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Abstract

Kernel k-means clustering can correctly identify and extract a far more varied collection
of cluster structures than the linear k-means clustering algorithm. However, kernel k-
means clustering is computationally expensive when the non-linear feature map is high-
dimensional and there are many input points.

Kernel approximation, e.g., the Nyström method, has been applied in previous works to
approximately solve kernel learning problems when both of the above conditions are present.
This work analyzes the application of this paradigm to kernel k-means clustering, and shows
that applying the linear k-means clustering algorithm to k

ε (1 + o(1)) features constructed
using a so-called rank-restricted Nyström approximation results in cluster assignments that
satisfy a 1 + ε approximation ratio in terms of the kernel k-means cost function, relative to
the guarantee provided by the same algorithm without the use of the Nyström method. As
part of the analysis, this work establishes a novel 1 + ε relative-error trace norm guarantee
for low-rank approximation using the rank-restricted Nyström approximation.

Empirical evaluations on the 8.1 million instance MNIST8M dataset demonstrate
the scalability and usefulness of kernel k-means clustering with Nyström approximation.
This work argues that spectral clustering using Nyström approximation—a popular and
computationally efficient, but theoretically unsound approach to non-linear clustering—
should be replaced with the efficient and theoretically sound combination of kernel k-means
clustering with Nyström approximation. The superior performance of the latter approach
is empirically verified.
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1. Introduction

Cluster analysis divides a data set into several groups using information found only in the
data points. Clustering can be used in an exploratory manner to discover meaningful
groupings within a data set, or it can serve as the starting point for more advanced
analyses. As such, applications of clustering abound in machine learning and data
analysis, including, inter alia: genetic expression analysis (Sharan et al., 2002), market
segmentation (Chaturvedi et al., 1997), social network analysis (Handcock et al., 2007),
image segmentation (Haralick and Shapiro, 1985), anomaly detection (Chandola et al.,
2009), collaborative filtering (Ungar and Foster, 1998), and fast approximate learning of
non-linear models (Si et al., 2014).

Linear k-means clustering is a standard and well-regarded approach to cluster analysis
that partitions input vectors {a1, . . . ,an} ⊂ Rd into k clusters, in an unsupervised manner,
by assigning each vector to the cluster with the nearest centroid. Formally, linear k-means
clustering seeks to partition the set [n] = {1, . . . , n} into k disjoint sets J1, . . . ,Jk by solving

argmin
J1,...,Jk

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥aj − 1

|Ji|
∑
l∈Ji

al

∥∥∥∥2
2

. (1)

Lloyd’s algorithm (Lloyd, 1982) is a standard approach for finding local minimizers of (1),
and is a staple in data mining and machine learning.

Despite its popularity, linear k-means clustering is not a universal solution to all
clustering problems. In particular, linear k-means clustering strongly biases the recovered
clusters towards isotropy and sphericity. Applied to the data in Figure 1(a), Lloyd’s
algorithm is perfectly capable of partitioning the data into three clusters which fit these
assumptions. However, the data in Figure 1(b) do not fit these assumptions: the clusters
are ring-shaped and have coincident centers, so minimizing the linear k-means objective
does not recover these clusters.

(a) (b) (c)

Figure 1: Figures 1(a) and 1(b) show two sets of two-dimensional points, with different
colors indicating different clusters. Figure 1(a) is separable using linear k-means;
Figures 1(b) is inseparable using linear k-means. Figure 1(c) shows the first two
dimensions of the feature vectors k1, . . . ,kn ∈ Rn derived from a kernel.

To extend the scope of k-means clustering to include anistotropic, non-spherical clusters
such as those depicted in Figure 1(b), Schölkopf et al. (1998) proposed to perform linear
k-means clustering in a nonlinear feature space instead of the input space. After choosing
a feature function φ : Rd 7→ F to map the input vectors non-linearly into feature vectors,
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they propose minimizing the objective function

argmin
J1,...,Jk

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥φ(aj) −
1

|Ji|
∑
l∈Ji

φ(al)

∥∥∥∥2
2

, (2)

where {J1, . . . ,Jk} denotes a k-partition of [n]. The “kernel trick” enables us to minimize
this objective without explicitly computing the potentially high-dimensional features, as
inner products in feature space can be computed implicitly by evaluating the kernel function

κ
(
ai, aj

)
=
〈
φ(ai), φ(aj)

〉
.

Thus the information required to solve the kernel k-means problem (2), is present in the
kernel matrix K = [κ(ai,aj)]ij ∈ Rn×n.

Let K = VΛVT be the full eigenvalue decomposition (EVD) of the kernel matrix and

k1, . . . ,kn ∈ Rn be the rows of VΛ1/2 ∈ Rn×n. It can be shown (see Appendix B.3) that
the solution of (2) is identical to the solution of

argmin
J1,...,Jk

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥kj − 1

|Ji|
∑
l∈Ji

kl

∥∥∥∥2
2

. (3)

To demonstrate the power of kernel k-means clustering, consider the dataset in Figure 1(b).
We use the Gaussian RBF kernel

κ(a,a′) = exp
(
− 1

2σ2 ‖a− a′‖22
)

with σ = 0.3, and form the corresponding kernel matrix of the data in Figure 1(b).
Figure 1(c) scatterplots the first two coordinates of the feature vectors k1, . . . ,kn. Clearly,
the first coordinate of the feature vectors already separates the two classes well, so k-means
clustering using the non-linear features k1, · · · ,kn has a better chance of separating the two
classes.

Although it is more generally applicable than linear k-means clustering, kernel k-
means clustering is computationally expensive. As a baseline, we consider the cost of
optimizing (3). The formation of the kernel matrix K given the input vectors a1, . . . ,an ∈
Rd costs O(n2d) time. The objective in (3) can then be (approximately) minimized using
Lloyd’s algorithm at a cost of O(n2k) time per iteration. This requires the n-dimensional
non-linear feature vectors obtained from the full EVD of K; computing these feature vectors
takesO(n3) time, because K is, in general, full-rank. Thus, approximately solving the kernel
k-means clustering problem by optimizing (3) costs O(n3 + n2d + Tn2k) time, where T is
the number of iterations of Lloyd’s algorithm.

Kernel approximation techniques, including the Nyström method (Nyström, 1930;
Williams and Seeger, 2001; Gittens and Mahoney, 2016) and random feature maps (Rahimi
and Recht, 2007), have been applied to decrease the cost of solving kernelized machine
learning problems: the idea is to replace K with a low-rank approximation, which allows
for more efficient computations. Chitta et al. (2011, 2012) proposed to apply kernel
approximations to efficiently approximate kernel k-means clustering. Although kernel
approximations mitigate the computational challenges of kernel k-means clustering, the
aforementioned works do not provide guarantees on the clustering performance: how
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accurate must the low-rank approximation of K be to ensure near optimality of the
approximate clustering obtained via this method?

We propose a provable approximate solution to the kernel k-means problem based on
the Nyström approximation. Our method has three steps: first, extract c (c� n) features
using the Nyström method; second, reduce the features to s dimensions (k ≤ s < c) using
the truncated SVD;1 third, apply any off-the-shelf linear k-means clustering algorithm upon
the s-dimensional features to obtain the final clusters. The total time complexity of the
first two steps is O(ndc + nc2). The time complexity of the third step depends on the
specific linear k-means algorithm; for example, using Lloyd’s algorithm, the per-iteration
complexity is O(nsk), and the number of iterations may depend on s.2

Our method comes with a strong approximation ratio guarantee. Suppose we set s = k/ε
and c = Õ(µs/ε) for any ε ∈ (0, 1), where µ ∈ [1, ns ] is the coherence parameter of the
dominant s-dimensional singular space of the kernel matrix K. Also suppose the standard
kernel k-means and our approximate method use the same linear k-means clustering
algorithm, e.g., Lloyd’s algorithm or some other algorithm that comes with different provable
approximation guarantees. As guaranteed by Theorem 2, when the quality of the clustering
is measured by the cost function defined in (2), with probability at least 0.9, our algorithm
returns a clustering that is at most 1 +O(ε) times worse than the standard kernel k-means
clustering. Our theory makes explicit the trade-off between accuracy and computation:
larger s and c lead to high accuracy and also high computational cost.

Spectral clustering (Shi and Malik, 2000; Ng et al., 2002) is a popular alternative to
kernel k-means clustering that can also partition non-linearly separable data such as those
in Figure 1(b). Unfortunately, because it requires computing an n×n affinity matrix and the
top k eigenvectors of the corresponding graph Laplacian, spectral clustering is inefficient for
large n. Fowlkes et al. (2004) applied the Nyström approximation to increase the scalability
of spectral clustering. Since then, spectral clustering with Nyström approximation has
been used in many works, e.g., (Arikan, 2006; Berg et al., 2004; Chen et al., 2011; Wang
et al., 2016b; Weiss et al., 2009; Zhang and Kwok, 2010). Despite its popularity in practice,
this approach does not come with guarantees on the approximation ratio for the obtained
clustering. Our algorithm, which combines kernel k-means with Nyström approximation,
is an equally computationally efficient alternative that comes with strong bounds on the
approximation ratio, and can be used wherever spectral clustering is applied.

1.1. Contributions

Using tools developed in (Boutsidis et al., 2015; Cohen et al., 2015; Feldman et al., 2013),
we rigorously analyze the performance of approximate kernel k-means clustering with the
Nyström approximation, and show that a rank-kε Nyström approximation delivers a 1+O(ε)

1. This is why our variant is called the rank-restricted Nyström approximation. The rank-restriction serves
two purposes. First, although we do not know whether the rank-restriction is necessary for the 1 + ε
bound, we are unable to establish the bound without it. Second, the rank-restriction makes the third step,
linear k-means clustering, much less costly. For the computational benefit, previous works (Boutsidis
et al., 2009, 2010, 2015; Cohen et al., 2015; Feldman et al., 2013) have considered dimensionality reduction
for linear k-means clustering.

2. Without the rank-restriction, the per-iteration cost would be O(nck), and the number of iterations may
depend on c.
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approximation ratio guarantee, relative to the guarantee provided by the same algorithm
without the use of the Nyström method.

As part of the analysis of kernel k-means with Nyström approximation, we establish
the first relative-error bound for rank-restricted Nyström approximation,3 which has
independent interest.

Kernel k-means clustering and spectral clustering are competing solutions to the
nonlinear clustering problem, neither of which scales well with n. Fowlkes et al. (2004)
introduced the use of Nyström approximations to make spectral clustering scalable; this
approach has become popular in machine learning. We identify fundamental mathematical
problems with this heuristic. These concerns and an empirical comparison establish that
our proposed combination of kernel k-means with rank-restricted Nyström approximation
is a theoretically well-founded and empirically competitive alternative to spectral clustering
with Nyström approximation.

Finally, we demonstrate the scalability of this approach by measuring the performance
of an Apache Spark implementation of a distributed version of our approximate kernel k-
means clustering algorithm using the MNIST8M data set, which has 8.1 million instances
and 10 classes.

1.2. Relation to Prior Work

The key to our analysis of the proposed approximate kernel k-means clustering algorithm is
a novel relative-error trace norm bound for a rank-restricted Nyström approximation. We
restrict the rank of the Nyström approximation in a non-standard manner (see Remark 1).
Our relative-error trace norm bound is not a simple consequence of the existing bounds
for non-rank-restricted Nyström approximation such as the ones provided by Gittens and
Mahoney (2016). The relative-error bound which we provide for the rank-restricted Nyström
approximation is potentially useful in other applications involving the Nyström method.

The projection-cost preservation (PCP) property (Cohen et al., 2015; Feldman et al.,
2013) is an important tool for analyzing approximate linear k-means clustering. We apply
our novel relative-error trace norm bound as well as existing tools in (Cohen et al., 2015)
to prove that the rank-restricted Nyström approximation enjoys the PCP property. We do
not rule out the possibility that the non-rank-restricted (rank-c) Nyström approximation
satisfies the PCP property and/or also enjoys a 1 + ε approximation ratio guarantee when
applied to kernel k-means clustering. However, the cost of the linear k-means clustering step
in the algorithm is proportional to the dimensionality of the feature vectors, so the rank-
restricted Nyström approximation, which produces s-dimensional feature vectors, where
s < c, is more computationally desirable.

Musco and Musco (2017) similarly establishes a 1 + ε approximation ratio for the kernel
k-means objective when a Nyström approximation is used in place of the full kernel matrix.
Specifically, Musco and Musco (2017) shows that when c = O(kε log k

ε ) columns of K are
sampled using ridge leverage score (RLS) sampling (Alaoui and Mahoney, 2015; Cohen
et al., 2017; Musco and Musco, 2017) and are used to form a Nyström approximation,

3. Similar relative-error bounds were independently developed by contemporaneous work of Tropp et al.
(2017), in service of the analysis of a novel streaming algorithm for fixed-rank approximation of positive
semidefinite matrices. Preliminary versions of this work and theirs were simultaneously submitted to
arXiv in June 2017.
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Table 1: Commonly used parameters. It holds that k ≤ s ≤ c ≤ n.
Notation Definition

n number of samples

d number of features (attributes)

k number of clusters

s target rank of the Nyström approximation

c sketch size of the Nyström approximation

then applying linear k-means clustering to the c-dimensional Nyström features returns a
clustering that has objective value at most 1 + ε times as large as the objective value of
the best clustering. Our theory is independent of that in Musco and Musco (2017), and
differs in that (1) Musco and Musco (2017) applies specifically to Nyström approximations
formed using RLS sampling, whereas our guarantees apply to any sketching method that
satisfies the “subspace embedding” and “matrix multiplication” properties (see Lemma 10
for definitions of these two properties); (2) Musco and Musco (2017) establishes a 1 + ε
approximation ratio for the non-rank-restricted RLS-Nyström approximation, whereas we
establish a 1+ε approximation ratio for the (more computationally efficient) rank-restricted
Nyström approximation.

1.3. Paper Organization

In Section 2, we start with a definition of the notation used throughout this paper as
well as a background on matrix sketching methods. Then, in Section 3, we present our
main theoretical results: Section 3.1 presents an improved relative-error rank-restricted
Nyström approximation; Section 3.2 presents the main theoretical results on kernel k-
means with Nyström approximation; and Section 3.3 studies kernel k-means with kernel
principal component analysis. Section 4 discusses and evaluates the theoretical and
empirical merits of kernel k-means clustering versus spectral clustering, when each is
approximated using Nyström approximation. Section 5 empirically compares the Nyström
method and the random feature maps for the kernel k-means clustering on medium-scale
data. Section 6 presents a large-scale distributed implementation in Apache Spark and
its empirical evaluation on a data set with 8.1 million points. Section 7 provides a brief
conclusion. Proofs are provided in the Appendices.

2. Notation

This section defines the notation used throughout this paper. A set of commonly used
parameters is summarized in Table 1.

Matrices and vectors. We take In to be the n × n identity matrix, 0 to be a vector
or matrix of all zeros of the appropriate size, and 1n to be the n-dimensional vector of all
ones.
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Sets. The set {1, 2, · · · , n} is written as [n]. We call {J1, · · · ,Jk} a k-partition of [n] if
J1 ∪ · · · ∪ Jk = [n] and Jp ∩ Jq = ∅ when p 6= q. Let |J | denote the cardinality of the set
J .

Singular value decomposition (SVD). Let A ∈ Rn×d and ρ = rank(A). A (compact)
singular value decomposition (SVD) is defined by

A = UΣVT =
∑ρ

i=1 σi(A)uiv
T
i ,

where U, Σ, V are an n × ρ column-orthogonal matrix, a ρ × ρ diagonal matrix with
nonnegative entries, and a d× ρ column-orthogonal matrix, respectively. If A is symmetric
positive semi-definite (SPSD), then U = V, and this decomposition is also called the
(reduced) eigenvalue decomposition (EVD). By convention, we take σ1(A) ≥ · · · ≥ σρ(A).

Truncated SVD. The matrix As =
∑s

i=1 σi(A)uiv
T
i is a rank-s truncated SVD of A,

and is an optimal rank-s approximation to A when the approximation error is measured in
a unitarily invariant norm.

The Moore-Penrose inverse of A is defined by A† = VΣ−1UT .

Leverage score and coherence. Let U ∈ Rn×ρ be defined in the above and ui be the
i-th row of U. The row leverage scores of A are li = ‖ui‖22 for i ∈ [n]. The row coherence
of A is µ(A) = n

ρ maxi ‖ui‖22. The leverage scores for a matrix A can be computed exactly
in the time it takes to compute the matrix U; and the leverage scores can be approximated
(in theory (Drineas et al., 2012) and in practice (Gittens and Mahoney, 2016)) in roughly
the time it takes to apply a random projection matrix to the matrix A.

Matrix norms. We use three matrix norms in this paper:

Frobenius Norm: ‖A‖F =
√∑

i,ja
2
ij =

√∑
iσ

2
i (A);

Spectral Norm: ‖A‖2 = max
‖x‖2=1

∥∥Ax
∥∥
2

= σ1(A);

Trace Norm: ‖A‖∗ =
∑
iσi(A).

Any square matrix satisfies tr(A) ≤ ‖A‖∗. If additionally A is SPSD, then tr(A) = ‖A‖∗.

Matrix sketching Here, we briefly review matrix sketching methods that are commonly
used within randomized linear algebra (RLA) (Mahoney, 2011).

Given a matrix A ∈ Rm×n, we call C = AP ∈ Rm×c (typically c� n) a sketch of A and
P ∈ Rn×c a sketching matrix. Within RLA, sketching has emerged as a powerful primitive,
where one is primarily interested in using random projections and random sampling to
construct randomzed sketches (Mahoney, 2011; Drineas and Mahoney, 2016). In particular,
sketching is useful as it allows large matrices to be replaced with smaller matrices which
are more amenable to efficient computation, but provably retain almost optimal accuracy in
many computations (Mahoney, 2011; Woodruff, 2014). The columns of C typically comprise
a rescaled subset of the columns of A, or random linear combinations of the columns of A;
the former type of sketching is called column selection or random sampling, and the latter
is referred to as random projection.

Column selection forms C ∈ Rm×c using a randomly sampled and rescaled subset of
the columns of A ∈ Rm×n. Let p1, · · · , pn ∈ (0, 1) be the sampling probabilities associated
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with the columns of A (so that, in particular,
∑n

i=1 pi = 1). The columns of the sketch are
selected identically and independently as follows: each column of C is randomly sampled
from the columns of A according to the sampling probabilities and rescaled by 1√

cpi
, where i

is the index of the column of A that was selected. In our matrix multiplication formulation
for sketching, column selection corresponds to a sketching matrix P ∈ Rn×c that has exactly
one non-zero entry in each column, whose position and magnitude correspond to the index of
the column selected from A. Uniform sampling is column sampling with p1 = · · · = pn = 1

n ,

and leverage score sampling takes pi = li∑
j lj

for i ∈ [n], where li is the i-th leverage score

of some matrix (typically A, Ak, or an randomized approximation thereto) (Drineas et al.,
2012).

Gaussian projection is a type of random projection where the sketching matrix is taken
to be P = 1√

c
G ∈ Rn×c; here the entries of G are i.i.d. N (0, 1) random variables. Gaussian

projection is inefficient relative to column sampling: the formation of a Gaussian sketch
of a dense m × n matrix requires O(mnc) time. The Subsampled Randomized Hadamard
Transform (SRHT) is a more efficient alternative that enjoys similar properties to the
Gaussian projection (Drineas et al., 2011; Lu et al., 2013; Tropp, 2011), and can be applied
to a dense m× n matrix in only O(mn log c) time. The CountSketch is even more efficient:
it can be applied to any matrix A in O(nnz(A)) time (Clarkson and Woodruff, 2013; Meng
and Mahoney, 2013; Nelson and Nguyên, 2013), where nnz(·) denotes the number of nonzero
entries in a matrix.

3. Our Main Results: Improved SPSD Matrix Approximation and
Kernel k-means Approximation

In this section, we present our main theoretical results. We start, in Section 3.1, by
presenting Theorem 1, a novel result on SPSD matrix approximation with the rank-
restricted Nyström method. This result is of independent interest, and so we present it
in detail, but in this paper we will use it to establish our main result. Then, in Section 3.2,
we present Theorem 2, which is our main result for approximate kernel k-means with the
Nyström approximation. In Section 3.3, we establish novel guarantees on kernel k-means
with dimensionality reduction.

3.1. The Nyström Method

The Nyström method (Nyström, 1930) is the most popular kernel approximation method
in the machine learning community. Let K ∈ Rn×n be an SPSD matrix and P ∈ Rn×c be a
sketching matrix. The Nyström method approximates K with CW†CT , where C = KP and
W = PTKP. The Nyström method was introduced to the machine learning community
by Williams and Seeger (2001); since then, numerous works have studied its theoretical
properties, e.g., (Drineas and Mahoney, 2005; Gittens and Mahoney, 2016; Jin et al., 2013;
Kumar et al., 2012; Wang and Zhang, 2013; Yang et al., 2012).

Empirical results in (Gittens and Mahoney, 2016; Wang et al., 2016b; Yang et al., 2012)
demonstrated that the accuracy of the Nyström method significantly increases when the
spectrum of K decays fast. This suggests that the Nyström approximation captures the
dominant eigenspaces of K, and that error bounds comparing the accuracy of the Nyström
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Table 2: Sufficient sketch sizes for several sketching methods used to construct Nyström
approximations to the matrix K. Let Ks = VsΣsV

T
s be the truncated SVD of K,

then µ denotes the row coherence of Vs ∈ Rn×s and the leverage score sampling
is done using the row leverage scores of Vs.

sketching sketch size (c) time complexity (T )
uniform sampling O(µs/ε+ µs log s) O(nc)

leverage sampling O(s/ε+ s log s) Õ(n2s)
Gaussian projection O(s/ε) O(n2c)

SRHT O((s+ log n)(ε−1 + log s)) O(n2 log c)
CountSketch O(s/ε+ s2) O(n2)

approximation of K to that of the best rank-s approximation Ks (for s < c) would provide
a meaningful measure of the performance of the Nyström kernel approximation. Gittens
and Mahoney (2016) established the first relative-error bounds showing that for sufficiently
large c, the trace norm error ‖K −CW†CT ‖∗ is comparable to ‖K −Ks‖∗. Such results
quantify the benefits of spectral decay to the performance of the Nyström method, and are
sufficient to analyze the performance of Nyström approximations in applications such as
kernel ridge regression (Alaoui and Mahoney, 2015; Bach, 2013) and kernel support vector
machines (Cortes et al., 2010).

However, Gittens and Mahoney (2016) did not analyze the performance of rank-
restricted Nyström approximations; they compared the approximation accuracies of the
rank-c matrix CW†CT and the rank-s matrix Ks (recall s < c). In our application
to approximate kernel k-means clustering, it is the rank-s matrix (CW†CT )s that is of

relevance. Given C and W, the truncated SVD
(
(W†)1/2CT

)
s

= ŨsΣ̃sṼ
T
s can be found

using O(nc2) time. Then the rank-s Nyström approximation can be written as

(CW†CT )s =
(
C(W†)1/2

)
s

(
C(W†)1/2

)T
s

= ṼsΣ̃
2

sṼ
T
s . (4)

Theorem 1 provides a relative-error trace norm approximation guarantee for the sketch (4)
and is novel; a proof is provided in Appendix A.

Theorem 1 (Relative-Error Rank-Restricted Nyström Approximation) Let K ∈
Rn×n be an SPSD matrix, s be the target rank, and ε ∈ (0, 1) be an error parameter. Let
P ∈ Rn×c be a sketching matrix corresponding to one of the sketching methods listed in
Table 2. Let C = KP and W = PTKP. Then∥∥K− (CW†CT )s

∥∥
∗ ≤ (1 + ε)

∥∥K−Ks

∥∥
∗

holds with probability at least 0.9. In addition, there exists an n × s column orthogonal
matrix Q such that (CW†CT )s = K1/2QQTK1/2.

Remark 1 (Rank Restrictions) The traditional rank-restricted Nyström approximation,
C(Ws)

†CT , (Drineas and Mahoney, 2005; Fowlkes et al., 2004; Gittens and Mahoney,
2016; Li et al., 2015) is not known to satisfy a relative-error bound of the form
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guaranteed in Theorem 1. Pourkamali-Anaraki and Becker (2016) pointed out the
drawbacks of the traditional rank-restricted Nyström approximation and proposed the use
of the rank-restricted Nyström approximation (CW†CT )s in applications requiring kernel
approximations, but provided only empirical evidence of its performance. This work provides
guarantees on the approximation error of the rank-restricted Nyström approximation
(CW†CT )s, and applies this approximation to the kernel k-means clustering problem. The
contemporaneous work Tropp et al. (2017) provides similar guarantees on the approximation
error of (CW†CT )s, and uses this Nyström approximation as the basis of a streaming
algorithm for fixed-rank approximation of positive-semidefinite matrices.

3.2. Main Result for Approximate Kernel k-means

In this section we establish the approximation ratio guarantees for the objective function
of kernel k-means clustering. We first define γ-approximate k-means algorithms (where
γ ≥ 1), then present our main result in Theorem 2.

Let A be a matrix with n rows a1, · · · ,an. The objective function for linear k-means
clustering over the rows of A is

f
(
J1, · · · ,Jk ; A

)
=

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥aj − 1

|Ji|
∑
l∈Ji

al

∥∥∥∥2
2

.

The minimization of f w.r.t. the k-partition {J1, · · · ,Jk} is NP-hard (Garey et al., 1982;
Aloise et al., 2009; Dasgupta and Freund, 2009; Mahajan et al., 2009; Awasthi et al., 2015),
but approximate solutions can be obtained in polynomial time. γ-approximate algorithms
capture one useful notion of approximation.

Definition 1 (γ-Approximate Algorithms) A linear k-means clustering algorithm Aγ
takes as input a matrix Z with n rows and outputs {J ′1, · · · ,J ′k}. We call Aγ a γ-
approximate algorithm if, for any such matrix Z,

f
(
J ′1, · · · ,J ′k ; Z

)
≤ γ · min

J1,··· ,Jk

f
(
J1, · · · ,Jk ; Z

)
.

Here {J1, · · · ,Jk} and {J ′1, · · · ,J ′k} are k-partitions of [n].

Many (1 + ε)-approximation algorithms have been proposed, but they are computation-
ally expensive (Chen, 2009; Har-Peled and Mazumdar, 2004; Kumar et al., 2004; Matousek,
2000). There are also relatively efficient constant factor approximate algorithms, e.g.,
(Arthur and Vassilvitskii, 2007; Kanungo et al., 2002; Song and Rajasekaran, 2010).

Let φ be a feature map, Φ be the matrix with rows φ(a1), . . . , φ(an), and K = ΦΦT ∈
Rn×n be the associated kernel matrix. Analogously, we denote the objective function for
kernel k-means clustering by

f
(
J1, · · · ,Jk ; Φ

)
=

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥φ(aj) −
1

|Ji|
∑
l∈Ji

φ(al)

∥∥∥∥2
2

,

where {J1, · · · ,Jk} is a k-partition of [n].
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Theorem 2 (Kernel k-Means with Nyström Approximation) Choose a sketching ma-
trix P ∈ Rn×c and sketch size c consistent with Table 2. Let CW†CT be the previously
defined Nyström approximation of K. Let B ∈ Rn×s be any matrix satisfying BBT =
(CW†CT )s. Let the k-partition {J̃1, · · · , J̃k} be the output of a γ-approximate algorithm
applied to the rows of B. With probability at least 0.9,

f
(
J̃1, · · · , J̃k ; Φ

)
≤ γ

(
1 + ε+ k

s

)
· min
J1,··· ,Jk

f
(
J1, · · · ,Jk ; Φ

)
.

Remark 2 Kernel k-means clustering is an NP-hard problem. Therefore, instead of com-
paring with min f , we compare with clusterings obtained using γ-approximate algorithms.
Theorem 2 shows that, when uniform sampling to form the Nyström approximation, if
s = O(kε ) and c = Õ(µsε ), then the returned clustering has an objective value that is at
most a factor of ε larger than the objective value of the kernel k-means clustering returned
by the γ-approximate algorithm.

Remark 3 Assume we are in a practical setting where c, the budget of column samples one
can use to form a Nyström approximation, and k, the number of desired cluster centers,
are fixed. The pertinent question is how to choose s to produce a high-quality approximate
clustering. Theorem 2 shows that for uniform sampling, the error ratio is

1 + ε+ k
s = 1 + Õ( sµc ) + k

s .

To balance the two sources of error, s must be larger than k, but not too large a fraction of
c. To minimize the above error ratio, s should be selected on the order of

√
kc/µ. Since the

matrix coherence µ (≥ 1) is unknown, it can be heuristically treated as a constant.

We empirically study the effect of the values of c and s using a data set comprising
8.1 million samples. Note that computing the kernel k-means clustering objective function
requires the formation of the entire kernel matrix K, which is infeasible for a data set
of this size; instead, we use normalized mutual information (NMI) (Strehl and Ghosh,
2002)—a standard measure of the performance of clustering algorithms— to measure the
quality of the clustering obtained by approximating kernel k-means clustering using Nyström
approximations formed through uniform sampling. NMI scores range from zero to one,
with a larger score indicating better performance. We report the results in Figure 2. The
complete details of the experiments, including the experimental setting and time costs, are
given in Section 6.

From Figure 2(a) we observe that larger values of c lead to better and more stable
clusterings: the mean of the NMI increases and its standard deviation decreases. This
is reasonable and in accordance with our theory. However, larger values of c incur more
computations, so one should choose c to trade off computation and accuracy.

Figure 2(b) shows that for fixed k and c, the clustering performance is not monotonic
in s, which matches Theorem 2 (see the discussion in Remark 3). Setting s as small as
k results in poor performance. Setting s over-large not only incurs more computations,
but also negatively affects clustering performance; this may suggest the necessity of rank-
restriction. Furthermore, in this example,

√
kc = 126.5, which corroborates the suggestion

made in Remark 3 that setting s around
√
kc/µ (where µ is unknown but can be treated

as a constant larger than 1) can be a good choice.

11
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Sketch Size c
100 400 1600

N
M

I

0.37

0.38

0.39

0.4

0.41

(a) Fix s = 20 and vary c.

Target Dimension s
10 20 40 80 160 320

N
M

I

0.39

0.4

0.41

0.42

0.43

0.44

(b) Fix c = 1600 and vary s.

Figure 2: Performance of approximate kernel k-means clustering on the MNIST8M data set,
for which n = 8.1 × 106, d = 784, and k = 10. We use Nyström approximations
formed using uniform sampling, and the built-in k-means algorithm of Spark
MLlib (a parallelized variant of the k-means++ method) with the setting
MaxIter = 100.

Remark 4 Musco and Musco (2017) established a 1 + ε approximation ratio for the kernel
k-means objective value when a non-rank-restricted Nyström approximation is formed using
ridge leverage scores (RLS) sampling; their analysis is specific to RLS sampling and does
not extend to other sketching methods. By way of comparison, our analysis covers several
popular sampling schemes and applies to rank-restricted Nyström approximations, but does
not extend to RLS sampling.

3.3. Approximate Kernel k-Means with KPCA and Power Method

The use of dimensionality reduction to increase the computational efficiency of k-means
clustering has been widely studied, e.g. in (Boutsidis et al., 2010, 2015; Cohen et al., 2015;
Feldman et al., 2013; Zha et al., 2002). Kernel principal component analysis (KPCA) is
particularly well-suited to this application (Dhillon et al., 2004; Ding et al., 2005). Applying
Lloyd’s algorithm on the rows of Φ or K−1/2 has an O(n2k) per-iteration complexity; if
s features are extracted using KPCA and Lloyd’s algorithm is applied to the resulting
s-dimensional feature map, then the per-iteration cost reduces to O(nsk). Proposition 3
states that, to obtain a 1 + ε approximation ratio in terms of the kernel k-means objective
function, it suffices to use s = k

ε KPCA features. This proposition is a simple consequence
of (Cohen et al., 2015).

Proposition 3 (KPCA) Let Φ be a matrix with n rows, and K = ΦΦT ∈ Rn×n be the
corresponding kernel matrix. Let Ks = VsΛsV

T
s be the truncated SVD of K and take

B = VsΛ
1/2
s ∈ Rn×s. Let the k-partition {J̃1, · · · , J̃k} be the output of a γ-approximate

algorithm applied to the rows of B. Then

f
(
J̃1, · · · , J̃k ; Φ

)
≤ γ

(
1 + k

s

)
· min
J1,··· ,Jk

f
(
J1, · · · ,Jk ; Φ

)
.

12
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Algorithm 1 Approximate Kernel k-Means using the Power Method.

1: Input: kernel matrix K ∈ Rn×n, number of clusters k, target dimension s (≥ k), sketch size c (≥
s), number of iterations t (≥ 1)

2: Draw a Gaussian projection matrix P ∈ Rn×c;
3: for all j ∈ [t] do
4: P←− KP;
5: end for
6: Orthogonalize P to obtain U ∈ Rn×c;
7: Compute C = KU and W = UTKU;
8: Compute a B ∈ Rn×s satisfying (CW†CT )s = BBT ;
9: return B.

In practice, the truncated SVD (equivalently EVD) of K is computed using the power
method or Krylov subspace methods. These numerical methods do not compute the
exact decomposition Ks = VsΛsV

T
s , so Proposition 3 is not directly applicable. It is

useful to have a theory that captures the effect of realisticly inaccurate estimates like
Ks ≈ ṼsΛ̃sṼ

T
s on the clustering process. As one particular example, consider that general-

purpose implementations of the truncated SVD attempt to mitigate the fact that the
computed decompositions are inaccurate by returning very high-precision solutions, e.g.
solutions that satisfy ‖(In−VsV

T
s )Ṽs‖2 ≤ 10−10. Understanding the trade-off between the

precision of the truncated SVD solution and the impact on the approximation ratio of the
approximate kernel k-means solution allows us to more precisely manage the computational
complexity of our algorithms. Are such high-precision solutions necessary for kernel k-means
clustering?

Theorem 4 answers this question by establishing that highly accurate eigenspaces are not
significantly more useful in approximate kernel k-means clustering than eigenspace estimates
with lower accuracy. A low-precision solution obtained by running the power iteration for
a few rounds suffices for kernel k-means clustering applications. We prove Theorem 4 in
Appendix C.

Theorem 4 (The Power Method) Let Φ be a matrix with n rows, K = ΦΦT ∈ Rn×n
be the corresponding kernel matrix, and σi be the i-th singular value of K. Fix an error

parameter ε ∈ (0, 1). Run Algorithm 1 with t = O( log(n/ε)
log(σs/σs+1)

) to obtain B ∈ Rn×s. Let the

k-partition {J̃1, · · · , J̃k} be the output of a γ-approximate algorithm applied to the rows of
B. If c = s+O(log 1

δ ), then

f
(
J̃1, · · · , J̃k ; Φ

)
≤ γ

(
1 + ε+ k

s

)
· min
J1,··· ,Jk

f
(
J1, · · · ,Jk ; Φ

)
.

holds with probability at least 1− δ. If c = s, then the above inequality holds with probability
0.9−O(s−τ ), where τ is a positive constant (Tao and Vu, 2010).

Note that the power method requires forming the entire kernel matrix K ∈ Rn×n, which
may not fit in memory even in a distributed setting. Therefore, in practice, the power
method may not be as efficient as the Nyström approximation with uniform sampling,
which avoids forming K.

Theorem 2, Proposition 3, and Theorem 4 are highly interesting from a theoretical
perspective. These results demonstrate that s = k

ε

(
1 + o(1)

)
features are sufficient to

13
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ensure a (1 + ε) approximation ratio. Prior work (Dhillon et al., 2004; Ding et al., 2005) set
s = k and did not provide approximation ratio guarantees. Indeed, a lower bound in the
linear k-means clustering case due to (Cohen et al., 2015) shows that s = Ω(kε ) is necessary
to obtain a 1 + ε approximation ratio.

4. Comparison to Spectral Clustering with Nyström Approximation

In this section, we provide a brief discussion and empirical comparison of our clustering
algorithm, which uses the Nyström method to approximate kernel k-means clustering, with
the popular alternative algorithm that uses the Nyström method to approximate spectral
clustering.

4.1. Background

Spectral clustering is a method with a long history (Cheeger, 1969; Donath and Hoffman,
1972, 1973; Fiedler, 1973; Guattery and Miller, 1995; Spielman and Teng, 1996). Within
machine learning, spectral clustering is more widely used than kernel k-means clustering (Ng
et al., 2002; Shi and Malik, 2000), and the use of the Nyström method to speed up spectral
clustering has been popular since Fowlkes et al. (2004). Both spectral clustering and kernel
k-means clustering can be approximated in time linear in n by using the Nyström method
with uniform sampling. Practitioners reading this paper may ask:

How does the approximate kernel k-means clustering algorithm presented here,
which uses Nyström approximation, compare to the popular heuristic of combin-
ing spectral clustering with Nyström approximation?

Based on our theoretical results and empirical observations, our answer to this reader is:

Although they have equivalent computational costs, kernel k-means clustering
with Nyström approximation is both more theoretically sound and more effective
in practice than spectral clustering with Nyström approximation.

We first formally describe spectral clustering, and then substantiate our claim regarding
the theoretical advantage of our approximate kernel k-means method. Our discussion is
limited to the normalized and symmetric graph Laplacians used in Fowlkes et al. (2004),
but spectral clustering using asymmetric graph Laplacians encounters similar issues.

4.2. Spectral Clustering with Nyström Approximation

The input to the spectral clustering algorithm is an affinity matrix K ∈ Rn×n+ that measures
the pairwise similarities between the points being clustered; typically K is a kernel matrix
or the adjacency matrix of a weighted graph constructed using the data points as vertices.
Let D = diag(K1n) be the diagonal degree matrix associated with K, and L = In −
D−1/2KD−1/2 be the associated normalized graph Laplacian matrix. Let Vk ∈ Rn×k denote
the bottom k eigenvectors of L, or equivalently, the top k eigenvectors of D−1/2KD−1/2.
Spectral clustering groups the data points by performing linear k-means clustering on the
normalized rows of Vk. Fowlkes et al. (2004) popularized the application of the Nyström
approximation to spectral clustering. This algorithm computes an approximate spectral
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clustering by: (1) forming a Nyström approximation to K, denoted by K̃; (2) computing
the degree matrix D̃ = diag(K̃1n) of K̃; (3) computing the top k singular vectors Ṽk of
D̃−1/2K̃D̃−1/2, which are equivalent to the bottom k eigenvectors of L̃ = In−D̃−1/2K̃D̃−1/2;
(4) performing linear k-means over the normalized rows of Ṽk ∈ Rn×k.

To the best of our knowledge, spectral clustering with Nyström approximation does not
have a bounded approximation ratio relative to exact spectral clustering. In fact, it seems
unlikely that the approximation ratio could be bounded, as there are fundamental problems
with the application of the Nyström approximation to the affinity matrix.

• The affinity matrix K used in spectral clustering must be elementwise nonnegative.
However, the Nyström approximation of such a matrix can have numerous negative
entries, so K̃ is, in general, not proper input for the spectral clustering algorithm.
In particular, the approximated degree matrix D̃ = diag(K̃1n) may have negative
diagonal entries, so D̃−1/2 is not guaranteed to be a real matrix; such exceptions must
be handled heuristically. The approximate asymmetric Laplacian L̃ = In − K̃D̃−1

does avoid the introduction of complex values; however, the negative entries in D̃−1

negate whole columns of K̃, leading to less meaningful negative similarities/distances.

• Even if D̃−1/2 is real, the matrix L̃ = In−D̃−1/2K̃D̃−1/2 may not be SPSD, much less
a Laplacian matrix. Thus the bottom eigenvectors of L̃ cannot be viewed as useful
coordinates for linear k-means clustering in the same way that the eigenvectors of L
can be.

• Such approximation is also problematic in terms of matrix approximation accuracy.
Even when K̃ approximates K well, which can be theoretically guaranteed, the
approximate Laplacian L̃ = In − D̃−1/2K̃D̃−1/2 can be far from L. This is because a
small perturbation in D̃ can have an out-sized influence on the eigenvectors of L̃.

• One may propose to approximate N = D−1/2KD−1/2, rather than K, with a Nyström
approximation Ñ; this ensures that the approximate normalized graph Laplacian L̃ =
In − Ñ is SPSD. However, this approach requires forming the entirety of K in order
to compute the degree matrix D, and thus has quadratic (with n) time and memory
costs. Furthermore, although the resulting approximation, L̃, is SPSD, it is not a
graph Laplacian: its off-diagonal entries are not guaranteed to be non-positive, and
its smallest eigenvalue may be nonzero.

In summary, spectral clustering using the Nyström approximation (Fowlkes et al., 2004),
which has proven to be a useful heuristic, and which is composed of theoretically principled
parts, is less principled when viewed in its entirety. Approximate kernel k-means clustering
using Nyström approximation is an equivalently efficient, but theoretically more principled
alternative.

4.3. Empirical Comparison with Approximate Spectral Clustering using
Nyström Approximation

To complement our discussion of the relative merits of the two methods, we empirically
compared the performance of our novel method of approximate kernel k-means clustering
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Table 3: Summary of the data sets used in our comparisons.
dataset #instances (n) #features (d) #clusters (k)

MNIST (LeCun et al., 1998) 60,000 780 10
Mushrooms (Frank and Asuncion, 2010) 8,124 112 2
PenDigits (Frank and Asuncion, 2010) 7,494 16 10

using the Nyström method with the popular method of approximate spectral clustering
using the Nyström method. We used three classification data sets, described in Table 3.
The data sets used are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.

Let a1, . . . ,an ∈ Rd be the input vectors. We take both the affinity matrix for spectral
clustering and the kernel matrix for kernel k-means to be the RBF kernel matrix K =
[κ(ai,aj)]ij ∈ Rn×n, where κ(a,a′) = exp

(
− 1

2σ2 ‖a − a′‖22
)

and σ is the kernel width
parameter. We choose σ based on the average interpoint distance in the data sets as

σ = β ·
√

1
n2

∑n
i=1

∑n
j=1 ‖ai − aj‖22, (5)

where we take β = 0.2, 1, or 5.
The algorithms under comparison are all implemented in Python 3.5.2. Our imple-

mentation of approximate spectral clustering follows the code in (Fowlkes et al., 2004).
To compute linear k-means clusterings, we use the function sklearn.cluster.KMeans present
in the scikit-learn package. Our algorithm for approximate kernel k-means clustering is
described in more detail in Section 5.1. We ran the computations on a MacBook Pro with
a 2.5GHz Intel Core i7 CPU and 16GB of RAM.

We compare approximate spectral clustering (SC) with approximate kernel k-means
clustering (KK), with both using the rank-restricted Nyström method with uniform
sampling.4 We used normalized mutual information (NMI) (Strehl and Ghosh, 2002)
to evaluate clustering performance: the NMI falls between 0 (representing no mutual
information between the true and approximate clusterings) and 1 (perfect correlation of
the two clusterings), so larger NMI indicates better performance. The target dimension
s is taken to be k; and, for each method, the sketch size c is varied from 5s to 50s. We
record the time cost of the two methods, excluding the time spent on the k-means clustering
required in both algorithms.5 We repeat this procedure 100 times and report the averaged
NMI and average elapsed time.

We note that, at small sketch sizes c, exceptions often arise during approximate spectral
clustering due to negative entries in the degree matrix. (This is an example, as discussed
in Section 4.2, of when approximate spectral clustering heuristics do not perform well.) We
discard the trials where such exceptions occur.

Our results are summarized in Figure 3. Figure 3 illustrates the NMI of SC and KK as
a function of the sketch size c and as a function of elapsed time for both algorithms. While

4. Uniform sampling is appropriate for the value of σ used in Eqn. (5); see Gittens and Mahoney (2016)
for a detailed discussion of the effect of varying σ.

5. For both SC and KK with Nyström approximation, the extracted feature matrices have dimension n×k,
so the k-means clusterings required by both SC and KK have identical cost.

16

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Scalable Kernel K-Means Clustering with Nyström Approximation

(a) MNIST (n = 60, 000, d = 780, k = 10).

(b) Mushroom (n = 8, 124, d = 112, k = 2).

(c) PenDigits (n = 7, 494, d = 16, k = 10).

Figure 1: Comparisons between spectral clustering (SC) and kernel k-means (KK), both
with the Nyström approximation.

a .

2

a

Figure 3: .

a

5

Figure 3: Comparisons between the runtimes and accuracies of approximate spectral
clustering (SC) and approximate kernel k-means clustering (KK), both using
uniform column sampling Nyström approximation.
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Algorithm 2 Approximate Kernel k-Means Clustering using Nyström Approximation.

1: Input: data set a1, . . . ,an ∈ Rd, number of clusters k, target dimension s (≥ k), arbitrary
integer ` (> s), sketch size c (> `), kernel function κ.

2: // Step 1: The Nyström Method
3: Form sketches C = KP ∈ Rn×c and W = PTC ∈ Rc×c, where K = [κ(ai,aj)]ij ∈ Rn×n is the

kernel matrix and P ∈ Rn×c is some sketching matrix, e.g., uniform sampling;
4: Compute a matrix R ∈ Rn×` such that RRT = CW−1

` CT ;
5: // Step 2: Dimensionality Reduction
6: Compute the rank-s truncated SVD Rs = ŨsΣ̃sṼ

T
s ;

7: Let B = ŨsΣ̃s(= RṼs) ∈ Rn×s;
8: // Step 3: Linear k-Means Clustering
9: Perform k-means clustering over the rows of B;

10: return the clustering results.

there are quantitative differences between the results on the three data sets, the plots all
show that KK is more accurate as a function of the sketch size or elapsed time than SC.

5. Single-Machine Medium-Scale Experiments

In this section, we empirically compare the Nyström method and random feature maps
(Rahimi and Recht, 2007) for kernel k-means clustering. We conduct experiments on the
data listed in Table 3. For the Mushrooms and PenDigits data, we are able to evaluate the
objective function value of kernel k-means clustering.

5.1. Single-Machine Implementation of Approximate Kernel k-Means

Our algorithm for approximate kernel k-means clustering comprises three steps: Nyström
approximation, dimensionality reduction, and linear k-means clustering. Both the
single-machine as well as the distributed variants of the algorithm are governed by three
parameters: s, the number of features used in the clustering; `, a regularization parameter;
and c, the sketch size. These parameters satisfy k ≤ s < ` ≤ c� n.

1. Nyström approximation. Let c be the sketch size and P ∈ Rn×c be a sketching
matrix. Let C = KP and W = PTKP = PTC. The standard Nyström
approximation is CW†CT ; small singular values in W can lead to instability in
the Moore-Penrose inverse, so a widely used heuristic is to choose ` < c and use
CW−1

` CT instead of the standard Nyström approximation.6 We set ` = dc/2e
(arbitrarily). Let W` = UW,`ΛW,`U

T
W,` be the truncated SVD of W and return

R = CUW,`Λ
−1/2
W,` ∈ Rn×` as the output of the Nyström method.

6. The Nyström approximation CW†CT is correct in theory, but the Moore-Penrose inverse often causes
numerical errors in practice. The Moore-Penrose inverse drops all the zero singular values, however, due
to the finite numerical precision, it is difficult to determine whether a singular value, say 10−12, should
be zero or not, and this makes the computation unstable: if such a small singular value is believed
to be zero, it will be dropped; otherwise, the Moore-Penrose inverse will invert it to obtain a singular
value of 1012. Dropping some portion of the smallest singular values is a simple heuristic that avoids
this instability. This is why we heuristically use CW−1

` CT instead of CW†CT . Currently we do not
have theory for this heuristic. Chiu and Demanet (2013) considers the theoretical implications of this
regularization heuristic, but their results do not apply to our problem.

18



Scalable Kernel K-Means Clustering with Nyström Approximation

2. Dimensionality reduction. Let Ṽs ∈ R`×s contain the dominant s right singular
vectors of R. Let B = RṼs ∈ Rn×s. It can be verified that BBT = (CW−1

` CT )s,
which is our desired rank-restricted Nyström approximation.

3. Linear k-means clustering. With B ∈ Rn×s at hand, use an arbitrary off-the-shelf
linear k-means clustering algorithm to cluster the rows of B.

See Algorithm 2 for the single-machine version of this approximate kernel k-means
clustering algorithm. Observe that we can use uniform sampling to form C and W, and
thereby avoid computing most of K.

Let R ∈ Rn×c be the feature matrix computed by random feature maps (RFM). To
make the comparison fair, we perform dimensionality reduction for RFM (Rahimi and
Recht, 2007) in the same way as described in Algorithm 2 to compute B = RṼs, and apply
linear k-means clustering on the rows of B.

5.2. Comparing Nyström, Random Feature Maps, and Two-Step Method

We empirically compare the clustering performances of kernel approximations formed
using Nyström, random feature map (RFM) (Rahimi and Recht, 2007), and the two-step
method (Chitta et al., 2011) on the data sets detailed in Table 3.

We use the RBF kernel with width parameter given by (5); Figure 3 indicates that β = 1
is a good choice for these data sets. We conduct dimensionality reduction for both Nyström
and RFM to obtain s-dimensional features, and consider three choices: s = k, s =

⌈√
ck
⌉
,

and without dimensionality reduction (equivalently, s = c).
The quality of the clusterings is quantified using both normalized mutual information

(NMI) (Strehl and Ghosh, 2002) and the objective function value:

1

n

k∑
i=1

∑
j∈Ji

∥∥∥∥kj − 1

|Ji|
∑
l∈Ji

kl

∥∥∥∥2
2

, (6)

where k1, · · · ,kn ∈ Rn are the columns of the kernel matrix K, and the disjoint sets
J1, · · · ,Jk reflect the clustering.

We repeat the experiments 500 times and report the results in Figures 4 and 5. The
experiments show that as measured by both NMIs and objective values, the Nyström method
outperforms RFM in most cases. Both the Nyström method and RFM are consistently
superior to the two-step method of (Chitta et al., 2011), which requires a large sketch size.
All the compared methods improve as the sketch size c increases.

Judging from these medium-scale experiments, the target rank s has little impact on
the NMI and clustering objective value. This phenomenon is not general; in the large-scale
experiments of the next section we see that setting s properly allows one to obtain a better
NMI than an over-small or over-large s.

6. Large-Scale Experiments using Distributed Computing

In this section, we empirically study our approximate kernel k-means clustering algorithm
on large-scale data. We state a distributed version of the algorithm, implement it in Apache
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(a) MNIST (n = 60, 000, d = 780, k = 10). The results of Nyström and RFM are plotted in the figures.
The medians of the two-step method with c = 3k, 9k, 27k, and 81k are 0.072, 0.012, 0.017, and 0.032,
respectively.

(b) Mushroom (n = 8, 124, d = 112, k = 2). The results of Nyström and RFM are plotted in the figures.
The medians of the two-step method with c = 3k, 9k, 27k, and 81k are 0.123, 0.224, 0.263, and 0.494,
respectively.

(c) PenDigits (n = 7, 494, d = 16, k = 10). The results of Nyström and RFM are plotted in the figures.
The medians of the two-step method with c = 3k, 9k, 27k, and 81k are 0.399, 0.413, 0.422, and 0.421,
respectively.

Figure 1: nmi.

a .

2

a

Figure 3: .

a

4

Figure 4: Quality of approximate kernel k-means clusterings using Nyström, random feature
maps (Rahimi and Recht, 2007), and the two-step method (Chitta et al., 2011).
(Dimensionality reduction is not applicable to the two-step method). The y-axis
reports the normalized mutual information (NMI).
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(a) Mushroom (n = 8, 124, d = 112, k = 2). The results of Nyström and RFM are plotted in the figures.
The medians of the objective values of the two-step method with c = 3k, 9k, 27k, and 81k are 101.5, 92.8,
89.5, and 85.3, respectively. A random partition results in a median objective function value of 119.5.

(b) PenDigits (n = 7, 494, d = 16, k = 10). The results of Nyström and RFM are plotted in the figures.
The medians of the two-step method with c = 3k, 9k, 27k, and 81k are 210.5, 198.2, 193.5, and 193.4,
respectively. A random partition results in a median objective function value of 395.4.

Figure 2: obj.

a

3

a

Figure 3: .

a

4

Figure 5: Quality of approximate kernel k-means clusterings obtained using rank-restricted
Nyström, RFMs (Rahimi and Recht, 2007), and the two-step method (Chitta
et al., 2011). (Dimensionality reduction is not applicable to the two-step method).
The y-axis reports the kernel k-means clustering objective function value.
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Algorithm 3 Distributed Approximate Kernel k-Means Clustering using Nyström
Approximation.

1: Input: data set a1, . . . ,an ∈ Rd distributed among m machines, number of clusters k, target
dimension s (≥ k), arbitrary integer ` > s, sketch size c (> `), kernel function κ.

2: // Step 1: The Nyström Method
3: Sample c vectors from a1, . . . ,an to form a′1, . . . ,a

′
c and send to the driver;

4: Driver computes W = [κ(a′i, a
′
j)]ij ∈ Rc×c and a matrix Z ∈ Rc×` satisfying ZZT = W−1

` ;
5: Broadcast Z and a′1, . . . ,a

′
c to all executors;

6: for all j ∈ [n] do
7: Each executor locally computes cj = [κ(aj ,a

′
1); . . . ;κ(aj ,a

′
c)] ∈ Rc and rj = ZT cj ∈ R`;

8: end for
9: // Step 2: Dimensionality Reduction

10: Let Ṽs contain the dominant s right singular vectors of the distributed row matrix R =
[r1, . . . , rn]T ∈ Rn×` (computed using a distributed truncated SVD algorithm);

11: Broadcast Ṽs ∈ R`×s to all executors;
12: for all j ∈ [n] do
13: Each executor locally computes bj = ṼT

s rj ∈ Rs;
14: end for
15: // Step 3: Linear k-Means Clustering
16: Perform k-means clustering over the Nyström features b1, . . . ,bn ∈ Rs (using a distributed

linear k-means clustering algorithm).
17: return the clustering results.

Spark7, and evaluate its performance on NERSC’s Cori supercomputer. We investigate the
effect of increased parallelism, sketch size c, and target dimension s.

Algorithm 3 is a distributed version of our method described in Section 5.1. Again,
we use uniform sampling to form C and W to avoid computing most of K. We mainly
focus on the Nyström approximation step, as the other two steps are well supported by
distributed computing systems such as Apache Spark.

6.1. Experimental Setup

We implemented Algorithm 3 in the Apache Spark framework (Zaharia et al., 2010, 2012),
using the Scala API. We computed the Nyström approximation using the matrix operations
provided by Spark, and invoked the MLlib library for machine learning in Spark (Meng et al.,
2016) to perform the dimensionality reduction and linear k-means clustering steps. For the
linear k-means clustering, we set the maximum number of iterations to 100.

We ran our experiments on Cori Phase I, a NERSC supercomputer, located at Lawrence
Berkeley National Laboratory. Cori Phase I is a Cray XC40 system with 1632 compute
nodes, each of which has two 2.3GHz 16-core Haswell processors and 128GB of DRAM. The
Cray Aries high-speed interconnect linking the compute nodes is configured in a dragonfly
topology.

We used the MNIST8M data set to conduct our empirical evaluations; this data set has
n = 8.1 × 106 instances, d = 784 features, and k = 10 clusters. We vary c and s and set
` = c

2 . We chose the RBF kernel width parameter according to (5) with β = 1.0. We use

7. This implementation is available at https://github.com/wangshusen/SparkKernelKMeans.git.
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Table 4: The mean and standard deviation of the runtimes of Algorithm 3, in seconds, as
a function of the number of compute nodes. We report the total runtime as well
as the runtimes of the three stages: Nyström approximation, dimensionality
reduction (DR), and linear k-means clustering. The total time is the sum
of the three stages and all the Spark overheads, e.g., Spark initialization. We
fix k = 10 and c = 400. In the upper table, we set s = 20, and the NMI is
0.400± 0.009; in the lower table, we set s = 80, and the NMI is 0.410± 0.010.

8 Nodes 16 Nodes 32 Nodes 64 Nodes 128 Nodes

Nyström 2998.6± 263.9 1268.8± 106.4 665.2± 39.6 369.7± 126.1 181.4± 22.2
DR 37.4± 58.3 63.8± 72.5 38.9± 18.2 87.3± 37.8 183.9± 89.1

k-means 117.2± 132.3 153.1± 98.8 119.9± 76.9 223.2± 88.4 391.0± 155.9
Total 3201.5± 344.0 1532.0± 146.9 867.9± 97.5 734.7± 152.0 828.2± 210.4

8 Nodes 16 Nodes 32 Nodes 64 Nodes 128 Nodes

Nyström 3008.4± 385.6 1312.9± 141.2 696.0± 111.8 342.5± 16.9 197.0± 24.1
DR 53.0± 41.9 58.7± 22.7 94.6± 31.8 179.4± 55.8 470.6± 118.5

k-means 58.2± 24.7 80.9± 31.8 104.6± 28.7 211.3± 103.1 501.7± 162.9
Total 3168.1± 434.1 1492.6± 135.3 940.6± 139.3 775.9± 151.6 1232.4± 232.1

Cori’s default setting of Spark configurations. For each setting of parameters, we repeated
the experiments 10 times and recorded the NMIs and elapsed time.

6.2. Effect of Increased Parallelism

We varied the number of nodes to test the impact of increased parallelism on each of the
three steps in Algorithm 3. We set the sketch size to c = 400 and the target dimension to
s = 20 or 80. Table 4 reports the mean and standard deviation of the elapsed times. As
a reference point, using 32 nodes, our algorithm takes 15 minutes on average to group the
8.1 million input instances into 10 clusters. We also plot the elapsed times in Figure 6.

The Nyström method scales very well with the increase of nodes: its elapsed time
is inversely proportional to the number of nodes. This is because the Nyström method
requires only 2 rounds of communications; the elapsed time is spent mostly on computation
on the executors.

Dimensionality reduction (DR) and linear k-means clustering are highly
iterative and thus have high latency, incur straggler delays, and have large scheduler and
communication overheads. See (Gittens et al., 2016) for an in-depth discussion of the
performance concerns when using Spark for distributed matrix computations. As the
number of nodes increases from 32 to 64 and higher, DR and k-means exhibit anti-
scaling behavior: as the number of nodes goes up, their runtimes increase rather than
decrease. For DR, the input dimension is ` = c

2 = 200, and the target dimension is
s = 20 or 80; while for k-means, the input dimension is s = 20 or 80. Clearly, the
issue here is not that DR and k-means are computationally intensive. Instead, as the
number of nodes increase, although the per-node computational time decreases, the Spark
communications overheads are increasing, making DR and k-means less performant. Such
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(b) k = 10, s = 80, c = 400.

Figure 6: The mean of the runtimes of Algorithm 3, in seconds, as a function of the number
of compute nodes.

behavior has been characterized and studied in other Spark implementations of linear
algebra algorithms (Gittens et al., 2016).

Table 5: The NMI and elapsed time (seconds) for varying sketch sizes c. Here “T” denotes
the elapsed time. We use 32 nodes. In the upper table, we set s = 20; in the lower
table, we set s = 80.

c = 100 c = 400 c = 1, 600

NMI 0.3833± 0.0117 0.3975± 0.0112 0.4069± 0.0001
T(Nyström) 138.5± 62.1 665.2± 39.5 2634.5± 94.4

T(DR) 1.2± 0.5 38.9± 18.2 31.3± 6.6
T(k-Means) 60.9± 28.7 119.9± 76.9 86.9± 27.3

T(Total) 227.4± 101.3 867.9± 97.5 2785.4± 83.2

c = 400 c = 1600

NMI 0.4101± 0.0101 0.4233± 0.0131
T(Nyström) 696.0± 111.8 2728.1± 190.3

T(DR) 94.6± 31.8 97.9± 20.6
T(k-Means) 104.6± 28.7 88.0± 23.9

T(Total) 940.6± 139.3 2952.2± 174.5

6.3. Effect of Sketch Size c

We executed our Spark implementation using 32 compute nodes, setting s = 20 or 80, and
varying the target dimension c. Table 5 reports the observed normalized mutual information
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Figure 7: The mean of the runtimes of Algorithm 3, in seconds, as a function of the sketch
size c.

(NMI) (Strehl and Ghosh, 2002) and elapsed times. As predicted by our theory, for fixed k
and s, larger c always leads to better performance.

In Figure 7 we plot the runtime as a function of the sketch size c. The plots shows the
significant influence of c on the running time. In Figure 7, the runtime of Nyström grows
superlinearly with c. According to our analysis, the computational and communication
costs of Nyström are both superlinear in c. Therefore, the user should keep in mind this
trade-off between the clustering performance and the computational cost.

6.4. Effect of Target Dimension s

We executed our Spark implementation using 32 computational nodes, fixing k = 10 and
c = 1600 and varying the target dimension s. Table 6 reports the observed NMIs and
elapsed times. For fixed k and c, a moderately large s leads to better clustering performance.
However, as s grows, ks decreases but s

c increases, so as predicted in Remark 3, the clustering
performance is nonmonotonic in s. Indeed, as s grows from 80 to 160, the NMI deteriorates.
In practice, for fixed k and c, one should set s moderately large, but not over-large.

In Figure 8 we plot the runtime as a function of the target dimension s. Note that
s does not affect the time cost of the Nyström method. As s grows, the time costs of
dimensionality reduction and linear k-means clustering both increase. This implies that a
moderate s is good for computational purpose. Previously, in Figure 2, we plot the NMI
as a function of s while fixing k and c. Figure 2 shows that a proper s leads to better NMI
than an over-large or over-small s. In sum, setting s properly has both computational and
accuracy benefits, which corroborates our theory.
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Table 6: The NMI and elapsed time (seconds) for varying target dimensions s. Here “T”
denotes the elapsed time. We use 32 nodes and fix c = 1600.

s = 10 s = 20 s = 40 s = 80 s = 160 s = 320
NMI 0.3852± 0.0003 0.4069± 0.0001 0.4130± 0.0062 0.4233± 0.0131 0.4086± 0.0125 0.4099± 0.0098

T(Nyström) 2702.2± 131.6 2634.5± 94.4 2815.3± 403.6 2728.1± 190.3 2849.9± 511.2 2757.1± 271.9
T(DR) 21.1± 3.2 31.3± 6.6 57.5± 9.2 97.9± 20.6 168.2± 29.0 570.5± 151.0

T(k-Means) 84.0± 6.4 86.9± 27.3 90.6± 9.0 88.0± 23.9 99.8± 12.2 169.3± 64.2
T(Total) 2840.9± 132.0 2785.4± 83.2 3003.4± 413.7 2952.2± 174.5 3157.5± 549.2 3537.5± 256.3
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Figure 8: The mean of the runtimes of Algorithm 3, in seconds, as a function of the target
dimension s. We use 32 nodes and fix k = 10 and c = 1600.

7. Conclusion

We provided principled algorithms for computing approximate kernel k-means clusterings.
In particular, we showed that the combination of linear k-means with rank-restricted
Nyström approximation is theoretically sound, practically useful, and scalable to large data
sets. This should be contrasted with approximate spectral clustering using Nyström approx-
imation. Although the latter is a widely-used approach to scalable non-linear clustering,
it has theoretical deficiencies and practical limitations. Experiments demonstrated that
approximate kernel k-means clustering using the rank-restricted Nyström approximation
consistently outperforms approximate spectral clustering.

Our analysis uses the concept of projection-cost preservation and builds upon the
existing theory of randomized linear algebra. Our main result is a 1+ε approximation ratio
guarantee for kernel k-means clustering: when s = k

ε Nyström features are used, a 1 +O(ε)
approximation ratio is guaranteed with high probability. As an intermediate theoretical
result of independent interest, we introduced a novel rank-restricted Nyström approximation
and proved that it gives a 1+ε relative-error low-rank approximation guarantee in the trace
norm.
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To complement our theory, we investigated the performance of the rank-restricted
Nyström approximation when applied to kernel k-means clustering. We produced an
Apache Spark implementation of a distributed version of our approximate kernel k-means
algorithm, and applied it to cluster 8.1 million vectors; the results demonstrate the
usefulness and simplicity of kernel k-means with rank-restricted Nyström approximation
for clustering moderately large-scale data sets. Combined with recent work on user-friendly
frameworks for distributed computing systems (Zaharia et al., 2010, 2012), large-scale
machine learning (Meng et al., 2016), and large-scale randomized linear algebra (Gittens
et al., 2016), our results suggest the use of kernel k-means with rank-restricted Nyström
approximations for simple, computationally efficient, and theoretically principled clustering
of large-scale data sets.
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Appendix A. Proof of Theorem 1

In this section, we will provide a proof of Theorem 1, our main quality-of-approximation
result for rank-restricted Nyström approximation. We will start, in Section A.1, by
establishing three technical lemmas; then, in Section A.2, we will establish an important
structural result on the rank-restricted Nyström approximation as well as key approximate
matrix multiplication properties for low-rank matrix approximation; and finally, in
Section A.3, we will use these results to prove Theorem 1.

A.1. Technical Lemmas

Lemma 5 is a very well known result. See (Boutsidis et al., 2014; Zhang, 2015). Here we
offer a simplified proof.

Lemma 5 Let A ∈ Rn×m be any matrix and U ∈ Rn×c have orthonormal columns. Let s
be any positive integer no greater than c. Then

(UTA)s = argmin
rank(Z)≤s

∥∥A−UZ
∥∥2
F
.
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Proof Let U⊥ ∈ Rn×(n−c) be the orthogonal complement of U. It holds that

∥∥∥A−UZ
∥∥∥2
F

=

∥∥∥∥∥A − [ U U⊥
] [ Z

0

] ∥∥∥∥∥
2

F

=

∥∥∥∥∥
[

UT

(U⊥)T

]
A −

[
Z
0

] ∥∥∥∥∥
2

F

=

∥∥∥∥∥
[

UTA− Z
(U⊥)TA

] ∥∥∥∥∥
2

F

=
∥∥UTA− Z

∥∥2
F

+
∥∥(U⊥)TA

∥∥2
F
,

where the second equality follows from the unitary invariance of the Frobenius norm. Then

argmin
rank(Z)≤s

∥∥A−UZ
∥∥2
F

= argmin
rank(Z)≤s

∥∥UTA− Z
∥∥2
F

= (UTA)s,

by which the lemma follows.

Lemma 6 is a new result established in this work. The lemma plays an important role
in analyzing the rank-restricted Nyström method.

Lemma 6 Let A ∈ Rn×m be any matrix and U ∈ Rn×c has orthonormal columns. Let
s ≤ c be arbitrary integer. Let Q ∈ Rn×s be the orthonormal bases of the rank s matrix
U(UTA)s ∈ Rn×m. Then QQTA = U(UTA)s.

Proof Let Z? = QTU(UTA)s ∈ Rs×m. By the definition of Q, we have

QQTU(UTA)s = U(UTA)s. (7)

It holds that∥∥U(UTA)s −A
∥∥2
F

= min
rank(X)≤s

∥∥UX−A
∥∥2
F
≤ min

rank(Z)≤s

∥∥QZ−A
∥∥2
F
≤
∥∥QZ? −A

∥∥2
F
,

where the equality follows from Lemma 5; the former inequality follows from that
range(Q) ⊂ range(U). Because U(UTA)s = QZ? by (7), the lefthand and righthand
sides are equal, and thereby

min
rank(Z)≤s

∥∥QZ−A
∥∥2
F

=
∥∥QZ? −A

∥∥2
F
.

Since Z is s×m, it follows that

min
Z

∥∥QZ−A
∥∥2
F

= min
rank(Z)≤s

∥∥QZ−A
∥∥2
F

=
∥∥QZ? −A

∥∥2
F
. (8)
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Let Q⊥ ∈ Rn×(n−s) be the orthogonal complement of Q. It holds that∥∥∥A−QZ
∥∥∥2
F

=

∥∥∥∥∥A − [ Q Q⊥
] [ Z

0

] ∥∥∥∥∥
2

F

=

∥∥∥∥∥
[

QT

(Q⊥)T

]
A −

[
Z
0

] ∥∥∥∥∥
2

F

=

∥∥∥∥∥
[

QTA− Z
(Q⊥)TA

] ∥∥∥∥∥
2

F

=
∥∥QTA− Z

∥∥2
F

+
∥∥(Q⊥)TA

∥∥2
F
,

where the second equality follows from the unitary invariance of the Frobenius norm.
Obviously, Z = QTA is the unique minimizer of minZ ‖QZ−A‖2F ; otherwise QTA− Z in
the righthand side is non-zero, making the objective function increase.

On the one hand, Eqn. (8) shows that Z? = QTU(UTA)s ∈ Rs×m is one minimizer of
minZ ‖QZ−A‖2F . On the other hand, we have that Z = QTA is the unique minimizer of
minZ ‖QZ−A‖2F . By the uniqueness, we have

Z? = QTU(UTA)s = QTA.

It follows that
QQTU(UTA)s = QQTA.

The lemma follows from (7) and the above equality.

Lemma 7 is a new result established by this work. Let A be any symmetric matrix.
Lemma 7 analyzes the power scheme: using AtP, instead of AP, as a sketch of A. The

lemma shows that the power scheme leads to an improvement of
(σ2

s+1

σ2
s

)t−1
, where σi is the

i-th biggest singular value of A. Lemma 7 with t = 1 is identical to (Boutsidis et al., 2014,
Lemma 9). The power scheme has been studied by Gittens and Mahoney (2016); Halko
et al. (2011); Woodruff (2014); their results do not allow the rank restriction rank(X) ≤ s.
To prove Theorem 1, we only need t = 1; we will use Lemma 7 to extend Theorem 1 to the
power method.

Lemma 7 Let A ∈ Rn×n be any SPSD matrix and As = VsΣsV
T
s be the truncated SVD.

Let P ∈ Rn×c satisfy that PTVs ∈ Rc×s has full column rank. Let t ≥ 1 be any integer and
C = AtP. Then for ξ = 2 or F ,

min
rank(X)≤s

∥∥A−CX
∥∥2
ξ
≤

∥∥A−As

∥∥2
ξ

+
(σ2

s+1

σ2
s

)t−1∥∥(A−As)P(VT
s P)†

∥∥2
ξ
,

where σi is the i-th largest singular value of A.

Proof We construct the rank s matrix Ãs = C(VT
s P)†Σ1−t

s VT
s and use it to facilitate our

proof. Since Ãs has rank s, and its column space is in range(C), it holds that

min
rank(X)≤s

∥∥A−CX
∥∥2
ξ
≤
∥∥A− Ãs

∥∥2
ξ

=
∥∥(A−As) + (As − Ãs)

∥∥2
ξ
≤
∥∥A−As

∥∥2
ξ

+
∥∥As − Ãs

∥∥2
ξ
.
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The latter inequality follows from that the row space of As − Ãs is in range(Vs), that
(A−As)Vs = 0, and the matrix Pythagorean theorem. By the assumption rank(VT

s P) = s,
it holds that (VT

s P)(VT
s P)† = Is. We have∥∥As − Ãs

∥∥2
ξ

=
∥∥As − (At

s + At −At
s)P(VT

s P)†Σ1−t
s VT

s

∥∥2
ξ

=
∥∥As −VsΣ

t
s (VT

s P)︸ ︷︷ ︸
s×c

(VT
s P)†︸ ︷︷ ︸
c×s

Σ1−t
s VT

s − (At −At
s)P(VT

s P)†Σ1−t
s VT

s

∥∥2
ξ

=
∥∥As −VsΣsV

T
s − (At −At

s)P(VT
s P)†Σ1−t

s VT
s

∥∥2
ξ

=
∥∥(At −At

s)P(VT
s P)†Σ1−t

s VT
s

∥∥2
ξ

≤
∥∥(A−As)

t−1∥∥2
2

∥∥Σ1−t
s

∥∥2
2

∥∥(A−As)P(VT
s P)†

∥∥2
ξ

=
(σ2

s+1

σ2
s

)t−1∥∥(A−As)P(VT
s P)†

∥∥2
ξ
,

by which the lemma follows.

A.2. Structural Result and Approximate Matrix Multiplication Properties

Lemma 8 is a structural result of independent interest that is important for establishing
Theorem 1. By structural result, we mean that it is a linear algebraic result that holds for
any matrix P, and in particular for any matrix P that is a randomized sketching matrix.
In particular, given this structural result, randomness in an algorithm enters only via P.
The importance of establishing such structural results within randomized linear algebra has
been highlighted previously (Drineas et al., 2011; Mahoney, 2011; Gittens and Mahoney,
2016; Mahoney and Drineas, 2016; Wang et al., 2017).

Lemma 8 Let K ∈ Rn×n be any SPSD matrix, P ∈ Rn×c be any matrix, and s ≤ c be
any positive integer. Let D = K1/2P ∈ Rn×c, ρ = rank(D) ≤ c, and U ∈ Rn×ρ be the left
singular vectors of D. Let Q ∈ Rn×s be any orthonormal bases of U(UTK1/2)s. It holds
that (

CW†CT
)
s

= K1/2QQTK1/2,∥∥K− (CW†CT
)
s

∥∥
∗ = min

rank(Z)≤s

∥∥K1/2 − (K1/2P)Z
∥∥2
F
.

Proof Let D = K1/2P = UΣVT ∈ Rn×c be the SVD of D. It holds that C = KP =
K1/2D and W = PTKP = DTD. It follows the SVD of D that

C(W†)1/2 = K1/2D
(
(DTD)†

)1/2
= K1/2(UΣVT )

(
VΣ−2VT

)1/2
= K1/2UVT .

We need the following lemma to prove Lemma 8. The following lemma is not hard to
prove.

Lemma 9 Let the integers n, c, ρ, s satisfy n ≥ c ≥ ρ ≥ s. Let A ∈ Rn×ρ be any matrix
with rank at least s and V ∈ Rc×ρ has orthonormal columns. Then (AVT )s = AsV

T .
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If rank(K1/2U) < s, then obviously K1/2UVT = (K1/2UVT )s = (K1/2U)sV
T . We

thus assume rank(K1/2UVT ) ≥ s and can apply the above lemma to show (K1/2UVT )s =
(K1/2U)sV

T . In either case, we have

(K1/2UVT )s = (K1/2U)sV
T .

It follows from (9) that
(
C(W†)1/2

)
s

= (K1/2U)sV
T . Thus(

CW†CT
)
s

= (K1/2U)s(U
TK1/2)s = (K1/2U)sU

TU(UTK1/2)s

Let Q ∈ Rn×s be the orthonormal bases of the rank s matrix U(UTK1/2)s. Lemma 6
ensures that

QQTK1/2 = U(UTK1/2)s.

It follows that (
CW†CT

)
s

= K1/2QQTK1/2, (9)

by which the former conclusion of the lemma follows.
It is well known that ‖Y‖∗ = tr(Y) for any SPSD matrix Y and that tr(ATA) = ‖A‖2F

for any matrix A. It follows from (9) that∥∥K− (CW†CT
)
s

∥∥
∗ =

∥∥K1/2
(
In −QQT

)
K1/2

∥∥
∗

= tr
(
K1/2

(
In −QQT

)(
In −QQT

)
K1/2

)
=
∥∥(In −QQT

)
K1/2

∥∥2
F

=
∥∥K1/2 −U(UTK1/2)s

∥∥2
F

;

here the second equality holds because K1/2(In − QQT )K1/2 is SPSD and (In − QQT )
is orthogonal projection matrix; the last equality follows from Lemma 6. It follows from
Lemma 5 that ∥∥K− (CW†CT

)
s

∥∥
∗ =

∥∥K1/2 −U(UTK1/2)s
∥∥2
F

= min
rank(X)≤s

∥∥K1/2 −UX
∥∥2
F

= min
rank(Z)≤s

∥∥K1/2 −DZ
∥∥2
F
,

by which the latter conclusion of the lemma follows.

Lemma 10 formally defines the key approximate matrix multiplication properties
(subspace embedding property and approximate orthogonality property) which—when
sketching dimensions are chosen appropriately (see Table 7)—are shared by the uniform
sampling, leverage score sampling, Gaussian projection, SRHT, and CountSketch sketching
methods. Establishing approximate matrix multiplication bounds is the key step in proving
many approximate regression and low-rank approximation results (Mahoney, 2011), and
this lemma will be used crucually in the proof of Theorem 1.

Lemma 10 (Key Approximate Matrix Multiplication Properties for a Sketch) Let
η, ε, δ1, δ2 ∈ (0, 1) be fixed parameters. Fix Y ∈ Rn×d and let V ∈ Rn×s have orthonormal
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columns. Let P ∈ Rn×c be one of the sketching methods listed in Table 7. When c is larger
than the quantity in the middle column of the corresponding row of Table 7, the subspace
embedding property ∥∥VTPPTV − Is

∥∥
2
≤ η

holds with probability at least 1 − δ1. When c is larger than the quantity in the right-hand
column of the corresponding row of Table 7, the matrix multiplication property∥∥VTPPTY −VTY

∥∥2
F
≤ ε‖Y‖2F

holds with probability at least 1− δ2.

Table 7: Sufficient sketching dimensions for the sketching properties of Lemma 10 to hold.
The leverage score sampling referred to here is with respect to the leverage scores
of the matrix V described in Lemma 10. Similarly, µ is the row coherence of V.

Sketching Subspace Embedding Matrix Multiplication
Leverage Score Sampling s

η2 log s
δ1

s
εδ2

Uniform Sampling µs
η2 log s

δ1

µs
εδ2

SRHT s+logn
η2 log s

δ1

s+logn
εδ2

Gaussian Projection s+log(1/δ1)
η2

s
εδ2

CountSketch s2

δ1η2
s
εδ2

Proof This lemma is a reproduction of (Wang et al., 2016b, Lemma 2), and is a collation
of heterogenously stated results from the literature. The random sampling estimates
were established by Drineas et al. (2008); Wang et al. (2016a); Woodruff (2014). The
Gaussian projection was firstly analyzed by Johnson and Lindenstrauss (1984); see Woodruff
(2014) for a proof of the stated sufficient sketching dimensions. The SRHT estimates are
from Drineas et al. (2011); Lu et al. (2013); Tropp (2011). The CountSketch estimates are
from Meng and Mahoney (2013); Nelson and Nguyên (2013).

A.3. Completing the Proof of Theorem 1

Proof Let Ks = VsΛsV
T
s ∈ Rn×n be the truncated SVD of K. It follows from Lemma 10

and the sketch sizes defined in Table 2 that∥∥VT
s PPTVs − Is

∥∥
2
≤ η,∥∥(K1/2 −K1/2

s )PPTVs

∥∥2
F
≤ ε

∥∥K1/2 −K1/2
s ‖2F

hold simultaneously with probability at least 0.9.
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It follows from Lemma 8 that∥∥K− (CW†CT
)
s

∥∥
∗ = min

rank(Z)≤s

∥∥K1/2 − (K1/2P)Z
∥∥2
F

≤
∥∥K1/2 −K1/2

s

∥∥2
F

+
∥∥(K1/2 −K1/2

s )P(VT
s P)†

∥∥2
F

=
∥∥K−Ks

∥∥
∗ +

∥∥(K1/2 −K1/2
s )PPTVs(V

T
s PPTVs)

†∥∥2
F

≤
∥∥K−Ks

∥∥
∗ + σ−2s

(
VT
s PPTVs

) ∥∥(K1/2 −K1/2
s )PPTVs

∥∥2
F
,

where the former inequality follows from Lemma 7 (with t = 1). It follows that∥∥K− (CW†CT
)
s

∥∥
∗ ≤

∥∥K−Ks

∥∥
∗ + ε

(1−η)2
∥∥K−Ks

∥∥
∗.

We let η be a constant and obtain the former claim of Theorem 1. The latter claim of
Theorem 1 follows from Lemma 8.

Appendix B. Proof of Theorem 2

In this section, we will provide a proof of Theorem 2, our main result for kernel k-means
approximation. We will start, in Sections B.1, B.2, and B.3, by presenting several technical
tools of independent interest (Lemmas 11, 12, and 13, respectively). Then, in Section B.4,
we will use use these tools to prove Theorem 2.

The proof of Theorem 2 will proceed by combining Theorem 1 with Lemmas 11, 12,
and 13. For convenience, the structure of proof is given in Figure 9.

Lemma 12
projection-cost
preservation	for	
linear	k-means

Lemma 13
kernel	trick
for	kernel	
k-means

Theorem 2
main	result

Theorem 1
relative-error
rank-restricted

Nystrom
approximation

Lemma 11
projection-cost
preservation
via	low-rank
approximation	

Figure 9: The structure of the proof of Theorem 2.

We use the notation of orthogonal projection matrix throughout this section. A matrix
M ∈ Rn×n is an orthogonal projection matrix if and only if there exists a matrix Q with
orthonormal columns such that M = QQT . It follows that MT = M, MM = M, M � In
and that In −M is also an orthogonal projection matrix.

B.1. Projection-Cost Preservation via Low-Rank Approximation

We first define projection-cost preservation, then show that certain low-rank approximations
are projection-cost preserving. Projection-cost preservation was named and systematized
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by Cohen et al. (2015), but the idea has been used in earlier works (Boutsidis et al., 2010,
2015; Feldman et al., 2013; Liang et al., 2014).

Definition 2 (Rank k Projection-Cost Preservation) Fix a matrix A ∈ Rn×d and
error parameters ε1, ε2 > 0. The matrix B ∈ Rn×d has the rank k projection-cost preserving
property with respect to A if for any rank k orthogonal projection matrices Π ∈ Rn×n,

(1− ε1)
∥∥A−ΠA

∥∥2
F
≤
∥∥B−ΠB

∥∥2
F

+ α ≤ (1 + ε2)
∥∥A−ΠA

∥∥2
F
,

for some fixed non-negative α that can depend on A and B but is independent of Π.

The next lemma provides a way to construct a projection-cost preserving sketch of A. It
states that if a rank-s matrix Ãs in the span of A is constructed so that ÃsÃ

T
s approximates

AAT sufficiently well in terms of the trace norm, then Ãs has the projection-cost preserving
property. Observe that this lemma explicitly relates projection-cost preserving sketches to
approximate matrix multiplication (Drineas et al., 2006; Mahoney, 2011), where the latter
is measures with respect to the trace norm (Gittens and Mahoney, 2016). We provide a
proof of Lemma 11 in Appendix D.

Lemma 11 (Projection-Cost Preservation via Low-Rank Approximation) Fix an
error parameter ε ∈ (0, 1). Let A ∈ Rn×d and choose a rank-s matrix Ãs that satisfies the
following conditions:

(i) there is an orthogonal projection matrix M such that ÃsÃ
T
s = AMAT , and

(ii) ‖AAT − ÃsÃ
T
s ‖∗ ≤ (1 + ε)

∥∥AAT −AsA
T
s

∥∥
∗.

Then there exists a fixed α ≥ 0 such that, for any rank k projection matrices Π ∈ Rn×n,∥∥(In −Π)A
∥∥2
F
≤
∥∥(In −Π)Ãs

∥∥2
F

+ α ≤
(
1 + ε+ k

s

)∥∥(In −Π)A
∥∥2
F
.

B.2. Linear k-Means Clustering and Projection-Cost Preservation

Linear k-means clustering is formally defined by the optimization problem (1). To relate
the linear k-means clustering problem to the projection-cost preservation property, we
use an equivalent formulation of (1) as an optimization over the set of rank-k projection
matrices of the form XXT , where X is a cluster indicator matrix. This approach was
adopted by Boutsidis et al. (2009, 2010, 2015); Cohen et al. (2015); Ding et al. (2005).
Following them, we define the cluster indicator matrix in the following and give an example
in Figure 10.

Definition 3 (Cluster Indicator Matrices) Let n and k be given, and let J1, . . . ,Jk be
a k-partition of the set [n]. The cluster indicator matrix corresponding to J1, . . . ,Jk is the
n× k matrix X defined by

xij =

{
1√
|Jj |

if i ∈ Jj ;

0 otherwise.

We take Xn,k to be the collection of cluster indicator matrices corresponding to all the k-
partitions of [n].
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0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 J 3={2, 6, 8, 10, 12}
J 2={4, 9, 11}
J 1={1, 3, 5, 7}1

4

1

4

1

4

1

4
1

3

1

3

1

3
1

5

1

5

1

5

1

5

1

5

𝐗𝑇=

Figure 10: An example of a cluster indicator matrix X ∈ Xn,k. In this example, n = 12,
k = 3, and X corresponds to the indicated 3-partition J1, J2, J3.

A cluster indicator matrix X has exactly one non-zero entry in each row and has
orthonormal columns. That is, because of the normalization of the non-zero entries, a cluster
indicator matrix X is an orthogonal matrix, but one with the additional constraint that
there is only one non-zero entry in each row. (Indeed, the insight of Boutsidis et al. (2009,
2010, 2015) was that the rank-constrained optimization over all orthonormal matrices,
which provides the usual PCA/SVD-based low-rank approximation, is a relaxation of the
optimization over this smaller set of orthonormal matrices.) Among other things, it follows
that XXT is a rank-k projection matrix.

Given this, assume i ∈ Jj ; it can be verified that the i-th row of XXTA ∈ Rn×d is the
centroid of Jj :

(XXTA)i: = xi:X
TA =

1

|Jj |
∑
l∈Jj

al:.

Consider the objective function of (1). When X is the cluster indicator matrix corresponding
to the input k-partition, this objective can be rewritten in terms of XXT as

k∑
j=1

∑
i∈Jj

∥∥∥∥ai: − 1

|Jj |
∑
l∈Jj

al:

∥∥∥∥2
2

=

k∑
j=1

∑
i∈Jj

∥∥ai: − (XXTA)i:
∥∥2
2

=
n∑
i=1

∥∥ai: − (XXTA)i:
∥∥2
2

=
∥∥A−XXTA

∥∥2
F
.

Therefore, the linear k-means clustering problem (1) is equivalent to the optimization
problem

argmin
X∈Xn,k

1

n

∥∥A−XXTA
∥∥2
F
. (10)

In the remainder of this section, we use this equivalence between k-partitionings of [n] and
cluster indicator matrices without comment; e.g., we refer to the outputs of linear k-means
clustering algorithms as cluster indicator matrices. Because the linear k-means clustering
problem (10) is NP-hard, in practice it is solved by variants of Lloyd’s algorithm.

Definition 4 defines an appropriate notion of approximation for linear k-means clustering
algorithms. Definition 4 is an equivalent statement of Definition 1.
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Definition 4 (γ-Approximate Algorithms) We call an algorithm Aγ (γ ≥ 1) a γ-
approximate linear k-means algorithm if it produces a cluster indicator matrix X̃ such that∥∥A− X̃X̃TA

∥∥2
F
≤ γ · min

X∈Xn,k

∥∥A−XXTA
∥∥2
F

for any conformal matrix A.

Given this, we now state Lemma 12, which relates projection-cost preservation to linear
k-means clustering. Let A ∈ Rn×d be the input matrix and B ∈ Rn×s be a smaller matrix
(s < d) satisfying the projection-cost preservation property. The projection-cost preserving
property ensures that the k-partition obtained by applying linear k-means clustering to the
rows of B, instead of A, is a good k-partition for the rows of A. This lemma was established
by Cohen et al. (2015). To make this paper self-contained, we provide a proof of Lemma 12
in Appendix E.

Lemma 12 (Projection-Cost Preservation for Linear k-Means) Fix A ∈ Rn×d and
assume B ∈ Rn×s satisfies the rank k projection-cost preservation property in Definition 2
with probability at least 1− δ. Let the error parameters ε1, ε2 ∈ (0, 1) be as in Definition 2.
If X̃B is the result of applying a γ-approximate linear k-means clustering algorithm to the
rows of B, then with probability at least 1− 2δ,∥∥A− X̃BX̃T

BA
∥∥2
F
≤ γ · 1+ε21−ε1 · min

X∈Xn,k

∥∥A−XXTA
∥∥2
F
.

B.3. Kernel k-Means Clustering

Given input vectors a1, . . . ,an, the kernel k-means clustering algorithm applies lin-
ear k-means clustering to feature vectors φ(a1), . . . ,φ(an). For convenience, we let
φ(a1)

T , . . . ,φ(an)T constitute the rows of the matrix Φ. Lemma 13 argues that all the
information in Φ relevant to the kernel k-means clustering problem is present in the kernel
matrix K = ΦΦT . Variants of this lemma are well-known (Schölkopf and Smola, 2002).

Lemma 13 (Kernel Trick for Kernel k-Means) Let Φ be a matrix with n rows and
let K = ΦΦT ∈ Rn×n. Let K = VΛVT be the EVD of K. Then for any matrix X with
orthonormal columns,∥∥Φ−XXTΦ

∥∥2
F

=
∥∥(VΛ1/2)−XXT (VΛ1/2)

∥∥2
F
.

Proof Because X has orthonormal columns, XXT is an orthogonal projection matrix, and
(In −XXT ) is the orthogonal projection onto the complementary space. It follows that, as
claimed,∥∥Φ−XXTΦ

∥∥2
F

= tr
(
ΦT (In −XXT )Φ

)
= tr

(
(In −XXT )K

)
= tr

(
(In −XXT )VΛ1/2Λ1/2V(In −XXT )

)
=
∥∥(VΛ1/2)−XXT (VΛ1/2)

∥∥2
F
.

The equalities are justified by, respectively, the definition of the squared Frobenius norm and
the idempotence of projections; the cyclicity of the trace and the fact that K = ΦΦT ; the
cylicity of the trace and the EVD of K; and the definition of the squared Frobenius norm.
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B.4. Completing the Proof of Theorem 2

To complete the proof of Theorem 2, we first establish Lemma 14, and then use it to prove
Theorem 15, which is equivalent to Theorem 2. Let Φ be a matrix with n rows, and
K = ΦΦT ∈ Rn×n be the corresponding kernel matrix.

Lemma 14 Assume that B ∈ Rn×s satisfies

tr
(
K−BBT

)
≤ (1 + ε)

∥∥K−Ks

∥∥
∗ (11)

and that there is an orthogonal projection matrix M such that

BBT = K1/2MK1/2. (12)

Use the rows of B as input to a γ-approximation algorithm (see Definition 4) and let X̃B

be the output cluster indicator matrix (see Definition 3), then∥∥Φ− X̃BX̃T
BΦ
∥∥2
F
≤ γ

(
1 + ε+ k

s

)
· min
X∈Xn,k

∥∥Φ−XXTΦ
∥∥2
F
.

Proof Because assumptions (11) and (12) are satisfied, Lemma 11 ensures that B is a rank
k projection-cost preserving sketch of K. That is, there exists a constant α ≥ 0 independent
of Π such that∥∥(In −Π)K1/2

∥∥2
F
≤
∥∥(In −Π)B

∥∥2
F

+ α ≤
(
1 + ε+ k

s

)∥∥(In −Π)K1/2
∥∥2
F

holds for any rank-k orthogonal projection matrix Π. It follows by Lemma 12 that X̃B

gives an almost optimal linear k-means clustering over the rows of K1/2:∥∥K1/2 − X̃BX̃T
BK1/2

∥∥2
F
≤ γ

(
1 + ε+ k

s

)
· min
X∈Xn,k

∥∥K1/2 −XXTK1/2
∥∥2
F
.

Finally, Lemma 13 states that clustering the rows of K1/2 is equivalent to clustering the
rows of Φ, so we reach the desired conclusion that∥∥Φ− X̃BX̃T

BΦ
∥∥2
F
≤ γ

(
1 + ε+ k

s

)
· min
X∈Xn,k

∥∥Φ−XXTΦ
∥∥2
F
.

Finally, we state and prove Theorem 15. Theorem 15 shows that approximate kernel
k-means clustering using the Nyström method exhibits a 1 + ε + k

s approximation ratio.
Observe that Theorem 15 is equivalent to Theorem 2, and thus establishing it also establishes
Theorem 2. Recall the Nyström approximation is K ≈ CW†CT , where C = KP, W =
PTKP, and P is a sketching matrix.

Theorem 15 Choose a sketching sketching matrix P ∈ Rn×c and sketch size c consistent
with Table 2. Let B ∈ Rn×s be any matrix satisfying BBT = (CW†CT )s. Let the cluster
indicator matrix XB be the output of any γ-approximate k-means clustering algorithm
applied to the rows of B. With probability at least 0.9,∥∥Φ−XBXT

BΦ
∥∥2
F
≤ γ

(
1 + ε+ k

s

)
min

X∈Xn,k

∥∥Φ−XXTΦ
∥∥2
F
.
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Proof Theorem 1 shows that (11) holds with probability at least 0.9. Theorem 1 also
shows that BBT = K1/2QQTK1/2 where Q is a n × s matrix with orthonormal columns,
so (12) holds surely. The theorem now follows from Lemma 14.

Appendix C. Proof of Theorem 4

Section C.1 analyzes rank-restricted Nystöm with power method. Section C.2 completes the
proof of Theorem 4. Here we re-state the algorithm of Theorem 4: first, set any c ≥ s and
draw a Gaussian projection matrix P ∈ Rn×c; second, run the power iteration P ←− KP
for t times; third, orthogonalize P ∈ Rn×c to obtain U ∈ Rn×c; fourth, compute C = KU
and W = UTKU; last, find any B ∈ Rn×s satisfying BBT = (CW†CT )s.

C.1. Rank-Restricted Nyström with Power Method

Theorem 16 analyzes the rank-restricted Nyström with power method. The theorem will
be used to prove Theorem 4.

Theorem 16 Let K ∈ Rn×n be an SPSD matrix, s be the target rank, c (≥ s) be arbitrary,
and ε ∈ (0, 1) be an approximation parameter. Let C ∈ Rn×c and W ∈ Rc×c be computed by

the above algorithm with t = O( log(n/ε)
log(σs/σs+1)

) power iterations, where σi is the i-th singular

value of K. If c = s+O(log 1
δ ), then∥∥K− (CW†CT )s

∥∥
∗ ≤ (1 + ε)

∥∥K−Ks

∥∥
∗

with probability at least 1 − δ. If c = s, then this bound holds with a constant probability
(that depends on s).

Proof Let V−s ∈ Rn×(n−s) be the orthogonal complement of Vs. Let P be an n × c
standard Gaussian matrix. Then VT

−sP is (n− s)× c standard Gaussian matrix, and VT
s P

is s× c standard Gaussian matrix.
It is well known that the largest singular value of an (n − s) × c standard Gaussian

matrix is at most
√
n− s+

√
c+ ζ with probability 1− exp(−ζ2/2). See (Vershynin, 2010).

Consider c > s. The least singular value of an s× c standard Gaussian matrix is at least√
c−
√
s− ζ with probability 1− exp(−ζ2/2). Combining the above results, we have that

σ21(VT
−sP)

σ2s(V
T
s P)

≤
√
n− s+

√
c+

√
2 log(1/δ)

√
c−
√
s−

√
2 log(1/δ)

holds with probability 1− 2δ.
Consider c = s. Rudelson and Vershynin (2008); Tao and Vu (2010) showed that the

least singular value of an s× s standard Gaussian matrix G satisfy

P
{
σs(G) ≤ δ1√

s

}
= δ1 +O(s−τ ),

where τ > 0 is a constant. It follows that

σ21(VT
−sP)

σ2s(V
T
s P)

≤
√
n− s+

√
s+

√
2 log(1/δ2)

δ1/
√
s

38



Scalable Kernel K-Means Clustering with Nyström Approximation

holds with probability 1− δ1 − δ2 −O(s−τ ).
For either c > s or c = s, it follows from Lemma 17, which will be proved subsequently,

that ∥∥K− (CW†CT )s
∥∥
∗ ≤

∥∥K−Ks

∥∥
∗ +

σ2
1(V

T
−sP)

σ2
s(V

T
s P)

(
σs+1(K)
σs(K)

)2t ∥∥K−Ks

∥∥
∗

≤
∥∥K−Ks

∥∥
∗ +O

(
ns
) (σs+1(K)

σs(K)

)2t ∥∥K−Ks

∥∥
∗

holds with constant probability, by which the theorem follows.

Lemma 17 Let K ∈ Rn×n be any fixed SPSD matrix, s and t be any positive integer, and
Vs ∈ Rn×s be the top s singular vectors of K. Let P ∈ Rn×c satisfy that PTVs ∈ Rc×s
has full column rank. Let U ∈ Rn×c be the orthonormal bases of KtP. Let C = KU and
W = UTKU. Then∥∥K− (CW†CT )s

∥∥
∗ ≤

∥∥K−Ks

∥∥
∗ +

(
σs+1(K)
σs(K)

)2t σ2
1(V

T
−sP)

σ2
s(V

T
s P)

∥∥K−Ks

∥∥
∗.

Here V−s ∈ Rn×(n−s) is the orthogonal complement of Vs.

Proof It follows from Lemma 8 that∥∥K− (CW†CT
)
s

∥∥
∗ = min

rank(Z)≤s

∥∥K1/2 − (K1/2U)Z
∥∥2
F

= min
rank(Z)≤s

∥∥A− (AU)Z
∥∥2
F

where we let A = K1/2. By definition, U contains the orthonormal bases of KtP = A2tP,
and thus there exists an s×s non-singular matrix R such that A2tP = UR. It follows that∥∥K− (CW†CT

)
s

∥∥
∗ = min

rank(Z)≤s

∥∥A− (AA2tPR−1)Z
∥∥2
F

= min
rank(Y)≤s

∥∥A− (A2t+1P)Y
∥∥2
F
,

where the latter equality follows from that the column spaces of A2t+1P and A2t+1PR−1

are the same. It follows from Lemma 7 that∥∥K− (CW†CT
)
s

∥∥
∗ = min

rank(Y)≤s

∥∥A− (A2t+1P)Y
∥∥2
F

≤
∥∥A−As

∥∥2
F

+
(
σ2
s+1(A)

σ2
s(A)

)2t ∥∥∥(A−As)P(VT
s P)†

∥∥∥2
F

≤
∥∥A−As

∥∥2
F

+
(
σ2
s+1(A)

σ2
s(A)

)2t ∥∥A−As

∥∥2
F

∥∥VT
−sP

∥∥2
2

∥∥(VT
s P)†

∥∥2
2
,

where we define V−s ∈ Rn×(n−s) as the orthogonal complement of Vs. By our definition
A = K1/2, it follows that∥∥K− (CW†CT

)
s

∥∥
∗

≤
∥∥(K−Ks)

1/2
∥∥2
F

+
(
σs+1(K)
σs(K)

)2t σ2
1(V

T
−sP)

σ2
s(V

T
s P)

∥∥(K−Ks)
1/2
∥∥2
F

=
∥∥K−Ks

∥∥
∗ +

(
σs+1(K)
σs(K)

)2t σ2
1(V

T
−sP)

σ2
s(V

T
s P)

∥∥K−Ks

∥∥
∗,
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by which the lemma follows.

C.2. Completing the Proof of Theorem 4

Finally, we state and prove Theorem 18. Observe that Theorem 18 is equivalent to
Theorem 4, and thus establishing it also establishes Theorem 4.

Theorem 18 Let c, t, and B ∈ Rn×s be defined in the begining of this section. Set t =
O( log(n/ε)

log(σs/σs+1)
). Let the cluster indicator matrix XB be the output of any γ-approximate

k-means clustering algorithm applied to the rows of B. If c = s+O(log 1
δ ), then∥∥Φ−XBXT

BΦ
∥∥2
F
≤ γ

(
1 + ε+ k

s

)
min

X∈Xn,k

∥∥Φ−XXTΦ
∥∥2
F

holds with probability at least 1− δ. If c = s, then the above inequality holds with probability
0.9−O(s−τ ), where τ is a constant.

Proof Since BBT = (CW†CT )s by definition, Theorem 16 ensures that (11) holds with
some constant probability. Theorem 1 shows that BBT = K1/2QQTK1/2 where Q is a
n × s matrix with orthonormal columns, so (12) holds surely. The theorem now follows
from Lemma 14.

Appendix D. Proof of Lemma 11

To prove Lemma 11, we first establish a key lemma, Lemma 19. This lemma will make use
of the following two assumptions.

Assumption 1 Assume that Ãs satisfies tr
(
AAT − ÃsÃ

T
s

)
≤ (1 + ε)

∥∥AAT −AsA
T
s

∥∥
∗.

Assumption 2 Assume there exists such an orthogonal projection matrix M that ÃsÃ
T
s =

AMAT .

Lemma 19 Let A ∈ Rn×d be any fixed matrix. Fix an error parameter ε ∈ (0, 1). Let the
rank s matrix Ãs satisfy Assumptions 1 and 2. Then for any rank k orthogonal projection
matrix Π ∈ Rn×n,
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Proof It holds that
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where the inequality follows from Assumption 1. It can be equivalently written as

tr
(
Π
(
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T
s

)
Π
)
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s
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∗ − tr
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T
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)
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)
.

Let M be an orthogonal projection matrix defined in Assumption 2; by this assumption, it
holds that ÃsÃ

T
s = AMAT and rank(MA) = s. It follows that

tr
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(
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,

where the inequality follows from that matrix rank is subadditive function. It follows that
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where the last inequality follows by the decrease of the singular values. Finally, we obtain
that
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by which the lemma follows.

Given Lemma 19, we now provide the proof of Lemma 11.

Proof For any orthogonal projection matrix M, it holds that M = MM. It follows that∥∥(In −Π)A
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where the last equality follows by letting α = tr
(
AAT − ÃsÃ

T
s

)
≥ 0 which is independent

of Π. The above equality can be equivalently written as∥∥(In −Π)Ãs
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Under Assumption 2 that ÃsÃ
T
s � AAT , it follows from (13) that∥∥(In −Π)A
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Under Assumptions 1 and 2, we can apply Lemma 19 to bound the right-hand side:
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)
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,

by which the lemma follows.

Appendix E. Proof of Lemma 12

Because B enjoys the projection-cost preservation property, there exists a constant α ≥ 0
such that for any rank k orthogonal projection matrices Π1 and Π2, the two inequalities
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hold simultaneously with probability at least 1 − 2δ. Let Π1 = X̃BX̃T
B and X?

A =
argminX∈Xn,k

‖A − XXTA‖2F . It follows from (14) and the definition of γ-approximate
k-means algorithm that
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Combining the above results, we have that

(1− ε1)
∥∥A− X̃BX̃T

BA
∥∥2
F
≤ γ

∥∥B−X?
AX?

A
TB
∥∥2
F

+ α

≤ γ
(∥∥B−X?

AX?
A
TB
∥∥2
F

+ α
)
≤ γ(1 + ε2)

∥∥A−X?
AX?

A
TA
∥∥2
F
,

where the second inequality follows from that γ ≥ 1 and α ≥ 0. It follows that∥∥A− X̃BX̃T
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This concludes our proof.
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