it
ve

ra
te

(r
ec
al
l)

true negative rate

AUC: 92.78, ERR: 17.02 2 vs. 3

1 vs. 31 vs. 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) 10% of MNIST

Figure 11: Example of the impact of subsampling the data set down to 5% (in 11(a)) and
10% (in 11(b)) of the original size. Remaining parameters are the same as in
Figure 9(c), which shows the result to which these two plots should be compared.

eigenvectors, for various rank approximations based on the Nyström method as well as the
exact method (corresponding to rank = n). Interestingly, these two plots are very dissimilar
in terms of their behavior as a function of the number of components. In particular, the
plot in Figure 12(b) shows that the low rank approximations for a given set of components
outperform the high rank approximations, and the exact representation fails to reduce the
error beyond 0.4 for any of the considered set of components. This may seem counterintu-
itive, but the reason for this type of behavior is that the relevant global eigenvectors, for
σ2i = 200, are located far from the end of the spectrum (if we visualized more components
for rank = n the classification error would eventually drop). For the same reason, the
low rank approximations improve more rapidly than the high rank approximations, as the
latter approximate the lower part of the spectrum better, and these turn out to have poor
discriminative properties. In contrast, the results shown in Figure 12(a) provide good class
separation in the lower part of the spectrum, resulting in the high rank approximations to
reduce the error most rapidly.

Finally, Figures 12(c) and 12(d) show the classification error for the SGT trained us-
ing the semi-supervised eigenvectors. (Note that the scale of the x-axis is much smaller
in these subfigures.) For both kernel widths in Figures 12(c) and 12(d), the ordering of
the approximations are similar, i.e., the semi-supervised eigenvectors constructed from the
rank = n approximation performs the best. Moreover, the gap between the rank = 400 and
rank = n is largest for σ2i = 200, again suggesting this approximation is of insufficient rank
to model the relevant local heterogeneities deep down in the spectrum; whereas for σ2i = 80,

3720

Semi-supervised Eigenvectors

the rank = 400 the approximation comes very close to the exact representation, suggesting
that local structures are well modeled near the end of the spectrum.

To summarize these results, the method of semi-supervised eigenvectors successfully
extracts relevant local structures to perform locally-biased classification, even when they
are located far from the end of the spectrum. Moreover, in both cases we considered, the
classification error is reduced significantly by using only a few locally-biased components.
This contrasts with the global eigenvectors, where for σ2i = 80 at least 20 eigenvectors are
needed in order to obtain similar performance; and for σ2i = 200, the classification error
remains high even for 200 eigenvectors in case of rank = n.

5.4 Large-scale Network Data

The final data sets we consider are from a collection of large sparse networks (Paolo et al.,
2004, 2011; Paolo and Sebastiano, 2004). On these data, we demonstrate that the Push-
peeling Heuristic introduced in Section 4.2 is attractive due to an improved running time, as
compared to solving a system of linear equations. Moreover, we also show that the ability to
obtain multiple semi-supervised eigenvectors depends on the degree heterogeneity near the
seed. Finally, we empirically evaluate the influence of the ε parameter of the Push algorithm
that implicitly determines how many nodes the algorithm will touch. This parameter can
be interpreted as a regularization parameter (different from γ parameter), and setting it
too large means we fail to distribute mass in the network, so that a few semi-supervised
eigenvectors will consume all of the correlation. In particular, this behavior was investigated
on the MNIST digits in Section 5.3.3. The basic properties for the networks considered in
this section are shown in Table 2.

We start by considering the moderately sized networks from the DIMACS implementa-
tion challenge, as these networks are commonly used for the purpose of measuring realistic
algorithm performance. Figure 13 shows analysis results for 6 networks from this collection,
where we evaluate the performance and feasibility of the Push algorithm for approximating
the leading semi-supervised eigenvector.

Network name Number of nodes Number of edges
DIMACS10/de2010 24,115 116,056
DIMACS10/ct2010 67,578 336,352
DIMACS10/il2010 451,554 2,164,464
DIMACS10/smallworld 100,000 999,996
DIMACS10/333SP 3,712,815 22,217,266
DIMACS10/AS365 3,799,275 22,736,152
LAW/arabic-2005 22,744,080 1,107,806,146
LAW/indochina-2004 7,414,866 301,969,638
LAW/it-2004 41,291,594 2,054,949,894
LAW/sk-2005 50,636,154 3,620,126,660
LAW/uk-2002 18,520,486 523,574,516
LAW/uk-2005 39,459,925 1,566,054,250

Table 2: Summary of the networks considered in this section. Some of these networks are
directed and have been symmetrized for the purpose of this analysis, i.e., the
number edges in this table refer to the number of edges in the undirected graph.

3721

Hansen and Mahoney

global

rank=400

rank=200

rank=100

rank=50
C
la
ss
ifi
ca
ti
on

er
ro
r

Components
50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Global eigenvectors, σ2
i = 80

C
la
ss
ifi
ca
ti
on

er
ro
r

Components
50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Global eigenvectors, σ2
i = 200

C
la
ss
ifi
ca
ti
on

er
ro
r

Components
2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Semi-supervised eigenvectors, σ2
i = 80

C
la
ss
ifi
ca
ti
on

er
ro
r

Components
2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

0.6

(d) Semi-supervised eigenvectors, σ2
i = 200

Figure 12: We consider 10% of the MNIST training and test data and investigate the clas-
sification accuracy of a downstream SGT classifier for various approximations of
the dense similarity matrix. 12(a) and 12(b): Classification error for the SGT
evaluated directly on global eigenvectors, based on various Nyström approxima-
tions and the two choices of the kernel width parameter (respectively, σ2i = 80
and σ2i = 200). 12(c) and 12(d): Classification error we have used the Nyström
approximations as basis for computing semi-supervised eigenvectors that are
then used in the downstream SGT classifier. All plots show the mean over 30
repetitions.

As stated in Section 3.3, diffusion based procedures such as the Push algorithm can
be used to solve our objective for γ < 0. The impact of the reduced search range is that
such procedures may not be able to produce a uniform correlation distribution for a set of
semi-supervised eigenvectors. Hence, the leading solution(s) will instead pickup too much
correlation, because sufficient mass cannot to diffuse away from the seed set. However, the
effect of a non-uniform correlation distribution was analyzed on the MNIST data in Section
5.3, where we found that the performance of a downstream classifier is fairly robust to such

3722

Semi-supervised Eigenvectors

non-uniformities, as seen by the simplex in Figure 9. Consequently, we emphasize that in a
large-scale setting such side effects of diffusion based procedures is offset by the advantage of
a greatly improved time complexity as compared to solving the system of linear equations,
that implicitly touch every node.

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/de2010 - NNZ=116056

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(a)

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/ct2010 - NNZ=336352

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(b)

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/il2010 - NNZ=2164464

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(c)

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/smallworld - NNZ=999996

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(d)

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/333SP - NNZ=22217266

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(e)

Degree distribution

ǫ=1e-4

ǫ=1e-3

ǫ=1e-2

α - Low degree

S
p
ee
d
u
p

α - High degree

C
or
re
la
ti
on

w
it
h
se
ed

DIMACS10/AS365 - NNZ=22736152

0 0.5 10 0.5 1
0

1

2

3

4

5

0.4

0.6

0.8

1

(f)

Figure 13: For each network the first row depicts how the correlation decays as α tends
towards 0, whereas the bottom row shows the speedup relative to the standard
approach using conjugate gradient with a tolerance of 1e-6, that is the default
approach in our software distribution. Besides the three considered values of ε
the correlation plots also illustrate the decay based on conjugate gradient (black
curve), however this may be difficult to see, as the Push algorithm for ε = 1e-4
coincides with that solution. Finally, seeds based on a high degree and low
degree node are presented in respectively the first and last column, and the
degree distribution for the network is visualized in a minor overlapping plot.

For each of the 6 analyzed networks in Figure 13, we run two experiments considering
different seeds, using respectively a high degree and low degree single seed node. Figure
13(a)-13(c) considers census block networks characterized by heavy-tailed degree distribu-
tions, whereas Figure 13(d)-13(f) considers more densely connected synthetic networks. For

3723

Hansen and Mahoney

each of these 6 networks the speedup is measured by comparing with a standard conjugate
gradient implementation using a tolerance of 1e-6, and we stress that this tolerance cannot
be directly compared with ε in the Push algorithm. Moreover, we test three different set-
tings of the ε parameter, and we emphasize that for ε = 1e-4, the Push algorithm produces
a similar result as the conjugate gradient algorithm. In Figure 13 this can be seen by the
red curve (ε = 1e-4) in the correlation decay plots (see the figure caption) being on top of
the black curve (conjugate gradient).

Common for Figure 13(a)-13(c) are that low degree seed nodes yield very localized
solutions for the entire range of α, opposed to the high degree nodes that all succeed in
gradually reducing the correlation when α is reduced. Also, the choice of ε is obviously
very important, i.e., choosing it too large results in a solution that correlates too much with
the seed, whereas choosing it too small means that we will be touching more nodes than
necessary, resulting in a performance penalty. In general the networks analyzed in Figure
13(a)-13(c) are too small to yield significant performance improvements over the conjugate
gradient algorithm, and the Push algorithm is only competitive for large values of α.

For the network in Figure 13(d), we see similar performance characteristics as the net-
works analyzed in Figure 13(a)-13(c) due to its small size. However, the two final networks
analyzed in Figure 13(e)-13(f) share similar characteristics in terms of the degree distribu-
tion, but due to a much larger size they show significant performance improvements over the
conjugate gradient algorithm. Interestingly, the Push algorithm instantiated with ε = 1e-4
yields a greater speedup in some settings, which may be explained by faster convergence,
caused by a reduced threshold for distributing mass. Hence, the running time of the Push
algorithm may not always decrease monotonically as ε increases.

In general it seems that seeding in a sparsely connected region of a network results in
a solution having a large correlation with the seed for most values of α. This is obviously
a limiting factor if we are interested in using the peeling procedure to find multiple semi-
supervised eigenvectors in that particular region. However, for large networks and more
densely connected regions the benefit of the Push algorithm is immediate.

Finally, we scale up to demonstrate that we can adapt the notion of semi-supervised
eigenvectors to large data sets, and we do so by analyzing 6 large web-crawl networks. These
networks are large enough that touching all nodes is infeasible, i.e., conjugate gradient is
not a feasible option, so in Figure 14 we resort to absolute timings. For the analysis results
shown in Figure 14, we are solely interested in giving the reader some intuition about the
running time in a large-scale setting, as well as an idea on how the parameters interplay.
Hence, we only consider experiments where we seed in a high degree node, as these are
likely yield the worst running times, but also succeed in reducing the correlation the most.
This will make the peeling procedure described in Section 4.2 applicable, allowing us to
obtain multiple semi-supervised eigenvectors. As seen for all networks analyzed in Figure
14(a)-14(f) the solution is highly sensitive to the choice of ε, but for all networks we are able
to reduce the correlation when α tends towards 0 in case of ε = 1e-6. We emphasize that
the reason for ε being smaller for these experiments, as compared to the previous is that
the seed is normalized to have unit norm, implicitly requiring a lower ε when the network
increases in size.

For diffusion based procedures to be useful with respect to the computation of semi-
supervised eigenvectors, mass must be able “bleed” away from the seed set and into the

3724

Semi-supervised Eigenvectors

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/arabic-2005 - NNZ=1107806146

0 0.2 0.4 0.6 0.8 1

102

103

104

105

0.4

0.6

0.8

1

(a)

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/indochina-2004 - NNZ=301969638

0 0.2 0.4 0.6 0.8 1

102

103

104

105

0.4

0.6

0.8

1

(b)

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/it-2004 - NNZ=2054949894

0 0.2 0.4 0.6 0.8 1

102

103

104

105

0.4

0.6

0.8

1

(c)

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/sk-2005 - NNZ=3620126660

0 0.2 0.4 0.6 0.8 1
102

103

104

105

0.4

0.6

0.8

1

(d)

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/uk-2002 - NNZ=523574516

0 0.2 0.4 0.6 0.8 1

102

103

104

105

0.4

0.6

0.8

1

(e)

 ǫ=1e-6

ǫ=1e-5

ǫ=1e-4

R
u
n
n
in
g
ti
m
e
(s
)

C
or
re
la
ti
on

w
it
h
se
ed

α

LAW/uk-2005 - NNZ=1566054250

0 0.2 0.4 0.6 0.8 1

102

103

104

105

0.4

0.6

0.8

1

(f)

Figure 14: Visualizes results for applying the Push algorithm to 6 very large web-crawl
networks. For all networks we seed in the node with the highest degree. The top
plot in each subfigure shows the correlation decay as a function of α, whereas in
the bottom plot we resort to absolute timings as the conjugate gradient algorithm
is not feasible in this setting, as opposed to showing speedups as in Figure 13.

surrounding network. Otherwise only few semi-supervised eigenvectors can be found as the
leading solution(s) become too correlated with the seed set. For moderately sized problems
conjugate gradient performs very well, but in a large-scale setting, as considered here,
the presented approach proves very efficient, allowing us to compute approximations to
semi-supervised eigenvectors in networks consuming more than 30GB of working memory.
Obtaining an improved understanding of how the method of semi-supervised eigenvectors
can be used to perform common machine learning tasks on graphs of that size is an obvious
direction raised by our work.

3725

Hansen and Mahoney

6. Conclusion

We have introduced the concept of semi-supervised eigenvectors as local analogues of the
global eigenvectors of a graph Laplacian that have proven so useful in a wide range of ma-
chine learning and data analysis applications. These vectors are biased toward prespecified
local regions of interest in a large data graph; and we have shown that since they inherit
many of the nice properties of the usual global eigenvectors, except in a locally-biased con-
text, they can be used to perform locally-biased machine learning. The basic method is
conceptually simple and involves solving a sequence of linear equation problems; we have
also presented several extensions of the basic method that have improved scaling properties;
and we have illustrated the behavior of the method. Due to the speed, simplicity, stability,
and intuitive appeal of the method, as well as the range of applications in which local regions
of a large data set are of interest, we expect that the method of semi-supervised eigenvectors
can prove useful in a wide range of machine learning and data analysis applications.

Acknowledgments

Partial support of this work has been provided by the ARO, DARPA, and NSF.

Appendix A. Supplementary Proofs

Lemma 1 Given an SPSD matrix M and some vector x where x>x = 1, it holds that

lim
ω→∞

(
M + ωxx>

)+
=
((
I − xx>

)
M
(
I − xx>

))+
. (14)

Proof: Prior to applying the pseudo inverse, x is clearly an eigenvector with eigenvalue
λ = 0 on the right hand side, and for left hand side x is an eigenvector with eigenvalue
λ =∞. Hence, without loss of generality we can decompose M = αxx> +X⊥ΛX>⊥ , where
Λ is a diagonal matrix, such that M+ = 1

αxx
>+X⊥Λ+X>⊥ . First we consider the expansion

of the left hand side of Eqn. (14)

lim
ω→∞

(
(α+ ω)xx> +X⊥ΛX>⊥

)+
= lim

ω→∞
1

α+ ω
xx> +X⊥Λ+X>⊥ = X⊥Λ+X>⊥ .

Similar, by expanding the right hand side we get((
I − xx>

)(
αxx> +X⊥ΛX>⊥

)(
I − xx>

))+
=
(
X⊥ΛX>⊥

)+
= X⊥Λ+X>⊥ .

�

Lemma 2 For M ′ = M + ω
∑

i xix
>
i where ω ≥ 0 it holds that λk(M

′) ≥ λk(M).

Proof: All eigenvalues of the sum of rank-1 perturbations are non-negative

ω
∑
i

xix
>
i � 0⇒M ′ �M.

�

3726

Semi-supervised Eigenvectors

Lemma 3 Given an orthonormal basis, X = [x1, . . . , xn−1], i.e., X>DGX = I, and unit
length seed s>DGs = 1. Then, any unit length vector x>nDGxn = 1, perpendicular to the
subspace X>DGxn = 0, will have a correlation with the seed bounded by

0 ≤ (x>nDGs)
2 ≤ 1−

n−1∑
i=1

(x>i DGs)
2.

Proof: The proof follows directly from the Pythagorean theorem. Let X = [x1, . . . , xN] be
the orthonormal basis of RN , i.e., spanning s. Then

N∑
i=1

(x>i DGs)
2 = (s>DGs)

2 = 1.

�

Lemma 4 For the matrix Pγ = LG − γI it holds that

P+
γ − P+

γ̂ = (γ − γ̂)P+
γ̂ P

+
γ , (15)

given that neither γ nor γ̂ coincides with an eigenvalue of LG.

Proof: The proof follows directly by plain algebra. Simply substitute the SVD Pγ = V ΛγV
T ,

where Λγ is a diagonal matrix with the eigenvalues shifted by γ, into Eqn. (15)

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ V

TV Λ+
γ V

T

V Λ+
γ V

T − V Λ+
γ̂ V

T = (γ − γ̂)V Λ+
γ̂ Λ+

γ V
T

⇒ Λ+
γ − Λ+

γ̂ = (γ − γ̂)Λ+
γ̂ Λ+

γ .

The system is decoupled so it will be sufficient to consider a single eigenvalue

1

λi − γ
− 1

λi − γ̂
=

γ − γ̂
(λi − γ̂)(λi − γ)

λi − γ̂
(λi − γ̂)(λi − γ)

− λi − γ
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)

γ − γ̂
(λi − γ̂)(λi − γ)

=
γ − γ̂

(λi − γ̂)(λi − γ)
.

Also, this trivially holds for the rank deficient case, i.e., 0 = 0.
�

Lemma 5 As pointed out in Section 3.3, it is already immediate that the initial semi-
supervised eigenvector can be computed using a diffusion-based procedure, such as the Push
algorithm. However, from that discussion it remains unclear how the approach can be gen-
eralized for the consecutive k − 1 semi-supervised eigenvectors. It turns out that the kth

solution is approximated by

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs, (16)

given that (LG − γkDG)+DGs is linearly independent with respect to the previous k − 1
solutions contained in X.

3727

Hansen and Mahoney

Proof: By Eqn. (9) the solution for the second semi-supervised eigenvector can be expressed
as

y2 = c
(
Pγ2

+ − Pγ2+y1(yT1 Pγ2+y1)+yT1 Pγ2+
)
D

1/2
G s,

where (yT1 Pγ2
+y1)

+ is a constant. For notational convenience we start by substituting

b = D
1/2
G s together with the explicit solution y1 ∝ Pγ1+b

y2 = cPγ2
+b− cPγ2

+Pγ1
+bbTPγ1

+Pγ2
+b

bTPγ1
+Pγ2

+Pγ1
+b

,

and for the same reason we also introduce ργ1γ2 = b>Pγ1
+Pγ2

+b

y2 = cPγ2
+b− cργ1γ2Pγ2

+Pγ1
+b

bTPγ1
+Pγ2

+Pγ1
+b
.

We can approximate this expression by exploiting the structural result of Lemma 4, namely
that Pγ1

+ − Pγ2+ = (γ1 − γ2)Pγ2+Pγ1+

y2 ≈ cPγ2+b−
cργ1γ2(Pγ1

+ − Pγ2+)b

bTPγ1
+(Pγ1

+ − Pγ2+)b

= cPγ2
+b− cργ1γ2(Pγ1

+ − Pγ2+)b

ργ1γ1 − ργ1γ2
.

We emphasize that this approximation is exact whenever Pγ1
+ − Pγ2+ is well-conditioned,

and singular for γ1 = γ2. Then, substitute c =
ργ1γ1−ργ1γ2

ργ1γ1

y2 ≈
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b
ργ1γ1

− ργ1γ2(Pγ1
+ − Pγ2+)b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ2+b− ργ1γ2Pγ1+b+ ργ1γ2Pγ2
+b

ργ1γ1

=
ργ1γ1Pγ2

+b− ργ1γ2Pγ1+b
ργ1γ1

= Pγ2
+b− ργ1γ2Pγ1

+b

ργ1γ1
.

By resubstituting for the auxiliary variables we obtain the desired result

y2 ≈ c(I − y1yT1)(LG − γI)+D
1/2
G s,

and by applying this procedure recursively it follows that

yk ≈ c(I − Y Y T)(LG − γkI)+D
1/2
G s.

3728

Semi-supervised Eigenvectors

Finally, we can relate this result to the combinatorial graph Laplacian as follows

yk ≈ c(I −D1/2
G XXTD

1/2
G)D

1/2
G (LG − γkDG)+DGs

= c(D
1/2
G −D1/2

G XXTDG)(LG − γkDG)+DGs

= cD
1/2
G (I −XXTDG)(LG − γkDG)+DGs,

and due to the relationship xk = D
−1/2
G yk it follows that

xk ≈ c(I −XXTDG)(LG − γkDG)+DGs.

�

Appendix B. Derivation of Sparse Graph Diffusions

To allow efficient computation of semi-supervised eigenvectors by graph diffusions, we must
make the relationship with the sparse seed vector explicit. Here we specifically consider the
derivation of Eqn. (13). Given a sparse seed indicator s0, we can write the seed vector s as

s ∝ D−1/2G (I − v0vT0)s0, where v0 ∝ diag(D1/2) is the leading eigenvector of the normalized
graph Laplacian (corresponding to the all-one vector of the combinatorial graph Laplacian).
Using this explicit form of s we can rewrite the leading solution as

x1 = c(LG − γDG)+DGs

= cD
−1/2
G (LG − γI)+D

1/2
G s

= cD
−1/2
G (LG − γI)+D

1/2
G D

−1/2
G (I − v0vT0)s0

= cD
−1/2
G

(
(LG − γI)+s0 − (LG − γI)+v0v

T
0 s0
)
.

Since LG − γI simply shifts the eigenvalues of LG by −γ, the latter term simplifies to

x1 = cD
−1/2
G

(
(LG − γI)+s0 −

(
1

−γ v0v
T
0

)
v0v

T
0 s0

)
= cD

−1/2
G

(
(LG − γI)+s0 +

1

γ
v0v

T
0 s0

)
= cD

−1/2
G

(
1

−γD
−1/2
G prε

(
γ

γ − 2
, D

1/2
G s0

)
+

1

γ
v0v

T
0 s0

)
.

Finally, by exploiting the peeling result in Eqn. (16), we can use the Push algorithm to
approximate the sequence of semi-supervised eigenvectors in an extremely efficient manner

x∗t ≈ c
(
I −XXTDG

)(
D−1G prε

(
γt

γt − 2
, D

1/2
G s0

)
−D−1/2G v0v

T
0 s0

)
,

as the Push algorithm is only applied on the sparse seed set.

3729

Hansen and Mahoney

Appendix C. Nyström Approximation For The Normalized Graph
Laplacian

The vanilla procedure is as follows; we choose m samples at random from the full data set,
and for notational simplicity we reorder the samples so that these m samples are followed
by the remaining n = N −m samples, i.e., we can partition the adjacency matrix as

AG =

(
A B
BT C

)
,

where A ∈ Rm×m, B ∈ Rm×n, and C ∈ Rn×n, with N = m+ n and m� n. The Nyström
extension then approximates the huge C matrix in terms of A and B, so the resulting
approximation to weight matrix becomes

AG ≈ ÂG =

(
A B
BT BTA−1B

)
.

Hence, rather than encoding only each nodes k-nearest-neighbors into the weight matrix,
the Nyström methods provides a low-rank approximation to the entire dense weight matrix.

Since the leading eigenvectors of D
−1/2
G AGD

−1/2
G correspond to the smallest of LG, our

goal is to diagonalize D
−1/2
G AGD

−1/2
G . At the risk of washing out the local heterogeneities

the Nyström procedure approximates the largest eigenvectors of D
−1/2
G AGD

−1/2
G using the

normalized matrices Ã and B̃

Ãij =
Aij√
d̂id̂j

, i, j = 1, . . .m

B̃ij =
Bij√
d̂id̂j+m

, i = 1, . . .m, j = 1, . . . , n.

Finally, let UΛUT be the SVD of Ã + Ã−1/2B̃B̃T Ã−1/2, then the m leading eigenvectors
are approximated by

V =

(
Ã

B̃T

)
Ã−1/2UΛ−1/2,

and the normalized graph Laplacian by LG ≈ I − V ΛV T .

References

R. Andersen and K. Lang. Communities from seed sets. In WWW ’06: Proceedings of the
15th International Conference on World Wide Web, pages 223–232, 2006.

R. Andersen, F.R.K. Chung, and K. Lang. Local graph partitioning using PageRank vec-
tors. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pages 475–486, 2006.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396, 2003.

3730

Semi-supervised Eigenvectors

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
Learning, 56:209–239, 2004.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. Journal of Machine Learning Research,
7:2399–2434, 2006.

P. Boldi and S. Vigna. The push algorithm for spectral ranking. Technical report, 2011.
Preprint: arXiv:1109.4680 (2011).

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cam-
bridge, UK, 2004.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In
Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Confer-
ence, pages 585–592, 2003.

F.R.K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W. Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition in data:
Diffusion maps. Proceedings of the National Academy of Sciences of the United States of
America, 102(21):7426–7431, 2005.

M. Cucuringu and M. W. Mahoney. Localization on low-order eigenvectors of data matrices.
Technical report, 2011. Preprint: arXiv:1109.1355 (2011).

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
2005.

A. P. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformulation for
segmentation with linear grouping constraints. In Proceedings of the 11th International
Conference on Computer Vision, pages 1–8, 2007.

W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue problem. Linear
Algebra and its Applications, 114/115:815–839, 1989.

A. Gittens and M. W. Mahoney. Revisiting the Nyström method for improved large-scale
machine learning. Technical report, 2012. Preprint arXiv:1303.1849 (2012).

J. Ham, D.D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality reduction
of manifolds. In Proceedings of the 21st International Conference on Machine Learning,
pages 000–000, 2004.

T.H. Haveliwala. Topic-sensitive PageRank: A context-sensitive ranking algorithm for web
search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784–796, 2003.

3731

Hansen and Mahoney

G. Jeh and J. Widom. Scaling personalized web search. In WWW ’03: Proceedings of the
12th International Conference on World Wide Web, pages 271–279, 2003.

T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the
20th International Conference on Machine Learning, pages 290–297, 2003.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the 19th International Conference on Machine Learning, pages 315–322,
2002.

Y. Lecun and C. Cortes. The MNIST database of handwritten digits. URL http://yann.

lecun.com/exdb/mnist/. http://yann.lecun.com/exdb/mnist/.

J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties of com-
munity structure in large social and information networks. In WWW ’08: Proceedings of
the 17th International Conference on World Wide Web, pages 695–704, 2008.

M. W. Mahoney and L. Orecchia. Implementing regularization implicitly via approximate
eigenvector computation. In Proceedings of the 28th International Conference on Machine
Learning, pages 121–128, 2011.

M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral method for graphs: with
applications to improving graph partitions and exploring data graphs locally. Journal of
Machine Learning Research, 13:2339–2365, 2012.

S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2057–2064, 2011.

P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, and J.P. Onnela. Community structure
in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876–878, 2010.

A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 15: Proceedings of the 2001 Confer-
ence, 2001.

K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby. Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9):424–430, 2006.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

B. Paolo and V. Sebastiano. The WebGraph framework I: Compression techniques. In
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004), pages
595–601, Manhattan, USA, 2004. ACM Press.

B. Paolo, C. Bruno, S. Massimo, and V. Sebastiano. Ubicrawler: A scalable fully distributed
web crawler. Software: Practice & Experience, 34(8):711–726, 2004.

B. Paolo, R. Marco, S. Massimo, and V. Sebastiano. Layered label propagation: A mul-
tiresolution coordinate-free ordering for compressing social networks. In Proceedings of
the 20th International Conference on World Wide Web. ACM Press, 2011.

3732

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Semi-supervised Eigenvectors

P. O. Perry and M. W. Mahoney. Regularized Laplacian estimation and fast eigenvector
approximation. In Advances in Neural Information Processing Systems 25: Proceedings
of the 2011 Conference, 2011.

K.T. Poole. The decline and rise of party polarization in congress during the twentieth
century. Extensions: A Journal of the Carl Albert Congressional Research and Studies
Center, Fall 2005.

K.T. Poole and H. Rosenthal. Patterns of congressional voting. American Journal of
Political Science, 35:228–278, 1991.

A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430–452, 1990.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by local linear embedding.
Science, 290:2323–2326, 2000.

L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for
dimensionality reduction. In O. Chapelle, B. Schoelkopf, and A. Zien, editors, Semisu-
pervised Learning, pages 293–308. MIT Press, 2006.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transcations of
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

D.A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In STOC ’04: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, pages 81–90, 2004.

M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks.
In Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Con-
ference, pages 945–952, 2002.

A. Talwalkar and A. Rostamizadeh. Matrix coherence and the Nyström method. In Pro-
ceedings of the 26th Conference in Uncertainty in Artificial Intelligence, 2010.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

S.-H. Teng. The Laplacian paradigm: Emerging algorithms for massive graphs. In Proceed-
ings of the 7th Annual Conference on Theory and Applications of Models of Computation,
pages 2–14, 2010.

S. Vigna. Spectral ranking. Technical report, 2009. Preprint: arXiv:0912.0238 (2009).

D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Nature, 393:
440–442, 1998.

3733

Hansen and Mahoney

A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha, and M. A. Porter. Party polarization in
congress: A network science approach. Technical report, 2009. Preprint: arXiv:0907.3509
(2009).

C.K.I. Williams and M. Seeger. The effect of the input density distribution on kernel-based
classifiers. In Proceedings of the 17th International Conference on Machine Learning,
pages 1159–1166, 2000.

C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Con-
ference, pages 682–688, 2001.

S. X. Yu and J. Shi. Grouping with bias. In Advances in Neural Information Processing
Systems 14: Proceedings of the 2001 Conference, pages 1327–1334, 2002.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. In Advances in Neural Information Processing Systems 16: Proceed-
ings of the 2003 Conference, pages 321–328, 2004.

3734

	Introduction
	Locally-Biased Learning
	Semi-Supervised Eigenvectors
	Related Work
	Outline of the Paper

	Background and Notation
	Optimization Approach to Semi-Supervised Eigenvectors
	Motivation for the Program
	Our Main Algorithm
	Discussion of Our Main Algorithm
	Bounding the Binary Search

	Extension of Our Main Algorithm And Implementation Details
	A Nyström-Based Low-rank Approach
	A Push-Peeling Heuristic

	Empirical Results
	Small-World Data
	Congressional Voting Data
	MNIST Digit Data
	Discriminating Between Pairs of Digits
	Effect of Choosing The Correlation/Locality Parameter
	Effect of Approximately Computing Semi-Supervised Eigenvectors
	Effect of Low-Rank Nyström Approximation

	Large-scale Network Data

	Conclusion
	Supplementary Proofs
	Derivation of Sparse Graph Diffusions
	Nyström Approximation For The Normalized Graph Laplacian

