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Abstract—We present PYHESSIAN, a new scalable framework
that enables fast computation of Hessian (i.e., second-order
derivative) information for deep neural networks. PYHESSIAN
enables fast computations of the top Hessian eigenvalues, the
Hessian trace, and the full Hessian eigenvalue/spectral density; it
supports distributed-memory execution on cloud/supercomputer
systems; and it is available as open source [1]. This general frame-
work can be used to analyze neural network models, including the
topology of the loss landscape (i.e., curvature information) to gain
insight into the behavior of different models/optimizers. As an
example, we analyze the effect of residual connections and Batch
Normalization layers on the trainability of neural networks. One
recent claim, based on simpler first-order analysis, is that residual
connections and Batch Normalization make the loss landscape
“smoother,” thus making it easier for Stochastic Gradient Descent
to converge to a good solution. Our second-order analysis,
easily enabled by PYHESSIAN, shows new finer-scale insights,
demonstrating that while conventional wisdom is sometimes
validated, in other cases it is simply incorrect. In particular, we
find that Batch Normalization does not necessarily make the loss
landscape smoother, especially for shallow networks.

I. INTRODUCTION

Residual neural networks [12] (ResNets) are widely used
Neural Networks (NNs) for various learning tasks. The two
main architectural components of ResNets are residual connec-
tions [12] and Batch Normalization (BN) layers [13]. However,
going beyond motivating stories to characterize precisely when
and why these two popular architectural ingredients help or
hurt training/generalization—especially in terms of measurable
properties of the model—is still largely unsolved. Relatedly,
characterizing whether other suggested architectural changes
will help or hurt training/generalization is still done in a largely
ad hoc manner (e.g., it is often motivated by plausible but
untested intuitions, and it is typically not characterized in
terms of measurable properties of the model).

In this work, we present and apply PYHESSIAN, an
open-source scalable framework with which one can di-
rectly analyze Hessian information, i.e., second-derivative
information, w.r.t. model parameters, in order to address
these and related questions. PYHESSIAN computes Hessian
information by applying known techniques from Numerical
Linear Algebra (NLA) [4, 10, 17] and Randomized NLA
(RandNLA) [3, 7, 8, 18, 25, 27] (that are approximate but come
with rigorous theory). PYHESSIAN enables computing Hessian
information—including top Hessian eigenvalues, Hessian trace,
and Hessian eigenvalue spectral density (ESD), and it supports

distributed framework—allowing distributed-memory execution
on both cloud (e.g., AWS, Google Cloud) and supercomputer
systems, for fast and efficient Hessian computation. As an
application of PYHESSIAN, we use it to analyze the impact of
residual connection and BN on the trainability of NNs, leading
to new insights.

In more detail, our main contributions are the following:
• We introduce PYHESSIAN, a new framework for direct and

efficient computation of Hessian information, including the
top eigenvalue, the trace, and the full ESD, in NNs [1].
We provide a self-contained description of the methods
implemented in PYHESSIAN, and we apply PYHESSIAN
to study how residual connections and BN affect training.

• We observe that removing the BN layer from ResNet
(denoted below as ResNet−BN ) leads to rapid increase of
the Hessian spectrum (the top eigenvalue, the trace, and the
ESD support range). This increase is significantly more rapid
for deeper models. See Figure 2, 3, 4, and 5.

• We observe that, for shallow networks (ResNet20), removing
the BN layer results in a flatter Hessian spectrum, as
compared to standard ResNet20 with BN. See Figure 2 and 3.
This observation is the opposite of the common belief that
the addition of BN layers make the loss landscape smoother
(which we observe to hold only for deeper networks).

• We observe that, for deep networks (ResNet32/38), removing
BN results in converging to sharper local minima, as
compared to ResNet with BN. See Figure 1, 2, 4, 5.

• We show that removing residual connections from ResNet
generally makes the top eigenvalue, the trace, and the Hessian
ESD support range increase slightly. This increase is con-
sistent for both shallow and deep models (ResNet20/32/38).
See Figure 2, 3, 4, 5.

• We perform Hessian analysis for different stages of ResNet
models (details in Section IV-A), and we find that, generally,
BN is more important for the final stages than for earlier
stages. In particular, removing BN from the last stage
significantly degrades testing performance, with a strong
correlation with the Hessian trace. See the comparison
between orange curve and blue curve in Figure 6, and the
accuracy reported in Table II.

Due to space constraints, we do not include all of our results
here; more detailed results on PYHESSIAN may be found in
the longer technical report version of this paper [26].

The basic components implemented in PYHESSIAN (power
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Fig. 1: The parametric loss landscapes of ResNet20 (top), ResNet32 (middle), and ResNet38 (bottom) on Cifar-10 are plotted by perturbing
the model parameters at the end of training across the first and second Hessian eigenvector. Results for the original ResNet architecture (left),
ResNet without BN (middle; denoted asResNet−BN ), and ResNet without residual connection (right; denoted as ResNet−Res). It can be
clearly seen that removing BN from ResNet20 actually leads to a smoother loss landscape, which is opposite to the common belief that
adding BN leads to a smoother loss landscape [24]. We only observed the claimed smoothness property for the deeper ResNet32/38 model
(second/third row). This smoothness can be quantified by measuring the trace of the Hessian operator, which is reported in Figure 2, as well
as the full Hessian ESD, shown in Figure 3, 4 and 5.

method, randomized Hutchinson method, and stochastic Lanc-
zos method) are well-known, but (for many users) they are
not easy to use. One of the challenges in using more powerful
second-order methods to perform NN analysis is that they
are sophisticated and their implementation can be subtle (as
opposed to heavily-parameterized first order methods, which
can be implemented in a few lines of code for a class project).
This partly explains the near ubiquitousness of first-order
methods in machine learning and NN analysis. We developed
PYHESSIAN to address this issue, and we have open-sourced
PYHESSIAN to encourage reproducibility and as a scalable
framework that can be used for research on second-order
methods. Since the first release of PYHESSIAN, several other
high-quality implementations of second-order methods have
appeared and been applied to NN problems [2, 28].

II. RELATED WORK

Hessian and Large-scale Hessian Computation: Hessian-
based analysis/computation is widely used in scientific com-
puting. However, due to the (incorrect, but in our expe-
rience widespread) belief that Hessian-based computations
are infeasible for large NN problems, the majority of work
in machine learning (except for quite small problems) only

performs the first-order analysis.1 However, using implicit
or matrix-free methods, it is not necessary to form the
Hessian matrix explicitly in order to extract second-order
information [6, 20]. Instead, it is possible to use stochastic
methods from RandNLA to extract this information, without
explicitly forming the Hessian matrix. For example, [3, 4]
proposed fast algorithms for trace computation; and [17, 25]
provided efficient randomized algorithms to estimate the ESD
of a positive semi-definite matrix. These algorithms only require
an oracle for computing the product of the Hessian matrix
with a given random vector. It is possible to compute this
so-called “matvec” and extract Hessian information without
explicitly forming the Hessian [5, 19]. In particular, using the
so-called R-operator, the Hessian matvec can be computed
with the same computational graph used for backpropagating
the gradient [19].

Hessian eigenvalues of small NN models were analyzed [22,
23]; and the work of [21] studied the geometry of NN
loss landscapes by computing the distribution of Hessian
eigenvalues at critical points. More recently, [27] used a
deflated power-iteration method to compute the top eigenvalues
for deep NNs during training. Moreover, the work of [9]
measured the Hessian ESD, based on the stochastic Lanczos

1The naïve view arises since the Hessian matrix is of size (say) m×m.
Thus, like most linear algebra computations, exact full spectral computations
(which are sufficient but never necessary for NN problems) cost O(m3) time.
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algorithm of [17, 25]. Here, we extend the analysis of [9, 27]
by studying how the depth of the NN model as well as
its architecture affect the Hessian spectrum (in terms of top
eigenvalue, trace, and full ESD). Furthermore, we also perform
a block diagonal Hessian spectrum analysis, and we observe a
fine-scale relationship between the Hessian spectrum and the
impact of adding/removing residual connections and BN.

Hessian-based analysis has also been used in the context
of NN training and inference. For example, [15] analytically
computes Hessian information for a single linear layer and
uses the Hessian spectrum to determine the optimal learning
rate to accelerate training. In [14], the authors approximated
the Hessian as a diagonal operator and used the inverse of this
diagonal matrix to prune NN parameters.

A major limitation in most of this prior work is that tests
are typically restricted to small/simple NN models that may
not be representative of NN workloads that are encountered in
practice. This is in part due to the lack of a scalable and easily
programmable framework that could be used to test second-
order methods for a wide range of state-of-the-art models.
Addressing this is the main motivation behind our development
of PYHESSIAN, which is released as open-source software
and is available to researchers [1]. In this paper, we illustrate
how PYHESSIAN can be used for analyzing the NN behaviour
during training, even for very deep state-of-the-art models.

Residual Connections and Batch Normalization: Residual
connections [12] and BN [13] are two of the most important
ingredients in modern convolutional NNs. There have been
different hypotheses offered for why these two components
help training/generalization. First, the empirical study of [16]
found that deep NNs with residual connections exhibit a
significantly smoother loss landscape, as compared to models
without residual connections. This was achieved by the so-
called filter-normalized random direction method to plot 3D
loss landscapes, i.e., not through direct analysis of the Hessian
spectrum. This result is interesting, but it is hard to draw
conclusions with perturbations in two directions, for a model
that has millions of parameters (and thus millions of possible
perturbation directions).

Second, the motivation for why BN helps train-
ing/generalization was originally attributed to reducing the
so-called Internal Covariance Shift (ICS) [13]. However, this
was disputed in the recent study of [24]. In particular, the
work of [24] used first-order analysis to analyze the loss
landscape, and found that adding a BN layer results in a
smoother loss landscape. Importantly, they found that adding
BN does not reduce the so-called ICS. Again, while interesting,
such first-order analysis may not fully capture the topology
of the landscape (and, as we will show with our second-order
analysis, this smoothness claim is not correct in general).

The work of [24] also performed an interesting theoretical
analysis, showing a connection between adding the BN layer
and the Lipschitz constant of the gradient (i.e., the top Hessian
eigenvalue). It was argued that adding the BN layer leads to a
smaller Lipschitz constant. However, the theoretical analysis
is only valid for the per-layer Lipschitz constant, as it ignores

the complex interaction between different layers. It cannot be
extended to the Lipschitz constant of the entire model (and, as
we will show, this result does not hold for shallow networks).

III. METHODOLOGY

For a supervised learning problem, we seek to minimize:

min
θ
L(θ) =

1

N

N∑
i=1

l(M(xi), yi, θ), (1)

where θ ∈ Rm is the learnable weight parameter, l(M(x), y, θ)
is the loss function, (x, y) is the input pair, M is the NN
architecture, and N is the size of training data. Below, we
first provide a self-contained description of how PYHESSIAN
computes second-order statistics, and then we discuss the
impact of architectural components on the model trainability.

A. Neural Network Hessian Matvec

For a NN with m parameters, the gradient of the loss w.r.t.
model parameters is a vector ∂L

∂θ = gθ ∈ Rm, and the second
derivative of the loss is a matrix, H = ∂2L

∂θ2 = ∂gθ
∂θ ∈ Rm×m,

commonly called the Hessian. A typical NN model involves
millions of parameters, and thus even forming the Hessian is
computationally infeasible. However, it is possible to compute
properties of the Hessian spectrum without explicitly forming
the Hessian matrix. Instead, we need an oracle to compute the
application of the Hessian to a random vector v. This can be
achieved by observing the following:

∂gTθ v

∂θ
=
∂gTθ
∂θ

v + gTθ
∂v

∂θ
=
∂gTθ
∂θ

v = Hv. (2)

Here, the first equality is the chain rule, the second is due
to the independence of v to θ, and the third equality is the
definition of the Hessian. Importantly, the cost of this Hessian
matrix vector multiply (hereafter referred to as Hessian matvec)
is the same as one gradient backpropagation.

Having this oracle, we can easily compute the top k Hessian
eigenvalues using power iteration [27]; see Algorithm III.1.
However, since the top eigenvalues may not be representative
of how the loss landscape behaves, we also compute the trace
and ESD of the Hessian, as described next.

Algorithm III.1: Power Iteration for Top Eigenvalue
Computation
Input: Parameter: θ.
Compute the gradient of θ by backpropagation, i.e.,

compute gθ = dL
dθ .

Draw a random vector v from N(0, 1) (same dimension
as θ).

Normalize v, v = v
‖v‖2

for i = 1, 2, . . . do // Power Iteration

Compute gv = gTθ v // Inner product

Compute Hv by backpropagation, Hv = d(gv)
dθ

// Get Hessian vector product

Normalize and reset v, v = Hv
‖Hv‖2

3
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B. Hutchinson Method for Hessian Trace Computation

The trace of the Hessian can also be computed using
RandNLA, and in particular Hutchinson’s method [3, 4] for
the fast computation of the trace, using only Hessian matvec
computations (as given in Eq. 2). In particular, since we are
interested in the Hessian, i.e., a symmetric matrix, suppose we
have a random vector v, whose components are i.i.d. sampled
from a Rademacher distribution (or Gaussian distribution with
mean 0 and variance 1). Then, we have the identity

Tr(H) = Tr(HI) = Tr(HE[vvT ]) = E[Tr(HvvT )]

= E[vTHv],
(3)

where I is the identity matrix of appropriate size. That is, the
trace of H can be estimated by computing E[vTHv], where we
compute the expectation by drawing multiple random samples.
Note that Hv can be efficiently computed from Eq. 2, and then
vTHv is simply a dot product between the Hessian matvec
and the original vector v. See Algorithm III.2 for a description.

Algorithm III.2: Hutchinson Method for Trace Com-
putation

Input: Parameter: θ.
Compute the gradient of θ by backpropagation, i.e.,
compute gθ = dL

dθ .
for i = 1, 2, . . . do // Hutchinson Steps

Draw a random vector v from Rademacher
distribution (same dimension as θ).

Compute gv = gTθ v // Inner product

Compute Hv by backpropagation, Hv = d(gv)
dθ

// Get Hessian vector product

Compute and record vTHv
Return the average of all computed vTHv.

C. Full Hessian Eigenvalue Spectral Density

To provide finer-grained information on the Hessian spectrum
than is provided by the top eigenvalues or the trace, we need
to compute the full empirical spectral density (ESD) of the
Hessian eigenvalues. This is defined as

φ(t) =
1

m

m∑
i=1

δ(t− λi), (4)

where δ(·) is the Dirac distribution and λi is the i-th eigenvalue
of H , in descending order.

Recent work in NLA/RandNLA has provided efficient matrix-
free algorithms to estimate this ESD [10, 17, 25] through
Stochastic Lanczos Quadrature (SLQ). Here, we briefly describe
SLQ in simple terms. This approach was also used in [9] to
compute the Hessian ESD. For more details, see [10, 17, 25].

Here is a summary of our approach to compute the ESD φ(t).
First, we approximate φ(t) (of Eq. 4) by φσ(t) (Eq. 5 below)
by applying a Gaussian kernel (first approximation), and we
express this in the same expectation form as in the Hutchinson
algorithm (Eq. 9 below). Next, since the computation inside the
expectation depends directly on t and the unknown eigenvalues

Algorithm III.3: Stochastic Lanczos Quadrature for
ESD Computation
Input: Parameter: θ, degree q and nv .
Compute the gradient of θ by backpropagation, i.e.,

compute gθ = dL
dθ .

for i = 1, 2, . . . nv do // Different Seeds

Draw a random vector v from N(0,1) and normalize
it (same dimension as θ).

Get the tri-diagonal matrix T through Lanczos
algorithm.

Compute τ (i)k and λ̃(i)k from T
φziσ =

∑q
k=1 τkf(λ̃k; t, σ)

Return φ(t) = 1
nv

∑nv
l=1

(∑q
i=1 τ

(l)
i f(λ̃

(l)
i ; t, σ)

)

(denoted by λis), we simplify the problem by using Gaussian
quadrature (Eq. 13 below) (second approximation). Then, since
the weights and λis in the Gaussian quadrature are unknown,
we use the stochastic Lanczos algorithm to approximate the
weights and λis (Eq. 14 below) (third approximation). Finally,
we approximate the expectation of the eigenvalue distribution
as a sum (Eq. 15 below) (forth approximation).

In more detail, for the first approximation, we apply a
Gaussian kernel, f , with variance σ2 to Eq. 4 to obtain

φσ(t) =
1

m

m∑
i=1

f(λi; t, σ), (5)

where f(λ; t, σ) = 1
σ
√
2π
exp(−(t−λ)2/(2σ2)) is the Gaussian

kernel. Clearly, φσ(t)→ φ(t), as σ → 0. Thus, if we had an
algorithm to approximate Eq. 5, then we could take the limit
and reduce the standard deviation of the Gaussian kernel to
approximate Eq. 4. In our context, the question of how to
compute φσ(t) amounts to computing the density distribution
of the Hessian convolved with a Gaussian kernel.

To do this, observe that

Tr(f(H)) = Tr(Qf(Λ)QT ) = Tr(f(Λ)), (6)

where QΛQT is the eigendecomposition of H , and let f(H)
be the matrix function, defined as

f(H) , Qf(Λ)QT , Qdiag(f(λ1), ..., f(λm))QT . (7)

We can plug Eq. 6 into Eq. 5 to get

φσ(t) =
1

m
Tr(f(H; t, σ)). (8)

For a given value of t, the trace Tr(f(H; t, σ)) can be
efficiently computed using the Hutchinson algorithm (described
in §III-B). That is, we draw a random Rademacher vector v
and compute the expectation E[vT f(H; t, σ)v] to get

φσ(t) =
1

m
E[vT f(H; t, σ)v]. (9)

However, this is still intractable, as the trace computation
needs to be repeated for every value of t (which scales with
the number of model parameters).

4
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Fig. 2: The Hessian trace of the entire network for ResNet/ResNet−BN /ResNet−Res with depth 20/32/38 on Cifar-10 (first row) and Cifar-100
(second row). It can be clearly seen that removing BN from the architecture (shown in orange) generally results in a rapid increase of the
Hessian trace. This increase is more pronounced for deeper networks such as ResNet32 (middle) and ResNet38 (right). Importantly, the
Hessian trace of ResNet20 without BN is lower than the original model (blue). This is in contrast to the claim of [24]. Also, we generally
observe that residual connections smooth the Hessian trace for both shallow and deep networks (compare blue and green lines).

To get around this, we relax this problem further [17, 25].
Define φvσ(t) = vT f(H; t, σ)v, in which case we have

φvσ(t) = vT f(H; t)v = vTQf(Λ; t)QT v

=

m∑
i=1

µ2
i f(λi; t),

(10)

where µi is the magnitude (or dot product) of v along the i-th
eigenvector of H . Now let us define a probability distribution
w.r.t. α with the cumulative distribution function, π(α), as the
following piece-wise function:

π(α) =


0 α ≤ λm,∑j
i=1 µ

2
i λj ≤ α ≤ λj−1,∑m

i=1 µ
2
i λ1 ≤ α.

(11)

Then, by the Riemann-Stieltjes integral, it follows that

φvσ(t) =

∫ λ1

λm

f(α; t)dπ(α). (12)

This integral can be estimated by Gauss quadrature rule [11],

φvσ(t) ≈
q∑
i=1

ωif(ti; t, σ), (13)

where (ωi, ti) is the weight-node pair to estimate the integral.
The stochastic Lanczos algorithm can then be used to estimate
accurately this quantity [10, 17, 25]. Specifically, for the q-
step Lanczos algorithm, we have q eigenpairs (λ̃i, ṽi). Let
τi = (ṽi[1])2, where ṽi[1] is the first component of ṽi, in
which case it follows that

φvσ(t) ≈
q∑
i=1

ωif(ti; t, σ) ≈
q∑
i=1

τif(λ̃i; t, σ). (14)

Therefore, as in the Hutchinson algorithm, with multiple
different runs (e.g., nv times) of Lanczos algorithm, φσ can
be approximated by

φσ(t) = Tr(f(H)) ≈ 1

nv

nv∑
l=1

(
q∑
i=1

τ
(l)
i f(λ̃

(l)
i ; t, σ)

)
. (15)

See Algorithm III.3 for a description of the SLQ algorithm.

IV. RESULTS

As an example of how PYHESSIAN can be used in the
analysis of NNs, here we provide extensive empirical results to
study the impact of BN and residual connection on the Hessian
spectrum. We start in §IV-A by discussing experimental settings,
followed by presenting the Hessian spectrum results for the
entire model in §IV-B and different ResNet stages in §IV-C.

A. Experimental Setting

Using PYHESSIAN, we measure all three Hessian spectrum
metrics (i.e., top eigenvalues, trace, and full ESD) throughout
the training process of SGD with momentum. We consider vari-
ous ResNet [12] architectures, and in particular ResNet20/32/38
on the Cifar-10, and we analyze these models and variants
with/without BN and with/without residual connections. We
also experimented with the same networks tested on Cifar-100
dataset, and all of the observations were consistent.

For clarity, we refer to the networks without BN as
ResNet−BN , and the networks without residual connection
as ResNet−Res. We train each model (ResNet, ResNet−BN ,
and ResNet−Res) for 180 epochs, with five different initial
learning rates (0.1, 0.05, 0.01, 0.005, 0.001) on Cifar-10, and
ten different initial learning rates (0.1, 0.05, 0.01, 0.005, 0.001,
0.0005,0.0004, 0.0003, 0.0002, 0.00001) on Cifar-100. The

5
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optimizer is SGD with momentum (0.9). The learning rate
decays by a factor of 10 at epoch 80 and 120. We pick the
best performing result for analysis. We analyze the spectrum
throughout training at all checkpoints. The accuracy of each
model is reported in Table I.

Table I: Accuracy of ResNet, ResNet−BN , and ResNet−Res, with
different depths, on Cifar-10/100. The accuracy drops if the BN
layer is removed (denoted by ResNet−BN ), and this degradation
is more pronounced for deeper models. Removing the residual
connection (denoted as ResNet−Res) also results in slight performance
degradation.

Cifar-10 Cifar-100
Model\Depth 20 32 38 20 32 38

ResNet 92.01 92.05 92.37 66.47 68.26 69.06
ResNet−BN 87.27 66.57 53.65 62.82 25.89 11.25
ResNet−Res 90.66 89.80 88.92 64.59 62.08 62.75

B. Full Network Hessian Analysis

We start with the original ResNet model with BN and
residual connections. Hereafter, we refer to this as ResNet.
The behaviour of the Hessian trace throughout training is
shown in Figure 2. Furthermore, we show the evolution of the
Hessian ESD throughout training in Figure 3, 4, and Figure 5.

a) Batch Normalization: A BN layer is crucial for train-
ing NN models, and removing this component can adversely
affect the generalization performance, as shown in Table I. The
drop in performance is very significant for deeper models.

The first interesting observation is that removing the BN
layer (denoted by ResNet−BN ) exhibits different behaviour for
shallow versus deep models. For example, for ResNet20 we
see that removing BN results in smaller trace and Hessian ESD
values, as compared to baseline, as shown in Figure 2 (orange
curve versus blue curve), and 3 (second versus first column).

In more detail, from the evolution plot of Figure 3 on
Cifar-10 throughout training, it can be seen that the ESD
of ResNet−BN 20 initially reduces significantly and centers
around zero. That is, that the model gets attracted to areas
with a significantly large number of small/degenerate Hessian
directions. This continues until epoch 30 on, at which point
the training gets attracted to regions of the loss landscape with
several non-degenerate Hessian directions.

This clearly shows that training without BN makes training
harder, but it does not necessarily mean that the Hessian
spectrum is going to be larger than the baseline model,
despite the claim made by [24]. In fact, we only observe the
smoothing behaviour proposed by [24] for deeper NN models.
For example, observe the Hessian trace plot of ResNet32/38,
shown in Figure 2 (middle and right plot). Here, the Hessian
trace of ResNet−BN 32 increases to 10000 from zero, as
compared to 2000 for ResNet. The Hessian ESD also exhibits
the same behaviour, as shown in Figure 4 and 5. We can clearly
see that the range of eigenvalues of ResNet−BN is significantly
larger, as compared to ResNet.

The Hessian ESD of ResNet32 and ResNet38 throughout
the training process is shown in Figure 4, 5. Again, we

see the interesting behaviour that without the BN layer, the
spectrum initially converges to degenerate Hessian directions,
before finding non-degenerate directions in later epochs of
training. The Hessian trace and the range of the Hessian ESD
significantly increases as the model gets deeper.

These plots show the numerical values of the Hessian spec-
trum. However, the results could perhaps be more intuitively
presented via parametric plots of the loss landscape. We plot the
parametric 3D loss landscapes of ResNet20/32/38 on Cifar-10
with/without BN in Figure 1 (compare left and middle columns).
These plots are computed by perturbing the model parameters
across the first and second eigenvectors of the Hessian. For
ResNet20, it can be clearly seen that removing the BN layer
(middle plot) results in convergence to a flatter local minimum,
as compared to ResNet20 with BN. This observation is the
opposite of the common belief that adding the BN layer makes
the loss landscape smoother [24]. However, for ResNet38, we
can also see that removing the BN layer results in convergence
to a point with a higher value of the loss. The visualizations
corroborate our finding that initially, ResNet−BN finds points
with degenerate Hessian directions, before converging to a
point with non-degenerate directions.

In summary, our empirical results highlight two points.
First, our findings—easily-enabled by PYHESSIAN—show
several fine-scale behaviours when the BN layer is removed.
Importantly, we find that the observation made in [24] only
holds for deeper models, and are not necessarily true for shallow
networks. Second, using the scalable Hessian-based techniques
implemented in PYHESSIAN, one can easily ask such questions,
i.e., one can test hypotheses that these or other claims hold
more generally. We observed exactly similar behaviour for
Cifar-100 dataset as shown in Figure 2 for the trace. Due to
space constraints, the ESD plots for Cifar-100 are not included;
see the technical report version [26] for these and other results.

b) Residual Connection: We next study the impact of
residual connections on the smoothness of the loss landscape.
Removing residual connections leads to slightly poorer general-
ization, as shown in Table I, although the degradation is much
smaller than seen when removing the BN layer. We report the
behaviour of the Hessian trace for ResNet−Res in Figure 2 for
ResNet20/32/38 on Cifar-10/100. It can clearly be seen that
the trace of ResNet−Res is consistently higher than that of
ResNet, for both shallow and deep models on different datasets.
In addition, from the Hessian ESD in Figure 3, 4, 5, we can
see that the top eigenvalues as well as the support range of the
ESD of ResNet−Res increase for deeper models. These results
are in line with the findings of [16]. We also visualize the loss
landscape of these models in Figure 1, It can clearly be seen
that the converging point for ResNet−Res becomes sharper, as
compared with ResNet, as the depth grows.

Again, our empirical results highlight two points. First,
we make observations—easily-enabled by PYHESSIAN—that
provide a finer-scale understanding of seemingly-contradictory
claims in the previous literature. Second, using the scalable
Hessian-based techniques that are implemented in PYHESSIAN,
one can easily formulate and test hypotheses that these or other
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Fig. 3: (first row) The Hessian ESD throughout training for ResNet/ResNet−BN /ResNet−Res with depth 20 on Cifar-10 shown in different
columns. For a fixed epoch, every point corresponds to a Hessian eigenvalue. These plots show several important phenomena. First note that
removing batch normalization (middle column) does not lead to a non-smooth loss landscape as was claimed by [24]. We can clearly see
that this is true throughout training. However, removing the residual connection makes the loss landscape non-smooth throughout training.
(middle/last row) The Hessian ESD at epoch 1 and epoch 180. This clearly shows that removing BN leads to a maximum eigenvalue of 100,
whereas the baseline has a maximum Hessian eigenvalue of 150.

claims hold more generally. Similar to the previous section, we
saw exactly similar behaviour for Cifar-100; see the technical
report version [26] for the results.

C. Stage-wise Hessian Analysis

We also analyzed the impact of removing BN and residual
connection from different stages of the model. We define each
stage of ResNet as blocks with the same activation resolution.

We plot the Hessian trace for the three stages of ResNet32
on Cifar-10 in Figure 6. We can clearly see that removing the
BN from the last stage of ResNet generally results in a more
rapid increase in the Hessian trace, as compared to removing
BN from the first or second stage. Interestingly, this has a direct
correlation with the final generalization performance reported
in Table II. We can see that removing BN in the third stage
results in a higher accuracy drop, as compared to removing it
from other stages. We generally observe the same behaviour
on Cifar-100 as reported in Table II.

As for the residual connections, we can see that removing
them results in a relatively smaller increase in the Hessian
trace, and correspondingly the impact of removing the residual
connections on accuracy is smaller, as compared to removing
BN; see Table III for Cifar-10/100.

Table II: Accuracy of ResNet models on Cifar-10/100 with different
depths is shown in the first row. Accuracy of the corresponding
architectures, but with BN removed from one of the stages, is shown
in the next three rows, respectively. For instance, the last row is
a ResNet model with no BN layer in the third stage. We observe
a general correlation between the accuracy drop and stage based
Hessian analysis shown Figure 6. In particular, we see that stages
which significantly affect accuracy also exhibit a significant increase
in the Hessian trace.

Cifar-10 Cifar-100
Model\Depth 20 32 38 20 32 38

ResNet 92.01 92.05 92.37 66.47% 68.26% 69.06%
RM BN stage 1 91.28 91.98 92.20 65.69% 65.74% 67.31%
RM BN stage 2 91.49 91.94 91.70 65.62% 64.68% 66.46%
RM BN stage 3 90.59 88.57 86.96 65.63% 64.57% 61.04%

V. CONCLUSIONS

We have developed PYHESSIAN, an open-source framework
for analyzing NN behaviour through the lens of the Hes-
sian [1]. PYHESSIAN enables direct and efficient computation
of Hessian-based statistics, including the top eigenvalues, the
trace, and the full ESD, with support for distributed-memory
execution on cloud/supercomputer systems. Importantly, since
it uses matrix-free techniques, PYHESSIAN accomplishes this
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Fig. 4: (first row) The Hessian ESD throughout training for ResNet/ResNet−BN /ResNet−Res with depth 32 on Cifar-10 shown in different
columns. For a fixed epoch, every point corresponds to a Hessian eigenvalue. These plots show several important phenomena. Removing the
residual connection or batch normalization makes the loss landscape non-smooth throughout training. (middle/last row) The Hessian ESD at
epoch 1 and epoch 180.

Table III: Accuracy of ResNet on Cifar-10/100 is reported for
baseline (first row), along with architectures where the residual
connection is removed at different stages.

Cifar-10 Cifar-100
Model\Depth 20 32 38 20 32 38

ResNet 92.01% 92.05% 92.37% 66.47% 68.26% 69.06%
RM Res stage 1 91.52% 92.27% 91.74% 66.46% 66.94% 67.61%
RM Res stage 2 91.06% 91.07% 91.08% 65.70% 66.05% 66.70%
RM Res stage 3 91.54% 92.09% 92.14% 66.21% 66.38% 66.03%

without the need to form the full Hessian. This means that we
can compute second-order statistics for state-of-the-art NNs in
times that are only marginally longer than the time used by
popular gradient-based techniques.

As an application, we have shown how PYHESSIAN can be
used to study in detail the impact of popular NN architectural
changes (such as adding/modifying BN and residual connec-
tions) on the NN loss landscape. We found that adding BN
layers does not necessarily result in a smoother loss landscape,
as claimed by [24]. We have observed this phenomenon only
for deeper models, where removing the BN layer results in
convergence to “sharp” local minima that have high training
loss and poor generalization, but it does not seem to hold
for shallower models. We also showed that removing residual
connections resulted in a slightly coarser loss landscape, a

finding illustrated with parametric 3D visualizations, and which
all three Hessian spectrum metrics confirmed.

ACKNOWLEDGMENTS

This work was supported by a gracious fund from Amazon
Machine Learning Research Award (MLRA). We acknowledge
gracious support from Intel corporation, Intel VLAB team,
Google Cloud, Google TFTC team, and Nvidia, as well as
valuable feedback from Prof. Dave Patterson, Prof. Joseph
Gonzalez, and Lianmin Zheng. Amir Gholami was supported
through from Samsung SAIT and NSF. Michael Mahoney
would like to acknowledge the UC Berkeley CLTC, ARO,
IARPA, NSF, and ONR for providing partial support of this
work. Our conclusions do not necessarily reflect the position or
the policy of our sponsors, and no official endorsement should
be inferred.

REFERENCES

[1] https://github.com/amirgholami/pyhessian, 2020.
[2] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan,

and Yoram Singer. Second order optimization made
practical. arXiv preprint arXiv:2002.09018, 2020.

[3] Haim Avron and Sivan Toledo. Randomized algorithms
for estimating the trace of an implicit symmetric positive

8
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 12,2024 at 22:17:00 UTC from IEEE Xplore.  Restrictions apply. 



589

0 25 50 75 100 125 150 175
Epoch

0

500

1000

1500

2000

2500

3000

Ei
ge

nv
al

ue

Cifar-10 ResNet38

0 25 50 75 100 125 150 175
Epoch

0

500

1000

1500

2000

2500

3000

Ei
ge

nv
al

ue

Cifar-10 ResNet BN38

0 25 50 75 100 125 150 175
Epoch

0

500

1000

1500

2000

2500

3000

Ei
ge

nv
al

ue

Cifar-10 ResNet Res38

0 100 200 300 400 500 600
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet38 Epoch: 1

0 100 200 300 400 500 600
Eigenvlaue

10 6

10 4

10 2

100

102

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet BN38 Epoch: 1

0 100 200 300 400 500 600
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet Res38 Epoch: 1

0 500 1000 1500 2000 2500 3000
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet38 Epoch: 180

0 500 1000 1500 2000 2500 3000
Eigenvlaue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet BN38 Epoch: 180

0 500 1000 1500 2000 2500 3000
Eigenvlaue

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

)

Cifar-10 ResNet Res38 Epoch: 180

Fig. 5: (first row) The Hessian ESD throughout training for ResNet/ResNet−BN /ResNet−Res with depth 38 on Cifar-10 shown in different
columns. For a fixed epoch, every point corresponds to a Hessian eigenvalue. These plots show several important phenomena. Removing the
residual connection or batch normalization makes the loss landscape non-smooth throughout training. (middle/last row) The Hessian ESD at
epoch 1 and epoch 180.

semi-definite matrix. Journal of the ACM (JACM), 58(2):8,
2011.

[4] Zhaojun Bai, Gark Fahey, and Gene Golub. Some
large-scale matrix computation problems. Journal of
Computational and Applied Mathematics, 74(1-2):71–89,
1996.

[5] Sue Becker and Yann Le Cun. Improving the convergence
of back-propagation learning with second order methods.
In Proceedings of the 1988 connectionist models summer
school, pages 29–37, 1988.

[6] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Opti-
mization methods for large-scale machine learning. SIAM
Review, 60(2):223–311, 2018.

[7] Petros Drineas, Ravi Kannan, and Michael W Mahoney.
Fast Monte Carlo algorithms for matrices II: Computing
a low-rank approximation to a matrix. SIAM Journal on
computing, 36(1):158–183, 2006.

[8] Petros Drineas and Michael W Mahoney. Lectures on
randomized numerical linear algebra. In The Mathematics
of Data, IAS/Park City Mathematics Series, pages 1–48.
AMS/IAS/SIAM, 2018.

[9] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao.
An investigation into neural net optimization via Hessian
eigenvalue density. arXiv preprint arXiv:1901.10159,

2019.
[10] Gene H Golub and Gérard Meurant. Matrices, moments

and quadrature with applications. Princeton University
Press, 2009.

[11] Gene H Golub and John H Welsch. Calculation of
Gauss quadrature rules. Mathematics of computation,
23(106):221–230, 1969.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[15] Yann LeCun, Ido Kanter, and Sara A Solla. Second order
properties of error surfaces: Learning time and general-
ization. In Advances in neural information processing
systems, pages 918–924, 1991.

[16] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing

9
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 12,2024 at 22:17:00 UTC from IEEE Xplore.  Restrictions apply. 



590

0 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

1400

Tr
ac

e

Cifar-10 Stage: 1
ResNet20
ResNet BN20
ResNet Res20

0 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

1400

Tr
ac

e

Cifar-10 Stage: 2
ResNet20
ResNet BN20
ResNet Res20

0 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

Tr
ac

e

Cifar-10 Stage: 3
ResNet20
ResNet BN20
ResNet Res20

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

5000

6000

7000

Tr
ac

e

Cifar-10 Stage: 1
ResNet32
ResNet BN32
ResNet Res32

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

5000

6000

7000

Tr
ac

e

Cifar-10 Stage: 2
ResNet32
ResNet BN32
ResNet Res32

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

5000

6000

Tr
ac

e

Cifar-10 Stage: 3
ResNet32
ResNet BN32
ResNet Res32

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

5000

6000

7000

Tr
ac

e

Cifar-10 Stage: 1
ResNet38
ResNet BN38
ResNet Res38

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

5000

6000

7000

Tr
ac

e

Cifar-10 Stage: 2
ResNet38
ResNet BN38
ResNet Res38

0 25 50 75 100 125 150 175
Epoch

0

1000

2000

3000

4000

Tr
ac

e

Cifar-10 Stage: 3
ResNet38
ResNet BN38
ResNet Res38

Fig. 6: Stage-wise Hessian trace of ResNet/ResNet−BN /ResNet−Res 20/32/38 on Cifar-10. Removing BN layer from the third stage
significantly increases the trace, compared to removing BN layer from the first/second stage. This has a direct correlation with the final
generalization performance, as shown in Table II.
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