
Robust Regression on MapReduce

Xiangrui Meng ximeng@linkedin.com

LinkedIn Corporation, 2029 Stierlin Ct, Mountain View, CA 94043

Michael W. Mahoney mmahoney@cs.stanford.edu

Department of Mathematics, Stanford University, Stanford, CA 94305

Abstract

Although the MapReduce framework is now
the de facto standard for analyzing massive
data sets, many algorithms (in particular,
many iterative algorithms popular in ma-
chine learning, optimization, and linear al-
gebra) are hard to fit into MapReduce. Con-
sider, e.g., the `p regression problem: given a
matrix A ∈ Rm×n and a vector b ∈ Rm, find a
vector x∗ ∈ Rn that minimizes f(x) = ‖Ax−
b‖p. The widely-used `2 regression, i.e., lin-
ear least-squares, is known to be highly sen-
sitive to outliers; and choosing p ∈ [1, 2)
can help improve robustness. In this work,
we propose an efficient algorithm for solv-
ing strongly over-determined (m � n) ro-
bust `p regression problems to moderate pre-
cision on MapReduce. Our empirical results
on data up to the terabyte scale demonstrate
that our algorithm is a significant improve-
ment over traditional iterative algorithms on
MapReduce for `1 regression, even for a fairly
small number of iterations. In addition, our
proposed interior-point cutting-plane method
can also be extended to solving more general
convex problems on MapReduce.

1 Introduction

Statistical analysis of massive data sets presents very
substantial challenges both to data infrastructure and
to algorithm development. In particular, many popu-
lar data analysis and machine learning algorithms that
perform well when applied to small-scale and medium-
scale data that can be stored in RAM are infeasible
when applied to the terabyte-scale and petabyte-scale

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

data sets that are stored in distributed environments
and that are increasingly common. In this paper, we
develop algorithms for variants of the robust regression
problem, and we evaluate implementations of them
on data of up to the terabyte scale. In addition to
being of interest since ours are the first algorithms
for these problems that are appropriate for data of
that scale, our results are also of interest since they
highlight “algorithm engineering” challenges that will
become more common as researchers try to scale up
small-scale and medium-scale data analysis and ma-
chine learning methods. For example, at several points
we had to work with variants of more primitive algo-
rithms that were worse by traditional complexity mea-
sures but that had better communication properties.

1.1 MapReduce and Large-scale Data

The MapReduce framework, introduced by (Dean &
Ghemawat, 2004) in 2004, has emerged as the de
facto standard parallel environment for analyzing mas-
sive data sets. Apache Hadoop 1, an open source
software framework inspired by Google’s MapReduce,
is now extensively used by companies such as Face-
book, LinkedIn, Yahoo!, etc. In a typical application,
one builds clusters of thousands of nodes containing
petabytes of storage in order to process terabytes or
even petabytes of daily data. As a parallel computing
framework, MapReduce is well-known for its scalabil-
ity to massive data. However, the scalability comes
at the price of a very restrictive interface: sequential
access to data, and functions limited to map and re-
duce. Working within this framework demands that
traditional algorithms be redesigned to respect this in-
terface. For example, the Apache Mahout 2 project
is building a collection of scalable machine learning
algorithms that includes algorithms for collaborative
filtering, clustering, matrix decomposition, etc.

1Apache Hadoop, http://hadoop.apache.org/
2Apache Mahout, http://mahout.apache.org/

http://hadoop.apache.org/
http://mahout.apache.org/

Robust Regression on MapReduce

Although some algorithms are easily adapted to the
MapReduce framework, many algorithms (and in par-
ticular many iterative algorithms popular in machine
learning, optimization, and linear algebra) are not.
When the data are stored on RAM, each iteration is
usually very cheap in terms of floating-point opera-
tions (FLOPs). However, when the data are stored
on secondary storage, or in a distributed environment,
each iteration requires at least one pass over the data.
Since the cost of communication to and from secondary
storage often dominates FLOP count costs, each pass
can become very expensive for very large-scale prob-
lems. Moreover, there is generally no parallelism be-
tween iterations: an iterative algorithm must wait un-
til the previous step gets completed before the next
step can begin.

1.2 Our Main Results

In this work, we are interested in developing algo-
rithms for robust regression problems on MapReduce.
Of greatest interest will be algorithms for the strongly
over-determined `1 regression problem,3 although our
method will extend to more general `p regression. For
simplicity of presentation, we will formulate most of
our discussion in terms of `p regression; and toward
the end we will describe the results of our implemen-
tation of our algorithm for `1 regression.

Recall the strongly over-determined `p regression prob-
lem: given a matrix A ∈ Rm×n, with m� n, a vector
b ∈ Rm, a number p ∈ [1,∞), and an error parameter
ε > 0, find a (1 + ε)-approximate solution x̂ ∈ Rn to:

f∗ = min
x∈Rn

‖Ax− b‖p, (1)

i.e., find a vector x̂ such that

‖Ax̂− b‖p ≤ (1 + ε)f∗, (2)

where the `p norm is given by ‖x‖p = (
∑
i |xi|p)

1/p
. A

more robust alternative to the widely-used `2 regres-
sion is obtained by working with `p regression, with
p ∈ [1, 2), where p = 1 is by far the most popular alter-
native. This, however, comes at the cost of increased
complexity. While `2 regression can be solved with,
e.g., a QR decomposition, `1 regression problems can
be formulated as linear programs, and other `p regres-
sion problems can be formulated as convex programs.
In those cases, iterated weighted least-squares meth-
ods or simplex methods or interior-point methods are
typically used in practice. These algorithms tend to re-
quire dot products, orthogonalization, and thus a great

3The `1 regression problem is also known as the Least
Absolute Deviations or Least Absolute Errors problem.

deal of communication, rendering them challenging to
implement in the MapReduce framework.

In this paper, we describe an algorithm with better
communication properties that is efficient for solv-
ing strongly over-determined `p regression problems to
moderate precision on MapReduce.4 Several aspects
of our main algorithm are of particular interest:

• Single-pass conditioning. We use a recently-
developed fast rounding algorithm (which takes
O(mn3 logm) time to construct a 2n-rounding of
a centrally symmetric convex set in Rn (Clarkson
et al., 2013)) to construct a single-pass determin-
istic conditioning algorithm for `p regression.

• Single-pass random sampling. By using a con-
strained form of `p regression (that was also used
recently (Clarkson et al., 2013)), we show that
the method of subspace-preserving random sam-
pling (Dasgupta et al., 2009) can be (easily) im-
plemented in the MapReduce framework, i.e.,
with map and reduce functions, in a single pass.

• Effective initialization. By using multiple sub-
sampled solutions from the single-pass random
sampling , we can construct a small initial search
region for interior-point cutting-plane methods.

• Effective iterative solving. By performing in par-
allel multiple queries at each iteration, we de-
velop a randomized IPCPM (interior-point cut-
ting plane method) for solving the convex `p re-
gression program.

In addition to describing the basic algorithm, we also
present empirical results from a numerical implemen-
tation of our algorithm applied to the `1 regression
problems on data sets of size up to the terabyte scale.

1.3 Prior Related Work

There is a large literature on robust regression, dis-
tributed computation, MapReduce, and randomized
matrix algorithms that is beyond our scope to review.
See, e.g., (Rousseeuw & Leroy, 1987), (Bertsekas &
Tsitsiklis, 1991), (Dean & Ghemawat, 2004), and (Ma-
honey, 2011), respectively, for details. Here, we will
review only the most recent related work.

Strongly over-determined `1 regression problems were
considered by (Portnoy & Koenker, 1997), who used
a uniformly-subsampled solution for `1 regression to
estimate the signs of the optimal residuals in order

4Interestingly, both our single-pass conditioning algo-
rithm as well as our iterative procedure are worse in terms
of FLOP counts than state-of-the-art algorithms (devel-
oped for RAM) for these problems—see Tables 1 and 2—
but we prefer them since they perform better in very large-
scale distributed settings that are of interest to us here.

Robust Regression on MapReduce

to reduce the problem size; their sample size is pro-
portional to (mn)2/3. (Clarkson, 2005) showed that,
with proper conditioning, relative-error approximate
solutions can be obtained from row norm-based sam-
pling; and (Dasgupta et al., 2009) extended these
subspace-preserving sampling schemes to `p regres-
sion, for p ∈ [1,∞), thereby obtaining relative-error
approximations. (Sohler & Woodruff, 2011) proved
that a Cauchy Transform can be used for `1 condi-
tioning and thus `1 regression in O(mn2 log n) time;
this was improved to O(mn log n) time with the Fast
Cauchy Transform by (Clarkson et al., 2013), who
also developed an ellipsoidal rounding algorithm (see
Lemma 1 below) and used it and a fast random pro-
jection to construct a fast single-pass conditioning al-
gorithm (upon which our Algorithm 1 below is based).
(Clarkson & Woodruff, 2013) and (Meng & Mahoney,
2013) show that both `2 regression and `p regression
can be solved in input-sparsity time via subspace-
preserving sampling. The large body of work on fast
randomized algorithms for `2 regression (and related)
problems has been reviewed recently (Mahoney, 2011).

To obtain a (1 + ε)-approximate solution in relative
scale, the sample sizes required by all these algorithms
are all proportional to 1/ε2, which limits sampling al-
gorithms to “low precision”, e.g., ε ≈ 10−2, solutions.
By using the output of the sampling/projection step
as a preconditioner for a traditional iterative method,
thereby leading to an O(log(1/ε)) dependence, this
problem has been overcome for `2 regression (Ma-
honey, 2011). For `1 regression, the O(1/ε2) conver-
gence rate of the subgradient method of (Clarkson,
2005) was improved by (Nesterov, 2009), who showed
that, with a smoothing technique, the number of it-
erations can be reduced to O(1/ε). Interestingly (and
as we will return to in Section 3.3), the rarely-used el-
lipsoid method (see (Grötschel et al., 1981)) as well as
IPCPMs (see (Mitchell, 2003)) can solve general con-
vex problems and converge in O(log(1/ε)) iterations—
with extra poly(n) work per iteration.

More generally, there has been a lot of interest re-
cently in distributed machine learning computations.
For example, (Daumé et al., 2012) describes effi-
cient protocols for distributed classification and op-
timization; (Balcan et al., 2012) analyzes communi-
cation complexity and privacy aspects of distributed
learning; (Mackey et al., 2011) adopts a divide-and-
conquer approach to matrix factorization such as CUR
decompositions; and (Zhang et al., 2012) develop
communication-efficient algorithms for statistical opti-
mization. Algorithms for these and other problems can
be analyzed in models for MapReduce (Karloff et al.,
2010; Goodrich, 2010; Feldman et al., 2010); and work

on parallel and distributed approaches to scaling up
machine learning has been reviewed recently (Bekker-
man et al., 2011).

2 Background and Overview

In the remainder of this paper, we use the following
formulation of the `p regression problem:

minimizex∈Rn ‖Ax‖p
subject to cTx = 1.

(3)

This formulation of `p regression, which consists of a
homogeneous objective and an affine constraint, can
be shown to be equivalent to the formulation of (1).5

Denote the feasible region by Ω = {x ∈ Rn | cTx = 1},
where recall that we are interested in the case when
m � n. Let X ∗ be the set of all optimal solutions to
(3) and x∗ be an arbitrary optimal solution. Then, let
f(x) = ‖Ax‖p, f∗ = ‖Ax∗‖p, and let

g(x) = AT [Ax]p−1/‖Ax‖p−1
p ∈ ∂f(x),

where ([Ax]p−1)i = sign(aTi x)|aTi x|p−1 and ai is the
i-th row of A, i = 1, . . . ,m. Note that g(x)Tx = f(x).
For simplicity, we assume that A has full column rank
and c 6= 0. Our assumptions imply that X ∗ is a
nonempty and bounded convex set and f∗ > 0. Thus,
given an ε > 0, our goal is to find an x̂ ∈ Ω that is
a (1 + ε)-approximate solution to (3) in relative scale,
i.e., such that f(x̂) < (1 + ε)f∗.

As with `2 regression, `p regression problems are easier
to solve when they are well-conditioned. The `p-norm
condition number of A, denoted κp(A), is defined as:

κp(A) = σmax
p (A)/σmin

p (A),

where

σmax
p (A) = max

‖x‖2≤1
‖Ax‖p and σmin

p (A) = min
‖x‖2≥1

‖Ax‖p.

This implies

σmin
p (A)‖x‖2 ≤ ‖Ax‖p ≤ σmax

p (A)‖x‖2, ∀x ∈ Rn.

We use κp, σ
min
p , and σmax

p for simplicity when the
underlying matrix is clear. The element-wise `p-norm
of A is denoted by ‖A‖p. We use E(d,E) = {x ∈
Rn |x = d + Ez, ‖z‖2 = 1} to describe an ellipsoid
where E ∈ Rn×n is a non-singular matrix. The volume
of a full-dimensional ellipsoid E is denoted by |E|. We

5In particular, the “new” A is A concatenated with −b,
etc. Note that the same formulation is also used by (Nes-
terov, 2009) for solving unconstrained convex problems in
relative scale as well as by (Clarkson et al., 2013).

Robust Regression on MapReduce

use S(S, t) = {x ∈ Rn |Sx ≤ t} to describe a polytope,
where S ∈ Rs×n and t ∈ Rs for some s ≥ n+ 1.

Given an `p regression problem, its condition number
is generally unknown and can be arbitrarily large; and
thus one needs to run a conditioning algorithm before
randomly sampling and iteratively solving. Given any
non-singular matrix E ∈ Rn, let y∗ be an optimal
solution to the following problem:

minimizey∈Rn ‖AEy‖p
subject to cTEy = 1.

(4)

This problem is equivalent to (3), in that we have
x∗ = Ey∗ ∈ X ∗, but the condition number asso-
ciated with (4) is κp(AE), instead of κp(A). So,
the conditioning algorithm amounts to finding a non-
singular matrix E ∈ Rn such that κp(AE) is small.
One approach to conditioning is via ellipsoidal round-
ing. In this paper, we will modify the following result
from (Clarkson et al., 2013) to compute a fast ellip-
soidal rounding.

Lemma 1 ((Clarkson et al., 2013)). Given A ∈ Rm×n
with full column rank and p ∈ [1, 2), it takes at most
O(mn3 logm) time to find a non-singular matrix E ∈
Rn×n such that

‖y‖2 ≤ ‖AEy‖p ≤ 2n‖y‖2, ∀y ∈ Rn.

Finally, we call a work online if it is executed on
MapReduce, and offline otherwise. An online work
deals with large-scale data stored on secondary storage
but the work can be well distributed on MapReduce;
an offline work deals with data stored on RAM.

3 `p Regression on MapReduce

In this section, we will describe our main algorithm for
`p regression on MapReduce.

3.1 Single-pass Conditioning Algorithm

The algorithm of Lemma 1 for computing a 2n-
rounding is not immediately-applicable to large-scale
`p regression problems, since each call to the oracle
requires a pass to the data.6 We can group n calls to-
gether within a single pass, but we would still need
O(n logm) passes. Here, we present a determinis-
tic single-pass conditioning algorithm that balances
the cost-performance trade-off to provide a 2n2/p-
conditioning of A. See Algorithm 1. Our main result
for Algorithm 1 is given in the following lemma.

Lemma 2. Algorithm 1 is a 2n2/p-conditioning algo-
rithm and it runs in O((mn2 + n4) logm) time.

6The algorithm takes a centrally-symmetric convex set
described by a separation oracle that is a subgradient of
‖Ax‖p; see (Clarkson et al., 2013) for details.

Algorithm 1 A single-pass conditioning algorithm.

Input: A ∈ Rm×n with full column rank & p ∈ [1, 2).
Output: A non-singular matrix E ∈ Rn×n such that

‖y‖2 ≤ ‖AEy‖p ≤ 2n2/p‖y‖2, ∀y ∈ Rn.

1: Partition A along its rows into sub-matrices of size
n2 × n, denoted by A1, . . . , AM .

2: For each Ai, compute its economy-sized singular
value decomposition (SVD): Ai = UiΣiV

T
i .

3: Let Ãi = ΣiV
T
i for i = 1, . . . ,M ,

C̃ = {x | (
M∑
i=1

‖Ãix‖p2)1/p ≤ 1}, and Ã =

(
Ã1

.

.

.

ÃM

)
.

4: Compute Ã’s SVD: Ã = Ũ Σ̃Ṽ T .
5: Let E0 = E(0, E0) where E0 = n1/p−1/2Ṽ Σ̃−1. E0

gives an (Mn2)1/p−1/2-rounding of C̃.
6: With the algorithm of Lemma 1, compute an el-

lipsoid E = E(0, E) that gives a 2n-rounding of C̃.
7: Return E.

Proof. The idea is to use block-wise reduction in `2-
norm and apply fast rounding to a small problem. The
tool we need is simply the equivalence of vector norms.
Let C = {x ∈ Rn | ‖Ax‖p ≤ 1}, which is convex,
full-dimensional, bounded, and centrally symmetric.
Adopting notation from Algorithm 1, we first have

n1−2/pC̃ ⊆ C ⊆ C̃

because for all x ∈ Rn,

‖Ax‖pp=
M∑
i=1

‖Aix‖pp≤n2−p
M∑
i=1

‖Aix‖p2=n2−p
M∑
i=1

‖Ãix‖p2

and

‖Ax‖pp =

M∑
i=1

‖Aix‖pp ≥
M∑
i=1

‖Aix‖p2 =

M∑
i=1

‖Ãix‖p2.

Next we prove that E0 gives an (Mn2)1/p−1/2-rounding
of C̃. For all x ∈ Rn, we have
M∑
i=1

‖Ãix‖p2 ≤
M∑
i=1

‖Ãix‖pp = ‖Ãx‖pp ≤ (Mn)1−p/2‖Ãx‖p2

= (Mn)1−p/2‖Σ̃Ṽ Tx‖p2,

and
M∑
i=1

‖Ãix‖p2 ≥ np/2−1
M∑
i=1

‖Ãix‖pp = np/2−1‖Ãx‖pp

≥ np/2−1‖Ãx‖p2 = np/2−1‖Σ̃Ṽ Tx‖p2.

Then by choosing E0 = n1/p−1/2Ṽ Σ̃−1, we get

‖E−1
0 x‖2 ≤ (

M∑
i=1

‖Ãix‖p2)1/p ≤ (Mn2)1/p−1/2‖E−1
0 x‖2

Robust Regression on MapReduce

time κ1

(Clarkson, 2005) O(mn5 logm) (n(n+ 1))1/2

Lemma 1 O(mn3 logm) 2n
Lemma 2 & Algorithm 1 O(mn2 logm) 2n2

(Sohler & Woodruff, 2011) O(mn2 logn) O(n3/2 log3/2 n)

(Clarkson et al., 2013) O(mn logm) O(n5/2 log1/2 n)

(Clarkson et al., 2013) O(mn logn) O(n5/2 log5/2 n)
(Meng & Mahoney, 2013) O(nnz(A)) O(n3 log3 n)

Table 1. Comparison of `1-norm conditioning algorithms
on the running time and conditioning quality.

for all x ∈ Rn and hence E0 gives an (Mn2)1/p−1/2-
rounding of C̃. Since n1−2/pC̃ ⊆ C ⊆ C̃, we know that
any 2n-rounding of C̃ is a 2n ·n2/p−1 = 2n2/p-rounding
of C. Therefore, Algorithm 1 computes a 2n2/p-
conditioning of A. Note that the rounding procedure is
applied to a problem of size Mn×n ≈ m/n×n. There-
fore, Algorithm 1 only needs a single pass through
the data, with O(mn2) FLOPs and an offline work
of O((mn2 + n4) logm) FLOPs. The offline work re-
quires m RAM, which might be too much for large-
scale problems. In such cases, we can increase the
block size from n2 to, for example, n3. This gives us a
2n3/p−1/2-conditioning algorithm that only needs m/n
offline RAM and O((mn + n4) logm) offline FLOPs.
The proof follows similar arguments.

See Table 1 for a comparison of the results of Algo-
rithm 1 and Lemma 2 with prior work on `1 norm
conditioning (and note that some of these results,
e.g., those of (Clarkson et al., 2013) and (Meng &
Mahoney, 2013), have extensions that apply to `p-
norm conditioning). Although the Cauchy Trans-
form (Sohler & Woodruff, 2011) and the Fast Cauchy
Transform (Clarkson et al., 2013) are independent of
A and require little offline work, there are several con-
cerns with using them in our application. First, the
constants hidden in κ1 are not explicitly given, and
they may be too large for practical use, especially when
n is small. Second, although random sampling algo-
rithms do not require σmin

p and σmax
p as inputs, some

algorithms, e.g., IPCPMs, need accurate bounds of
them. Third, these transforms are randomized algo-
rithms that fail with certain probability. Although we
can repeat trials to make the failure rate arbitrarily
small, we don’t have a simple way to check whether
or not any given trial succeeds. Finally, although the
online work in Algorithm 1 remains O(mn2), it is em-
barrassingly parallel and can be well distributed on
MapReduce. For large-scale strongly over-determined
problems, Algorithm 1 with block size n3 seems to
be a good compromise in practice. This guarantees
2n3/p−1/2-conditioning, and the O(mn2) online work
can be easily distributed on MapReduce.

3.2 Single-pass Random Sampling

Here, we describe our method for implementing the
subspace-sampling procedure with map and reduce
functions. Suppose that after conditioning we have
σmin
p (A) = 1 and κp(A) = poly(n). (Here, we use
A instead of AE for simplicity.) Then the following
method of (Dasgupta et al., 2009) can be used to per-
form subspace-preserving sampling.

Lemma 3 ((Dasgupta et al., 2009)). Given A ∈ Rm×n
that is (α, β, p)-conditioned7 and an error parameter
ε < 1

7 , let r ≥ 16(2p+2)(αβ)p(n log 12
ε +log 2

δ)/(p2ε2),
and let S ∈ Rm×m be a diagonal “sampling matrix,”
with random entries:

Sii =

{
1
pi

with probability pi,

0 otherwise,

where the importance sampling probabilities

pi ≥ min

{
1,
‖ai‖pp
‖A‖pp

· r
}
, i = 1, . . . ,m.

Then, with probability at least 1−δ, the following holds
for all x ∈ Rn,

(1− ε)‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)‖Ax‖p. (5)

This subspace-preserving sampling lemma can be used,
with the formulation (3), to obtain a relative-error ap-
proximation to the `p regression problem, the proof of
which is immediate.

Lemma 4 ((Clarkson et al., 2013)). Let S be con-
structed as in Lemma 3, and let x̂ be the optimal so-
lution to the subsampled problem:

minimizex∈Rn ‖SAx‖p
subject to cTx = 1.

Then with probability at least 1 − δ, x̂ is a 1+ε
1−ε -

approximate solution to (3).

It is straightforward to implement this algorithm in
MapReduce in a single pass. This is presented in Al-
gorithm 2. Importantly, note that more than one sub-
sampled solution can be obtained in a single pass. This
translates to a higher precision or a lower failure rate;
and, as described in Section 3.3, it can also be used to
construct a better initialization.

Several practical points are worth noting. First, nκpp is
an upper bound of ‖A‖pp, which makes the actual sam-
ple size likely to be smaller than r. For better control
on the sample size, we can compute ‖A‖pp directly via
one pass over A prior to sampling, or we can set a

7See (Clarkson et al., 2013) for the relationship between
κp(A) and the notion of (α, β, p)-conditioning.

Robust Regression on MapReduce

Algorithm 2 A single-pass sampling algorithm.

Input: A ∈ Rm×n with σmax
p (A) = κp, c ∈ Rn, a

desired sample size r, and an integer N .
Output: N approximate solutions: x̂k, k = 1, . . . , N .
1: function mapper(a: a row of A)
2: Let p = min{r‖a‖pp/(nκpp), 1}.
3: Emit (k, a/p) with probability p, k = 1, . . . , N .
4: end function
5: function reducer(k, {ai})
6: Assemble Ak from {ai}.
7: Compute x̂k = arg mincT x=1 ‖Akx‖p.
8: Emit (k, x̂k).
9: end function

big r in mappers and discard rows at random in re-
ducers if the actual sample size is too big. Second, in
practice, it is hard to accept ε as an input and deter-
mine the sample size r based on Lemma 3. Instead, we
choose r directly based on our hardware capacity and
running time requirements. For example, suppose we
use a standard primal-dual path-following algorithm
(see (Nesterov & Nemirovsky, 1994)) to solve subsam-
pled problems. Then, since each problem needs O(rn)
RAM and O(r3/2n2 log r

ε) running time for a (1 + ε)-
approximate solution, where r is the sample size, this
should dictate the choice of r. Similar considerations
apply to the use of the ellipsoid method or IPCPMs.

3.3 A Randomized IPCPM Algorithm

A problem with a vanilla application of the subspace-
preserving random sampling algorithm is accuracy: it
is very efficient if we only need one or two accurate
digits (see (Clarkson et al., 2013) for details), but if
we are looking for “moderate-precision” solutions, e.g.,
those with ε ≈ 10−5, then we very quickly be lim-
ited by the O(1/ε2) sample size required by Lemma 3.
For example, setting p = 1, n = 10, αβ = 1000,
and ε = 10−3 into Lemma 3, we get a sample size
of approximately 1012, which as a practical matter
is certainly intractable for a “subsampled” problem.
In this section, we will describe an algorithm with a
O(log(1/ε)) dependence, which is thus appropriate for
computing moderate-precision solutions. This algo-
rithm will be a randomized IPCPM with several fea-
tures specially-designed for MapReduce. In particu-
lar, the algorithm will take advantage of the multiple
subsampled solutions and the parallelizability of the
MapReduce framework.

As background, recall that IPCPMs are similar to
the bisection method but work in a high dimensional
space. An IPCPM requires a polytope S0 that is
known to contain a full-dimensional ball B of desired

num. iter. addl work

subgradient (Clarkson, 2005) O(n4/ε2)

gradient (Nesterov, 2009) O(m1/2 logm/ε)
ellipsoid (Grötschel et al., 1981) O(n2 log(κ/ε)) O(n2)

IPCPMs (see text for refs.) O(n log(κ/ε) poly(n)

Table 2. Iterative algorithms for `p regression: number of
iterations and extra work per iteration.

solutions described by a separation oracle. At step
k, a query point xk ∈ intSk is sent to the oracle. If
the query point is not a desired solution, the oracle
returns a half space Kk which contains B but not xk,
and then we set Sk+1 = Sk ∩ Kk and continue. If
xk is chosen such that |Sk+1|/|Sk| ≤ α, ∀k for some
α < 1, then the IPCPM converges geometrically. Such
a choice of xk was first given by (Levin, 1965), who
used (but did not provide a way to compute) the cen-
ter of gravity of Sk. (Tarasov et al., 1988) proved that
the center of the maximal-volume inscribed ellipsoid
also works; (Vaidya, 1996) showed the volumetric cen-
ter works, but he didn’t give an explicit bound; and
(Bertsimas & Vempala, 2004) suggest approximating
the center of gravity by random walks, e.g., the hit-
and-run algorithm (Lovász, 1999). Table 2 compares
IPCPMs with other iterative methods on `p regression
problems. Although they require extra work at each
iteration, IPCPMs converge in the fewest number of
iterations.8

For completeness, we will first describe a standard
IPCPM approach to `p regression; and then we will
describe the modifications we made to make it work in
MapReduce. Assume that σmin

p (A) = 1 and κp(A) =

poly(n). Let f̂ always denote the best objective value
we have obtained. Then for any x ∈ Rn, by convexity,

g(x)Tx∗ = f(x) + g(x)T (x∗ − x) ≤ f∗ ≤ f̂ . (6)

This subgradient gives us the separation oracle. Let
x0 be the minimal `2-norm point in Ω, in which case

‖Ax0‖p ≤ κp‖x0‖2 ≤ κp‖x∗‖2 ≤ κp‖Ax∗‖p,

and hence x0 is a κp-approximate solution. Moreover,

‖x∗ − x0‖∞ ≤ ‖x∗‖2 ≤ ‖Ax∗‖p ≤ ‖Ax0‖p, (7)

8It is for this reason that ICPCMs seem to be good
candidates for improving subsampled solutions. Previous
work assumes that data are in RAM, which means that
the extra work per iteration is expensive. Since we con-
sider large-scale distributed environments where data have
to be accessed via passes, the number of iterations is the
most precious resource, and thus the extra computation at
each iteration is relatively inexpensive. Indeed, by using a
randomized IPCPM, we will demonstrate that subsampled
solutions can be improved in very few passes.

Robust Regression on MapReduce

Algorithm 3 A randomized IPCPM

Input: A ∈ Rm×n with σmin
p (A) ≥ 1, c ∈ Rn, a set of

initial points, number of iterations M , and N ≥ 1.
Output: An approximate solution x̂.
1: Choose K = O(n).
2: Compute (f(x), g(x)) for each initial point x.

3: Let f̂ = f(x̂) always denote the best we have.
4: for i=0,. . . ,M-1 do
5: Construct Si from known (f, g) pairs and f̂ .

6: Generate random walks in Si : z
(i)
1 , z

(i)
2 , . . .

7: Let x
(i)
k = 1

K

∑kK
j=(k−1)K+1 z

(i)
j , k = 1, . . . , N .

8: Compute (f(x
(i)
k), g(i)(x

(i)
k)) for each k.

9: end for
10: Return x̂.

which defines the initial polytope S0. Given ε > 0, for
any x ∈ B = {x ∈ Ω | ‖x− x∗‖2 ≤ ε‖Ax0‖p/κ2

p},

‖Ax‖p − ‖Ax∗‖p ≤ ‖A(x− x∗)‖p ≤ κp‖x− x∗‖2
≤ ε‖Ax0‖p/κp ≤ ε‖Ax∗‖p.

So all points in B are (1 + ε)-approximate solu-
tions. The number of iterations to reach a (1 + ε)-
approximation is

O(log(|S0|/|B|)) = O(log((κ2
p/ε)

n)) = O(n log(n/ε)).

This leads to an O((mn2 + poly(n)) log(n/ε))-time al-
gorithm, which is better than sampling when ε is very
small. Note that we will actually apply the IPCPM in
a coordinate system defined on Ω, where the mappings
from and to the coordinate system of Rn are given by
Householder transforms; we omit the details.

Our randomized IPCPM for use on MapReduce, which
is given in Algorithm 3, differs from the standard ap-
proach just described in two aspects: sampling initial-
ization; and multiple queries per iteration. In both
cases, we take important advantage of the peculiar
properties of the MapReduce framework.

For the initialization, note that constructing S0 from
x0 may not be a good choice since we can only guar-
antee κp = poly(n). Recall, however, that we actually
have N subsampled solutions from Algorithm 2, and
all of these solutions can be used to construct a better
S0. Thus, we first compute f̂k = f(x̂k) and ĝk = g(x̂k)
for k = 1, . . . , N in a single pass. For each x̂k, we de-
fine a polytope containing x∗ using (6) and

‖x∗ − x̂k‖∞ ≤ ‖A(x∗ − x̂k)‖p ≤ f∗ + f̂k ≤ f̂ + f̂k.

We then merge all these polytopes to construct S0,
which is described by 2n + N constraints. Note also

that it would be hard to use all the available approxi-
mate solutions if we chose to iterate with a subgradient
or gradient method.

For the iteration, the question is which query point
we send at each step. Here, instead of one query, we
send multiple queries. Recall that, for a data intensive
job, the dominant cost is the cost of input/output, and
hence we want to extract as much information as pos-
sible for each pass. Take an example of one of our
runs on a 10-node Hadoop cluster: with a matrix A
of size 108 × 50, then a pass with a single query took
282 seconds, while a pass with 100 queries only took
328 seconds—so the extra 99 queries come almost “for
free.” To generate these multiple queries, we follow
the random walk approach proposed by (Bertsimas &
Vempala, 2004). The purpose of the random walk is to
generate uniformly distributed points in Sk such that
we can estimate the center of gravity. Instead of com-
puting one estimate, we compute multiple estimates.

We conclude our discussion of our randomized IPCPM
algorithm with a few comments.

• The online work of computing (f, g) pairs and the
offline work of generating random walks can be
done partially in parallel. Because Si+1 ⊂ Si,
we can continue generating random walks in Si
while computing (f, g) pairs. When we have Si+1,
simply discard points outside Si+1. Even if we
don’t have enough points left, it is very likely
that we have a warm-start distribution that al-
lows fast mixing.

• The way we choose query points works well in
practice but doesn’t guarantee faster convergence.
How to choose query points for guaranteed faster
convergence is worth further investigation. How-
ever, we are not expecting that by sending O(n)
queries per step we can reduce the number of it-
erations to O(log(1/ε)), which may require expo-
nentially many queries.

• Sending multiple queries makes the number of
linear inequalities describing Sk increase rapidly,
which is a problem if we have too many iterations.
But here we are just looking for, say, fewer than
30 iterations. Otherwise, we can purge redundant
or unimportant linear constraints on the fly.

4 Empirical Evaluation

The computations are performed on a Hadoop cluster
with 40 CPU cores. We used the `1 regression test
problem from (Clarkson et al., 2013). The problem is
of size 5.24e9× 15, generated in the following way:

• The true signal x∗ is a standard Gaussian vector.
• Each row of the design matrix A is a canonical

Robust Regression on MapReduce

‖x−x∗‖1
‖x∗‖1

‖x−x∗‖2
‖x∗‖2

‖x−x∗‖∞
‖x∗‖∞

ALG1 [0.0057, 0.0076] [0.0059, 0.0079] [0.0059, 0.0091]
CT [0.008, 0.0115] [0.0090, 0.0146] [0.0113, 0.0211]

UNIF [0.0572, 0.0951] [0.089, 0.166] [0.129, 0.254]
NOCD [0.0823, 22.1] [0.126, 70.8] [0.193, 134]

Table 3. The 1st and the 3rd quartiles of the relative errors
in 1-, 2-, and ∞-norms from 100 independent subsampled
solutions of sample size 100000.

vector, which means that we only estimate a single
entry of x∗ in each measurement. The number of
measurements on the i-th entry of x∗ is twice as
large as that on the (i+ 1)-th entry, i = 1, . . . , 14.
We have 2.62 billion measurements on the first
entry while only 0.16 million measurements on the
last. Imbalanced measurements apparently create
difficulties for sampling-based algorithms.

• The response vector b is given by

bi =

{
1000εi with prob. 0.001

aTi x
∗ + εi otherwise

, i = 1, . . . ,m,

where {εi} are i.i.d. samples drawn from the stan-
dard Laplace distribution. 0.1% measurements
are corrupted to simulate noisy real-world data.

Since the problem is separable, we know that an opti-
mal solution is simply given by the median of responses
corresponding to each entry. If we use `2 regression,
the optimal solution is given by the mean values, which
is inaccurate due to corrupted measurements.

We first check the accuracy of subsampled solutions.
We implement Algorithm 1 with block size n3 (ALG1),
which gives 2n5/2-conditioning; and the Cauchy trans-
form (CT) by (Sohler & Woodruff, 2011), which gives

asymptotic O(n3/2 log3/2 n)-conditioning; and then we
use Algorithm 2 to compute 100 subsampled solutions
in a single pass. We compute ‖AE‖1 explicitly prior
to sampling for a better control on the sample size.
We choose r = 100000 in Algorithm 2. We also imple-
ment Algorithm 2 without conditioning (NOCD) and
uniform sampling (UNIF) for comparison. The 1st and
the 3rd quartiles of the relative errors in 1-, 2-, and∞-
norms are shown in Table 3. ALG1 clearly performs
the best, achieving 0.01 relative error in all the metrics
we use. CT has better asymptotic conditioning qual-
ity than ALG1 in theory, but it doesn’t generate better
solutions in this test. This confirms our concerns on
the hidden constant in κ1 and the failure probability.
UNIF works but it is about a magnitude worse than
ALG1. NOCD generates large errors. So both UNIF
and NOCD are not reliable approaches.

Next we try to iteratively improve the subsampled so-
lutions using Algorithm 3. We implement and compare

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of iterations

(f
−

f*)/
f*

standard IPCPM

proposed IPCPM

Figure 1. A standard IPCPM approach (single point ini-
tialization and single query per iteration) vs. the proposed
approach (sampling initialization and multiple queries per
iteration) on relative errors in function value.

the proposed IPCPM with a standard IPCPM based
on random walks with single point initialization and
single query per iteration. We set the number of it-
erations to 30. The running times for each of them
are approximately the same. Figure 1 shows the con-
vergence behavior in terms of relative error in objec-
tive value. IPCPMs are not monotonically decreasing
algorithms. Hence we see even we begin with a 10-
approximate solution with the standard IPCPM, the
error goes to 103 after a few iterations and the ini-
tial guess is not improved in 30 iterations. The sam-
pling initialization helps create a small initial search
region; this makes the proposed IPCPM begin at a
10−2-approximate solution, stay below that level, and
reach 10−6 in only 30 iterations. Moreover, it is easy
to see that the multiple-query strategy improves the
rate of convergence, though still at a linear rate.

5 Conclusion

We have proposed an algorithm for solving strongly
over-determined `p regression problems, for p ∈ [1, 2),
with an emphasis on its theoretical and empirical prop-
erties for p = 1. Although some of the building blocks
of our algorithm are not better than state-of-the-art al-
gorithms in terms of FLOP counts, we have shown that
our algorithm has superior communication properties
that permit it to be implemented in MapReduce and
applied to terabyte-scale data to obtain a “moderate-
precision” solution in only a few passes. The proposed
method can also be extended to solving more general
convex problems on MapReduce.

Acknowledgments

Most of the work was done while the first author was at
ICME, Stanford University supported by NSF DMS-
1009005. The authors would like to thank Suresh
Venkatasubramanian for helpful discussion and for
bringing to our attention several helpful references.

Robust Regression on MapReduce

References

Balcan, M.-F., Blum, A., Fine, S., and Mansour, Y. Dis-
tributed learning, communication complexity and pri-
vacy. Arxiv preprint arXiv:1204.3514, 2012.

Bekkerman, R., Bilenko, M., and Langford, J. (eds.). Scal-
ing up Machine Learning: Parallel and Distributed Ap-
proaches. Cambridge University Press, 2011.

Bertsekas, D. P. and Tsitsiklis, J. N. Some aspects of par-
allel and distributed iterative algorithms—a survey. Au-
tomatica, 27(1):3–21, 1991.

Bertsimas, D. and Vempala, S. Solving convex programs
by random walks. Journal of the ACM, 51(4):540–556,
2004.

Clarkson, K. L. Subgradient and sampling algorithms for `1
regression. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp.
257–266. SIAM, 2005.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In Proceedings
of the 45th Annual ACM symposium on Theory of Com-
puting (STOC), 2013.

Clarkson, K. L., Drineas, P., Magdon-Ismail, M., Mahoney,
M. W., Meng, X., and Woodruff, D. P. The Fast Cauchy
Transform and faster robust linear regression. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2013.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for `p
regression. SIAM J. Comput., 38(5):2060–2078, 2009.

Daumé, III, H., Phillips, J. M., Saha, A., and Venkata-
subramanian, S. Efficient protocols for distributed clas-
sification and optimization. In Proceedings of the 23rd
International Conference on Algorithmic Learning The-
ory, pp. 154–168, 2012.

Dean, J. and Ghemawat, S. MapReduce: Simplified data
processing on large clusters. In Proceedings of the Sixth
Symposium on Operating System Design and Implemen-
tation (OSDI), pp. 137–149, 2004.

Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein,
C., and Svitkina, Z. On distributing symmetric stream-
ing computations. ACM Transactions on Algorithms, 6
(4):Article 66, 2010.

Goodrich, M. T. Simulating parallel algorithms
in the MapReduce framework with applications to
parallel computational geometry. Arxiv preprint
arXiv:1004.4708, 2010.

Grötschel, M., Lovász, L., and Schrijver, A. The ellipsoid
method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1(2):169–197, 1981.

Karloff, H., Suri, S., and Vassilvitskii, S. A model of com-
putation for MapReduce. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 938–948, 2010.

Levin, A. Y. On an algorithm for the minimization of con-
vex functions. In Soviet Mathematics Doklady, volume
160, pp. 1244–1247, 1965.

Lovász, L. Hit-and-run mixes fast. Math. Prog., 86(3):
443–461, 1999.

Mackey, L., Talwalkar, A., and Jordan, M. I. Divide-and-
conquer matrix factorization. In Proceedings of the 23rd
Annual Conference on Neural Information Processing
Systems (NIPS), 2011.

Mahoney, M. W. Randomized algorithms for matrices
and data. Foundations and Trends in Machine Learn-
ing. NOW Publishers, Boston, 2011. Also available at:
arXiv:1104.5557.

Meng, X. and Mahoney, M. W. Low-distortion subspace
embeddings in input-sparsity time and applications to
robust linear regression. In Proceedings of the 45th An-
nual ACM symposium on Theory of Computing (STOC),
2013.

Mitchell, J. E. Polynomial interior point cutting plane
methods. Optimization Methods and Software, 18(5):
507–534, 2003.

Nesterov, Y. Unconstrained convex minimization in rela-
tive scale. Mathematics of Operations Research, 34(1):
180–193, 2009.

Nesterov, Y. and Nemirovsky, A. Interior Point Polyno-
mial Methods in Convex Programming. SIAM, 1994.

Portnoy, S. and Koenker, R. The Gaussian hare and the
Laplacian tortoise: computability of squared-error ver-
sus absolute-error estimators. Statistical Science, 12(4):
279–300, 1997.

Rousseeuw, P. J. and Leroy, A. M. Robust Regression and
Outlier Detection. Wiley, 1987.

Sohler, C. and Woodruff, D. P. Subspace embeddings for
the `1-norm with applications. In Proceedings of the
43rd annual ACM symposium on Theory of computing
(STOC), pp. 755–764. ACM, 2011.

Tarasov, S., Khachiyan, L. G., and Erlikh, I. The method
of inscribed ellipsoids. In Soviet Mathematics Doklady,
volume 37, pp. 226–230, 1988.

Vaidya, P. M. A new algorithm for minimizing convex func-
tions over convex sets. Math. Prog., 73:291–341, 1996.

Zhang, Y., Duchi, J., and Wainwright, M. J.
Communication-efficient algorithms for statistical opti-
mization. In Annual Advances in Neural Information
Processing Systems 26: Proceedings of the 2012 Confer-
ence, 2012.

