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Abstract

We provide a general theoretical framework for
stochastic continuous normalizing flows, an ex-
tension of continuous normalizing flows for den-
sity estimation of stochastic differential equations
(SDEs). Using the theory of rough paths, the un-
derlying Brownian motion is treated as a latent
variable and approximated. Doing so enables the
treatment of SDEs as random ordinary differen-
tial equations, which can be trained using existing
techniques. For scalar loss functions, this approach
naturally recovers the stochastic adjoint method
of Li et al. [2020] for training neural SDEs, while
supporting a more flexible class of approximations.

1 INTRODUCTION

Normalizing flows [Rezende and Mohamed, 2015] are prob-
abilistic models constructed as a sequence of successive
transformations applied to some initial distribution. Build-
ing on the change-of-variables formula for densities, normal-
izing flows enjoy significant expressive power as generative
models, while possessing an explicitly computable form of
the likelihood function evaluated over the transformed space.
This makes them especially well-suited for variational infer-
ence (VI).

Continuous normalizing flows (CNF) were soon after devel-
oped by Chen et al. [2018] as a means of performing density
estimation for probabilistic models derived from ordinary
differential equations (ODEs). Extending the change-of-
variables method from discrete to continuous time, the CNF
framework stems from the Liouville equation: an expression
for the evolving density of an ODE with random initial val-
ues, as the solution to another ODE. The jump to continuous-
time dynamics affords a few computational benefits over its
discrete-time counterpart, namely the presence of a trace
in place of a determinant in the evolution formulae for the

density, as well as the adjoint method for memory-efficient
backpropagation. Motivated by deep learning, a family of
ODEs, called neural ordinary differential equations were
constructed, whose Euler discretizations resembles layer-
wise transformations of residual neural networks. Further
algorithmic improvements to the framework were presented
by Grathwohl et al. [2018], enabling effectively arbitrary
choices of parameterized classes of ODEs. Doing all this
involves some technical subtlety, and effective neural ODE
architectures remain the subject of ongoing research — see
for example [Dupont et al., 2019, Gholami et al., 2019,
Zhang et al., 2019].

There has also been recent interest in extending these frame-
works to a stochastic scenario; that is, training probabilis-
tic models derived from stochastic differential equations
(SDEs). For physical models, where the evolution of a
dynamical system is no longer deterministic, or micro-
scopic fluctuations are dependent on components changing
too rapidly to quantify, an SDE can be more appropriate.
Stochastic extensions of neural ODEs have been considered
in [Tzen and Raginsky, 2019, Liu et al., 2019, Jia and Ben-
son, 2019, Peluchetti and Favaro, 2019] as limits of deep
latent Gaussian models, where they have been suggested
to show increased robustness to noisy or adversarial data.
Furthermore, unlike deterministic flows, there is a foolproof
recipe for constructing a family of SDEs that are ergodic
with respect to some target density [Ma et al., 2015]. Such
SDEs are prime candidates for the construction of stochastic
MCMC algorithms, by generating sample paths via approxi-
mate stochastic integration methods.

However, developing an analogue of the continuous normal-
izing flows framework for flows constructed from SDEs—in
particular, one that comes with simple and rigorous mathe-
matical theory and that does not rely on ad hoc or problem-
specific assumptions—is far from trivial. In fact, density
estimation for SDEs is a notoriously challenging task in
general — see Hurn et al. [2007] for a summary of existing
techniques, each of which are limited in scope. A common
approach for conducting VI with SDEs relies upon Gir-
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sanov’s theorem. This allows one to estimate the Kullback-
Leibler divergence between densities of solutions to two
SDEs (for the prior and posterior distributions) with dif-
fering drift coefficients [Beskos et al., 2006, Tzen and Ra-
ginsky, 2019]. Following this approach, Li et al. [2020]
developed a stochastic adjoint method which scales well
to high dimensions, and enables SDEs as latent models
in variational autoencoders. Notable difficulties with these
previous approaches include an incompatibility with higher-
order adaptive SDE solvers, and a complex mechanism of
reconstructing Brownian motion paths from random number
generator seeds.

CONTRIBUTIONS

We provide a general theoretical framework for training
models constructed from SDEs using existing techniques
applied to random ODE approximations. By this process,
we find that theoretical and practical developments concern-
ing continuous normalizing flows and neural ODEs extend
readily to the stochastic setting, without the need of an in-
dependent framework. The key tools underlying our strong
results and simple analysis is the theory of rough paths
[Friz and Hairer, 2014], an alternative stochastic calculus
that enables approximation and pathwise treatment of SDEs.
Our approach

1. enables density estimation for arbitrary SDE models:
an extension of CNF that we refer to as stochastic
continuous normalizing flows (SCNF); and

2. recovers the stochastic adjoint method of Li et al.
[2020], but is sufficiently flexible to be used in con-
junction with arbitrary higher-order numerical ODE
solvers.

Under our framework, SCNF can be easily implemented us-
ing any general CNF implementation, such as that of Grath-
wohl et al. [2018]. Moreover, our approach allows any exist-
ing neural ODE framework (such as Zhang et al. [2019]) to
be extended to SDEs, simply by the addition of a few extra
terms.

Following a review of background material in §2, the SCNF
framework is introduced and discussed in §3, with our main
approximation result presented as Theorem 2. Some numer-
ical investigations are conducted in §4.

2 BACKGROUND REVIEW

2.1 CONTINUOUS NORMALIZING FLOWS

We begin by reviewing the continuous normalizing flow
framework for training ODE models, from which we will de-
velop random and stochastic continuous normalizing flows.
Consider a parameterized class of models {Zθ}θ∈Rm of

the following form: for f : Rd × [0, T ] × Rm → Rd, let
Z = Zθ ∈ Rd satisfy the ODE with random initial condi-
tion (often called a random ordinary differential equation)

d

dt
Z(t) = f(Z(t), t, θ), Z(0) ∼ p0(θ). (1)

In a general machine learning context, one might choose
f such that the Euler discretization of (1) resembles layer-
wise updates of a residual neural network [Lu et al., 2017,
Chen et al., 2018], or one may parameterize f as a neural
network itself [Grathwohl et al., 2018]. The resulting ODEs
constitute the class of so-called neural ordinary differential
equations. The following theorem is a consequence of the
Liouville equation (equivalently, Fokker-Planck equation)
applied to the solution Z(t) of the random ODE (1). It
provides an ODE for the log density of Z(t) evaluated at
Z(t).

Theorem 1 (Chen et al. [2018]). Suppose that Z(t) satisfies
(1). The distribution of Z(t) is absolutely continuous with
respect to Lebesgue measure, with probability density pt
satisfying

d

dt
log pt(Z(t)) = −∇z · f(Z(t), t, θ) (2)

Naively computing the divergence in (2) with automatic
differentiation is of quadratic complexity in the dimension
d. As pointed out by Grathwohl et al. [2018], this can be im-
proved to linear complexity using a trace estimator [Roosta
and Ascher, 2015]:

∇z · f(z) = tr

(
∂f

∂z

)
≈ 1

n

n∑
k=1

ε>k
∂f

∂z
εk, (3)

where each εk is an independent and identically distributed
copy of a random vector ε ∈ Rd with zero mean and
E[εε>] = I . Common choices for εk include standard nor-
mal and Rademacher random vectors.

2.2 THE ADJOINT METHOD

Training continuous normalizing flows often involves min-
imizing a scalar loss function involving Z and/or the log-
density computed via Theorem 1 with respect to the param-
eters θ. For this, we require gradients of Z(t) with respect
to θ for t ∈ [0, T ]. The most obvious approach is to directly
backpropagate through a numerical integration scheme such
as in Ryder et al. [2018], but this does not scale well in
T . A more elegant alternative is the adjoint method, which
computes derivatives of a scalar loss function by solving an
appropriate differential equation in reverse time. Letting L
denote a scalar loss depending on Z(T ), the adjoint given
by a(t) = ∂L

∂Z(t) , as well as the gradient of L in θ, satisfy
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[Pontryagin, 2018, §12]

d

dt
a(t) = −∇zf(Z(t), t, θ)a(t), (4a)

∇θL =

∫ T

0

∇θf(Z(t), t, θ)a(t)dt. (4b)

Together with (1), the equations (4) are solved in re-
verse time, starting from the terminal values Z(T )
and ∇L(Z(T )). By augmenting Z(t) together with (2),
this method also allows for loss functions depending
on pT (Z(T )).

Solving (1), (2), and (4) can be achieved using off-the-shelf
numerical integrators. Adaptive solvers prove particularly
effective, although the backward solve (4) can often run
into stability issues [Gholami et al., 2019], suggesting a
Rosenbrock or other implicit approach [Hairer and Wanner,
1996]. The same is true in stochastic settings; see Hodgkin-
son et al. [2019], for example. For further implementation
details concerning continuous normalizing flows, we refer
to Grathwohl et al. [2018].

More recently, a stochastic adjoint method for SDEs was
developed in [Li et al., 2020]. The principle is the same,
with systems of ODEs replaced by corresponding SDEs.
However, their theoretical justification is both delicate and
complex due to its reliance on classical stochastic calculus,
which is ill-suited for analyzing backward (approximate)
solutions to SDEs. One critical attribute — perhaps mys-
terious at first — is that integration must be performed in
the Stratonovich calculus (§3.1). It turns out that these re-
sults are better explained using rough path theory: because
Stratonovich SDEs can be arbitrarily well-approximated by
ODEs, the adjoint method for ODEs extends naturally. In-
deed, the stochastic adjoint method is contained in equation
(15) in our Theorem 2 as a byproduct of our framework.

2.3 ROUGH PATH THEORY

The theory of rough paths was first introduced in [Lyons,
1998] to provide a supporting pathwise theory for SDEs. It
has since flourished into a coherent pathwise alternative to
stochastic calculus, facilitating direct stochastic generaliza-
tions of results from classical ODE theory — we refer to
Friz and Hairer [2014] for a gentle introduction, and Friz
and Victoir [2010] for a thorough treatment of the topic. For
reasons we soon describe, Hölder continuity is critical to
rough path theory — in the sequel, we equip the space of
α-Hölder functions with the usual α-Hölder norm,

‖X‖α := sup
t∈[0,T ]

‖Xt‖+ sup
s,t∈[0,T ]
s6=t

‖Xt −Xs‖
|t− s|α

.

Suppose that we would like to prescribe meaning to the
infinitesimal limit of the sequence of iterates

Zt+h = Zt + f(Zt)(Xt+h −Xt), as h→ 0+. (5)

In the case of SDEs, Xt is a sample path of Brownian mo-
tion, so that each Xt+h − Xt is a realization of a normal
random vector with zero mean and covariance hI . Unfortu-
nately, a strong limit of (5) fails to exist if Xt is too “rough”.
In particular, suppose that Xt is α-Hölder continuous for
α ∈ (0, 1), that is, there exists some C > 0 such that
‖Xs−Xt‖ ≤ C|s− t|α for any s, t ≥ 0. Since the limit (5)
is only well-defined if α ≥ 1/2 [Young, 1936], a function
on [0, T ] is called rough if it is Hölder-continuous only for
α < 1/2. This is significant, since sample paths of Brown-
ian motion constitute rough paths under this definition, as
they are known to be α-Hölder continuous for any α < 1/2
[Friz and Hairer, 2014, pg. 27].

The problem with establishing a strong limit is that the
discretization (5) invokes the zeroth-order approximation
f(Zt+s) ≈ f(Zt) for 0 ≤ s ≤ h, which proves too poor.
By instead taking a first-order approximation

f(Zt+s) ≈ f(Zt) +∇zf(Zt)(Zt+s − Zt)
≈ f(Zt) +∇zf(Zt)f(Zt)(Xt+s −Xt),

we arrive at the Davie scheme [Davie, 2008]

Zt+h = Zt + f(Zt)(Xt+h−Xt) +∇zf(Zt)f(Zt)Xt,t+h,
(6)

where Xs,t represents the “integral”
∫ t
s
XrdX

>
r . Once

again, we cannot uniquely define X from the path X it-
self, so instead we prescribe it. In fact, each choice of X
satisfying Chen’s relations

Xs,t − Xs,u − Xu,t = (Xs −Xu)(Xt −Xu)>,

for any s, u, t ≥ 0, will reveal a different limit for (6) as
h → 0+, provided α ≥ 1/3 (for smaller α, higher-order
approximations are necessary). The pair X = (X,X) is
referred to as a rough path, and the limit of (6) as h→ 0+

is the solution to the rough differential equation (RDE)

dZt = f(Zt)dXt. (7)

The definition of Hölder continuity extends to the iterated
integral X by replacing Xt and Xt−Xs with X0,t and Xs,t,
respectively.

It is useful to identify a calculus which satisfies the usual
chain and product rules. This occurs precisely when the
rough path X is geometric, that is,

Xs,t −Xt,s = 1
2 (Xt −Xs)(Xt −Xs)

>, ∀s, t ≥ 0. (8)

Every continuous and piecewise differentiable α-Hölder
function X is canonically lifted to an α-Hölder geometric
rough path by taking Xs,t =

∫ t
s
Xr

d
drX

>
r dr, where the

derivative is interpreted in the weak sense. In these cases,
(7) equates to the ODE d

dtZt = f(Zt)
d
dtXt.
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Geometric rough paths have two key properties of interest:

I. (Approximable) The canonical lifts of any sequence
of smooth approximations X(n) which converge to X
as n→∞ in the α-Hölder norm, also converge in the
α-Hölder rough path metric

%α((X,X), (Y,Y)) := ‖X − Y ‖α + ‖X− Y‖2α,

to a geometric rough path (X,X). Conversely, any
geometric rough path can be approximated by some se-
quence of smooth paths [Friz and Hairer, 2014, Propo-
sition 2.5].

II. (Reversible) The reverse-time process Z̃t = ZT−t of
a solution Zt to any rough differential equation (7)
with Lipschitz f , itself satisfies the reversed rough
differential equation dZ̃t = −f(T − t, Z̃t)dXT−t if
and only if X is geometric.

By property I, any solution to RDEs driven by a geometric
rough path can be approximated by solutions to appropri-
ately chosen ODEs. Property II, which follows readily from
the definition (8) in the limit (6), enables our analogue of
the adjoint method for rough differential equations driven
by a geometric rough path.

3 STOCHASTIC CONTINUOUS
NORMALIZING FLOWS

Let Zt satisfy the Itô SDE

dZt = µt(Zt, θ)dt+ σt(Zt, θ)dBt, Z0 ∼ p0(θ), (9)

where Bt is an m-dimensional Brownian motion, and
µt : Rd → Rd, σt : Rd → Rd×m are the drift, and diffusion
coefficients, respectively. Analogous to neural ODEs, neural
SDEs choose µt to resemble a single layer of a neural net-
work [Tzen and Raginsky, 2019]. The dropout-inspired con-
struction of Liu et al. [2019] suggests taking σt ∝ diag(µt).
Alternatively, one can parameterize both µt and σt by multi-
layer neural networks.

The reliance of stochastic calculus on non-anticipating pro-
cesses as well as the lack of continuity for solution maps of
Itô SDEs necessitates complicated and delicate arguments
for extending each piece of the continuous normalizing flow
framework from §2 to SDEs. We bypass the intricacies of
existing theoretical treatments of neural SDEs by an ap-
proximation argument: for a smooth approximation B̃t of
Brownian motion Bt, we estimate solutions of an SDE by a
random ODE involving B̃t. One must take great care with
such approximations. For example, geometric Brownian
motion, that is, the solution to dZt = σZtdBt, has the
explicit expression Zt = Z0 exp(−σ

2

2 t + σBt), which is
not well-approximated by the solution Z̃t = Z0 exp(σB̃t)

to d
dt Z̃t = σZ̃t

dB̃t

dt . Verification of this approach using

traditional stochastic calculus is challenging due to the ir-
regularity of solution maps. In order to circumvent this, we
rely on rough path theory — particularly properties I and II
of geometric rough paths.

In the rough path framework, one can reconstruct the Itô
stochastic calculus via the rough path BItô = (B,BItô),
where BItô

s,t = Bt(Bt −Bs)> − t−s
2 I . Indeed, by Friz and

Hairer [2014, Theorem 9.1], letting BItô(ω) denote a real-
ization of the Itô Brownian motion rough path, the solution
to the rough differential equation

dZt = µt(Zt, θ)dt+ σt(Zt, θ)dB
Itô
t (ω) (10)

is a realization of the strong solution to (9). Likewise, the
Davie scheme (6) corresponds to the Milstein integrator for
SDEs [Kloeden and Platen, 2013, §10.3].

Unfortunately, BItô(ω) is not a geometric rough path, and
so Theorem 2 cannot be directly applied. Instead, we shall
proceed according to the following steps:

(i) Convert the Itô SDE to a Stratonovich SDE (§3.1).

(ii) Interpret the Stratonovich SDE pathwise as an RDE
driven by a geometric rough path BStrat (12).

(iii) Approximate the pathwise Stratonovich RDE by a ran-
dom ODE (§3.2).

(iv) Train the random ODE as a continuous normalizing
flow with added latent variables (§3.4).

Consequently, the RDE (10) is estimated by the ODE
dZt(ω)

dt = Fω(Zt(ω), t, θ) where

Fω(z, t, θ) = µ̃t(z, θ)︸ ︷︷ ︸
Stratonovich drift

+ σt(z, θ)
dBt(ω)

dt︸ ︷︷ ︸
approximation

.

3.1 STRATONOVICH CALCULUS

The unique geometric rough path formed from Brownian
motion BStrat

s,t = Bt(Bt − Bs)
> yields the Stratonovich

calculus. A Stratonovich differential equation is commonly
written in the form dZt = µt(Zt)dt+ σt(Zt) ◦ dBt, where
◦ denotes Stratonovich integration: for a process Yt adapted
to the filtration generated by Bt,∫ T

0

Yt ◦ dBt = lim
|P|→0

N∑
k=1

1

2
(Ytk + Ytk−1

)(Btk −Btk−1
),

where P = {0 = t0 < · · · < tN = T} is a partition
with mesh size |P| = maxk |tk − tk−1|, and the limit is in
L2. This should be compared with Itô integration which is
defined by∫ T

0

Yt dBt = lim
|P|→0

N∑
k=1

Ytk−1
(Btk −Btk−1

).
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Stratonovich differential equations were recognized in Li
et al. [2020] to be the correct setting for extending the ad-
joint method to SDEs. However, the adherence to classical
stochastic calculus and its reliance on adaptedness, some-
what complicates their arguments. In our setting, the advan-
tages of Stratonovich differential equations are clear. Be-
cause Stratonovich differential equations can be arbitrarily
well-approximated by random ODEs, all methods of train-
ing continuous normalizing flows immediately extend to
them, including the adjoint method. Any Itô SDE can be con-
verted into a Stratonovich SDE by adjusting the drift [Evans,
2012, p. 123], a fact readily seen by comparing limits of (6)
with BItô and BStrat. The following formula is particularly
amenable to implementation with automatic differentiation:
the Itô SDE dZt = µt(Zt)dt + σt(Zt)dBt is equivalent
to the Stratonovich SDE dZt = µ̃t(Zt)dt + σt(Zt) ◦ dBt
provided that for each i = 1, . . . , d,

µ̃it(x) = µit(x)− 1
2∇x · (σt(x)σ>t (x∗))i, (11)

where x∗ is an independent copy of x, and the subscript de-
notes the i-th row. Once again, we can make use of the trace
estimator (3) to increase performance in higher dimensions.
In the rough path theory, Stratonovich SDEs are interpreted
pathwise according to the RDE

dZt = µ̃t(Zt, θ)dt+ σt(Zt, θ)dB
Strat
t (ω), (12)

which is equivalent to (10).

3.2 WONG–ZAKAI APPROXIMATIONS

A random ODE d
dtZ

(n)
t = µt(Z

(n)
t ) + σt(Z

(n)
t )

dB
(n)
t

dt esti-
mating a Stratonovich SDE dZt = µt(Zt)dt+σt(Zt)◦dBt
is commonly referred to as a Wong–Zakai approximation
[Twardowska, 1996], named after the authors of the semi-
nal paper [Wong and Zakai, 1965], where this concept for
one-dimensional Brownian motion was first introduced. We
shall consider two types of Wong–Zakai approximations:
a Karhunen-Loève expansion, and a piecewise linear func-
tion. These approximations are compared in Figure 1. To
ease notation, our discussion will focus on estimating one-
dimensional Brownian motion. The n-dimensional setting
immediately follows as a vector of n independent copies of
the one-dimensional case. In practice, we have found that the
Karhunen-Loève expansion with 4 ≤ n ≤ 10 terms works
well for training, while the piecewise linear approximation
is preferable for testing. However, we note that practition-
ers are not limited to these two choices, as our framework
admits any other form of Wong–Zakai approximation.

3.2.1 Piecewise linear

The simplest and most common approximation of Brownian
motion involves exact simulation on a discrete set of times

Figure 1: Karhunen-Loève (left) and piecewise linear (right)
approximations of a Brownian motion sample path with
n = 6 and ∆t = 1

6 respectively.

{0 = t0, t1, t2, . . . , tn}, followed by linear interpolation.
More precisely, letting ∆tk = tk+1 − tk, for each k =
0, . . . , n− 1, we let

B
(n)
tk+1

= B
(n)
tk

+
√

∆tkωk, ωk ∼ N (0, 1),

and consider the approximation

B
(n)
t = B

(n)
tk

+
t− tk

tk+1 − tk
(B

(n)
tk+1
−B(n)

tk
), t ∈ [tk, tk+1].

Integrating the resulting Wong–Zakai approximation using
Euler’s method on the same set of time points is equiva-
lent to performing the Euler–Maruyama method for solving
the Stratonovich SDE. By Friz and Victoir [2010, Corol-
lary 13.22], as the mesh size δ = maxk ∆tk → 0, the
piecewise linear approximation converges almost surely to
Brownian motion in the α-Hölder norm for any α < 1/2,
as ‖B(n) − B‖α ≤ Cα,η δ

1/4−(α+η)/2 for small η > 0.

3.2.2 Karhunen-Loève expansion

For any zero-mean Gaussian process Xt on Rd with t ∈
[0, T ], the covariance function K(s, t) = E[XsX

>
t ] is a

positive-definite kernel. If K is also continuous, Mercer’s
theorem [Minh et al., 2006] guarantees the existence of
an orthonormal basis on L2([0, T ],Rd) of eigenfunctions
{ek}∞k=1 with corresponding positive eigenvalues {λk}∞k=1

such that K(s, t) =
∑∞
j=1 λjej(s)ej(t). The process Xt

can be expanded in terms of these eigenfunctions as

Xt =

∞∑
k=1

√
λkωkek(t), ωk ∼ N (0, 1),

where each ωk is independent. This is called the Karhunen-
Loève expansion of X . Truncating the series after n terms
yields the n-th order Karhunen-Loève approximation, and
has the smallest mean squared error over all expansions with
n orthogonal basis elements [Brown, 1960]. Recalling that
we are primarily interested in the endpoints of the solution,
instead of expanding Brownian motion itself, we consider
an approximation B(n)

t derived from the Karhunen-Loève
expansion of the Brownian bridge Bt −BT t

T :

B
(n)
t = ω0

t√
T

+

n−1∑
k=1

ωk

√
2T sin(kπt/T )

kπ
, n = 2, 3, . . . .
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Using this approximation ensures that the terminal den-
sity for SDEs with constant drift and diffusion coefficients
is computed exactly. By Friz and Victoir [2010, Theorem
15.51], (B

(n)
t )t∈[0,T ] converges almost surely as n→∞ to

Brownian motion in the α-Hölder norm for any α < 1/2.
Furthermore, sinceB(n)

t is smooth, Wong–Zakai approxima-

tions involving dB
(n)
t

dt may be readily solved using adaptive
ODE solvers.

3.3 MAIN RESULT

Using Wong–Zakai approximations, a Stratonovich SDE
can be uniformly approximated in Hölder norm by random
ODEs. In Theorem 2, we show that the log-densities and loss
function gradients for these random ODEs also converge
appropriately. More generally, geometric rough paths with
random initial conditions (including the Stratonovich paths
(12)) can be approximately trained as random ODEs.

Theorem 2. Let X = (X,X) be an α-Hölder geometric
rough path, and {X(n)}∞n=1 a sequence of piecewise smooth
functions on [0, T ] that approximate X under the β-Hölder
norm for β ∈ ( 1

3 ,
1
2 ), that is, ‖X(n)−X‖β → 0 as n→∞.

Let Z, Z1, Z2, . . . be solutions to the differential equations

dZt = f(Zt, t, θ)dXt, Z0 ∼ p0, (13a)

dZ
(n)
t

dt
= f(Z

(n)
t , t, θ)

dX
(n)
t

dt
Z

(n)
0 = Z0. (13b)

Here f : Rd×[0, T ]×Rm → R is a four times continuously
differentiable bounded function, and p0 is a strictly positive
continuous density on Rd. Denote by p(n)

t the probability
density of Z(n)

t at time t, given by (2). Then the distribution
of Zt is absolutely continuous with respect to Lebesgue mea-
sure with corresponding continuous density pt and satisfies:

1. For any x ∈ Rd, sup
t∈[0,T ]

| log p
(n)
t (x) − log pt(x)| → 0

as n→∞.

2. The path t 7→ log pt(Zt) is the unique solution to the
rough differential equation

d log pt(Zt) = −∇z · (f(Zt, t, θ)dXt). (14)

3. For any smooth loss function L : Rd+1 → R and t ≥ 0,
as n→∞,

∇θL(Z
(n)
t , log p

(n)
t (Z

(n)
t ))→ ∇θL(Zt, log pt(Zt)).

(15)
Furthermore, if log p0 and L are also Lipschitz continu-
ous, the limit (15) converges at rate O(‖X(n) − X‖β)
as n→∞.

Proof of Theorem 2. We begin with some analytic back-
ground. The existence of the Lyons lift map [Friz and Vic-
toir, 2010, Theorem 9.5] asserts that each X(n) can be lifted

canonically to a rough path X(n) such that ρβ(X(n),X) ≤
Cβ‖X(n) −X‖β → 0 as n → ∞, for some Cβ > 0. For
an arbitrary rough path Y , we let Φt(Y , ξ) and Ψt(Y , `)
denote the solution maps for the rough differential equations

dZt = f(Zt, t, θ)dYt, Z0 = ξ,

dLt = −∇z · f(Zt, t, θ)dYt, L0 = `,

respectively.

Existence of Densities. By Friz and Hairer [2014, Theo-
rem 8.10], Φt(Y , ·) is a C1-diffeomorphism, and hence, for
Z0 ∼ p0(θ) and any t ∈ [0, T ], Zt = Φt(X, Z0) is an ab-
solutely continuous random variable, whose corresponding
density we denote by pt. In fact, denoting by Φ−t(Y , ·) the
inverse of Φt(Y , ·), via a changes of variables

p
(n)
t (x) = p0(Φ−t(X

(n), x))

∣∣∣∣det
∂Φ−t(X

(n), x)

∂x

∣∣∣∣ ,
(17)

pt(x) = p0(Φ−t(X, x))

∣∣∣∣det
∂Φ−t(X, x)

∂x

∣∣∣∣ , (18)

and so both p(n)
t and pt are continuous.

Four Essential Results. Furthermore, by Friz and Hairer
[2014, Theorem 8.5], for any 1

3 < γ < β, there exist con-
stants CΦ

γ , C
Ψ
γ such that for any β-Hölder continuous rough

paths X , Y and ξ, ξ̃ ∈ Rd, `, ˜̀∈ R+,

‖Φ(X, ξ)− Φ(Y , ξ̃)‖γ ≤ CΦ
γ (‖ξ − ξ̃‖+ %β(X,Y ))

(19)

‖Ψ(X, `)−Ψ(Y , ˜̀)‖γ ≤ CΨ
γ (|`− ˜̀|+ %β(X,Y )).

(20)

This lets us deduce the following facts as n→∞, for any
t ∈ [0, T ] and x ∈ Rd:

(i) ‖Z(n) − Z‖γ → 0 by (19);

(ii) using (i) and continuity of pt, log pt(Z
(n)
t ) →

log pt(Zt);

(iii) continuity guarantees that (19) implies p(n)
t (x) →

pt(x) via (17), (18), and estimates from and Friz and
Hairer [2014, Theorem 8.10];

(iv) combining (ii) and (iii), log p
(n)
t (Z

(n)
t )→ log pt(Zt).

Evolution of log-densities (Theorem 2.2). Since
Ψt(X

(n), log p0(Z0)) = log p
(n)
t (Z

(n)
t ) by Theorem 1, (iv)

and (20) give log pt(Zt) = Ψ(X, log p0(Z0)), whence
(14).
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Uniform Convergence (Theorem 2.1). Let x ∈ Rd be
arbitrary. To show that log p

(n)
t (x) converges uniformly in

t, observe that

log pt(x) = Ψ(X, log p0(Φ−t(X, x))), (21)

and similarly for log p
(n)
t (x). Together with property II

of geometric rough paths, inequality (19) with Y ≡
0 reveals that Φ−t(X

(n), x) and Φ−t(X, x) are uni-
formly bounded in t ∈ [0, T ]. Since log p0 is continuous,
log p0(Φ−t(X

(n), x)) converges to log p0(Φ−t(X, x)) uni-
formly in t ∈ [0, T ]. Applying (20) to (21),

sup
t∈[0,T ]

| log p
(n)
t (x)− log pt(x)| ≤ CΨ

γ (%β(X(n),X)

+ sup
t∈[0,T ]

| log p0(Φ−t(X
(n), x))−log p0(Φ−t(X, x))|)→ 0.

(22)

Adjoint Method (Theorem 2.3). To show (15), by Friz
and Hairer [2014, Proposition 5.6], we can write (θ, L) as
the solution to the rough differential equation

dθ = 0 (23a)
dL(Zt, log pt(Zt)) = ∇zL(Zt, log pt(Zt)) · dZt (23b)

+∇`L(Zt, log pt(Zt))d log pt(Zt)

and similarly for Z(n)
t and log p

(n)
t (Z

(n)
t ), where ∇z and

∇` denote the gradients with respect to Zt and log pt(Zt),
respectively. The derivative of L with respect to θ is a deriva-
tive of (23) with respect to its initial condition, and hence
(15) follows from Friz and Hairer [2014, Theorem 8.10].
The same result, together with (19), (20), and (22), com-
pletes the theorem.

Stochastic Adjoint Method. Theorem 2.3 is of particular
value in practice. For X = (B,BStrat), (13a) becomes an
SDE, and (13b) is its Wong–Zakai approximation. Since
Znt is a random ODE, conditioned on the Brownian motion
approximation, it can be trained using the adjoint method
(4). The claim (15) implies that training Znt to a smooth loss
L in this way properly approximates training Zt. An SDE
can be trained as a latent ODE model; no further theory or
special methodology is required. Indeed, by taking the limit
∇L(Znt ) → ∇L(Zt) and integrating the ODE (4) using
an Euler scheme, the stochastic adjoint method of Li et al.
[2020] is recovered. However, with Theorem 2, one may
use any valid approximation for Brownian motion, together
with any ODE integrator, and also involve the density in the
loss function.

Rates of Convergence. We would also like to briefly com-
ment on the rate of convergence in Theorem 2.3, which
suggests that the order of the error in the associated stochas-
tic adjoint method is on par with that of the Wong–Zakai

approximation. This presents one notable advantage over
the approach in Li et al. [2020]. The use of Wong–Zakai
approximations allows one to “split” the total approxima-
tion error into the sum of the integration error in solving the
ODE, and the approximation error in the Brownian motion.
Combining higher-order numerical integrators with a large
number of terms in a Karhunen-Loève expansion (for in-
stance), one can theoretically achieve arbitrarily fast rates of
convergence in computing the gradients, without involving
higher-order (expensive) approximations to the Lévy area
for the SDE (9).

3.4 DENSITY ESTIMATION

By a conditioning argument, any random ODE, such as a
Wong-Zakai approximation, may be treated as a continuous
normalizing flow. Let Zt be the solution to a random ODE
of the form

d

dt
Zt = f(Zt, ω, t, θ), (24)

where ω = (ω1, . . . , ωn) ∼ q(ω) is a random vector inde-
pendent of Zt, t, and θ. The reduction of a random ODE
to this form is in keeping with the reparameterization trick
[Xu et al., 2019]. In particular, for the piecewise linear and
Karhunen-Loève approximations, each ωi ∼ N (0, 1). After
conditioning on ω, Theorem 1 applied to (24) provides a
means of computing log pt(Zt|ω), after sampling Z0 ∼ p0.
The density pt(Zt) can be computed using a naive Monte
Carlo estimator

pθt (Zt) =

∫
pθt (Zt|ω)q(ω)dω ≈ 1

N

n∑
i=1

pθt (Zt|ωi), (25)

where the dependence on θ has been made explicit, and
can be optimized over using the adjoint method. Analo-
gously to Chen et al. [2018] and Grathwohl et al. [2018], the
density of data x may be estimated along a single sample
path Bt(ω) (denoted p(x|ω)) in the following way: letting
∆ log pωt = log pt(Zt|ω)−log p(x|ω), we see that ∆ log pωt
also satisfies (2). By solving (24) and the corresponding (2)
in reverse time from the initial conditions ZT = x and
∆ log pωT = 0, we obtain Z0 and ∆ log pω0 , and compute
log p(x|ω) = log p0(Z0)−∆ log pω0 . This is shown in Al-
gorithm 1, which depends on an ODE solver ODESOLVE,
and yields a density estimation procedure for SCNF when
paired with (25). Note that by comparison to Grathwohl
et al. [2018, Algorithm 1] which encompasses steps 6–12
of our Algorithm 1, we see much of the density estimation
procedure can be accomplished using an existing continu-
ous normalizing flow implementation. In variational settings
where log pT (ZT ) is required, the same procedure applies,
where x becomes ZT and is generated by the SDE as well.

A number of techniques exist for debiasing the logarithm
of (25) — see Rhee and Glynn [2015] and Rischard et al.
[2018], for example. Alternatively, we lie in the setting of
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Algorithm 1 Density estimation; single path

Input: drift function µ, diffusion function σ, an initial
density p0, final time T , minibatch of samples x, sample
path B̃t(ω) of Brownian motion approximation.
Output: an estimate of log p(x|ω)

1: Generate ε = (ε1, . . . , εd) for (3).
2: function ODEFUNC(z, t)
3: Compute µ̃(z, t) via (11). . Itô correction
4: return µ̃(z, t) + σ(z, t)dB̃t(ω)

dt .
5: end function
6: function AUG((z, log pt), t)
7: ft ← ODEFUNC(z, t, ω)
8: Jt ← −∇z(ε · ft) · ε . Trace estimator (3); n = 1
9: return (ft, Jt)

10: end function
11: (z,∆ log pωt )← ODESOLVE(AUG,(x, 0),0,T )
12: return log p0(z)−∆ log pωt

semi-implicit variational inference seen in Yin and Zhou
[2018] and Titsias and Ruiz [2019], and those techniques
directly extend to our case as well. Naturally, it would be
easiest to instead optimize the upper bound

− log pθt (Zt) ≤ −Eω log pθt (Zt|ω).

Observing that

log pθt (Zt)−DKL(q‖pθω|Zt
) = Eω log pθt (Zt|ω), (26)

minimizing −Eω log pθt (Zt|ω) maximizes the true log-
likelihood regularized by the KL-divergence between the
prior and posterior distributions for ω, which reduces the
effect of noise on the model. At the same time, parameteri-
zations of the diffusion coefficient that allow ‖σ‖ to shrink
to zero will often do so, resulting in overfitting, and should
be avoided to remain distinct from a CNF.

4 NUMERICAL EXPERIMENTS

While our contributions are predominantly theoretical, in
this section, we conduct simple numerical investigations
into two properties of SCNF not covered by the theory:
(1) whether trained time-homogeneous SDEs trained as
SCNFs are stable; and (2) the regularization effect of SCNFs
over CNFs. In both cases, we train a SCNF (9) — using
Algorithm 1 with the upper bound (26) — to data generated
from a specified target density. For our drift function, we
adopt the same architecture used in the toy examples of
Grathwohl et al. [2018]; a four-layer fully-connected neural
network with 64 hidden units in each layer. Dependence on
time is removed to ensure a time-homogeneous, and hence,
potentially stable SDE after training. The Dormand–Prince
integrator is used throughout, and all networks were trained

using Adagrad [Duchi et al., 2011], with p0 ∼ N (0, I) and
1000 samples.

4.1 EFFICACY AS A SEQUENTIAL SAMPLER

In our first example, we investigate stability of SDEs trained
using the SCNF framework. Data is generated from the
banana-shaped density

p(x, y) ∝ exp(− 1
2 (x2 + 1

2 (x2 + y)2)).

Two choices of diffusion coefficient are considered: the first,
where σ = I , yields a neural SDE that can be trained using
the techniques of Li et al. [2020]. For the second, we choose

σ(x) = λ

(
1 σ1(x)

σ2(x) 1

)
, (27)

with λ = 1, and parameterize (σ1, σ2) by a two-layered
neural network with 64 hidden units. This SDE can only
be trained using our method. After training, to emulate the
application of these SDEs as approximate samplers, a single
sample path with 10,000 steps was simulated for each model
using the Euler–Maruyama method. The resulting paths are
compared in Figure 2. From data alone, both models appear
to have constructed stable processes, reminiscent of an er-
godic process with the target density as its invariant measure.
The addition of a trainable diffusion coefficient led to im-
proved adaptation of the sampler to the underlying curvature.
This is perhaps unsurprising in light of the improved perfor-
mance attained by Riemannian MCMC methods [Girolami
and Calderhead, 2011, van der Heide et al., 2021].

Figure 2: Sample paths from SDEs trained as stochastic
continuous normalizing flows to a banana-shaped density.

4.2 VISUALIZING REGULARIZATION

As discussed in Liu et al. [2019], the stochastic noise injec-
tion in SDEs is a natural form of regularization, that can
potentially improve robustness to noisy or adversarial data.
We visualize this effect by considering the same stochastic
continuous normalizing flows treated in §4.1 with diffusion
coefficient (27), and adjusting the parameter λ > 0. Our
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Figure 3: Density plots of stochastic continuous normalizing
flows trained to a star-shaped density with varying diffusion
coefficients.

data is generated in polar coordinates from a ten-pointed
star-shaped density by

θ ∼ Unif(−π, π), r|θ ∼ N ( 2√
1+ 1

2 sin(10θ)
, 9

400 ).

In Figure 3, we plot the densities for λ ∈ {0, 1
10 ,

1
2 , 1}

computed using Algorithm 1, noting that the λ = 0 case
corresponds to a continuous normalizing flow. Increasing λ
reveals generative models with expectedly higher variance,
but with improved capacity to smooth out minor (potentially,
unwanted) details.

5 CONCLUSION

We have developed a general theoretical framework for
extending the training processes of ODE-based models —
including the continuous normalizing flows framework it-
self — to analogous SDE-based models. Constructed from
rough path theory, our framework enables practitioners of
neural ODEs to apply their existing implementation for
training neural SDEs. This is advantageous, as neural SDEs
have been suggested to be more robust than neural ODEs in
high-dimensional real-world examples [Liu et al., 2019, Li
et al., 2020]. However, several practical challenges remain.
In particular, we have found the density estimators (25) to
have relatively high variance. This could be overcome using
control variates, for example. Additionally, the usual chal-
lenges of semi-implicit variational inference remain, with
the troublesome tendency for (26) to overfit. Addressing

these features is important for effective implementations of
SCNF in real-world settings, and is the subject of future
work.
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