
Second-order Optimization for Non-convex Machine Learning:
an Empirical Study

Peng Xu ∗ Fred Roosta † Michael W. Mahoney ‡

Abstract

While first-order optimization methods such as SGD are

popular in machine learning (ML), they come with well-

known deficiencies, including relatively-slow convergence,

sensitivity to the settings of hyper-parameters such as learn-

ing rate, stagnation at high training errors, and difficulty in

escaping flat regions and saddle points. These issues are par-

ticularly acute in highly non-convex settings such as those

arising in neural networks. Motivated by this, there has

been recent interest in second-order methods that aim to al-

leviate these shortcomings by capturing curvature informa-

tion. In this paper, we report detailed empirical evaluations

of a class of Newton-type methods, namely sub-sampled

variants of trust region (TR) and adaptive regularization

with cubics (ARC) algorithms, for non-convex ML prob-

lems. In doing so, we demonstrate that these methods not

only can be computationally competitive with hand-tuned

SGD with momentum, obtaining comparable or better gen-

eralization performance, but also they are highly robust to

hyper-parameter settings. Further, we show that the man-

ner in which these Newton-type methods employ curvature

information allows them to seamlessly escape flat regions

and saddle points.

1 Introduction

The large-scale nature of many modern ML problems
poses computational challenges which have rendered
many classical optimization methods (developed for sci-
entific computing and other related areas) inefficient
or inapplicable. In this light, first-order optimization
methods, such as SGD and its variants, have been the
workhorse for ML applications due to their simplicity
and versatility. On the other hand, since they con-
sider only first-order gradient information, these meth-
ods come with well known deficiencies. These include

∗Institute for Computational and Mathematical Engineering,
Stanford University, Email: pengxu@stanford.edu
†School of Mathematics and Physics, University of Queens-

land, Brisbane, Australia, and International Computer Science
Institute, Berkeley, USA, Email: fred.roosta@uq.edu.au
‡International Computer Science Institute and Department

of Statistics, University of California at Berkeley, Email: mma-
honey@stat.berkeley.edu

relatively-slow convergence and sensitivity to hyper-
parameter settings such as learning rate. Furthermore,
without dedicated “baby-sitting” of these methods, they
can stagnate at high training loss and have difficulty in
escaping saddle points and flat regions. These deficien-
cies are particularly problematic in highly non-convex
ML problems such as those that arise in neural network
applications. By incorporating curvature information,
second-order optimization methods hold the promise to
solve these well-known deficiencies. When implemented
näıvely, however, second-order methods are clearly not
computationally competitive with first order alterna-
tives. This has unfortunately lead to the conventional
wisdom that second-order methods are inappropriate for
large-scale ML applications.

Within the scientific computing community, more
so than the ML community, it is well-known that not
only stochastic Newton-type methods in general, and
Gauss-Newton in particular, can be made scalable [19],
but more importantly, and unlike first-order methods,
they are also very resilient to a variety of adversar-
ial effects [20, 25]. Perhaps the most well known ex-
ample is their resilience to ill-conditioning. A subtle,
yet potentially more severe, example is that the suc-
cess of most first-order methods is tightly intertwined
with fine-tunning (often many) hyper-parameters, most
importantly the step size [1]. It is rare that these meth-
ods exhibit acceptable performance on first try, and it
often takes many trials and errors before one can see
reasonable results. In fact, the “true training time”,
which almost always includes the time it takes to ap-
propriately tune these parameters, can be frustratingly
long. This sort of brute force hyper-parameter tuning is
naturally computationally as well as financially expen-
sive. In contrast, second-order optimization algorithms
involve much less parameter tuning, and are less sen-
sitive to specific choices of their hyper-parameters [1].
A third example that has received attention due to the
popularity of non-convex deep learning problems [9, 14]
has to do with avoiding (possibly degenerate) saddle
points and finding a local minimum. While some first-
order algorithms can guarantee convergence to an ap-

199
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

proximate second-order critical point1, e.g., [12], the
vast majority of them lack such performance guaran-
tees. Instead, their convergence can, at best, only be
ensured to first-order critical points, which include sad-
dle points. It has been argued that converging to saddle
points can be undesirable for obtaining low generaliza-
tion errors [6, 8]. In addition, important cases have
been demonstrated where SGD stagnates at such high
training error points [11]. In contrast, employing the
curvature information in the form of Hessian, in addi-
tion to the advantages mentioned above, can help with
achieving convergence to second-order criticality.

Our Objective Here, we aim to provide an empiri-
cal evaluation of variants of Newton-type methods for
non-convex ML problems, and study whether they can
address, in a computationally competitive manner, the
main aforementioned challenges associated with first or-
der methods, i.e., relatively-slow convergence, sensitiv-
ity to hyper-parameter settings, stagnation, and entrap-
ment near saddle points. To do so, we exploit recent
theoretical developments in [24], and focus on variants
of trust-region [7, 24] and (adaptive) cubic regulariza-
tion [3, 24] algorithms, in which the Hessian is suitably
approximated. More specifically, in the context of sev-
eral non-convex machine learning applications, we study
the empirical performance of sub-sampled versions of
these algorithms and set out to paint a more complete
picture of their practical impact. In the process, we high-
light the above-mentioned shortcomings of first-order
methods and, in their light, assess the effectiveness of
employing curvature information as remedy.

Main Questions To accomplish our objective, we set
out to answer the following questions, all of which are
designed to shed light on various practical aspects of
this paper’s underlying thesis.

Q.1 (Computational Efficiency) Can these sub-sampled
Newton-type methods be computationally efficient
enough to be competitive with hand-tuned SGD with
momentum?

Q.2 (Robustness to Hyper-parameters) Does the perfor-
mance of such Newton-type methods exhibit robustness
to hyper-parameter tuning?

Q.3 (Escaping Saddle Point) Does employing Hessian
information help with avoiding saddle points and con-
verging to lower training errors in highly non-convex
problems?

Q.4 (Generalization Performance) Can second-order
methods be beneficial for obtaining low generalization

1where gradient is very small and Hessian is almost positive
semi-definite.

error in machine learning problems?

Q.5 (Benefits of Sub-sampling) How does sub-sampling
in general, and various sub-sampling schemes in partic-
ular, affect the performance of TR and ARC methods?

Q.6 (Comparison Among Second-Order Methods) How
do sub-sampled TR and ARC compare with other
second-order methods like (sub-sampled) Gauss-Newton
(GN) and limited-memory BFGS (L-BFGS) methods?

Methodology To minimize the effect of many con-
founding factors involved in almost all empirical eval-
uations, rather than chasing to beat the state-of-the-art
performances on benchmark tasks, we focus our atten-
tion on two simple, yet illustrative, classes of non-convex
ML problems, i.e., multi-layer perceptron (MLP) net-
works and non-linear least squares (NLS). More specifi-
cally, to address Q.1, Q.2, Q.3, and Q.4, which are
concerned with comparisons among first and second-
order methods, we consider training (deep) MLP net-
works with no additional bells and whistles; and to ad-
dress Q.5 and Q.6, which involve comparisons among
various second-order methods, we consider a simpler
NLS problem. These questions, references to their theo-
retical studies, and sections of this paper involving their
empirical treatment with relevant figures, are all gath-
ered in Table 1.

In Section 3.2, we address Q.1–Q.4. In particu-
lar, in the context of image classification (Section 3.2.1)
and deep auto-encoder (Section 3.2.2), we study the
efficiency of sub-sampled TR method, which incorpo-
rates inexactness in both Hessian and the sub-problem
solver, as compared with hand-tuned SGD with mo-
mentum. We answer item Q.1 by measuring the con-
vergence speed over total computational cost. We then
treat Q.2 by demonstrating the resiliency/sensitivity of
various algorithms with respect to their main hyper-
parameter. We do this through multiple simulations
of all these examples with several choices of the main
hyper-parameter for each algorithm. The main hyper-
parameter is understood as the one for which, in prac-
tice, there is no “typical” value. For SGD with momen-
tum, the learning rate is considered as the main param-
eter, since the momentum parameter is typically set to
≈ 0.9. For trust region, the main hyper-parameter is
the initial trust region, as there are typical values for
other parameters of the algorithm.For Q.3, we consider
various initialization schemes, including those that are
close to high-level saddle points. We study the behavior
of SGD-based methods near such regions and evaluate
whether an appropriate use of curvature can indeed help
with escaping such undesirable saddle points and mak-
ing continued progress towards areas with lower training
error. To address Q.4, we present test performances for

200
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 1: Fundamental questions related to the underlying thesis of this paper.
Question Theoretical Results Empirical Results Figure

Q.1 [24, Theorems 4-6] Sections 3.2.1 and 3.2.2 1,2,3
Q.2 [24, Theorems 1-6] Sections 3.2.1 and 3.2.2 1,2,3
Q.3 – Sections 3.2.1 and 3.2.2 1,2,3
Q.4 – Sections 3.2.1, and 3.2.2 1,2,3
Q.5 [24, Lemmas 16 and 17] Section 3.3 5
Q.6 - Section 3.3 5

all our experiments and assess the generalization errors
obtained by all the methods considered.

In Section 3.3, we turn our attention to Q.5–
Q.6, where we consider the NLS problem arising from
binary classification task with least-squares loss. On
several real datasets, we then demonstrate the effect of
various sub-sampling strategies on the performance of
sub-sampled TR and ARC methods, as compared with
other second-order algorithms.

2 Background

In this section, we give a brief review of the general
formulation of the optimization problems considered in
our study as well as the Newton-type algorithms in
question.

2.1 Non-Convex Finite-Sum Minimization Fol-
lowing many machine learning applications, we consider
the “finite-sum” optimization problem

(P1) min
x∈Rd

F (x) ,
1

n

n∑
i=1

fi(x),

where each fi : Rd → R is a smooth but possibly non-
convex function. Many machine learning and scientific
computing applications involve optimization problems
of the form (P1) where each fi is a loss (or misfit) func-
tion corresponding to ith observation (or measurement),
e.g., see [22]. In particular, in machine learning applica-
tions, F in (P1) corresponds to the empirical risk [21]
and the goal of solving (P1) is to obtain a solution with
small generalization error, i.e., high predictive accuracy
on “unseen” data.

2.2 Main Algorithms: Sub-Sampled TR and
ARC Arguably, line-search is the most straightforward
approach for globalization of many Newton-type algo-
rithms. However, near saddle points where the gradient
magnitude can be small, traditional line search methods
can be very ineffective and in fact produce iterates that
can get stuck at a saddle point [17]. Trust region [7]
and cubic regularization methods [3, 4] are two elegant
globalization alternatives that, specially recently, have
attracted much attention.

In large-scale non-convex settings, where the appli-
cation of exact Hessian can be computationally infea-
sible, recently, [24] theoretically studied the variants of
TR and ARC algorithms in which the Hessian is suit-
ably approximated. For ease of reference, Appendix A
gathers the descriptions of TR and ARC algorithms,
henceforth referred to as Algorithms 1 and 2, respec-
tively. Iterations of these algorithms involve the follow-
ing sub-problems:

TR Sub-Problem:

(2.1a)

st ≈ argmin
‖s‖≤∆t

mt(s) , 〈∇F (xt), s〉+
1

2
〈s,Hts〉,

ARC Sub-Problem:
(2.1b)

st ≈ argmin
s∈Rd

mt(s) , 〈∇F (xt), s〉+
1

2
〈s,Hts〉+

σt
3
‖s‖3,

where H is an approximation of the the exact Hessian.
Hessian Sub-Sampling We consider (P1) in large-
scale regime where n, d� 1. In such settings, the mere
evaluations of the Hessian and the gradient increase
linearly in n. As studied in [24], given a sampling
distribution {pi}ni=1 over the set of indices {1, 2, · · · , n},
the sub-sampled Hession has the form

(2.2) H(x) ,
1

n|S|
∑
j∈S

1

pj
∇2fj(x),

where S ⊂ {1, 2, · · · , n} is a random sample collection.
When |S| � n, sub-sampling can offer significant com-
putational savings; see [2, 20, 25] for examples of studies
in convex settings. Recently [24] theoretically showed
that randomized sub-sampling can also be seamlessly
extended to non-convex settings.

[24] further showed that, in certain settings, one
can construct more “informative” distributions over
the indices in {1, 2, . . . , n}, as opposed to oblivious
uniform sampling. Indeed, it is typically advantageous
to bias the probability distribution towards picking
indices corresponding to those fi’s which are more
relevant, in certain sense, in forming the Hessian. One

201
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

such setting where this is possible is the finite-sum
optimization of the form,

(P2) min
x∈Rd

F (x) ,
1

n

n∑
i=1

fi(a
T
i x),

for some given data vectors {ai}ni=1 ⊂ Rd. Problems
of the form (P2), which is a special case of (P1),
arise often in many machine learning problems [21],
e.g., logistic regression with least squares loss as in
Example 3.3. For problems of the form (P2), one
can construct a more informative sampling scheme
by considering the sampling distribution as pi =
|f ′′i (aT

i x)|‖ai‖2/(
∑n

j=1 |f ′′j (aT
j x)|‖aj‖2). In [24], it was

shown that, in order to obtain similar approximation
guarantee, such nonuniform sub-sampling scheme yields
a sample size which can be significantly smaller than
that required by oblivious uniform sampling.
Inexact Sub-problem Solver In Algorithms 1 and 2,
it is imperative that the sub-problems (2.1a) and (2.1b),
respectively, are solved only approximately. Indeed, in
large-scale problems, where the exact solution of sub-
problems is a computational bottleneck, this relaxation
is crucial; see [24] for precise definitions as well as
ways to obtain the approximate solution of the sub-
problems (2.1a) and (2.1b).

3 Numerical Experiments

We are now ready to empirically evaluate the perfor-
mance of the Newton-type methods considered in this
paper (and studied theoretically in [24]) in several set-
tings. In particular, we study the answers to Q.1–Q.6
posed at the outset in Section 1 in the context of two
simple, yet illustrative, classes of non-convex optimiza-
tion problems, i.e. (deep) MLP networks (Section 3.2)
and NLS (Section 3.3). See the supplementary materi-
als for more experiments.

3.1 General Experimental Settings
Complexity Measure In all of our experiments,

we plot various quantities vs. total number of propaga-
tions [9], which is equivalent to measuring the number
of oracle calls of function, gradient and Hessian-vector
product. This is so since comparing algorithms in terms
of “wall-clock” time can be highly affected by their par-
ticular implementation details as well as system spec-
ifications. In contrast, counting the number of propa-
gations, as an implementation and system independent
unit of complexity, is most appropriate and fair. Specif-
ically, in neural nets, for a given data at the input layer,
evaluation of network’s output layer involves one for-
ward propagation. Performing one additional backward
propagation gives the corresponding gradient. Each of
the Hessian-vector products, required to solve the re-
spective sub-problems of the second-order methods, is

equivalent to two gradient evaluations, i.e., compared
to the gradient, it involves one additional forward and
backward propagations [18]. Combining the batch size
in each iteration, we summarize the number of propa-
gations per iteration for each algorithm in Table 2.

Table 2: Total number of propagations per iteration for
various algorithms. “r” denotes the number of Hessian-
vector products for solving the respective subproblems,
and hence can be different for each algorithm. In the
“Full” cases (e.g., Full TR), |S| = n.

Sub-Sampled TR,ARC,GN L-BFGS SGD
2 (n+ |S|r) 2n 2|S|

In all of the following experiments, to approxi-
mately solve the sub-problems (2.1a) and (2.1b), respec-
tively, we use CG-Steihaug method [17] and the general-
ized Lanczos method [3] with a maximum of 250 Lanczos
iterations.

3.2 Hessian-Free Optimization for MLPs In this
section, we empirically study the main questions Q.1–
Q.4 of Section 1. For this, we consider two simple
but non-trivial MLP netwroks under various settings,
namely (a) 1-hidden layer neural networks for image
classification, and (b) deep auto-encoder. The empirical
performance of the following algorithms, in light of
Questions Q.1–Q.4, are compared2:

(1) TR Uniform: Alg 1 with uniform sub-sampling,

(2) GN Uniform: sub-sampled Gauss-Newton method
with modifications introduced in [16], and

(3) SGD with Momentum: mini-batch SGD with mo-
mentum term [23] and fixed step-size.

Parameter settings For Algorithm 1, we set η1 =
10−4, η2 = 0.8, γ1 = 1.2, and γ2 = 2 (these are
some values typical used in literature). The sample
size used for Hessian sub-sampling is set to 5% of
the total training set, i.e., 0.05n. For momentum
SGD, the mini-batch size is chosen as 0.05n and the
momentum parameter is set as 0.9 (which is typically
set in literature). For GN method, we use the same
parameter settings as in [16].

3.2.1 One-Hidden Layer Neural Network Here
we consider a one-hidden layer neural network for the
task of image classification using cifar10 [13] data
set. The hidden layer size is 512, amounting to d =
1, 578, 506. Initializations are done by setting x0 to a
normalized vector drawn from standard normal distri-
bution and all-zeros vector. Figure 1 shows training
loss, training error and test error for all methods.

2We excluded ARC variants for reasons alluded to in Section 4.

202
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

10
0

10
2

10
4

10
6

10
8

of Props

10
-4

10
-2

10
0

10
2

T
ra

in
in

g
 L

o
s
s

Image Classification: Cifar10

(a)

10
0

10
2

10
4

10
6

10
8

of Props

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 E

rr
o

r

Image Classification: Cifar10

(b)

10
0

10
2

10
4

10
6

10
8

of Props

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

s
t

E
rr

o
r

Image Classification: Cifar10

(c)

10
0

10
2

10
4

10
6

10
8

of Props

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
ra

in
in

g
 L

o
s
s

Image Classification: Cifar10

(d)

10
0

10
2

10
4

10
6

10
8

of Props

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 E

rr
o

r

Image Classification: Cifar10

(e)

10
0

10
2

10
4

10
6

10
8

of Props

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

s
t

E
rr

o
r

Image Classification: Cifar10

(f)

Figure 1: Cifar10 dataset on MLP using normalized
random (a,b,c) and zero (d,e,f) initialization. ∆0 is the
initial trust-region radius of Algorithm 1 and α is the
step size for SGD with momentum.

In light of Q.1–Q.4, we observe the following:

Re: Q.1 (Computational Efficiency) In Figures
1(a)(b)(c), all algorithms start from a normalized
random vector. From Figure 1(a), we observe that
in terms of training loss, sub-sampled TR algorithm,
though very competitive, can be slightly slower than
SGD as long as SGD’s step size is appropriately
fine-tuned. However, this does not necessarily translate
to better test error; see Figure 1(c). In particular,
while all TR runs achieve similar test errors, SGD’s
generalization performance does not mirror its training
behavior and appears highly “chaotic”, i.e., the step-
size that achieved the fastest training (red dashed line),
generalizes very poorly (compare red and blue dashed
lines).

Re: Q.2 (Robustness to Hyper-parameters) From Fig-
ures 1(a)(b)(c), we notice the dependence of SGD’s per-
formance on the choice of its learning-rate. Well-tuned
step size can give both fast convergence of training pro-

cess and good generalization performance. Too small a
step size, however, can lead to slow convergence, while
too large a step size, can cause SGD divergence or poor
generalization performance. In contrast, Algorithm 1
with drastically different initial trust-region radii ex-
hibit comparable performances; similar phenomenon are
seen in Figures 1(d)(e)(f).

Re: Q.3 (Escaping Saddle Point) In Figure 1(d)(e)(f),
all algorithms start from the origin. We can clearly see
that SGD and GN easily get trapped at/near saddle
points and/or flat regions (it is easy to check the
gradients there are extremely small) and can barely
make any progress. In contrast, sub-sampled TR, which
effectively utilizes the Hessian, seamlessly escapes these
regions and makes continued progress.

Re: Q.4 (Generalization Performances) In all initial-
ization schemes, as shown in Figures 1, sub-sampled TR
obtains competitive, if not better, generalization perfor-
mance.

3.2.2 Deep Auto-Encoder Here, we consider the
deep auto-encoder problem [9] and use the same model
architectures as well as loss functions as in [16]. The
dataset and network architectures are given in Table 3.
The experiments in Figures 2 and 3 are each done with
initialization to a vector drawn from standard normal
distribution as well as the all-zeros vector.

Table 3: Datasets for deep auto-encoder experiment.
Dataset Size Encoder Network (# parameters)
curves 20000 784-400-200-100-50-25-6 (842, 340)
mnist 60000 784-1000-500-250-30 (2, 837, 314)

Although deep auto-encoder networks here are
much more complex than 1-hidden layer network of Sec-
tion 3.2.1, but we can still make very similar observa-
tions as they relate to Q.1–Q.4. In particular, on both
datasets, Algorithm 1 converges comparably as fast, or
faster than, other methods in terms of number of propa-
gations. More importantly, it exhibits great robustness
to its hyper-parameter, the initial trust-region radius, in
contrast to SGD with momentum, which is heavily de-
pendent on the choice of step size. Since these are rather
complex networks, the optimization landscape is riddled
with saddle and/or very flat regions. In this light, SGD
and GN algorithms can both, rather easily, get trapped
at/near these regions, which is quite contrary to the be-
havior of Algorithm 1 (Figures 2(b) and 3(b)). In terms
of test error, Algorithm 1 is competitive to other meth-
ods on some experiments (Figures 2(a) and 3(a)) and
clearly outperforms on others (Figures 2(b) and 3(b)).

We further examine two additional initialization
strategies: normalized random initial point (Figure

203
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

100 102 104 106 108 1010

of Props

100

101

102

103

Tr
ai

ni
ng

 E
rro

r

Autoencoder: curves

TR Uniform: 0= 1000
TR Uniform: 0= 10000

TR Uniform: 0= 100000
TR Uniform: 0= 1000000

Momentum SGD: = 0.5
Momentum SGD: = 0.05

Momentum SGD: = 0.1
GN Uniform

10
0

10
5

10
10

of Props

10
1

10
2

10
3

10
4

T
ra

in
in

g
 L

o
s
s

Autoencoder: curves

10
0

10
5

10
10

of Props

10
0

10
1

10
2

10
3

T
e

s
t

E
rr

o
r

Autoencoder: curves

(a) Random Initialization

10
0

10
5

10
10

of Props

10
1

10
2

10
3

T
ra

in
in

g
 L

o
s
s

Autoencoder: curves

10
0

10
5

10
10

of Props

10
0

10
1

10
2

10
3

T
e

s
t

E
rr

o
r

Autoencoder: curves

(b) Zero Initialization

Figure 2: Deep autoencoder on curves dataset using random (a) and zero (b) initial point. ∆0 is the initial
trust-region radius of Algorithm 1 and α is the step size for SGD with momentum.100 102 104 106 108 1010

of Props

0

50

100

150

200

Te
st

 E
rro

r

Autoencoder: mnist

TR Uniform: 0= 100
TR Uniform: 0= 1000

TR Uniform: 0= 10000
TR Uniform: 0= 100000

Momentum SGD: = 0.01
Momentum SGD: = 0.05

Momentum SGD: = 0.1
GN Uniform

10
0

10
5

10
10

of Props

10
2

10
3

10
4

T
ra

in
in

g
 L

o
s
s

Autoencoder: mnist

10
0

10
5

10
10

of Props

50

100

150

200

250

300

350

400

T
e

s
t

E
rr

o
r

Autoencoder: mnist

(a) Random Initialization

10
0

10
5

10
10

of Props

10
1

10
2

10
3

T
ra

in
in

g
 L

o
s
s

Autoencoder: mnist

10
0

10
5

10
10

of Props

0

50

100

150

200

T
e

s
t

E
rr

o
r

Autoencoder: mnist

(b) zero Initialization

Figure 3: Deep autoencoder on mnist dataset using random (a) and zero (b) initial point. ∆0 is the initial
trust-region radius of Algorithm 1 and α is the step size for SGD with momentum.

4(a)) as well as a random vector scaled by 0.25 (Fig-
ure 4(b)). Similar observations as earlier can also be
made here. In particular, unlike Section 3.2.1, for this
problem normalized random initial point (Figure 4(a))
seems to paint a different picture, i.e., SGD with mo-
mentum as well as GN all get trapped at high training
levels while Algorithm 1 makes continued progress. It
is worth mentioning that among all the initialization
schemes we considered here, only under the particular
scaled random initialization SGD can obtain desirable
performance. This further demonstrates the versatility
of Algorithm 1.

3.3 Non-Linear Least Squares We now turn to
study Questions Q.5 and Q.6. For this, we consider
the class of NLS problems, and focus on the task
of binary classification with square loss as a concrete
instance. Since logistic loss, which is the “standard”
loss used in this task, leads to a convex problem,
we use square loss to obtain a non-convex objective.
More specifically, suppose we are given training data
{xi, yi}ni=1, where xi ∈ Rd and yi ∈ {0, 1} are,
respectively, ith feature vector and the corresponding

label. Consider minimizing the empirical risk problem

minw∈Rd

∑n
i=1

(
yi − φ

(
〈xi,w〉

))2
/n, where φ(z) is the

sigmoid function, i.e., φ(z) = 1/(1 + e−z). Since this
is an example of (P2), we can apply both uniform and
non-uniform sampling schemes.

Table 4 summarizes the real data sets used for
the experiments of this section. All datasets are from
LIBSVM library [5]. The following algorithms are com-
pared (exact Hessian refers to Ht = ∇2F (xt)):

i. TR Full/Uniform/Non-Uniform: Algorithm 1 with
full or uniform/non-uniform estimation of Hessian, re-
spectively,

ii. ARC Full/Uniform/Non-Uniform: Algorithm 2
with full or uniform/non-uniform estimation of Hessian,
respectively,

iii. GN Full/Uniform/Non-Uniform: GN with full or
uniform/non-uniform estimation of Hessian, respec-
tively,

iv. LBFGS-100: the standard L-BFGS method [15]
with history size 100 and using line-search.

204
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

10
0

10
5

10
10

of Props

10
1

10
2

10
3

T
ra

in
in

g
 L

o
s
s

Autoencoder: curves

TR Uniform:
0
= 10000

TR Uniform:
0
= 100000

TR Uniform:
0
= 1000000

Momentum SGD: = 0.01

Momentum SGD: = 0.05

Momentum SGD: = 0.1

GN Uniform

10
0

10
5

10
10

of Props

10
0

10
1

10
2

10
3

T
e

s
t

E
rr

o
r

Autoencoder: curves

(a) Normalized Random Initialization

10
0

10
5

10
10

of Props

10
1

10
2

10
3

T
ra

in
in

g
 L

o
s
s

Autoencoder: curves

TR Uniform:
0
= 500

TR Uniform:
0
= 1200

TR Uniform:
0
= 3000

Momentum SGD: = 0.001

Momentum SGD: = 0.01

Momentum SGD: = 0.1

Momentum SGD: = 0.5
GN Uniform

10
0

10
5

10
10

of Props

10
-1

10
0

10
1

10
2

10
3

T
e
s
t
e
rr

p
r

Autoencoder: curves

(b) Scaled Random Initialization

Figure 4: Deep autoencoder on curves dataset using (a)
normalized and (b) scaled random initial points. ∆0 is
the initial trust-region radius of Algorithm 1 and α is
the step size for SGD.

Table 4: Datasets used in binary linear classification.

Data n d Test Size

covertype 464, 810 54 116, 202
mnist 60, 000 784 10, 000

Parameter settings For both Algorithms 1 and
2, we set η1, η2, γ1 and γ2, the same as Section 3.2. The
sampling ratios, i.e., |S|/n, for uniform and non-uniform
sampling are set to 1% and 0.1%, respectively. For all
datasets, we set ∆0 = 10 for Algorithm 1 and σ0 = 10−4

for Algorithm 2. For GN, we do not regularize Hessian
as in [16]. Figure 5 gathers all comparison results of this
section.

Re: Q.5 (Benefits of Sub-Sampling) Overall, both Al-
gorithms 1 and 2 compare well with the classical TR and
ARC methods. In fact, sub-sampling can, at times, help
increase the efficiency, e.g., TR variants for covtype2.
However, with too small a sample, the performance
can hurt; ARC Full vs. ARC Non-Uniform and ARC
Uniform for covtype2 and mnist2, respectively. The
benefits of non-uniform sampling over uniform alterna-
tive are far more pronounced in the performance of Al-
gorithm 2 than Algorithm 1. This can be attributed
mainly to their respective sub-problem solvers in terms
of total number of performed Hessian-vector products
. In particular, CG-Steihaug used for the sub-problem
(2.1a) of Algorithm 1 typically terminates in a handful

of iterations whereas the generalized Lanczos method
for solving the sub-problem (2.1b) of Algorithm 2 usu-
ally exhausts the allotted 250 iterations.

Re: Q.6 (Comparison Among Second-Order Methods)
One can observe the consistent poor performances of L-
BFGS-100 (green dotted lines) methods on all datasets,
in particular with all 1’s initialization vector. This is
rather expected as contrary to popular belief, BFGS is
not quite a “full-fledged” second-order method. Indeed,
BFGS merely employs first-order information, i.e. gra-
dients, to approximate the curvature, and starting from
all 1’s vector, L-BFGD cannot capture enough curva-
ture information to navigate its way out of this region
effectively. Gauss-Newton (dash lines), which has been
specifically designed to effectively solve NLS problems,
performs very well with random initialization. Starting
from all 1’s vector, however, where the gradient is very
small, GN performs poorly. This is also expected be-
cause GN, similar in spirit to BFGS, does not fully uti-
lize the Hessian information. In particular, in exchange
for obtaining a positive definite approximation matrix,
GN completely ignores the information from negative
curvature, which is critical for allowing to escape from
regions with small gradient. We can also observe that
ARC is consistently no better than TR. This is an em-
pirical evidence that the optimal worst-case complexity
of ARC [4, 24], though theoretically highly interesting,
might be hard to observe in many practical settings.

4 Conclusion

In this paper, we aimed at painting a more complete
picture of the practical advantages of Newton-type
algorithms in general, and sub-sampled variants of
trust-region and adaptive cubic regularization methods
in particular, as compared with first-order alternatives.
In the context of (deep) multi-layer perceptron networks
as well as non-linear least squares, two simple, yet
illustrative, non-convex machine learning applications,
by making the following observations, we empirically
attempted to make a case for the application of such
second-order methods for machine learning.

A.1 (Computational Efficiency) The randomized sub-
sampling approaches described here, and studied in de-
tail in [24], can effectively make Newton-type meth-
ods computationally efficient enough to be competitive
with popular first-order methods, widely used in ma-
chine learning, e.g., SGD with momentum. This is in-
deed due to the amortized combination of (1) low per-
iteration cost offered by randomized sampling, and (2)
small number of overall iterations due to the application
of curvature information.

A.2 (Robustness to Hyper-parameters) In contrast to

205
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

10
0

10
10

of Props

0.1

0.2

0.3

0.4

0.5

tr
a
in

in
g
 l
o
s
s

covtype2, all 1's initialization

10
0

10
10

of Props

0.2

0.3

0.4

0.5

0.6

te
s
t
e
rr

o
r

covtype2, all 1's initialization

10
0

10
10

of Props

0.15

0.2

0.25

0.3

0.35

tr
a
in

in
g
 l
o
s
s

covtype2, random initialization

10
0

10
10

of Props

0.2

0.3

0.4

0.5

0.6

te
s
t
e
rr

o
r

covtype2, random initialization

10
0

10
10

of Props

0

0.2

0.4

0.6

tr
a
in

in
g
 l
o
s
s

mnist2, all 1's initialization

10
0

10
10

of Props

0

0.2

0.4

0.6
te

s
t
e
rr

o
r

mnist2, all 1's initialization

10
0

10
10

of Props

0

0.2

0.4

0.6

tr
a
in

in
g
 l
o
s
s

mnist2, random initialization

10
0

10
10

of Props

0

0.2

0.4

0.6

te
s
t
e
rr

o
r

mnist2, random initialization

of Props
100 101 102 103 104 105 106 107 108 109

tra
in

 e
rro

r

0.15

0.2

0.25

0.3

0.35

0.4

0.45

TR Full
TR Uniform (1%)
TR Non-Uniform (0.1%)

ARC FULL
ARC Uniform (1%)
ARC Non-Uniform (0.1%)

GN Full
GN Uniform (1%)
GN Non-Uniform (0.1%)

LBFGS-100

Figure 5: Binary Classification on different datasets with all 1’s initialization (left two columns) and randon
initialization (right two columns). Each row corresponds to a dataset. The x-axis is the number of propagations
in log-scale.

first-order algorithms whose performance is greatly af-
fected by the choice of hyper-parameters, most notably
step-size, the performance of the proposed Newton-type
methods exhibit great robustness to such parameter tun-
ing.

A.3 (Escaping Saddle Point) A greatly beneficial ad-
vantage of employing Hessian information is that it
allows for such Newton-type algorithms, unlike many
first-order alternatives, to seamlessly escape regions
near saddle points.

A.4 (Generalization Performance) Second-order meth-
ods prove beneficial for the downstream machine learn-
ing objective of obtaining good generalization error. In
particular, one can obtain very good levels of predic-
tion accuracy only after a few iterations of such meth-
ods. This is highly beneficial in, say, distributed settings
where the communication across the network is the main
computational bottleneck.

A.5 (Benefits of Sub-sampling) On several real
datasets, we validated the effectiveness of sub-sampled
Newton-type methods, as compared with classical ver-
sions, in speeding up computations. Also, the advan-
tages of non-uniform sampling over the oblivious uni-
form alternative was verified.

A.6 (Comparison Among Second-Order Methods)
There are clear advantages in using (sub-sampled) TR
and ARC methods over other second-order alternatives,

e.g., L-BFGS and GN, in terms of effective exploitation
of curvature.

For the examples of Section 3.2, despite the best of
our efforts, we were unable to obtain the expected per-
formance of Algorithm 2 using a variety of implementa-
tions, e.g., our own hand-written code as well as some
existing packages such as GALAHAD [10]. We believe
that this is tightly connected to the choice of the sub-
problem solver in all these implementations. Since we
were unable to pinpoint the source of the problem, we
did not include Algorithm 2 in examples of Section 3.2.

Finally, we acknowledge that, although we pre-
sented various experiments, the empirical study of
methods such as the ones considered here, takes more
than a single “proof-of-concept” paper, and the results
presented here should be viewed as merely a glimpse
into their various properties.

Acknowledgment FR and MM acknowledge the
support by DARPA D3M (FA8750-17-2-0122) and
Cray/77000. FR was partially supported by the
Australian Research Council grants CE140100049 and
DE180100923.

References

[1] Albert S Berahas, Raghu Bollapragada, and Jorge
Nocedal. “An Investigation of Newton-Sketch and
Subsampled Newton Methods”. In: arXiv preprint
arXiv:1705.06211 (2017).

206
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[2] Raghu Bollapragada, Richard Byrd, and Jorge
Nocedal. “Exact and Inexact Subsampled Newton
Methods for Optimization”. In: arXiv preprint
arXiv:1609.08502 (2016).

[3] Coralia Cartis, Nicholas IM Gould, and Philippe L
Toint. “Adaptive cubic regularisation methods for
unconstrained optimization. Part I: motivation,
convergence and numerical results”. In: Mathe-
matical Programming 127.2 (2011), pp. 245–295.

[4] Coralia Cartis, Nicholas IM Gould, and Philippe
L Toint. “Adaptive cubic regularisation methods
for unconstrained optimization. Part II: worst-
case function-and derivative-evaluation complex-
ity”. In: Mathematical programming 130.2 (2011),
pp. 295–319.

[5] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM:
A library for support vector machines”. In: ACM
Transactions on Intelligent Systems and Technol-
ogy 2 (3 2011). Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

[6] Anna Choromanska, Mikael Henaff, Michael
Mathieu, Gérard Ben Arous, and Yann LeCun.
“The loss surfaces of multilayer networks”. In: Ar-
tificial Intelligence and Statistics. 2015, pp. 192–
204.

[7] Andrew R Conn, Nicholas IM Gould, and Philippe
L Toint. Trust region methods. SIAM, 2000.

[8] Yann N Dauphin, Razvan Pascanu, Caglar Gul-
cehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. “Identifying and attacking the
saddle point problem in high-dimensional non-
convex optimization”. In: Advances in neural in-
formation processing systems. 2014, pp. 2933–
2941.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep learning. MIT press, 2016.

[10] Nicholas IM Gould, Dominique Orban, and
Philippe L Toint. “GALAHAD, a library of
thread-safe Fortran 90 packages for large-scale
nonlinear optimization”. In: ACM Transactions
on Mathematical Software (TOMS) 29.4 (2003),
pp. 353–372.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. “Deep residual learning for image recog-
nition”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.
2016, pp. 770–778.

[12] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham
M Kakade, and Michael I Jordan. “How to Es-
cape Saddle Points Efficiently”. In: arXiv preprint
arXiv:1703.00887 (2017).

[13] Alex Krizhevsky and Geoffrey Hinton. “Learning
multiple layers of features from tiny images”. In:
(2009). Data available at https : / / www . cs .

toronto.edu/~kriz/cifar.html.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hin-
ton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444.

[15] Dong C. Liu and Jorge Nocedal. “On the limited
memory BFGS method for large scale optimiza-
tion”. In: 45 (1989), pp. 503–528.

[16] James Martens. “Deep learning via Hessian-free
optimization”. In: International Conference on
Machine Learning (ICML). 2010.

[17] Jorge Nocedal and Stephen Wright. Numerical
optimization. Springer Science & Business Media,
2006.

[18] Barak A Pearlmutter. “Fast exact multiplica-
tion by the Hessian”. In: Neural computation 6.1
(1994), pp. 147–160.

[19] Farbod Roosta-Khorasani, Kees van den Doel,
and Uri Ascher. “Stochastic algorithms for in-
verse problems involving PDEs and many mea-
surements”. In: SIAM J. Scientific Computing
36.5 (2014), S3–S22.

[20] Farbod Roosta-Khorasani and Michael W Ma-
honey. “Sub-sampled Newton methods”. In:
Mathematical Programming 174.1-2 (2019),
pp. 293–326.

[21] Shai Shalev-Shwartz and Shai Ben-David. Under-
standing machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

[22] Suvrit Sra, Sebastian Nowozin, and Stephen J
Wright. Optimization for machine learning. Mit
Press, 2012.

[23] Ilya Sutskever, James Martens, George Dahl, and
Geoffrey Hinton. “On the importance of initial-
ization and momentum in deep learning”. In: In-
ternational conference on machine learning. 2013,
pp. 1139–1147.

[24] Peng Xu, Farbod Roosta-Khorasani, and Michael
W Mahoney. “Newton-type methods for non-
convex optimization under inexact Hessian infor-
mation”. In: Mathematical Programming (2019).
doi:10.1007/s10107-019-01405-z.

[25] Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani,
Christopher Ré, and Michael W Mahoney. “Sub-
sampled newton methods with non-uniform sam-
pling”. In: Advances in Neural Information Pro-
cessing Systems. 2016, pp. 3000–3008.

207
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Background
	Non-Convex Finite-Sum Minimization
	Main Algorithms: Sub-Sampled TR and ARC

	Numerical Experiments
	General Experimental Settings
	Hessian-Free Optimization for MLPs
	One-Hidden Layer Neural Network
	Deep Auto-Encoder

	Non-Linear Least Squares

	Conclusion
	Trust Region and Adaptive Cubic Regularization Algorithms
	Image Classification with Cifar10
	Non-Linear Least Squares

