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A B S T R A C T

Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation
(PDE) information into the learning process. Much of this work has focused on relatively ‘‘easy’’ PDE operators
(e.g., elliptic and parabolic), with less emphasis on relatively ‘‘hard’’ PDE operators (e.g., hyperbolic). Within
numerical PDEs, the latter problem class requires control of a type of volume element or conservation
constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly
incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a
framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv
combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis
of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable
parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs.
ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for
harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv
seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ),
and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance
on downstream tasks.
1. Introduction

Conservation laws are ubiquitous in science and engineering, where
they are used to model physical phenomena ranging from heat transfer
to wave propagation to fluid flow dynamics, and beyond. These laws
can be expressed in two complementary ways: in a differential form;
or in an integral form. They are most commonly expressed as partial
differential equations (PDEs) in a differential form,

𝑢𝑡 + ∇ ⋅ 𝐹 (𝑢) = 0,

for an unknown 𝑢 and a nonlinear flux function 𝐹 (𝑢). This differential
form of the conservation law can be integrated over a spatial domain
𝛺 using the divergence theorem to result in an integral form of the
conservation law,

𝑈𝑡 = −∫𝛤
𝐹 (𝑢) ⋅ 𝑛𝑑𝛤 ,
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where 𝑈 = ∫𝛺 𝑢(𝑡, 𝑥)𝑑𝛺, 𝛤 denotes the boundary of 𝛺 and 𝑛 denotes the
outward unit normal vector. As examples: in the case of heat transfer,
𝑢 denotes the temperature, and 𝑈 the conserved energy of system; and
in the case of porous media flow, 𝑢 denotes the density, and 𝑈 the
conserved mass of the porous media.

Global conservation states that the rate of change in time of the
conserved quantity 𝑈 over a domain 𝛺 is given by the flux across the
boundary 𝛤 of the domain. Local conservation arises naturally in the
numerical solution of PDEs. Traditional numerical methods (e.g., finite
differences, finite elements, and finite volume methods) have been
developed to solve PDEs numerically, with finite volume methods
being designed for (and being particularly well-suited for) conservation
laws [1–3]. Finite volume methods divide the domain 𝛺 into control
volumes and apply the integral form locally. They enforce that the
time derivative of the cell-averaged unknown is equal to the difference
between the in-flux and out-flux over the control volume. (This local
conservation – so-called since the out-flux that leaves one cell equals
vailable online 18 October 2023
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the in-flux that enters a neighboring cell – can be used to guarantee
global conservation over the whole domain.) This numerical approach
should be contrasted with finite difference methods, which use the
differential form directly, and which are thus not guaranteed to satisfy
the conservation condition.

This discussion is relevant for machine learning (ML) since there has
been an interest recently in Scientific ML (SciML) in incorporating the
physical knowledge or physical constraints into neural network (NN)
training. A popular example of this is the so-called Physics-Informed
Neural Networks (PINNs) [4]. This approach uses a NN to approximate
the PDE solution by incorporating the differential form of the PDE
into the loss function, basically as a soft constraint or regularization
term. Other data-driven approaches, including DeepONet [5] and Neu-
ral Operators (NOs) [6,7], train on simulations and aim to learn the
underlying function map from initial conditions or PDE coefficients to
the solution. Other methods such as Physics-Informed Neural Operator
(PINO) attempt to make the data-driven Fourier Neural Operator (FNO)
‘‘physics-informed’’, again by adding the differential form into the
supervised loss function as a soft constraint regularization term [8,9].

Challenges and limitations for SciML of this soft constraint approach
on model training were recently identified [10,11]. The basic issue
is that, unlike numerical finite volume methods, these ML and SciML
methods do not guarantee that the physical property of conservation
s satisfied. This is a consequence of the fact that the Lagrange dual
orm of the constrained optimization problem does not in general
atisfy the constraint. This results in very weak control on the physical
onservation property, resulting in non-physical solutions that violate
he governing conservation law.

In this work, we frame the problem of learning physical models that
an respect conservation laws via a ‘‘finite-volume lens’’ from scientific
omputing. This permits us to use the integral form of the governing
onservation law to enforce conservation conditions for a range of
ciML problems. In particular, for a wide range of initial and boundary
onditions, we can express the integral form as a time-varying linear
onstraint that is compatible with existing ML pipelines. This permits
s to propose a two-step framework. In the first step, we use an ML
odel with a mean and variance estimate to compute a predictive
istribution for the solution at specified target points. Possible methods
or this step include: classic estimation methods (e.g., Gaussian Pro-
esses [12]); methods designed to exploit the complementary strengths
f classical methods and NN methods (e.g., Neural Processes [13]);
s well as computing ensembles of NN models (to compute empirical
stimates of means and variances). In the second step, we apply a
iscretization of the integral form of the constraint as a Bayesian update
n order to enforce the physical conservation constraint on the black-
ox unconstrained output. We illustrate our framework, ProbConserv,

by using an Attentive Neural Process (ANP) [13] as the probabilistic
deep learning model in the first step paired with a global conservation
constraint in the second step. In more detail, the following are our main
contributions:

• Integral form for conservation. We propose to use the integral
form of the governing conservation law via finite volume meth-
ods, rather than the commonly used differential form, to enforce
conservation subject to a specified noise parameter. Through an
ablation study, we show that adding the differential form of the
PDE as a soft constraint to the loss function does not enforce
conservation in the underlying unconstrained ML model.

• Strong control on the conservation constraint. By using the integral
form, we are able to enforce conservation via linear probabilistic
constraints, which can be made arbitrarily binding or sharp by
reducing the variance term 𝜎2𝐺. In particular, by adjusting 𝜎2𝐺,
one can balance satisfying conservation with predictive metrics
(e.g., MSE), with ProbConserv obtaining exact conservation when
𝜎2 = 0.
2

𝐺 t
Algorithm 1 ProbConserv
Input: Constraint matrix 𝐺, constraint value 𝑏, non-zero noise 𝜎𝐺
and input points (𝑡1, 𝑥1),…(𝑡𝑁 , 𝑥𝑁 )
Step 1: Calculate black-box prediction over output grid:
𝜇,𝛴 = 𝑓𝜃((𝑡1, 𝑥1),…(𝑡𝑁 , 𝑥𝑁 );𝐷)
Step 2: Calculate 𝜇̃ and 𝛴̃ according to Eq. (8).
Output: 𝜇̃, 𝛴̃

• Effective for ‘‘easy’’ to ‘‘hard’’ PDEs. We evaluate on a parametric
family of PDEs, which permits us to explore ‘‘easy’’ parameter
regimes as well as ‘‘medium’’ and ‘‘hard’’ parameter regimes.
We find that our method and the baselines do well for ‘‘easy’’
problems (although baselines sometimes have issues even with
‘‘easy’’ problems, and even for ‘‘easy’’ problems their solutions
may not be conservative), but we do seamlessly better as we go
to ‘‘harder’’ problems, with a 5× improvement in MSE.

• Uncertainty Quantification (UQ) and downstream tasks. We provide
theoretical guarantees that ProbConserv increases predictive log-
likelihood (LL) compared to the original black-box ML model.
Empirically, we show that ProbConserv consistently improves LL,
which takes into account both prediction accuracy and well-
calibrated uncertainty. On ‘‘hard’’ problems, this improved con-
trol on uncertainty leads to better insights on downstream shock
position detection tasks.

There is a large body of related work, too much to summarize here;
see Appendix A for a summary.

2. A probabilistic approach to conservation law enforcement

In this section, we present our framework, ProbConserv, for learning
physical models that can respect conservation laws. Our approach
centers around the following two sources of information: an uncon-
strained ML algorithm that makes mean and variance predictions; and
a conservation constraint (in the form of Eq. (4) below) that comes
from knowledge of the underlying physical system. See Algorithm 1
for details of our approach. In the first step, we compute a set of mean
and variance estimates for the unconstrained model. In the second
step, we use those mean and variance estimates to compute an update
that respects the conservation law. The update rule has a natural
probabilistic interpretation in terms of uncertainty quantification, and
it can be used to satisfy the conservation constraint to a user-specified
tolerance level. As this tolerance goes to zero, our method gracefully
converges to a limiting solution that satisfies conservation exactly (see
Theorem 1 below).

2.1. Integral form of conservation laws as a linear constraint

Here, we first derive the integral form of a governing conserva-
tion law from the corresponding differential form (a la finite volume
methods), and we then show how this integral form can be expressed
as a linear constraint (for PDEs with specific initial and boundary
conditions, even for certain nonlinear differential PDE operators) for
a broad class of real-world problems.

Consider the differential form of the governing equation:

𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ 𝛺,

𝑢(0, 𝑥) = ℎ(𝑥), 𝑥 ∈ 𝛺,

𝑢(𝑡, 𝑥) = 𝑔(𝑡, 𝑥), 𝑥 ∈ 𝛤 ,

⎫

⎪

⎬

⎪

⎭

∀ 𝑡 ≥ 0, (1)

where 𝛤 denotes the boundary of the domain 𝛺, ℎ(𝑥) the initial con-
dition, and 𝑔(𝑡, 𝑥) the Dirichlet boundary condition. Recently popular
ciML methods, e.g., PINNs [4], PINOs [8,9], focus on incorporating
his form of the constraint into the NN training procedure. In particular,
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the differential form of the PDE 𝑢(𝑡, 𝑥) could be added as a soft
constraint to the loss function , as follows:

in
𝜃

(𝑢) + 𝜆‖𝑢‖,

here  denotes a loss function measuring the error of the NN approx-
mated solution relative to the known initial and boundary conditions
and potentially any observed solution samples), 𝜃 denotes the NN

parameters, and 𝜆 denotes a penalty or regularization parameter.
For conservation laws, the differential form is given as:

𝑢 = 𝑢𝑡 + ∇ ⋅ 𝐹 (𝑢), (2)

for some given nonlinear flux function 𝐹 (𝑢). The corresponding integral
form of a conservation law is given as:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝛺 − ∫

𝑡

0 ∫𝛤
𝐹 (𝑢) ⋅ 𝑛𝑑𝛤𝑑𝑡. (3)

See Appendix B for a derivation.
In one-dimension, the boundary integral of the flux can be com-

puted analytically, as the difference of the flux in and out of the
domain:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑢(𝑡,𝑥)

= ∫𝛺
ℎ(𝑥)𝑑𝛺 + ∫

𝑡

0
(𝐹in − 𝐹out)𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏(𝑡)

,
(4)

where 𝛺 = [𝑥0, 𝑥𝑁 ], 𝐹in = 𝐹 (𝑢, 𝑡, 𝑥0)|𝑢=𝑔(𝑡,𝑥0), and
𝐹out = 𝐹 (𝑢, 𝑡, 𝑥𝑁 )|𝑢=𝑔(𝑡,𝑥𝑁 ). In two and higher dimensions, we do not
have an analytic expression, but one can approximate this boundary
integral as the sum over the spatial dimensions of the difference of the
in and out fluxes on the boundary in that dimension. This methodology
is well-developed within finite volume discretization methods, and we
leave this extension to future work.

In many applications (including those we consider), by using the
prescribed physical boundary condition 𝑢(𝑡, 𝑥) = 𝑔(𝑡, 𝑥) for 𝑥 ∈ 𝛤 , it
holds that the in and out fluxes on the boundary do not depend on
𝑢, and instead they only depend on 𝑡. This is known as a boundary
flux linearity assumption since, when it holds, one can use a simple
linear constraint to enforce the conservation law. This assumption
holds for a broad class of problems—even including nonlinear con-
servation laws with nonlinear PDE operators  (See Appendix C for
the initial/boundary conditions, exact solutions, exact linear global
conservation constraints and Table 5 for a summary). In these cases,
Eq. (4) results in the following linear constraint equation:

𝑢(𝑡, 𝑥) = ∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = 𝑏(𝑡), (5)

which can be used to enforce global conservation. See Appendix D.1 for
details on how this integral equation can be discretized into a matrix
equation.

In other applications, of course, the flux linearity assumption along
the boundary of the domain will not hold. For example, the flux may
not be known and/or the boundary condition may depend on 𝑢(𝑡, 𝑥).
In these cases, we will not be able to not apply Eq. (5) directly.
However, nonlinear least squares methods may still be used to enforce
the conservation constraint. This methodology is also well-developed,
and we leave this extension to future work.

2.2. Step 1: Unconstrained probability distribution

In Step 1 of ProbConserv, we use a supervised black-box ML model
to infer the mean 𝜇 and covariance 𝛴 of the unknown function 𝑢
from observed data 𝐷. For example, 𝐷 can include values of the
function 𝑢 observed at a small set of points. Over a set of 𝑁 in-
put points (𝑡1, 𝑥1),… , (𝑡𝑁 , 𝑥𝑁 ), the probability distribution of 𝑢 ∶=
[𝑢(𝑡1, 𝑥1),… 𝑢(𝑡𝑁 , 𝑥𝑁 )] ∈ R𝑁 conditioned on data 𝐷 has mean 𝜇 ∶=
E(𝑢|𝐷) and covariance 𝛴 ∶= Cov(𝑢|𝐷) given by the black-box model 𝑓𝜃 ,
i.e.,

( )
3

𝜇,𝛴 = 𝑓𝜃 (𝑡1, 𝑥1),… , (𝑡𝑁 , 𝑥𝑁 );𝐷 . (6)
This framework is general, and there are possible choices for the model
in Eq. (6). Gaussian Processes [12] are a natural choice, assuming that
one has chosen an appropriate mean and kernel function for the specific
problem. The ANP model [13], which uses a transformer architecture
to encode the mean and covariance, is another choice. A third option
is to perform repeated runs, e.g., with different initial seeds, of non-
probabilistic black-box NN models to compute empirical estimates of
mean and variance parameters.

2.3. Step 2: Enforcing conservation constraint

In Step 2 of ProbConserv, we incorporate a discretized and proba-
bilistic form of the constraint given in Eq. (5):

𝑏 = 𝐺𝑢 + 𝜎𝐺𝜖, (7)

where 𝐺 denotes a matrix approximating the linear operator  (see
Appendix D.1), 𝑏 denotes a vector of observed constraint values, and
𝜖 denotes a noise term, where each component has unit variance. The
parameter 𝜎𝐺 ≥ 0 controls how much the conservation constraint
can be violated (see Appendix E for details), with 𝜎𝐺 = 0 enforcing
exact adherence. Step 2 outputs the following updated mean 𝜇̃ and
covariance 𝛴̃ that respect conservation, given as:

𝜇̃ = 𝜇 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏), (8a)

𝛴̃ = 𝛴 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺𝛴, (8b)

where 𝜇 and 𝛴 denote the mean and covariance matrix, respectively,
from Step 1 (Eq. (6)).

The update rule given in Eq. (8) can be justified from two com-
plementary perspectives. From a Bayesian probabilistic perspective,
Eq. (8) is the posterior mean and covariance of the predictive distribu-
tion of 𝑢 after incorporating the information given by the conservation
constraint via Eq. (7). From an optimization perspective, Eq. (8) is the
solution to a least-squares problem that places a binding inequality
constraint on the conserved quantity 𝐺𝜇̃ (i.e., ‖𝐺𝜇̃ − 𝑏‖2 ≤ 𝑐 for
some 𝑐 ∈ (0, ‖𝐺𝜇 − 𝑏‖2)). See Appendix F for more details on these two
complementary perspectives.

We emphasize that, for 𝜎𝐺 > 0, the final solution does not satisfy
𝐺𝜇̃ = 𝑏 exactly. Adherence to the constraint can be gracefully controlled
by shrinking 𝜎𝐺. Specifically, if we consider a monotonic decreasing
sequence of constraint values 𝜎𝐺,𝑛 ↓ 0, then the corresponding sequence
of posterior means 𝜇̃𝑛 is well-behaved, and the limiting solution can be
calculated. This is shown in the following theorem.

Theorem 1. Let 𝜇 and 𝛴 be the mean and covariance of 𝑢 obtained at the
end of Step 1. Let 𝜎𝐺,𝑛 ↓ 0 be a monotonic decreasing sequence of constraint
values and let 𝜇̃𝑛 be the corresponding posterior mean at the end of Step 2
shown in Eq. (8). Then:

1. The sequence 𝜇̃𝑛 converges to a limit 𝜇̃⋆ monotonically; i.e., ‖𝜇̃𝑛 −
𝜇̃⋆

‖𝛴−1 ↓ 0.
2. The limiting mean 𝜇̃⋆ is the solution to a constrained least-squares
problem: arg min𝑦 ‖𝑦 − 𝜇‖𝛴−1 subject to 𝐺𝑦 = 𝑏.

3. The sequence 𝐺𝜇̃𝑛 converges to 𝑏 in 𝐿2; i.e., ‖𝐺𝜇̃𝑛 − 𝑏‖2 ↓ 0.
Moreover, if the conservation constraint 𝐺𝑢 = 𝑏 holds exactly for the true
solution 𝑢, then:

4. The distance between the true solution 𝑢 and the posterior mean 𝜇̃𝑛
decreases as 𝜎𝐺,𝑛 → 0, i.e., ‖𝜇̃𝑛 − 𝑢‖𝛴−1 ↓ ‖𝜇̃⋆ − 𝑢‖𝛴−1 .

5. For sufficiently small 𝜎𝐺,𝑛, the log-likelihood LL(𝑢; 𝜇̃𝑛, 𝛴̃𝑛) is greater
than LL(𝑢;𝜇,𝛴) and increases as 𝜎𝐺,𝑛 → 0.

See Appendix G for a proof of Theorem 1. Importantly, Theorem 1
holds for any mean and covariance estimates 𝜇,𝛴, whether they come
from a Gaussian Process, ANP, or repeated runs of a black-box NN. It
also shows that we are guaranteed to improve in log-likelihood (LL),

which we also verify in the empirical results (see Appendix E).
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Fig. 1. Illustration of the ‘‘easy-to-hard’’ paradigm for PDEs, for the GPME family of conservation equations: (a) ‘‘easy’’ parabolic smooth (diffusion equation) solutions, with
constant parameter 𝑘(𝑢) = 𝑘 ≡ 1; (b) ‘‘medium’’ degenerate parabolic PME solutions, with nonlinear monomial coefficient 𝑘(𝑢) = 𝑢𝑚, with parameter 𝑚 = 3 here; and (c) ‘‘hard’’
hyperbolic-like (degenerate parabolic) sharp solutions (Stefan equation) with nonlinear step-function coefficient 𝑘(𝑢) = 𝟏𝑢≥𝑢⋆ , where 𝟏 is an indicator function for event  .
We should also emphasize that, in addition to conservation, Eq. (7)
an incorporate other inductive biases, based on knowledge of the un-
erlying PDE. To take but one practically-useful example, one typically
esires a solution that is free of artificial high-frequency oscillations.
his smoothing can be accomplished by penalizing large absolute val-
es of the second derivative via a second order central finite difference
iscretization in the matrix 𝐺̃ (see Appendix D.2).

. Empirical results

In this section, we provide an empirical evaluation to illustrate
he main aspects of our proposed framework ProbConserv. We choose
he ANP model [13] as our black-box, data-driven model in Step 1,
nd we refer to this instantiation of our framework as ProbConserv-
NP.3 Unless otherwise stated, we use the limiting solution described

n Eq. (8), with 𝜎𝐺 = 0, so that conservation is enforced exactly through
he integral form of the PDE. We organize our empirical results around
he following questions:

1. Integral vs. differential form?
2. Strong control on the enforcement of the conservation constraint?
3. ‘‘Easy’’ to ‘‘hard’’ PDEs?
4. Uncertainty Quantification (UQ) for downstream tasks?

eneralized Porous Medium Equation. The parametric Generalized
orous Medium Equation (GPME) is a family of conservation equations,
arameterized by a nonlinear coefficient 𝑘(𝑢). It has been used in
pplications ranging from underground flow transport to nonlinear heat
ransfer to water desalination and beyond [14]. The GPME is given as:

𝑡 − ∇ ⋅ (𝑘(𝑢)∇𝑢) = 0, (9)

here 𝐹 (𝑢) = −𝑘(𝑢)∇𝑢 is a nonlinear flux function, and where the
arameter 𝑘 = 𝑘(𝑢) can be varied. Even though the GPME is nonlinear
n general, for specific initial and boundary conditions, it has closed
orm self-similar solutions [14–16]. This enables ease of evaluation by
omparing each competing method to ground truth solutions.

By varying the parameter 𝑘(𝑢) in the GPME family, one can obtain
DE problems with widely-varying difficulties, from ‘‘easy’’ (where
inite element and finite difference methods perform well) to ‘‘hard’’
where finite volume methods are needed), and exhibiting many of the
ualitative properties of smooth/easy parabolic to sharp/hard hyper-
olic PDEs. See Fig. 1 for an illustration. In particular: the Diffusion
quation is parabolic, linear and smooth, and represents an ‘‘easy’’ case
Section 3.1); the Porous Medium Equation (PME) has a solution that
ecomes sharper (as 𝑚 ≥ 1, for 𝑘(𝑢) = 𝑢𝑚, increases), and represents an

‘intermediate’’ or ‘‘medium’’ case (Section 3.2); and the Stefan equation

3 The code is available at https://github.com/amazon-science/probconserv.
4

has a solution that becomes discontinuous, and represents a ‘‘hard’’ case
(Section 3.3).

We consider these three instances of the GPME (Diffusion, PME,
Stefan) that represent increasing levels of difficulty. In particular, the
challenging Stefan test case illustrates the importance of developing
methods that satisfy conservation conditions on ‘‘hard’’ problems, with
non-smooth and even discontinuous solutions, as well as for down-
stream tasks, e.g., the estimation of the shock position over time. This is
important, given the well-known inductive bias that many ML methods
have toward smooth/continuous behavior.

See Appendix H for more on the GPME; see Appendix I for details
on the ProbConserv-ANP model schematic (Fig. 7), model training, data
generation and the ANP; and see Appendix J for additional empirical
results on the GPME and hyperbolic conservation laws.

Baselines. We compare our results to the following baselines:
• ANP: Base unconstrained ANP [13], trained to minimize the

negative evidence lower bound (ELBO):

 = −E𝐷,𝑢∼𝑝E𝑧∼𝑞𝜙 log 𝑝𝜃(𝑢, 𝑧|𝐷) − log 𝑞𝜙(𝑧|𝑢,𝐷),

where 𝑞𝜙 denotes the variational distribution of the data used for
training, and 𝑝𝜃 denotes the generative model. The ANP learns a
global latent representation 𝑧 that captures uncertainty in global
parameters, which influences the prediction of the reference solu-
tion 𝑢. At inference time, the distribution of 𝑢 given 𝑧 (𝑝𝜃(𝑢|𝑧,𝐷))
outputs a mean and diagonal covariance for Step 1.

• SoftC-ANP: In this ‘‘Physics-Informed’’ Neural Process ablation,
we include a soft constrained PDE in the loss function, as is done
with PINNs [4], to obtain:

 + 𝜆E𝑧∼𝑞𝜙‖𝜇𝑧‖
2
2,

where  denotes the underlying PDE differential form in Eq. (1),
𝜇𝑧 denotes the output mean of the ANP, and 𝜆 denotes a hyper-
parameter controlling the relative strength of the penalty. (See
Appendix J.1.2 for details on the hyperparameter tuning of 𝜆.)

• HardC-ANP: In this hard-constrained Neural Process ablation, we
project the ANP mean to the nearest solution in 𝐿2 satisfying the
integral form of conservation constraint. This method is inspired
by the approach taken in Négiar et al. [17] that projects the
output of a neural network onto the nearest solution satisfying
a linear PDE system. HardC-ANP is an alternative to Step 2 that
solves the following constrained least-squares problem:

𝜇𝐻𝐶 = arg min
𝑢

‖𝑢 − 𝜇‖22 s.t. 𝐺𝑢 = 𝑏

= 𝜇 − 𝐺𝑇 (𝐺𝐺𝑇 )−1(𝐺𝜇 − 𝑏).

HardC-ANP is equivalent to the limiting solution of the mean of
ProbConserv as 𝜎𝐺 → 0 in Eq. (8a), if the variance from Step 1 is

fixed to be the same for each point, i.e., 𝛴 = 𝐼 .

https://github.com/amazon-science/probconserv
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Fig. 2. The total mass 𝑈 (𝑡) = ∫𝛺 𝑢(𝑡, 𝑥)𝑑𝛺 as a function of time 𝑡 for the (‘‘easy’’) diffusion equation with constant diffusivity coefficient 𝑘 ∈  = [1, 5] and test-time parameter value
𝑘 = 1. The true 𝑈 (𝑡) is zero at all times since there is zero net flux from the domain boundaries and mass cannot be created or destroyed on the interior. Both ProbConserv-ANP
and HardC-ANP satisfy conservation of mass exactly. The other baselines violate conservation and result in a non-physical mass profile over time. ANP and SoftC-ANP are not
even zero at time 𝑡 = 0.
T
r
r
m
i
t
b
A
r
e
r

p
c
b
P
i
i
T
a
l
i

Table 1
Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and
MSE ×10−4 (lower is better) over 𝑛test = 50 runs for the (‘‘easy’’) diffusion equation at
time 𝑡 = 0.5 with variable diffusivity constant 𝑘 parameter in the range  = [1, 5] and
est-time parameter value 𝑘 = 1.

CE LL MSE

ANP 4.68 (0.10) 2.72 (0.02) 1.71 (0.41)
SoftC-ANP 3.47 (0.17) 2.40 (0.02) 2.24 (0.78)
HardC-ANP 0 (0.00) 3.08 (0.04) 𝟏.𝟑𝟕 (0.33)
ProbConserv-ANP 0 (0.00) 2.74 (0.02) 1.55 (0.33)

Evaluation. At test time, we select a value of the PDE parameter 𝛼
hat lies within the range of PDE parameters used during training
i.e., 𝛼 ∈ ). For each value of 𝛼, we generate multiple independent
raws of (𝐷𝑖, 𝑢𝑖, 𝑏𝑖) in the same manner as the training data. For a given
rediction of the mean 𝜇 and covariance 𝛴 at a particular time-index
𝑗 in the training window, we report the following prediction met-
ics: conservation error (CE(𝜇) = (𝐺𝜇 − 𝑏)𝑡𝑗 ); predictive log-likelihood
LL(𝑢;𝜇,𝛴) = − 1

2𝑀 ‖𝑢𝑡𝑗 ,⋅ − 𝜇𝑡𝑗 ,⋅‖𝛴−1
𝑡𝑗

− 1
2𝑀

∑

𝑖 log 𝜎
2
𝑡𝑗 ,𝑖

− log 2𝜋); and mean-

squared error (MSE(𝑢, 𝜇) = 1
𝑀 ‖𝑢𝑡𝑗 ,⋅ − 𝜇𝑡𝑗 ,⋅‖

2
2), where 𝑀 denotes the

number of spatial points and 𝜎2𝑡𝑗 ,⋅ denotes the diagonal of 𝛴𝑡𝑗 ∈ R𝑀×𝑀 .
We report the average of each metric over 𝑛test = 50 independent
runs. Our convention for bolding the CE metric is binary on whether
conservation is satisfied exactly or not. For the LL and MSE metrics, we
bold the methods whose mean metric is within one standard deviation
of the best mean metric.

3.1. Diffusion equation: Constant 𝑘

The diffusion equation is the simplest non-trivial form of the GPME,
with constant diffusivity coefficient 𝑘(𝑢) = 𝑘 > 0 (see Fig. 1(a)). We
train on values of 𝑘 ∈  = [1, 5]. The diffusion equation is also known
as the heat equation, where in that application the PDE parameter 𝑘
denotes the conductivity and the total conserved quantity denotes the
energy. In our empirical evaluations, we use the diffusion equation
notation, and refer to the conserved quantity as the mass.

Fig. 2 illustrates that the unconstrained ANP solution violates con-
servation by allowing mass to enter and exit the system over time.
Physically, there is no in-flux or out-flux on the boundary of the
domain, and thus the true total mass of the system 𝑈 (𝑡) = ∫𝛺 𝑢(𝑡, 𝑥)𝑑𝛺 is
zero at all times. Surprisingly, even incorporating the differential form
of the conservation law as a soft constraint into the training loss via
SoftC-ANP violates conservation and the violation occurs even at 𝑡 = 0.
5

c

Enforcing conservation as a hard constraint in our ProbConserv-ANP
model and HardC-ANP guarantees that the system total mass is zero,
and also leads to improved predictive performance for both methods.
In particular, Table 1 shows that these methods exactly obtain the
lowest MSE and the highest LL. The success of these two approaches
that enforce the integral form of the conservation law exactly, along
with the failure of SoftC-ANP that penalizes the differential form,
demonstrates that physical knowledge must be properly incorporated
into the learning process to improve predictive accuracy. Fig. 9 in
Appendix J.1.1 illustrates that these conservative methods perform well
on this ‘‘easy’’ case since the uncertainty from the ANP is relatively
homoscedastic throughout the solution space; that is, the estimated
errors are mostly the same size, and the constant variance assumption
in HardC-ANP holds reasonably well.

3.2. Porous medium equation (PME): 𝑘(𝑢) = 𝑢𝑚

The Porous Medium Equation (PME) is a subclass of the GPME in
which the coefficient, 𝑘(𝑢) = 𝑢𝑚, is nonlinear and smooth (see Fig. 1(b)).
The PME is known to be degenerate parabolic, with different behaviors
depending on the value of 𝑚. We train on values of 𝑚 ∈  = [0.99, 6].

Table 2 compares the CE, MSE, and LL results for 𝑚 = 1, 3, 6.
hese three values of 𝑚 reflect ‘‘easy’’, ‘‘medium’’, and ‘‘hard’’ scenarios,
espectively, as the solution profile becomes sharper. Despite achieving
elatively low MSE for 𝑚 = 1, the ANP model violates conservation the
ost. The error profiles as a function of 𝑥 in Fig. 11 in Appendix J.1.2

llustrate the cause: the ANP consistently overestimates the solution
o the left of the shock. Enforcing conservation consistently fixes this
ias, leading to errors that are distributed around 0. Our ProbConserv-
NP method results in an ≈ 82% improvement in MSE, and HardC-ANP
esults in an ≈ 54% improvement over the ANP. Since HardC-ANP shifts
very point equally, it induces a negative bias in the zero (degeneracy)
egion of the domain, leading to a non-physical solution.

For 𝑚 = 3, 6, while the MSE for ProbConserv-ANP increases com-
ared to the ANP, the LL for ProbConserv-ANP improves. The in-
rease in LL for ProbConserv-ANP indicates that the uncertainty is
etter calibrated as a whole. Fig. 11 in Appendix J.1.2 illustrates that
robConserv-ANP reduces the errors to the left of the shock point while
ncreasing the error immediately to the right of it. This error increase
s penalized more in the 𝐿2 norm, which leads to an increase in MSE.
he LL metric improves because our ProbConserv-ANP model takes into
ccount the estimated variance at each point. It is expected that the
argest uncertainty occurs at the sharpest part of the solution, since that
s the area with the largest gradient. This region is more difficult to be
aptured as the shock interface becomes sharper when 𝑚 is increased.



Physica D: Nonlinear Phenomena 457 (2024) 133952D. Hansen et al.

s
m
p

v

i
a
v

3

t

t

Fig. 3. (a) Stefan solution profiles at time 𝑡 = 0.05 with training parameter values 𝑢⋆ ∈  = [0.55, 0.7] and test-time parameter 𝑢⋆ = 0.6. ProbConserv-ANP results in a sharper
olution profile and the solution is mean-centered around the shock position. (b) The corresponding histogram of the posterior of the shock position computed as the mean plus or
inus 3 standard deviations. ProbConserv-ANP reduces the level of underestimation and the induced negative bias at the shock interface to result in more accurate shock position
rediction.
Table 2
Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and MSE ×10−4 (lower is better) over 𝑛test = 50 runs for the (‘‘medium’’) PME at time 𝑡 = 0.5 with
ariable 𝑚 parameter in the range  = [0.99, 6]. For test-time parameter 𝑚 = 1, where conservation by the unconstrained ANP is violated the most, ProbConserv-ANP leads to a

substantial 𝟓.𝟓× improvement in MSE and log-likelihood. For test-time parameters 𝑚 = 3, 6, the MSE for ProbConserv-ANP increases due to the error concentrated at the sharper
boundary while the desired log-likelihood and conservation metrics improve.

𝑚 = 1 𝑚 = 3 𝑚 = 6

CE LL MSE CE LL MSE CE LL MSE

ANP 6.67 (0.39) 3.49 (0.01) 0.94 (0.09) −1.23 (0.29) 3.67 (0.00) 1.90 (0.04) −2.58 (0.23) 3.81 (0.01) 7.67 (0.09)
SoftC-ANP 5.62 (0.35) 3.11 (0.01) 1.11 (0.14) −0.65 (0.30) 3.46 (0.00) 2.06 (0.03) −3.03 (0.26) 3.49 (0.00) 7.82 (0.09)
HardC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3.44 (0.03) 1.86 (0.03) 0 (0.00) 3.40 (0.05) 7.61 (0.09)
ProbConserv-ANP 0 (0.00) 3.56 (0.01) 0.17 (0.02) 0 (0.00) 3.68 (0.00) 2.10 (0.07) 0 (0.00) 3.83 (0.01) 10.4 (0.04)

i

For control on the enforcement of conservation constraint, see Fig. 5
n Appendix E, where we show empirically that the log likelihood is
lways increasing, as stated in Theorem 1. Note that there are optimal
alues of 𝜎2𝐺, in which case the MSE can be better optimized.

.3. Stefan problem: Discontinuous nonlinear 𝑘(𝑢)

The most challenging case of the GPME is the Stefan problem. In
his case, the coefficient 𝑘(𝑢) is a discontinuous nonlinear step function
𝑘(𝑢) = 𝟏𝑢≥𝑢⋆ , where 𝟏 denotes an indicator function for event  and
𝑢⋆ ∈ R+. The solution is degenerate parabolic and develops a moving
shock over time (see Fig. 1(c)). We train on values of 𝑢⋆ ∈  =
[0.55, 0.7] and evaluate the predictive performances of each model at
𝑢⋆ = 0.6.

Unlike the PME test case, where the degeneracy point (𝑥∗(𝑡) = 𝑡) is
6

he same for each value of 𝑚, the shock position for the Stefan problem
Table 3
Mean and standard error for CE ×10−2 (should be zero), LL (higher is better), and
MSE ×10−3 (lower is better) over 𝑛test = 50 runs for the (‘‘hard’’) Stefan variant of the
GPME at time 𝑡 = 0.05. Each model is trained with the parameter 𝑢⋆ in the range

= [0.55, 0.7] and test-time parameter value 𝑢⋆ = 0.6. ProbConserv-ANP leads to an
ncrease in log-likelihood and a 𝟑× decrease in MSE.

CE LL MSE

ANP −1.30 (0.01) 3.53 (0.00) 5.38 (0.01)
SoftC-ANP −1.72 (0.04) 3.57 (0.01) 6.81 (0.15)
HardC-ANP 0 (0.00) 2.33 (0.06) 5.18 (0.02)
ProbConserv-ANP 0 (0.00) 3.56 (0.00) 1.89 (0.01)

depends on the parameter 𝑢⋆ (See Fig. 4 in Appendix C). This makes the

problem more challenging for the ANP, as it can no longer memorize
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the shock position. On this ‘‘harder’’ problem, the unconstrained ANP
violates the physical property of conservation by an order of magnitude
larger in CE than in the ‘‘easier’’ diffusion and PME cases. By enforcing
conservation of mass, ProbConserv-ANP results in substantial ≈ 65%
improvement in MSE (Table 3). In addition, Fig. 3(a) shows that
the solution profiles associated with ANP and the other baselines are
smoothed and deviate more from the true solution than the solution
profile of our ProbConserv-ANP model. Similar to our previous two case
studies, adding the differential form of the PDE via SoftC-ANP does not
lead to a conservative solution (see Fig. 12 in Appendix J.1.3). In fact,
Table 3 shows that surprisingly, conservation is violated more by SoftC-
ANP than with the ANP, with a corresponding increase in MSE. These
results demonstrate that physics-based constraints, e.g., conservation
laws need be incorporated carefully (via finite volume based ideas) into
ML-based models.

Table 3 shows that the LL for ProbConserv-ANP increases only
slightly, compared to that of the ANP (3.56 vs 3.53), and it is slightly
less than SoftC-ANP. Fig. 3(a) shows that enforcing conservation of
mass creates a small upward bias in the left part of the solution profile
for 𝑥 ∈ [0, 0.2]. Since the variance coming from the ANP is smaller
in that region, this bias is heavily penalized in the LL. This bias is
worse for HardC-ANP, which assumes an identity covariance matrix
and ignores the uncertainty estimates from the ANP. HardC-ANP adds
more noticeable upward bias to the 𝑥 ∈ [0, 0.2] region, and it even adds
bias to the zero-density region to the right of the shock. Compared to
ProbConserv-ANP, HardC-ANP only leads to a slight reduction in MSE
(3%) and a much lower LL (2.33). This shows the benefit of using the
uncertainty quantification from the ANP in our ProbConserv-ANP model
for this challenging heteroscedastic case.

Downstream task: Shock point estimation. While quantifying predictive
performance in terms of MSE or LL is useful in ML, these metrics are
typically not of direct interest to practitioners. To this end, we consider
the downstream task of shock point estimation, which is an important
problem in fluids, climate, and other areas. The shock position for the
Stefan problem 𝑥⋆(𝑡) depends on the parameter 𝑢⋆. Hence, for a given
function at test-time, the shock position 𝑥⋆(𝑡) is unknown and must be
predicted from the estimated solution profile.

We define the shock point at time 𝑡 as the first spatial point (left-to-
right) where the function equals zero:

𝑥⋆(𝑡) = inf
𝑥
{𝑢(𝑡, 𝑥) = 0}. (10)

On a discrete grid, we approximate the infimum using the minimum.
The advantage of a probabilistic approach is that we can directly
quantify the uncertainty of 𝑥⋆(𝑡) by drawing samples from the posterior
distributions of our ProbConserv-ANP model and the baselines.

Fig. 3(b) shows the corresponding histograms of the posterior of the
shock position. We see that our ProbConserv-ANP posterior is centered
around the true shock value. By underestimating the solution profile,
the ANP misses the true shock position wide to the left, as do the other
baselines SoftC-ANP and HardC-ANP. Remarkably, neither adding the
differential form as a soft constraint (SoftC-ANP) nor projecting to the
nearest conservative solution in 𝐿2 (HardC-ANP) helps with the task
of shock position estimation. This result highlights that both capturing
the physical conservation constraint and using statistical uncertainty
estimates in our ProbConserv-ANP model are necessary on challenging
problems with shocks, especially when the shock position is unknown.

4. Conclusion

We have formulated the problem of learning physical models that
can respect conservation laws from the finite volume perspective, by
writing the governing conservation law in integral form rather than
the commonly-used (in SciML) differential form. This permits us to
incorporate the global integral form of the conservation law as a linear
7

constraint into black-box ML models; and this in turn permits us to
develop a two-step framework that first trains a black-box probabilistic
ML model, and then constrains the output using a probabilistic con-
straint of the linear integral form. Our approach leads to improvements
(in MSE, LL, etc.) for a range of ‘‘easy’’ to ‘‘hard’’ parameterized
PDE problems. Perhaps more interestingly, our unique approach of
using uncertainty quantification to enforce physical constraints leads
to improvements in challenging shock point estimation problems. Fu-
ture extensions include support for local conservation in finite volume
methods, where the same linear constraint approach can be taken by
computing the fluxes as latent variables; imposing boundary conditions
as linear constraints [18]; and extension to other physical constraints,
including nonlinear constraints, e.g., enstrophy in 2D and helicity in
3D, and inequality constraints, e.g., entropy [19].
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Appendix A. Related works

Our method involves combining in a novel way ideas from several
different literatures. As such, there is a large body of related work,
each of which approaches the problems we consider from somewhat
different perspectives. Here, we summarize some of the most related.
Table 4 provides an overview of the comparisons of these methods.

A.1. Numerical methods

Numerical methods aim to approximate the solution to partial dif-
ferential equations (PDEs) by first discretizing the spatial domain 𝛺
into 𝑁 gridpoints {𝑥𝑖}𝑁𝑖=1 with spatial step size 𝛥𝑥. Then, at each
time step, we integrate the resulting semi-discrete ODE in time with
temporal step size 𝛥𝑡 to iteratively compute the solution at final time 𝑇 ,
i.e., {𝑢(𝑇 , 𝑥𝑖)}𝑁𝑖=1. By the Lax Equivalence theorem for linear problems,
convergence to the true solution, i.e., the norm of the error tending to
zero, can be proven to occur when 𝛥𝑡, 𝛥𝑥 → 0 (𝑁 → ∞) for methods
that are both stable and consistent [3]. A limitation of numerical
methods is that to obtain higher accuracy, fine mesh resolutions must
be used, which can be computationally expensive in higher dimensions.
In addition, for changes in PDE parameters, the simulations need to be
re-run. These classical methods are also deterministic, and they do not

provide uncertainty quantification.

https://github.com/amazon-science/probconserv
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Table 4
Summary of different properties of numerical and SciML methods for physical systems.
Method Conservative UQ Inference with different

Initial Conditions
Inference with different
PDE coefficients

Resolution
independent

Numerical methods ✓ ✗ ✗ ✗ ✗

PINNs ✗ ✗ ✗ ✗ ✓

Neural Operators ✗ ✗ ✓ ✓ ✓

Conservative ML models ✓ ✗ ✓ ✗ ✗

ProbConserv (our approach) ✓ ✓ ✓ ✓ ✓
Finite volume methods. Finite volume methods are designed for conser-
ation laws. These methods divide the domain into control volumes,
here the integral form of the governing equation is solved [1,2]. By

olving the integral form at each control volume, these methods enforce
lux continuity, i.e., that the out-flux of one cell is equal to the in-flux
f its neighbor. This results in local conservation, which guarantees
lobal conservation over the entire domain. Maddix et al. [15] show
hat the degenerate parabolic Generalized Porous Medium Equation
GPME) has presented challenges for classical averaged-based finite
olume methods, e.g., arithmetic and harmonic averaging. These nu-
erical artifacts include artificial temporal oscillations, and locking or

agging of the shock position. To eliminate these artifacts on the more
hallenging Stefan problem, Maddix et al. [16] show that information
bout the shock location needs to be incorporated into the scheme to
atisfy the Rankine–Hugoniot condition. Other complex methods that
xplicitly track the front, e.g., front-tracking methods [20,21] and level
et methods [22] that implicitly model the interface as a signed distance
unction, have also been applied to the Stefan problem for modeling
rystallization [23,24].

educed Order Models (ROMs). Reduced Order Models (ROMs) have
been a popular alternative to full order model numerical PDE simula-
tions for computational efficiency. ROMs aim to approximate the solu-
tion in a lower dimensional subspace by computing the proper orthogo-
nal decomposition (POD) basis using the singular value decomposition
(SVD). Similar to deep learning models, there is no way to enforce that
unconstrained ROMs are conservative and non-oscillatory. Tezaur et al.
[19] investigate enforcing conservative, entropy and total variation
diminishing (TVD) constraints for ROMs as constrained nonlinear least
squares problems. These methods are coined ‘‘structure preserving’’
ROMs via physics-based constraints [25].

A.2. Scientific machine learning (SciML) models

Here we describe the recent work in using ML models to solve PDEs.
At a high-level, these works can be divided into three categories: 1.
Physics-Informed Neural Networks (PINNs), which aim to incorporate
PDE information as a soft constraint in the loss function; 2. Neural Op-
erators, which aim to learn the solution mapping from PDE coefficients
or initial conditions to solutions; and 3. Hard-constrained conservative
ML models, which aim to incorporate different types of constraints to
enforce conservation into the architecture.

Physics-informed ML methods. Physics-informed neural networks
(PINNs) [4] parameterize the solution to PDEs with a neural network
(NN). These methods impose physical knowledge into neural networks
by adding the differential form of the PDE to the loss function as a
soft constraint or regularizer. Purely data-driven approaches include
DeepONet [5] and Neural Operators (NOs) [6,7,26], which aim to learn
the underlying function map from initial conditions or PDE coefficients
to the solution. Learning this mapping enables these methods to be
resolution independent, i.e., train on a coarse resolution and perform
inference on a finer resolution. These methods only use PDE knowledge
implicitly by training on simulations. The Physics-Informed Neural
Operator (PINO) attempts to address that the physics are not directly
enforced in the model by making the data-driven Fourier Neural Opera-
8

tor (FNO) ‘‘physics-informed’’. To do so, they again add the differential
form into the supervised loss function as a soft constraint regularization
term [8,9].

Recently Krishnapriyan et al. [10], Edwards [11] identified several
challenges and limitations for SciML of this soft constraint approach on
the training procedure for several PDEs with large parameter values.
In particular, Krishnapriyan et al. [10] show that the sharp and non-
smooth loss surface created by adding the PDE directly as a regularizer
can be more difficult to optimize. Relatedly, PINO has been shown
to perform worse than the base FNO without the differential form of
the PDE as a soft constraint in the loss [8,18]. Motivated by these
observations, Négiar et al. [17] propose a solution for linear PDEs
that enforces the differential form of the PDE as a hard constraint;
and Subramanian et al. [27] propose another solution using an adaptive
update of collocation points. In addition, Wang et al. [28] examine
training issues associated with the spectral bias in PINNs [29]. Edwards
[11] discusses the broader-scale impacts of these results for the SciML
field, and motivates the need for better solutions that capture the
underlying continuous physics.

Machine learning models for conservation laws. Enforcing the PDE as a
soft constraint gives very weak control on the physical conservation
property, resulting in non-physical solutions that can violate governing
conservation law. Jekel et al. [30] aim to satisfy conservation by adding
the continuity equation as a soft regularizer via the PINNs approach,
and they show that this does not improve performance. To try to rem-
edy this, Mao et al. [31], Jagtap et al. [32] propose conservative PINNs
(cPINNs) for conservation laws, which aim to enforce flux continuity,
i.e., the out-flux of one cell equals the in-flux of the neighboring cell,
for a type of local conservation. Again, however, this condition on the
flux is added to the loss function as a regularization term, i.e., as a soft
constraint in a Lagrange dual form, and so the conservation condition
is in general not exactly satisfied.

Motivated by the importance of satisfying conservation laws in
climate applications, Bolton and Zanna [33], Zanna and Bolton [34],
Beucler et al. [35] have proposed building known linear physical
constraints directly into deep learning architectures. Beucler et al. [35]
propose a model that forces the output of a neural network into the
null space of the constraint matrix. While the solution exactly satisfies
the constraints, the constraints depend on the resolution of the data,
and they are an approximation to the true physical quantity that needs
to be constrained. Surprisingly, Beucler et al. [35] also finds that the
reconstruction error is not always improved with adding constraints.
Other methods to enforce conservation include the following. Sturm
and Wexler [36] enforce the flux continuity equation in the last layer of
the neural network to model the balance of atoms. Müller [37] enforce
conservation by encoding symmetries using Noether’s theorem. Richter-
Powell et al. [38] propose so-called Neural Conservation Laws, to
enforce conservation by design by using parametrizations of deep
neural networks similar to the approaches in Négiar et al. [17],Sturm
and Wexler [36], Müller [37]. In particular, Richter-Powell et al. [38]
use a change of variables that combines time and space derivatives into
the divergence operator to create a divergence-free model, and they
then use auto-differentiation similar to the Neural ODEs approach [39].
This optimize-then-discretize approach has been shown to have related

difficulties [40–42].
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Appendix B. Derivation of the integral form of a conservation law

To obtain the integral form of a conservation law, given in Eq. (3)
as:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝛺 − ∫

𝑡

0 ∫𝛤
𝐹 (𝑢) ⋅ 𝑛𝑑𝛤𝑑𝑡, (11)

e first integrate the differential form of the conservation law, given
n Eq. (2) as:

𝑢 = 𝑢𝑡 + ∇ ⋅ 𝐹 (𝑢), (12)

ver the spatial domain 𝛺. From this, we obtain an expression for the
ate of change in time of the total conserved quantity in terms of the
luxes on the boundary, given as:

𝑑
𝑑𝑡 ∫𝛺

𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺
𝑢𝑡(𝑡, 𝑥)𝑑𝛺 (13a)

= −∫𝛺
∇ ⋅ 𝐹 (𝑢)𝑑𝛺 (13b)

= −∫𝛤
(𝐹 (𝑢) ⋅ 𝑛)𝑑𝛤 , (13c)

where the last step is obtained by applying the divergence theorem
to the flux term, and 𝑛 is the outward pointing unit normal on the
boundary 𝛤 .

We then integrate Eq. (13) over the temporal domain [0, 𝑡]. Doing
this to Eq. (13a) yields:

∫

𝑡

0 ∫𝛺
𝑢𝑡(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

𝑢(𝑡, 𝑥)𝑑𝛺 − ∫𝛺
𝑢(0, 𝑥)𝑑𝛺,

where 𝑢(0, 𝑥) = ℎ(𝑥) denotes the initial condition. By equating this
quantity to the temporal integral of the right hand side of Eq. (13c),
we obtain the corresponding integral form of a conservation law:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝛺 − ∫

𝑡

0 ∫𝛤
𝐹 (𝑢) ⋅ 𝑛𝑑𝛤𝑑𝑡,

which is Eq. (11).

Appendix C. Exact solutions and linear conservation constraints
for conservation laws

In this section, we provide the exact solutions to a wide range of
conservation laws:

𝑢𝑡 + ∇ ⋅ 𝐹 (𝑢)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑢

= 0, 𝑥 ∈ 𝛺,

𝑢(0, 𝑥) = ℎ(𝑥),
𝑢(𝑡, 𝑥) = 𝑔(𝑡, 𝑥), 𝑥 ∈ 𝛤

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,∀ 𝑡 ≥ 0, (14)

for general nonlinear flux 𝐹 (𝑢), nonlinear differential operator  , initial
condition ℎ(𝑥) and prescribed boundary conditions on the boundary 𝛤
of the spatial domain 𝛺. These exact solutions are used to generate the
solution samples for the training data in the experiment Section 3.

The integral form of the conservation law in Eq. (4) is given as:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑢(𝑡,𝑥)

= ∫𝛺
ℎ(𝑥)𝑑𝛺 + ∫

𝑡

0
(𝐹in − 𝐹out)𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏(𝑡)

,
(15)

where 𝛺 = [𝑥0, 𝑥𝑁 ], 𝐹in = 𝐹 (𝑢, 𝑡, 𝑥0)|𝑢=𝑔(𝑡,𝑥0), 𝐹out = 𝐹 (𝑢, 𝑡, 𝑥𝑁 )|𝑢=𝑔(𝑡,𝑥𝑁 )
and 𝑔(𝑡, 𝑥) is the prescribed Dirichlet boundary condition in Eq. (14).
We provide the exact formulation of our linear constraint 𝑢(𝑡, 𝑥) = 𝑏(𝑡).
Table 5 provides a summary, showing that our boundary flux linear-
ity assumption holds for a broad class of problems—even including
9

nonlinear conservation laws with nonlinear PDE operators  .
C.1. GPME family of conservation laws

In this subsection, we consider the (degenerate) parabolic GPME
family of conservation laws given in Eq. (9) as:

𝑢𝑡 − ∇ ⋅ (𝑘(𝑢)∇𝑢) = 0,

with flux 𝐹 (𝑢) = −𝑘(𝑢)∇𝑢. Fig. 4 shows the effects of the various PDE
parameters 𝑘(𝑢) at a fixed time 𝑡 on the solution on three instances of
the GPME ranging from the ‘‘easy’’ to ‘‘hard’’ cases, i.e., the diffusion
equation, PME and Stefan, respectively.

C.1.1. Diffusion equation
The heat or diffusion equation is a simple linear parabolic PDE with

constant coefficient 𝑘(𝑢) = 𝑘, which represents an ‘‘easy’’ task. Fig. 4(a)
illustrates the effect of the constant diffusivity (conductivity) parameter
𝑘 on solutions to the diffusion (heat) equation. For larger values of 𝑘,
we see that the solution more quickly dissipates toward the constant
smooth zero steady state.

Exact solution. We use the same diffusion test problem from Krish-
napriyan et al. [10] with the following initial condition and periodic
boundary conditions:

𝑢(0, 𝑥) = ℎ(𝑥) = sin(𝑥),∀𝑥 ∈ 𝛺 = [0, 2𝜋],

𝑢(𝑡, 0) = 𝑢(𝑡, 2𝜋),∀𝑡 ∈ [0, 𝑇 ],

respectively. The exact solution is given as

𝑢(𝑡, 𝑥) = 𝐹𝑇 −1(𝐹𝑇 (ℎ(𝑥))𝑒−𝑘𝑛
2𝑡),

where 𝐹𝑇 denotes the Fourier transform, and 𝑛 denotes the frequency
in the Fourier domain.

Global conservation. The total mass (energy) is constant and zero over
all time, since there is no in or out flux to the domain. Then, Eq. (15)
reduces to the following linear homogeneous system:

𝑢(𝑡, 𝑥) = ∫

𝑥𝑁

𝑥0
𝑢(𝑡, 𝑥)𝑑𝑥 = 0 = 𝑏(𝑡). (16)

To derive the above relation, we see by using separation of variables
that the solution 𝑢(𝑡, 𝑥) = sin(𝑥)𝑇 (𝑡) is a damped sine curve over time.
The flux 𝐹 (𝑢) = −𝑘∇𝑢 = −cos(𝑥)𝑇 (𝑡), where 𝑇 (𝑡) denotes a decaying
exponential function. Then, the integral form in Eq. (15) is given as:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝛺 + ∫

𝑡

0
[𝐹 (𝑢, 𝑡, 𝑥0 = 0) − 𝐹 (𝑢, 𝑡, 𝑥𝑁 = 2𝜋)]𝑑𝑡

= ∫

2𝜋

0
sin(𝑥)𝑑𝛺 − 𝑘∫

𝑡

0
[cos(0)𝑇 (𝑡) − cos(2𝜋)𝑇 (𝑡)]𝑑𝑡 = 0,

y periodicity.

.1.2. Porous medium equation
In the Porous Medium Equation (PME), the nonlinearity and small

alues of the coefficient 𝑘(𝑢) = 𝑢𝑚, for 𝑚 ≥ 1, cause challenges for
urrent state-of-the-art SciML baselines as well as classical numerical
ethods on this degenerate parabolic equation. The difficulty increases

s the exponent 𝑚 increases, and the solution forms sharper corners. In
articular, the solution gradient is finite for 𝑚 = 1, and it approaches
nfinity near the front for 𝑚 > 1. Fig. 4(b) illustrates the effect of
he parameter 𝑚 on the solution, with solutions for 𝑚 > 1 being
harper, and having a different profile than those for the piecewise
inear solution for 𝑚 = 1.

xact solution. We test the locking problem (TLP) of the PME from Lip-
ikov et al. [43], Maddix et al. [15] with the following initial and
rowing in time Dirichlet left boundary conditions for some final time
≤ 1:

(0, 𝑥) = ℎ(𝑥) = 0,∀𝑥 ∈ 𝛺 = [0, 1],

𝑢(𝑡, 0) = 𝑔(𝑡, 0) = (𝑚𝑡)1∕𝑚,∀𝑡 ∈ [0, 𝑇 ],
𝑢(𝑡, 1) = 𝑔(𝑡, 1) = 0,∀𝑡 ∈ [0, 𝑇 ],
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Table 5
Classification of PDE conservation laws ranging from ‘‘easy’’ to ‘‘hard’’, and corresponding total time-varying conserved value 𝑏(𝑡) in the integral form of Eq. (15) for specified flux
unction 𝐹 (𝑢), initial and boundary conditions ℎ(𝑥) and 𝑔(𝑡, 𝑥), respectively in Eq. (14). See Appendix C.1.3 for the value of the constant 𝑐1 ∈ R.
PDE Type 𝐹 (𝑢) ℎ(𝑥) 𝑔(𝑡, 𝑥) 𝛺 𝛤 𝑏(𝑡)

Diffusion Linear parabolic
(‘‘easy’’)

−𝑘∇𝑢, 𝑘 ∈ R+ sin(𝑥) {0, 0} [0, 2𝜋] {0, 2𝜋} 0

PME Nonlinear degenerate
parabolic (‘‘medium’’)

−𝑢𝑚∇𝑢, 𝑚 ∈ Z+ 0 {(𝑚𝑡)1∕𝑚 , 0} [0, 1] {0, 1} 𝑚1+1∕𝑚

𝑚+1
𝑡1+1∕𝑚

Stefan Nonlinear degenerate
parabolic (‘‘hard’’)

{

−∇𝑢, 𝑢 ≥ 𝑢⋆

0, otherwise
, 𝑢⋆ ∈ R+ 0 {1, 0} [0, 1] {0, 1} 2𝑐1

√

𝑡∕𝜋

Advection Linear hyperbolic
(‘‘medium’’)

𝛽𝑢, 𝛽 ∈ R+

{

1, 𝑥 ≤ 0.5
0, otherwise

{1, 0} [0, 1] {0, 1} 1
2
+ 𝛽𝑡

Burgers’ Nonlinear
hyperbolic (‘‘hard’’)

1
2
𝑢2

{

−𝑎𝑥, 𝑥 ≤ 0, 𝑎 ∈ R+

0, otherwise
{𝑎, 0} [−1, 1] {−1, 1} (𝑎∕2)(1 + 𝑎𝑡)
Fig. 4. Effect of PDE parameters on the three ‘‘easy’’ to ‘‘hard’’ instances of the GPME at fixed time 𝑡.
∫

e

espectively. The exact solution is given as:

(𝑡, 𝑥) = (𝑚(𝑡 − 𝑥)+)1∕𝑚. (17)

lobal conservation. We write the specific form of the linear conserva-
ion constraint in Eq. (15) for the PME as:

𝑢(𝑡, 𝑥) = ∫

𝑥𝑁

𝑥0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝑚1+1∕𝑚

𝑚 + 1
𝑡1+1∕𝑚 = 𝑏(𝑡), (18)

y using the fact that the total mass of the initial condition is zero, and
hat 𝑢(𝑡, 𝑥𝑁 = 1) = 0 on the right boundary for 𝑡 ≤ 𝑥𝑁 = 1.

Global conservation is driven by the in-flux at the growing in left
oundary, where

in = 𝐹 (𝑢, 𝑡, 𝑥0)|𝑢=𝑔(𝑡,𝑥0),𝑥=𝑥0 = −𝑔(𝑡, 𝑥0)𝑚∇𝑢|𝑥=𝑥0 = −𝑚𝑡∇𝑢|𝑥=𝑥0 .

he boundary flux at the right boundary is 0, since we assume that the
hock is contained in the domain and 𝑡 > 𝑥, hence 𝑢(𝑡, 1) = 0 and

𝐹out = 𝐹 (𝑢, 𝑡, 𝑥𝑁 )|𝑢=𝑔(𝑡,𝑥𝑁 ),𝑥=𝑥𝑁 = −𝑔(𝑡, 𝑥𝑁 )𝑚∇𝑢|𝑥=𝑥𝑁 = 0.

The first integral on the righthand side in Eq. (15) consisting of the
initial mass is 0, since ℎ(𝑥) = 0, and we are left only with the in-flux
term:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫

𝑡

0
𝐹in(𝑡)𝑑𝑡

= −∫

𝑡

0
𝑔(𝑡, 𝑥0 = 0)𝑚∇𝑢|𝑥=𝑥0𝑑𝑡

= ∫

𝑡

0
(𝑚𝑡)(𝑚𝑡)1∕𝑚−1𝑑𝑡

= 𝑚1∕𝑚
∫

𝑡

0
𝑡1∕𝑚𝑑𝑡

= 𝑚1+1∕𝑚

𝑚 + 1
𝑡1+1∕𝑚,

where ∇𝑢| = −(𝑚(𝑡 − 𝑥))1∕𝑚−1| = −(𝑚𝑡)1∕𝑚−1.
10

𝑥=𝑥0 𝑥=𝑥0
C.1.3. Stefan problem
The Stefan problem is the most challenging problem in the GPME

degenerate parabolic family of conservation equations since the coeffi-
cient 𝑘(𝑢) is a nonlinear step function of the unknown 𝑢, given as:

𝑘(𝑢) =

{

𝑘max, 𝑢 ≥ 𝑢⋆,
𝑘min, 𝑢 < 𝑢⋆,

(19)

for constants 𝑘max, 𝑘min ∈ R and 𝑢(𝑡, 𝑥∗(𝑡)) = 𝑢∗ ∈ R+ for shock position
𝑥∗(𝑡). In this problem, the solution is a shock or moving interface with
a finite speed of propagation that does not dissipate over time. Fig. 4(c)
illustrates the effect of the parameter 𝑢⋆ on the solution and shock
position, with smaller values of 𝑢⋆ resulting in a faster shock speed.

Exact solution. We use the Stefan test case from van der Meer et al.
[44], Maddix et al. [16] with 𝑘max = 1, 𝑘min = 0 in Eq. (19), and the fol-
lowing initial and Dirichlet boundary conditions for some final time 𝑇 :

𝑢(0, 𝑥) = ℎ(𝑥) = 0,∀𝑥 ∈ 𝛺 = [0, 1],

𝑢(𝑡, 0) = 𝑔(𝑡, 0) = 1,∀𝑡 ∈ [0, 𝑇 ],

𝑢(𝑡, 1) = 𝑔(𝑡, 1) = 0,∀𝑡 ∈ [0, 𝑇 ],

respectively. The exact solution is given as:

𝑢(𝑡, 𝑥) = 𝟏𝑢≥𝑢⋆
(

1 − 𝑐1𝛷[𝑥∕(2
√

𝑘max𝑡)]
)

, (20)

where 𝟏 denotes an indicator function for event  , 𝛷(𝑥) = erf(𝑥) =
𝑥
0 𝜙(𝑦)𝑑𝑦 denotes the error function with 𝜙(𝑦) = (2∕

√

𝜋) exp(−𝑦2),
and constant 𝑐1 = (1 − 𝑢∗)∕𝛷[𝛼∕(2

√

𝑘max)]. A nonlinear solve for 𝛼̃:
(1 − 𝑢∗)∕

√

𝜋 = 𝑢∗𝛷(𝛼̃)𝛼̃ exp(𝛼̃2), is used to compute 𝛼 = 2
√

𝑘max𝛼̃. The
xact shock position is 𝑥∗(𝑡) = 𝛼

√

𝑡.

Global conservation. We write the linear  conservation constraint in
Eq. (15) for the Stefan equation as:

𝑢(𝑡, 𝑥) = ∫

𝑥𝑁

𝑥0
𝑢(𝑡, 𝑥)𝑑𝑥 = 2𝑐1

√

𝑘max𝑡
𝜋

= 𝑏(𝑡). (21)

We use the fact that the solution is monotonically non-increasing to
compute the coefficient values at the boundaries, i.e., 𝑢(𝑡, 𝑥 ) ≥ 𝑢⋆ ≥
0
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𝑢(𝑡, 𝑥𝑁 ), where 0 = 𝑥0 ≤ 𝑥⋆ ≤ 𝑥𝑁 = 1 and 𝑥∗(𝑡) denotes the shock
position. It follows that 𝑘(𝑢(𝑡, 𝑥0)) = 𝑘max and 𝑘(𝑢(𝑡, 𝑥𝑁 )) = 0. Then the
out-flux 𝐹out = 𝑘(𝑢(𝑡, 𝑥𝑁 ))∇𝑢 = 0. The first integral on the righthand
side of Eq. (15) consisting of the initial mass is 0, since ℎ(𝑥) = 0, and
we are left only with the in-flux term as follows:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫

𝑡

0
𝐹in(𝑡)𝑑𝑡

= −𝑘max ∫

𝑡

0
∇𝑢|𝑥=𝑥0𝑑𝑡

= 𝑐1

√

𝑘max
𝜋 ∫

𝑡

0
𝑡−1∕2𝑑𝑡

= 2𝑐1

√

𝑘max𝑡
𝜋

,

where ∇𝑢|𝑥=𝑥0 = −𝑐1𝛷′[𝑥0∕(2
√

𝑘max𝑡)]∕(2
√

𝑘max𝑡) = −𝑐1∕
√

𝜋𝑘max𝑡
exp[𝑥20∕(4𝑘max𝑡)] = −𝑐1∕

√

𝜋𝑘max𝑡 for 𝑥0 = 0.

C.2. Hyperbolic conservation laws

In this section, we consider hyperbolic conservation laws, where
solutions exhibit shocks and smooth initial conditions self-sharpen over
time [1,2].

C.2.1. Linear advection
The linear advection (convection) equation:

𝑢𝑡 + 𝛽𝑢𝑥 = 0, (22)

is a hyperbolic conservation law with flux 𝐹 (𝑢) = 𝛽𝑢, where a fluid with
density 𝑢 is transported or advected by some constant velocity 𝛽 ∈ R.
or larger values of 𝛽, the shock moves faster.

xact solution. Here we consider the test case with the following initial
nd boundary conditions:

(0, 𝑥) = ℎ(𝑥) = 𝟏𝑥≤0.5,∀𝑥 ∈ 𝛺 = [0, 1],

𝑢(𝑡, 0) = 𝑔(𝑡, 0) = 1,∀𝑡 ∈ [0, 𝑇 ],

𝑢(𝑡, 1) = 𝑔(𝑡, 1) = 0,∀𝑡 ∈ [0, 𝑇 ],

espectively, and 𝟏 denotes an indicator function for event  . Note
hat the linear advection (convection) problem is also studied in Krish-
apriyan et al. [10] with smooth ℎ(𝑥) = sin(𝑥) and periodic boundary

conditions. Here we consider the more challenging case, where the
initial condition is already a shock.

In our case, the exact solution,

𝑢(𝑡, 𝑥) = ℎ(𝑥 − 𝛽𝑡),

is simply the initial condition shifted to the right, which is a shock wave
traveling to the right with speed 𝛽 > 0.

Global conservation. We write the linear conservation constraint in
Eq. (15) for linear advection as:

𝑢(𝑡, 𝑥) = ∫

𝑥𝑁

𝑥0
𝑢(𝑡, 𝑥)𝑑𝑥 = 1

2
+ 𝛽𝑡 = 𝑏(𝑡). (23)

The out-flux 𝐹out = 𝑢(𝑡, 1) = 𝑔(𝑡, 1) = 0, by the fixed right Dirichlet
boundary condition, and we are left with the following terms:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝑥 + ∫

𝑡

0
𝐹in(𝑡)𝑑𝑡

= ∫

0.5

0
𝑑𝑥 + 𝛽 ∫

𝑡

0
𝑢(𝑡, 0)𝑑𝑡

= 1
2
+ 𝛽𝑡,

y using the Dirichlet boundary condition 𝑢(𝑡, 0) = 𝑔(𝑡, 0) = 1 in the
econd term in the last step. We see that the time rate of change in
otal mass is constant over time.
11
C.2.2. Burgers’ Equation
Burgers’ Equation, given as:

𝑢𝑡 +
1
2
(𝑢2)𝑥 = 0, (24)

s a commonly used nonlinear hyperbolic conservation law with flux
(𝑢) = 1

2 𝑢
2. Among other things, it is used in traffic modeling.

Exact solution. We consider the test case from Tezaur et al. [19], where
𝑎 = 1, with the following initial and boundary conditions:

𝑢(0, 𝑥) = ℎ(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑎, 𝑥 ≤ −1,
−𝑎𝑥, −1 ≤ 𝑥 ≤ 0,
0, 𝑥 ≥ 0,

∀𝑥 ∈ 𝛺 = [−1, 1],

𝑢(𝑡,−1) = 𝑔(𝑡,−1) = 𝑎,∀𝑡 ∈ [0, 𝑇 ],

𝑢(𝑡, 1) = 𝑔(𝑡, 1) = 0,∀𝑡 ∈ [0, 𝑇 ],

respectively for constant, positive parameter slope 𝑎 ≥ 1. For larger
values of 𝑎, the slope of the initial condition is steeper, and a shock is
formed faster.

We write the nonlinear Burgers’ Eq. (24) in non-conservative form
as

𝑢𝑡 + 𝑢𝑢𝑥 = 0.

We see that this is the advection Eq. (22) with speed 𝛽 = 𝑢. Hence,
similarly the exact solution is given by 𝑢(𝑡, 𝑥) = ℎ(𝑥 − 𝑢𝑡) when
the characteristics curves do not intersect, by using the method of
characteristics [45]. We then obtain the following solution:

𝑢(𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑎, 𝑥 − 𝑢𝑡 ≤ −1,
−𝑎(𝑥 − 𝑢𝑡), −1 ≤ 𝑥 − 𝑢𝑡 ≤ 0,
0, 𝑥 − 𝑢𝑡 ≥ 0.

We use the second case to solve this implicit equation explicitly for
𝑢, i.e., 𝑢 = −𝑎(𝑥 − 𝑢𝑡) ⟺ 𝑢 = −𝑎𝑥

1−𝑎𝑡 . Then 𝑥 − 𝑢𝑡 = 𝑥
1−𝑎𝑡 , where the

denominator 1 − 𝑎𝑡 > 0 for 𝑡 < 1∕𝑎. We then solve the inequalities and
substitute this in to obtain:

𝑢(𝑡, 𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑎, 𝑥 ≤ 𝑎𝑡 − 1,
𝑎𝑥
𝑎𝑡−1 , 𝑎𝑡 − 1 ≤ 𝑥 ≤ 0,
0, 𝑥 ≥ 0,

or 0 ≤ 𝑡 < 1∕𝑎. We see that as time increases the linear part of
he solution self-sharpens with a steeper slope until the characteristics
ntersect at breaking time

𝑏 =
−1

inf𝑥 ℎ′(𝑥)
= 1∕𝑎,

and a shock is formed. This is known as the waiting time phenomenon
[16]. The rightward moving shock forms with weak solution given as:

𝑢(𝑡, 𝑥) =

{

𝑎, 𝑥 ≤ 1
2 (𝑎𝑡 − 1),

0, 𝑥 ≥ 1
2 (𝑎𝑡 − 1),

or 𝑡 ≥ 1∕𝑎. The shock speed 𝑥′(𝑡) is given by the Rankine–Hugoniot
RH) condition [45]. The RH condition simplifies for Burgers’ Equation
s follows:

′(𝑡) =
𝑓 (𝑢𝑅) − 𝑓 (𝑢𝐿)

𝑢𝑅 − 𝑢𝐿
= 1

2
𝑢2𝑅 − 𝑢2𝐿
𝑢𝑅 − 𝑢𝐿

= 1
2
(𝑢𝑅 − 𝑢𝐿)(𝑢𝑅 + 𝑢𝐿)

𝑢𝑅 − 𝑢𝐿
=

𝑢𝑅 + 𝑢𝐿
2

= 𝑎
2
,

where 𝑢𝐿 = 𝑎 denotes the solution value to the left of the shock and
𝑢𝑅 = 0 denotes the solution value to the right of the shock. Lastly, to
obtain the shock position 𝑥(𝑡), we solve the simple ODE 𝑥′(𝑡) = 𝑎∕2 with
initial condition 𝑥(𝑡𝑏 = 1∕𝑎) = 0 to obtain 𝑥(𝑡) = 𝑎𝑡

2 + 𝑐, where 𝑥(1∕𝑎) =
1 + 𝑐 = 0, and so 𝑐 = − 1 . This results in 𝑥(𝑡) = 1 (𝑎𝑡 − 1), as desired.
2 2 2
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Global conservation. We write the linear conservation constraint in
Eq. (15) for Burgers’ equation as:

𝑢(𝑡, 𝑥) = ∫

𝑥𝑁

𝑥0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝑎

2
(1 + 𝑎𝑡) = 𝑏(𝑡). (25)

The out-flux is 𝐹out = 1
2 𝑢(𝑡, 1)

2 = 1
2 𝑔(𝑡, 1)

2 = 0, by the fixed right
Dirichlet boundary condition, and we are left with the following terms:

∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = ∫𝛺

ℎ(𝑥)𝑑𝑥 + ∫

𝑡

0
𝐹in(𝑡)𝑑𝑡

= −𝑎∫

0

−1
𝑥𝑑𝑥 + 1

2 ∫

𝑡

0
𝑢(𝑡,−1)2𝑑𝑡

= 𝑎
2
(1 + 𝑎𝑡),

by using the Dirichlet boundary condition 𝑢(𝑡,−1) = 𝑔(𝑡,−1) = 𝑎 in the
second term in the last step. We again see that the time rate of change
in total mass is constant over time.

Appendix D. Discretizations of the integral operator  for conser-
vation and additional linear constraints

In this section, we first describe common discretization schemes 𝐺
for the integral operator  in Eq. (5) given as:

𝑢(𝑡, 𝑥) = ∫𝛺
𝑢(𝑡, 𝑥)𝑑𝛺 = 𝑏(𝑡), (26)

to form a linear matrix constraint equation 𝐺𝑢 = 𝑏. Then, we show
how to incorporate other types of linear constraints into our framework
ProbConserv. In particular, we consider artificial diffusion, which is a
common numerical technique to smooth numerical artifacts through
the matrix 𝐺̃ arising from the second order central finite difference
scheme of the second derivative.

D.1. Discretizations of the integral operator 

Here, we provide examples of the discrete matrix 𝐺 ∈ R𝑇×𝑀𝑇 , which
approximates the continuous integral operator  in Eq. (26). We use 𝑀
to denote the number of spatial points, 𝑇 to denote the number of time
points, and we set 𝑁 = 𝑀𝑇 .

We form a discrete linear system from the continuous integral
conservation law, i.e,. 𝐺𝑢 = 𝑏, where each row 𝑖 of 𝐺 acts as a Riemann
approximation to the integral 𝑢(𝑡, 𝑥) at time 𝑡𝑖. At inference time, we
assume we have an ordered output grid {(𝑡1, 𝑥1),… , (𝑡1, 𝑥𝑀 ),… , (𝑡𝑇 , 𝑥1),
… , (𝑡𝑇 , 𝑥𝑀 )} with spatial grid spacing 𝛥𝑥𝑗 = 𝑥𝑗+1−𝑥𝑗 for 𝑗 = 1,… ,𝑀−1.
We want to compute the solution at these corresponding grid points
given as:

𝑢 = [𝑢(𝑡1, 𝑥1),… , 𝑢(𝑡1, 𝑥𝑀 ),… , 𝑢(𝑡𝑇 , 𝑥1),… , 𝑢(𝑡𝑇 , 𝑥𝑀 )]𝑇 ∈ R𝑀𝑇 .

The known right-hand side is given as:

𝑏 = [𝑏(𝑡1),… , 𝑏(𝑡𝑇 )]𝑇 ∈ R𝑇 .

We now proceed to provide examples of specific matrices 𝐺 corre-
sponding to common numerical spatial integration schemes [46].

Left Riemann sum. For 𝐺 arising from the common first-order left
Riemann sum
𝑀−1
∑

𝑗=1
𝑢(𝑡𝑖, 𝑥𝑗 )𝛥𝑥𝑗 ,

at time 𝑡𝑖, we have the following expression:

𝐺𝑖𝑗 =

{

𝛥𝑥𝑗 , (𝑖 − 1)𝑀 + 1 ≤ 𝑗 ≤ 𝑖𝑀 − 1,
0, otherwise.

In other words, it uses the left function value 𝑢(𝑡, 𝑥𝑗 ) on the interval
[𝑥𝑗 , 𝑥𝑗+1]. The right Riemann sum (∑𝑀

𝑗=2 𝑢(𝑡, 𝑥𝑗 )𝛥𝑥𝑗−1 at time 𝑡) is a
simple extension that shifts the column indices by 1 to (𝑖 − 1)𝑀 + 2 ≤
12

𝑗 ≤ 𝑖𝑀 to use the right value 𝑢(𝑡𝑖, 𝑥𝑗+1) on the interval [𝑥𝑗 , 𝑥𝑗+1].
Trapezoidal rule. For 𝐺 arising from the second order trapezoidal rule

𝐺𝑢 =
𝑀−1
∑

𝑗=1

𝑢(𝑡𝑖, 𝑥𝑗 ) + 𝑢(𝑡𝑖, 𝑥𝑗+1)
2

𝛥𝑥𝑗 ,

at time 𝑡𝑖, we have the following expression:

𝐺𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑥𝑗
2 , 𝑗 = (𝑖 − 1)𝑀 + 1,

𝛥𝑥𝑗−1+𝛥𝑥𝑗
2 , (𝑖 − 1)𝑀 + 2 ≤ 𝑗 ≤ 𝑖𝑀 − 1,

𝛥𝑥𝑗−1
2 , 𝑗 = 𝑖𝑀,

0, otherwise.

(27)

We use the trapezoidal discretization of 𝐺 in Eq. (27) in our experi-
ments. Note that higher order schemes, e.g., Simpson’s Rule may also be
used, as well as more advanced numerical techniques. These can help
to reduce the error in the spatial integration approximation, including
shock tracking schemes in Maddix et al. [16] on the more challenging
sharper problems with shocks that we see for high values of 𝑚 in the
ME and Stefan.

.2. Adding artificial diffusion into the discretization

In addition to various discretization schemes to compute the integral
perator , our ProbConserv framework can incorporate other inductive
iases based on the knowledge of the underlying PDE, e.g., to bypass
ndesirable numerical artifacts. One common technique that has been
sed widely in numerical methods for this purpose is adding artificial
iffusion [15]. This artificial diffusion can act locally at sharp corners
uch as shock interfaces, where numerical methods tend to suffer
rom high frequency oscillations. Other common numerical methods to
void numerical oscillations include total variation diminishing (TVD),
.e., TV(𝑢(𝑡𝑖+1, 𝑥)) ≤ TV(𝑢(𝑡𝑖, 𝑥)), ∀𝑖, or total variation bounded (TVB),

i.e., TV(𝑢(𝑡𝑖+1, 𝑥)) ≤ 𝐶, 𝐶 > 0, ∀𝑖, where TV(𝑢) = ∫𝛺 |

𝜕𝑢
𝜕𝑥 |𝑑𝛺 and is

pproximated as ∑𝑀−1
𝑗=1 |𝑢(𝑡𝑖, 𝑥𝑗+1) − 𝑢(𝑡𝑖, 𝑥𝑗 )| [1,19]. Note that enforcing

hese inequality constraints is a direction of future work.
In machine learning, artificial diffusion is analogous to adding

regularization penalty on the 𝐿2 norm of the second derivative
{ 𝜕2

𝜕𝑥2
𝑢(𝑡𝑖, 𝑥)}2𝑑𝑥 [47]. This can be written as the 𝐿2 norm of a linear

operator applied to 𝑢, ‖̃(𝑢)‖22, where ̃(𝑢)(𝑡𝑖) ∶= 𝜕2

𝜕𝑥2
𝑢(𝑡𝑖, 𝑥). Thus, we

an incorporate this penalty term into ProbConserv in the same manner
s the integral operators by discretizing ̃ via a matrix 𝐺̃. Let 𝐺̃ be the
econd order central finite difference three-point stencil at time 𝑡𝑖 over

spatial points:

𝐺̃𝑢)𝑗 =
( 𝑢(𝑡𝑖, 𝑥𝑗+2) − 𝑢(𝑡𝑖, 𝑥𝑗+1)

𝛥𝑥𝑗+1

)

−
( 𝑢(𝑡𝑖, 𝑥𝑗+1) − 𝑢(𝑡𝑖, 𝑥𝑗 )

𝛥𝑥𝑗

)

.

for 𝑗 = 1,… ,𝑀 − 2. For simplicity of notation, we assume 𝛥𝑥𝑗 ∶= 𝛥𝑥
or all 𝑥𝑗 , though this need not be the case in general. This results in
he following three-banded matrix:

̃ = 1
𝛥𝑥

⎡

⎢

⎢

⎣

1 −2 1 0 …
0 1 −2 1 …
⋮ ⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎦

. (28)

Since our goal is to penalize large differences in the solution, we set
the constraint value 𝑏 to zero:

𝐺̃𝑢 + 𝜎𝐺̃𝜖 = 0,

where 𝜎𝐺̃ > 0 denotes the constraint value for the artificial diffusion.
Since the mechanism is exactly the same with a linear constraint,
artificial diffusion can be applied using Eq. (8a) with 𝑏 = 0, where 𝜇̃
and 𝛴̃ are the mean and covariance after applying the conservation
constraint as follows:
𝜇̃diffusion = 𝜇̃ − 𝛴̃𝐺̃𝑇 (𝜎2

𝐺̃
𝐼 + 𝐺𝛴̃𝐺𝑇 )−1(𝐺̃𝜇̃),

̃ ̃ ̃ ̃𝑇 2 ̃ 𝑇 −1 ̃ ̃
𝛴diffusion = 𝛴 − 𝛴𝐺 (𝜎
𝐺̃
𝐼 + 𝐺𝛴𝐺 ) (𝐺𝛴).
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Fig. 5. Illustration of the norm of the conservation error CE2 (lower is better) in the top row, the predictive log likelihood (LL) in the middle row (higher is better), and the
ean-squared error (MSE) (lower is better) in the bottom row, as a function of the constraint precision 1

𝜎2
𝐺

for ProbConserv-ANP on the PME in Section 3.2, where 𝑀 denotes
the number of spatial points, 𝜎̃2

𝑡𝑗 ,⋅
denotes the diagonal of the covariance 𝛴̃𝑡𝑗 ∈ R𝑀×𝑀 and 𝑡𝑗 denotes the time-index in the training window at which the metrics are reported.

Each column indicates results for a different values of PDE parameter 𝑚 ∈ {1, 3, 6}, corresponding to ‘‘easy’’, ‘‘medium’’, and ‘‘hard’’ scenarios, respectively. In all three cases, CE2

monotonically decreases to zero and LL monotonically increases as 𝜎2
𝐺 → 0 (1∕𝜎2

𝐺 → ∞), illustrating Theorem 1. The biggest gains in log-likelihood are for 𝑚 = 1, where conservation
was also violated the most. In contrast, the relationship between MSE and 1

𝜎2
𝐺

is not guaranteed to be monotonic, and it qualitatively changes, depending on the value of 𝑚.
A

A
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oreover, the guarantees of Theorem 1 still hold. Smaller values of

𝐺̃ lead to smaller values of ‖𝐺̃𝜇̃diffusion‖
2
2, which results in a smoother

olution.

Unlike the case of enforcing conservation, it is typically not desir-
ble when applying artificial diffusion to set 𝜎𝐺̃ to zero, as this will
ead to a simple line fit [47]. We set the variance for each row of 𝐺̃ as
ollows: Let 𝜎2𝑖 ∶= Var(𝑢𝑛) be the variance of target value 𝑢𝑛 from the
tep 1 procedure:

2
𝐺̃,𝑖

∶= Var((𝐺̃𝑢)𝑖) = Var(𝑢𝑖 − 2𝑢𝑖+1 + 𝑢𝑖+2)

= 𝜎2𝑖 + 4𝜎2𝑖+1 + 𝜎2𝑖+2 − 4𝜌
(

𝜎𝑖𝜎𝑖+1 + 𝜎𝑖+1𝜎𝑖+2
)

+ 2𝜌2𝜎𝑖𝜎𝑖+2,

here 𝜌 ∈ [0, 1] determines the level of auto-correlation between
eighboring points. Higher values of 𝜌 lead to lower values of 𝜎2

𝐺̃,𝑖
, and

ence a higher penalty.
13

o

ppendix E. Control on conservation constraint

Fig. 5 illustrates that Theorem 1 holds empirically for ProbConserv-
NP on the PME in Section 3.2, where both the norm of the conser-
ation error (CE2) monotonically decreases to zero and the predictive
og likelihood (LL) monotonically increases as the constraint precision
2
𝐺 → 0 (1∕𝜎2𝐺 → ∞). For the MSE, the trend depends on the difficulty
f the problem. For ‘‘easy’’ scenarios, where 𝑚 = 1, the MSE also
onotonically improves (decreases) as 𝜎2𝐺 → 0 (1∕𝜎2𝐺 → ∞). For

‘medium’’ difficulty problems, where 𝑚 = 3, we see that there is an
ptimal value for 𝜎2𝐺 around 10−5, and enforcing the constraint exactly
oes not result in the lowest MSE. For the ‘‘harder’’ 𝑚 = 6 case, we see
hat a looser tolerance on the constraint results in better MSE. In this
ase the solution is non-physical since it does not satisfy conservation.
ote that in the sharper 𝑚 = 6 case, the accuracy may be able to
e improved by using more advanced approximations for the integral

perator  that take the sharp corners in the solution into account [16].
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Appendix F. Derivation of constrained mean and covariance

In this section, we provide two interpretations for the Step 2 proce-
dure of ProbConserv from Eq. (8) given as:

𝜇̃ = 𝜇 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏), (29a)

𝛴̃ = 𝛴 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺𝛴. (29b)

While Eq. (8) is well-defined in the case that 𝜎2𝐺 = 0, for simplicity
we assume 𝜎2𝐺 > 0 throughout this section. In Lemma 1, we show how
Step 2 is justified as a Bayesian update of the unconstrained normal
distribution from Step 1 by adding information about the conservation
constraint contained in Eq. (7), i.e., 𝑏 = 𝐺𝑢 + 𝜎𝐺𝜖 in Step 2. In
Lemma 2, we show how the posterior mean 𝜇̃ and 𝛴̃ can be re-
expressed in a numerically stable and computationally efficient form
given in Eq. (29). Finally, Lemma 3 shows that this is equivalent to
a least-squares optimization with an upper bound on the conservation
error.

Note: 𝜇 ∈ R𝑀𝑇 , 𝛴 ∈ R𝑀𝑇×𝑀𝑇 , 𝐺 ∈ R𝑇×𝑀𝑇 , 𝑏 ∈ R𝑇 , where 𝑁 = 𝑀𝑇
denotes the number of spatio-temporal output points, 𝑀 denotes the
number of spatial points and 𝑇 denotes number of constraints or in
this case time steps to enforce the conservation constraint.

Lemma 1 (Step 2 as Bayesian Update). Assume the predictive distribution
of 𝑢 conditioned only on observed data 𝐷 is normal with mean 𝜇 and
covariance 𝛴. Let 𝑏 be the known conservation quantity that follows a
normal distribution with mean 𝐺𝑢 and covariance 𝜎2𝐺𝐼 , where 𝜎

2
𝐺 > 0. Then

the posterior distribution of 𝑢 conditional on both data 𝐷 and conservation
quantity 𝑏 is normal with mean 𝜇̃ and covariance 𝛴̃ given as:

𝑢|𝑏,𝐷 ∼  (𝜇̃, 𝛴̃),

𝛴̃ = 𝐴−1𝛴,

𝜇̃ = 𝐴−1(𝜇 + 1
𝜎2𝐺

𝛴𝐺𝑇 𝑏),

where 𝐴 = 𝐼 + 1
𝜎2𝐺

𝛴𝐺𝑇𝐺.

roof. This follows the same logic as a standard multivariate normal
odel with known covariance; see Chapter 3.5 of Gelman et al. [48].
e outline the derivation below. Note that we mark the terms that are

ndependent of the unknown 𝑢 as constants.

log 𝑝(𝑢|𝑏,𝐷)

= log 𝑝(𝑢|𝐷)
⏟⏟⏟
Step 1

𝑝(𝑏|𝑢)
⏟⏟⏟
Step 2

− log∫ 𝑝(𝑏|𝑢)𝑑𝑝(𝑢|𝐷) (Bayes’ Rule)

= log 𝑝(𝑢|𝐷) + log 𝑝(𝑏|𝑢) + 𝐶1

= log (𝑢;𝜇,𝛴) + log (𝑏;𝐺𝑢, 𝜎2𝐺𝐼) + 𝐶1

= −1
2

(

‖𝑢 − 𝜇‖2
𝛴−1 +

1
𝜎2𝐺

‖𝐺𝑢 − 𝑏‖22

)

+ 𝐶2

= −1
2

(

𝑢𝑇𝛴−1𝑢 − 2𝑢𝑇𝛴−1𝜇 + 𝑢𝑇 ( 1
𝜎2𝐺

𝐺𝑇𝐺)𝑢 − 2𝑢𝑇 1
𝜎2𝐺

𝐺𝑇 𝑏

)

+ 𝐶3

= −1
2

(

𝑢𝑇 (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)𝑢 − 2𝑢𝑇 (𝛴−1𝜇 + 1
𝜎2𝐺

𝐺𝑇 𝑏)

)

+ 𝐶3

= −1
2

(

𝑢𝑇 (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛴̃−1

𝑢 − 2𝑢𝑇 (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛴̃−1

× (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)−1(𝛴−1𝜇 + 1
𝜎2𝐺

𝐺𝑇 𝑏)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇̃

)

+𝐶3

= −1
2
(

𝑢𝑇 𝛴̃−1𝑢 − 2𝑢𝑇 𝛴̃−1𝜇̃
)

+ 𝐶3
14

= log (𝑢; 𝜇̃, 𝛴̃) + 𝐶4,
where

𝛴̃ = (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)−1 = (𝐼 + 1
𝜎2𝐺

𝛴𝐺𝑇𝐺)−1𝛴 = 𝐴−1𝛴, (30a)

𝜇̃ = (𝛴−1 + 1
𝜎2𝐺

𝐺𝑇𝐺)−1(𝛴−1𝜇 + 1
𝜎2𝐺

𝐺𝑇 𝑏) = 𝛴̃(𝛴−1𝜇 + 1
𝜎2𝐺

𝐺𝑇 𝑏) (30b)

= 𝐴−1𝛴(𝛴−1𝜇 + 1
𝜎2𝐺

𝐺𝑇 𝑏) = 𝐴−1(𝜇 + 1
𝜎2𝐺

𝛴𝐺𝑇 𝑏), (30c)

𝐶1 = − log∫ 𝑝(𝑏|𝑢)𝑑𝑝(𝑢|𝐷), (30d)

2 = 𝐶1 −
1
2
(

𝑀𝑇 log 2𝜋 + log det 𝛴 + 𝑇 log𝜋 + log 𝜎2𝐺
)

, (30e)

𝐶3 = 𝐶2 −
1
2

(

𝜇𝑇𝛴−1𝜇 + 1
𝜎2𝐺

𝑏𝑇 𝑏

)

, (30f)

4 = 0. (30g)

ote that 𝐶4 = 0 since the left-hand side and right-hand side are
og-probability densities, so we have the desired expression. □

emma 2 (Numerically Stable Form for Step 2). Assume that 𝜎2𝐺 > 0. The
osterior mean and covariance 𝜇̃ and 𝛴̃ can be written in a numerically
table form as:

𝜇̃ = 𝜇 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏),
̃ = 𝛴 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺𝛴.

roof. We use the following two Searle identities (corollaries of the
oodbury identity) [49]:

(𝐼 + 𝐶𝐵)−1 = 𝐼 − 𝐶(𝐼 + 𝐵𝐶)−1𝐵, (31a)

𝐶 + 𝐵𝐵𝑇 )−1𝐵 = 𝐶−1𝐵(𝐼 + 𝐵𝑇𝐶−1𝐵)−1, (31b)

or some matrices 𝐵,𝐶. Using Eq. (31a), we re-write 𝐴−1:

−1 = (𝐼 + 1
𝜎2𝐺

𝛴𝐺𝑇𝐺)−1 (32a)

= 𝐼 − 𝛴𝐺𝑇 (𝐼 + 1
𝜎2𝐺

𝐺𝛴𝐺𝑇 )−1 1
𝜎2𝐺

𝐺 (32b)

= 𝐼 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺. (32c)

The desired expression for 𝛴̃ immediately follows by combining
Eq. (32c) with Lemma 1. For 𝜇̃, we break the expression into two parts,
and then use the Searle identity shown in Eq. (31b) as follows:

𝜇̃ = 𝐴−1(𝜇 + 1
𝜎2𝐺

𝛴𝐺𝑇 𝑏) (33a)

= 𝐴−1𝜇 + 𝐴−1 1
𝜎2𝐺

𝛴𝐺𝑇 𝑏, (33b)

𝐴−1𝜇 = (𝐼 − 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺)𝜇, (33c)
−1 1

𝜎2𝐺
𝛴𝐺𝑇 𝑏 = (𝛴−1 + 1

𝜎2𝐺
𝐺𝑇𝐺)−1 1

𝜎2𝐺
𝐺𝑇 𝑏 (33d)

= 1
𝜎2𝐺

𝛴𝐺𝑇 (𝐼 + 1
𝜎2𝐺

𝐺𝛴𝐺𝑇 )−1𝑏 (33e)

= 𝛴𝐺𝑇 (𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 )−1𝑏. (33f)

Adding the expressions in Eqs. (33c) and (33f) yields the desired form
for 𝜇̃. □

Observe that the matrix 𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 ∈ R𝑇×𝑇 is invertible for all
values of 𝜎2𝐺 (including zero), since it is square in the smaller dimension
nd has full rank 𝑇 . In addition, inverting 𝜎2𝐺𝐼 + 𝐺𝛴𝐺𝑇 ∈ R𝑇×𝑇 has

reduced computational complexity compared to inverting 𝐴.

Lemma 3 (Solution to Constrained Optimization). The expression for
the posterior mean 𝜇̃ with 𝜎2𝐺 > 0 is equivalent to solving the following
constrained least-squares problem for some value of 𝑐 > 0:

𝜇̃ = arg min 1
‖𝑦 − 𝜇‖2 −1 ,
𝑦 2 𝛴
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subject to 1
2‖𝐺𝑦 − 𝑏‖22 < 𝑐, where 𝑐 < 1

2‖𝐺𝜇 − 𝑏‖22.

roof. This is a standard result from ridge regression [47].
Since 𝑐 < 1

2‖𝐺𝜇 − 𝑏‖22, the complementary slackness condition
equires that 𝑐 = 1

2‖𝐺𝑦 − 𝑏‖22. Thus, we get the following Lagrangian:

(𝑦, 𝜆) = 1
2
‖𝑦 − 𝜇‖2

𝛴−1 + 𝜆
( 1
2
‖𝐺𝑦 − 𝑏‖22 − 𝑐

)

.

bserve that, if we re-label 𝑦 ∶= 𝑢 and 𝜆 ∶= 1∕𝜎2𝐺, then 𝐿(𝑦, 𝜆) is equal
to − log 𝑝(𝑢|𝑏,𝐷) + 𝐶2, where 𝐶2 is a constant with respect to 𝑦. Thus,
the optimal value of 𝑦 is the posterior mean from Eq. (29a), i.e.,

∇𝑦𝐿(𝑦, 𝜆) = 0 ⟺ 𝑦 = 𝜇̃,

where

𝜇̃ = 𝜇 − 𝛴𝐺𝑇 ( 1
𝜆
𝐼 + 𝐺𝛴𝐺𝑇 )(𝐺𝜇 − 𝑏).

Next, we substitute the above expression for 𝜇̃ into the remaining
feasibility condition:

𝑐 = 1
2
‖𝐺𝜇̃ − 𝑏‖22

= ‖𝐺
(

𝜇 − 𝛴𝐺𝑇 ( 1
𝜆
𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

)

− 𝑏‖22

= ‖𝐺𝜇 − 𝐺𝛴𝐺𝑇 ( 1
𝜆
𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏) − 𝑏‖22

= ‖

(

𝐼 − 𝐺𝛴𝐺𝑇 ( 1
𝜆
𝐼 + 𝐺𝛴𝐺𝑇 )−1

)

(𝐺𝜇 − 𝑏)‖22.

The eigenvalues of matrix 𝐼 − 𝐺𝛴𝐺𝑇 [(1∕𝜆)𝐼 + 𝐺𝛴𝐺𝑇 ]−1 shrink to 0 as
1∕𝜆 → 0. This establishes that 𝑐 and 1∕𝜆 have a monotonic relationship.
Hence, one can find a value of 𝑐 such that 𝜆 = 1∕𝜎2𝐺.

Appendix G. Proof of Theorem 1

In this section, we provide the proof for Theorem 1. We begin by
first restating Theorem 1.

Theorem 1. Let 𝜇 and 𝛴 be the mean and covariance of 𝑢 obtained at the
end of Step 1. Let 𝜎𝐺,𝑛 ↓ 0 be a monotonic decreasing sequence of constraint
values and let 𝜇̃𝑛 be the corresponding posterior mean at the end of Step 2
shown in Eq. (8). Then:

1. The sequence 𝜇̃𝑛 converges to a limit 𝜇̃⋆ monotonically; i.e., ‖𝜇̃𝑛 −
𝜇̃⋆

‖𝛴−1 ↓ 0.
2. The limiting mean 𝜇̃⋆ is the solution to a constrained least-squares
problem: arg min𝑦 ‖𝑦 − 𝜇‖𝛴−1 subject to 𝐺𝑦 = 𝑏.

3. The sequence 𝐺𝜇̃𝑛 converges to 𝑏 in 𝐿2; i.e., ‖𝐺𝜇̃𝑛 − 𝑏‖2 ↓ 0.
Moreover, if the conservation constraint 𝐺𝑢 = 𝑏 holds exactly for the true
solution 𝑢, then:

4. The distance between the true solution 𝑢 and the posterior mean 𝜇̃𝑛
decreases as 𝜎𝐺,𝑛 → 0, i.e., ‖𝜇̃𝑛 − 𝑢‖𝛴−1 ↓ ‖𝜇̃⋆ − 𝑢‖𝛴−1 .

5. For sufficiently small 𝜎𝐺,𝑛, the log-likelihood LL(𝑢; 𝜇̃𝑛, 𝛴̃𝑛) is greater
than LL(𝑢;𝜇,𝛴) and increases as 𝜎𝐺,𝑛 → 0.

For the proof of Theorem 1, recall the following expression for the
posterior mean from Eq. (8a):

𝜇̃𝑛 = 𝜇 − 𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏).

Proof of 1. Define 𝜇̃⋆ ≡ 𝜇 − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏). We show that 𝜇̃𝑛
converges monotonically to 𝜇̃⋆ as follows:

𝜇̃𝑛 − 𝜇̃⋆ = 𝛴𝐺𝑇 [

(𝐺𝛴𝐺𝑇 )−1 − (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1
]

(𝐺𝜇 − 𝑏) (34a)

= 𝛴𝐺𝑇 [

(𝐺𝛴𝐺)−1(−𝜎𝐺2𝐼)(−𝜎𝐺2𝐼 − 𝐺𝛴𝐺𝑇 )−1
]

(𝐺𝜇 − 𝑏) (34b)

= 𝜎𝐺2𝛴𝐺𝑇 [

(𝐺𝛴𝐺𝑇 )−1(𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1
]

(𝐺𝜇 − 𝑏) (34c)

= 𝜎𝐺2𝛴𝐺𝑇 [

(𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )(𝐺𝛴𝐺𝑇 )
]−1 (𝐺𝜇 − 𝑏) (34d)

= 𝜎𝐺2𝛴𝐺𝑇 [

𝜎𝐺2𝐺𝛴𝐺𝑇 + (𝐺𝛴𝐺𝑇 )2
]−1 (𝐺𝜇 − 𝑏). (34e)
15

‖

The derivation from Eq. (34a) to Eq. (34b) follows from the Searle
identity:

𝐶−1 + 𝐵−1 = 𝐶−1(𝐶 + 𝐵)𝐵−1,

where 𝐶 = 𝐺𝛴𝐺𝑇 , 𝐵 = −(𝜎𝐺2𝐼 +𝐺𝛴𝐺𝑇 ), and 𝐶 + 𝐵 = −𝜎𝐺2𝐼 . Then,

‖𝜇̃𝑛 − 𝜇̃⋆
‖

2
𝛴−1 = (𝐺𝜇 − 𝑏)𝑇𝑄𝑛(𝐺𝜇 − 𝑏), (35)

where

𝑄𝑛 ∶=
[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1
𝜎2
𝐺,𝑛𝐺𝛴𝛴−1𝛴𝐺𝑇 𝜎2

𝐺,𝑛

[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1

(36a)

=
[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1
𝜎2
𝐺,𝑛𝐺𝛴𝐺𝑇 𝜎2

𝐺,𝑛

[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1

(36b)

= 𝜎4
𝐺,𝑛

[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1
𝐺𝛴𝐺𝑇

[

𝜎2
𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2

]−1
. (36c)

Let 𝜆𝑖, 𝑣𝑖 be an eigenvalue and associated eigenvector of 𝐺𝛴𝐺𝑇 , respec-
tively. First, 𝜆𝑖 > 0 because 𝐺𝛴𝐺𝑇 is symmetric positive definite. This
follows from the fact that 𝛴 is positive definite and 𝐺𝑇 is not rank
deficient. Next, the associated eigenvector 𝑣𝑖 is also an eigenvector of
matrix 𝜎2𝐺,𝑛(𝐺𝛴𝐺𝑇 ) + (𝐺𝛴𝐺𝑇 )2 with eigenvalue 𝜎2𝐺,𝑛𝜆𝑖 + 𝜆2𝑖 . Therefore,
𝑣𝑖 is an eigenvector of 𝑄𝑛 with eigenvalue:

𝜎4𝐺,𝑛

(

1
𝜎2𝐺,𝑛𝜆𝑖 + 𝜆2𝑖

)

𝜆𝑖

(

1
𝜎2𝐺,𝑛𝜆𝑖 + 𝜆2𝑖

)

=
𝜆𝑖

(

𝜆𝑖 + 𝜎−2𝐺,𝑛𝜆
2
𝑖

)2
.

Since all the eigenvalues are strictly decreasing as 𝜎𝐺 → 0, the value
‖𝜇̃𝑛 − 𝜇̃⋆

‖

2
𝛴−1 = (𝐺𝜇 − 𝑏)𝑇𝑄𝑛(𝐺𝜇 − 𝑏) ↓ 0, as required. □

Proof of 2. Now, we show that 𝜇̃⋆ = arg min𝑦 ‖𝑦 − 𝜇‖2
𝛴−1 subject to

𝐺𝑦 = 𝑏. This constrained least-squares problem can be cast into the
following constrained least-norm problem:

minimize‖𝑢‖22, subject to 𝐺𝛴1∕2𝑢 = 𝑏 − 𝛴−1∕2𝜇,

with the transformation 𝑢 = 𝛴− 1
2 (𝑦 − 𝜇) or 𝑦 = 𝜇 + 𝛴

1
2 𝑢.

The final solution is

𝜇 − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏),

which equals 𝜇̃⋆. □

Proof of 3. We show that the 𝐿2 norm between the predicted conser-
vation value and the true value, ‖𝐺𝜇̃𝑛 − 𝑏‖22, converges monotonically
to 0 as 𝜎2𝐺,𝑛 → 0. We start by substituting the expression for Eq. (8a):

𝜇̃𝑛 − 𝑏 = 𝐺𝜇 − 𝐺𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏) − 𝑏

= (𝐼 − 𝐺𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1)(𝐺𝜇 − 𝑏).
(37)

et 𝑣𝑖 be an eigenvector of 𝐺𝛴𝐺𝑇 and 𝜆𝑖 the associated eigenvector.
hen 𝑣𝑖 is also an eigenvector of (𝐼 − 𝐺𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1) with
igenvalue 1−𝜆𝑖∕(𝜎2𝐺,𝑛+𝜆𝑖). Since all the eigenvalues are monotonically
ecreasing to zero as 𝜎2𝐺,𝑛 → 0 monotonically, ‖𝐺𝜇̃𝑛 − 𝑏‖22 ↓ 0. For
2
𝐺,𝑛 = 0, 𝐺𝜇̃𝑛 − 𝑏 = 0. □

roof of 4. Define 𝑃 ∶= 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺, which is an oblique projec-
ion matrix since

2 = 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺 = 𝑃

nd

𝑥, 𝑃 𝑦⟩𝛴−1 = 𝑥𝑇𝛴−1𝑃𝑦 = 𝑥𝑇𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝑦 = 𝑥𝑇 𝑃 𝑇𝛴−1𝑦 = ⟨𝑃𝑥, 𝑦⟩𝛴−1 .

he norm ‖𝜇̃𝑛 − 𝑢‖𝛴−1 can be decomposed into two parts:
𝜇̃𝑛 − 𝑢‖𝛴−1 = ‖𝑃 (𝜇̃𝑛 − 𝑢)‖𝛴−1 + ‖(𝐼 − 𝑃 )(𝜇̃𝑛 − 𝑢)‖𝛴−1 .
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First, we show that the second term ‖(𝐼 − 𝑃 )(𝜇̃𝑛 − 𝑢)‖𝛴−1 equals ‖𝜇̃⋆ −
𝑢‖𝛴−1 for all 𝑛 as follows:

𝐼 − 𝑃 )𝜇̃𝑛 = (𝐼 − 𝑃 )𝜇 − (𝐼 − 𝑃 )𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

= (𝐼 − 𝑃 )𝜇 − 𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

+ 𝑃𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

= (𝐼 − 𝑃 )𝜇 − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

+ 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

= (𝐼 − 𝑃 )𝜇

= 𝜇̃⋆ − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝑏,

(𝐼 − 𝑃 )𝑢 = 𝑢 − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝑢

= 𝑢 − 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝑏,

Therefore,

(𝐼 − 𝑃 )𝜇̃𝑛 − (𝐼 − 𝑃 )𝑢 = 𝜇̃⋆ − 𝑢.

Next, we show that the first term ‖𝑃 (𝜇̃𝑛−𝑢)‖𝛴−1 is equal to the distance
between 𝜇̃𝑛 and 𝜇̃⋆. We first compute:

𝑃 𝜇̃𝑛 = 𝑃𝜇 − 𝑃𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏) (38a)

= 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝜇 − 𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏), (38b)

𝑃𝑢 = 𝛴𝐺𝑇 (𝐺𝛴𝐺−1)𝐺𝑢 (38c)

= 𝛴𝐺𝑇 (𝐺𝛴𝐺−1)𝑏. (38d)

Then subtracting Eq. (38d) from Eq. (38a) gives:

𝑃 𝜇̃𝑛 − 𝑃𝑢 = 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝐺𝜇 − 𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1(𝐺𝜇 − 𝑏)

− 𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1𝑏 (39a)

=
(

𝛴𝐺𝑇 (𝐺𝛴𝐺𝑇 )−1 − 𝛴𝐺𝑇 (𝜎𝐺2𝐼 + 𝐺𝛴𝐺𝑇 )−1
)

(𝐺𝜇 − 𝑏) (39b)

= 𝜇̃𝑛 − 𝜇̃⋆. (39c)

From part 1, ‖𝜇̃𝑛 − 𝜇̃⋆
‖𝛴−1 ↓ 0 monotonically as 𝜎2𝐺,𝑛 ↓ 0. Thus,

‖𝜇̃𝑛 − 𝑢‖2
𝛴−1 = ‖𝜇̃𝑛 − 𝜇̃⋆

‖

2
𝛴−1 + ‖𝜇̃⋆ − 𝑢‖2

𝛴−1 ↓ ‖𝜇̃⋆ − 𝑢‖2
𝛴−1 . □

Proof of 5. Recall that the predictive log-likelihood (LL) is defined as:

LL(𝑢; 𝜇̃𝑛, 𝛴̃𝑛) = − 1
2𝑀

‖𝑢 − 𝜇̃𝑛‖𝛴̃−1
𝑛

− 1
2
∑

𝑖
log 𝛴̃𝑛,𝑖,𝑖 −

1
2𝑀

log 2𝜋,

here 𝑀 denotes the total number of points. Also recall that the
recision is well-defined as:

̃−1
𝑛 = 𝛴−1 + 1

𝜎2𝐺,𝑛

𝐺𝑇𝐺,

o the first term of the predictive likelihood can be further decomposed
s:
𝜇̃𝑛 − 𝑢‖2

𝛴̃−1
𝑛

= (𝜇̃𝑛 − 𝑢)𝑇 𝛴̃−1
𝑛 (𝜇̃𝑛 − 𝑢)

= (𝜇̃𝑛 − 𝑢)𝑇𝛴−1(𝜇̃𝑛 − 𝑢) + (𝜇̃𝑛 − 𝑢)𝑇 1
𝜎𝐺2

𝐺𝑇𝐺(𝜇̃𝑛 − 𝑢)

= ‖𝜇̃𝑛 − 𝑢‖2
𝛴−1 +

1
𝜎𝐺2

‖𝐺𝜇̃𝑛 − 𝑏‖22

= ‖𝜇̃𝑛 − 𝑢‖2
𝛴−1 + ‖

1
𝜎𝐺

(𝐺𝜇̃𝑛 − 𝑏)‖22.

Substituting the expression from Eq. (37), we get:
1
𝜎𝐺

(𝐺𝜇̃𝑛 − 𝑏) = 1
𝜎𝐺

(𝐼 − 𝐺𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1)(𝐺𝜇 − 𝑏). (40)

Let 𝑣𝑖 be an eigenvector of 𝐺𝛴𝐺𝑇 and 𝜆𝑖 the associated eigenvector.
Then 𝑣𝑖 is also an eigenvector of 1

𝜎𝐺 (𝐼 − 𝐺𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1)
(𝐺𝜇 − 𝑏) with eigenvalue:

1
𝜎𝐺

(

1 −
𝜆𝑖

2

)

=
𝜎𝐺,𝑛

2
= 1

−1
.

16

𝜎𝐺,𝑛 + 𝜆𝑖 𝜎𝐺,𝑛 + 𝜆𝑖 𝜎𝐺,𝑛 + 𝜆𝑖𝜎𝐺,𝑛
i

For sufficiently small 𝜎𝐺,𝑛, the eigenvalues are monotonically decreas-
ing to zero as 𝜎2𝐺,𝑛 → 0.

Finally, log(𝛴̃𝑛)𝑖,𝑖 is non-increasing with respect to 𝜎2𝐺,𝑛. From
q. (8b),

𝛴̃𝑛 = 𝛴 − 𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺𝛴,

𝛴̃𝑛)𝑖,𝑖 = 𝛴𝑖,𝑖 − 𝑒𝑇𝑖 𝛴𝐺𝑇 (𝜎2𝐺,𝑛𝐼 + 𝐺𝛴𝐺𝑇 )−1𝐺𝛴𝑒𝑖,

here 𝑒𝑖 denotes the 𝑖th elementary vector. Since 𝛴𝐺𝑇 (𝜎𝐺2𝐼+𝐺𝛴𝐺𝑇 )−1
𝛴 is positive definite with positive diagonal entries, and the eigenval-
es of (𝜎𝐺2𝐼 +𝐺𝛴𝐺𝑇 )−1 increase monotonically as 𝜎𝐺,𝑛 → 0, the entry
𝛴̃𝑛)𝑖,𝑖 decreases as 𝜎𝐺,𝑛 → 0.

ppendix H. Additional details on the generalized porous medium
quation

In this section, we discuss in more detail the parametric Generalized
orous Medium Equation (GPME). The GPME is a family of conser-
ation equations, parameterized by a nonlinear coefficient 𝑘(𝑢), and
t has been used in several applications ranging from underground
low transport to nonlinear heat transfer to water desalination and
eyond. Among other things, it has the parametric ability to repre-
ent pressure, diffusivity, conductivity, or permeability, in these and
ther applications [14]. From the ML/SciML methods perspective, it
as additional advantages, including closed-form self-similar solutions,
tructured nonlinearities, and the ability to choose the parameter 𝑘(𝑢)
o interpolate between ‘‘easy’’ and ‘‘hard’’ problems (analogous to
ut distinct from the properties of elliptical versus parabolic versus
yperbolic PDEs).

he GPME equation. The basic GPME is given as:

𝑡 − ∇ ⋅ (𝑘(𝑢)∇𝑢) = 0, (41)

here 𝐹 (𝑢) = −𝑘(𝑢)∇𝑢 is a nonlinear flux function, and where the
arameter 𝑘 = 𝑘(𝑢) can be varied (to model different physical phe-
omena, or to transition between ‘‘easy’’ PDEs and ‘‘hard’’ PDEs).
ven though the equation appears to be parabolic, for small values
f 𝑘(𝑢) in the nonlinear case, it exhibits degeneracies, and it is called

‘degenerate parabolic’’. By varying 𝑘, solutions span from ‘‘easy’’ to
‘hard’’, exhibiting many of the qualitative properties of smooth/nice
arabolic to sharp/hard hyperbolic PDEs. Among other things, this
ncludes discontinuities associated with self-sharpening occurring over
ime, even for smooth initial conditions.

Fig. 6 (Fig. 1 repeated here) provides an illustration of this ‘‘easy-to-
ard’’ paradigm for PDEs for the three classes of the GPME considered
n the main text. In particular, Fig. 6(a) illustrates an ‘‘easy’’ situation,
ith 𝑘(𝑢) ≡ 1, where we have a simple parabolic solution to the linear
eat/diffusion equation, where a sine initial condition is gradually
moothed over time. Fig. 6(b) illustrates a situation with ‘‘medium’’
ifficulty, namely the degenerate parabolic Porous Medium Equation
PME) with nonlinear differentiable monomial coefficient 𝑘(𝑢) = 𝑢𝑚.
ere, for 𝑚 = 3, a constant zero initial condition self-sharpens, and

t develops a sharp gradient that does not dissipate over time [15].
inally, Fig. 6(c) illustrates an example of the ‘‘hard’’ Stefan problem,
here the coefficient 𝑘(𝑢) is a nonlinear discontinuous step-function of

he unknown 𝑢 defined by the unknown value 𝑢⋆ = 𝑢(𝑡, 𝑥⋆(𝑡)) = 0.5 at
he discontinuity location 𝑥⋆(𝑡). In this case, the solution evolves as a
ightward moving shock or moving interface over time [16].

Here, we provide more details on these and other classes of the
PME.

eat/diffusion equation. Perhaps the simplest non-trivial form of the
PME, where the conductivity or diffusivity coefficient

(𝑢) = 𝑘 > 0,

s a constant, corresponds to the heat (or diffusion) equation. In this
ase, Eq. (9) reduces to the linear parabolic equation, 𝑢𝑡 = 𝑘𝛥𝑢, where
denotes the Laplacian operator. Solutions of this equation are smooth

ue to the diffusive nature of the Laplacian operator, and even sharp

nitial condition are smoothed over time.
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Fig. 6. Illustration of the ‘‘easy-to-hard’’ paradigm for PDEs, for the GPME family of conservation equations: (a) ‘‘easy’’ parabolic smooth (diffusion equation) solutions, with
constant parameter 𝑘(𝑢) = 𝑘 ≡ 1; (b) ‘‘medium’’ degenerate parabolic PME solutions, with nonlinear monomial coefficient 𝑘(𝑢) = 𝑢𝑚, with parameter 𝑚 = 3 here; and (c) ‘‘hard’’
hyperbolic-like (degenerate parabolic) sharp solutions (Stefan equation) with nonlinear step-function coefficient 𝑘(𝑢) = 𝟏𝑢≥𝑢⋆ , where 𝟏 is an indicator function for event  .
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ariable coefficient problem. The linear variable coefficient problem

(𝑢, 𝑥) = 𝑘(𝑥),

s also a classical parabolic equation. The variable coefficient problem
s commonly used in reservoir simulations to model the interface
etween permeable and impermeable materials, where 𝑘(𝑢) denotes the
tep-function permeabilities that depends on the spatial position 𝑥.

orous medium equation (PME). Another subclass of the GPME, in
hich the coefficient is nonlinear but smooth, is known as the Porous
edium Equation (PME). The PME is known to be degenerate parabolic,

nd it becomes more challenging as 𝑚 increases. The PME with 𝑚 = 1
as been widely used to model isothermal processes, e.g., groundwater
low and population dynamics in biology. For 𝑚 > 1, the PME results
n sharp solutions, and it has been used to describe adiabatic processes
nd nonlinear phenomena such as heat transfer of plasma (ionized gas).

uper-slow diffusion problem. Another subclass of the GPME, known as
uper-slow diffusion, occurs when

(𝑢) = exp(−1∕𝑢).

ere, the diffusivity 𝑘(𝑢) → 0 as 𝑢 → 0 faster than any power of 𝑢. This
quation models the diffusion of solids at different absolute tempera-
ures 𝑢. The coefficient 𝑘(𝑢) represents the mass diffusivity in this case,
nd it is connected with the Arrhenius law in thermodynamics.

tefan problem. The most challenging case of the GPME is when the
oefficient 𝑘(𝑢) is a discontinuous nonlinear step function:

(𝑢) =

{

𝑘max, 𝑢 ≥ 𝑢⋆

𝑘min, 𝑢 < 𝑢⋆,
(42)

or given constants 𝑘max, 𝑘min and 𝑢⋆ ∈ R, in which case it is known as
he Stefan problem. The Stefan problem has been used to model two-
hase flow between water and ice, crystal growth, and more complex
orous media such as foams [44].

We conclude by noting that, even though the GPME is nonlinear in
eneral, for specific initial and boundary conditions, it has closed form
elf-similar solutions. For details, see Vázquez [14], Maddix et al. [15],
addix et al. [16]. This enables ease of evaluation by comparing each

ompeting method to the ground truth.

ppendix I. Detailed experiment settings

In this section, we review the basics of the Attentive Neural Process
ANP) [13] that we use as the black-box deep learning model in Step 1
f our model ProbConserv-ANP in the empirical results Section 3. Fig. 7
llustrates a schematic for ProbConserv-ANP that shows how in the first
tep the mean and covariance estimates 𝜇,𝛴 from the ANP are fed into
ur probabilistic constraint in the second step to output the updated

̃

17

ean and covariance estimates 𝜇̃, 𝛴. (
Model training. The model from Step 1 is data-driven, with parameter
𝜃 that needs to be learned from data. Given an empirical data distribu-
tion, written as (𝑢, 𝑏,𝐷) ∼ 𝑝, we maximize the expected joint likelihood
of the function 𝑢 and the constraint 𝑏, conditioned on data 𝐷, as a
function of the Step 1 parameter 𝜃 and Step 2 parameters 𝜎𝐺 and 𝐺
as follows:
𝐿(𝜃, 𝜎𝐺 , 𝐺) = E𝑢,𝑏,𝐷∼𝑝 log 𝑝(𝑢, 𝑏|𝐷)

= E𝑢,𝐷∼𝑝 log 𝑝𝜃(𝑢|𝐷)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Step 1

+E𝑢,𝑏 log 𝑝𝜎𝐺 ,𝐺(𝑏|𝑢)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Step 2

. (43)

his follows because the joint probability can be broken into con-
itionals 𝑝(𝑢, 𝑏|𝐷) = 𝑝𝜃(𝑢|𝐷)𝑝𝜎𝐺 ,𝐺(𝑏|𝑢), using Bayes’ Rule. The Step 2
onstraint only depends on the value 𝑢.

The Step 1 parameter 𝜃 is only present in the first term of the
ummation in Eq. (43). Then, the optimal value for 𝜃⋆ is found by opti-
izing the unconstrained log-likelihood from Step 1 over the empirical
ata distribution and is given as follows:
⋆ = arg max

𝜃
𝐿(𝜃, 𝜎𝐺 , 𝐺)

= arg max
𝜃

E𝑢,𝐷∼𝑝 log 𝑝𝜃(𝑢|𝐷).
(44)

q. (44) is simply the optimization target of several generative models,
.g., Gaussian processes and the ANP. This justifies training the Step 1
lack-box model with its original training procedure before applying
ur Step 2.

ata generation. For each PDE instance, we first generate training data
or the data-driven model in Step 1. We generate these samples, indexed
y 𝑖, by randomly sampling 𝑛train values of the PDE parameters 𝛼𝑖
rom an interval . To create the input data 𝐷𝑖, the solution profile
orresponding to 𝛼𝑖 is evaluated on a set of 𝑁𝐷 points uniformly
ampled from the spatiotemporal domain [0, 𝑡] ×𝛺. Then, the reference
olution for 𝑢 with parameter 𝛼𝑖, denoted 𝑢𝑖, is evaluated over another
et of 𝑁train uniformly-sampled points. The Step 1 model (ANP) is then
rained on these supervised input–output pairs, (𝐷𝑖, 𝑢𝑖). Using Eq. (5),
he conservation value 𝑏 in Step 2 is calculated given the parameter
𝑖. At inference time, we fix specific values of the PDE parameters 𝛼
hat are of interest and generate new input–output pairs to evaluate the
redictive performance. The settings are the same as those at training,
xcept that the reference solution is evaluated on a fixed grid that
venly divides the time domain [0, 𝑡] into 𝑇test points and the spatial
omain 𝛺 into 𝑀test points for a spatio-temporal grid of 𝑁test = 𝑇test ×

test points. For consistent results, we repeat this procedure over 𝑛test
ndependent datasets for each 𝛼.

Table 6 provides the training settings and Table 7 provides the cor
esponding test settings.

We describe here how the input data 𝐷; input points (𝑡1, 𝑥1),… ,

𝑡𝑁 , 𝑥𝑁 ); and solution 𝑢 are created for a particular draw of PDE
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a
(
(
{

Fig. 7. Schematic for the instantiation of our framework ProbConserv with the ANP (ProbConserv-ANP) as the data-driven black box model in Step 1 that is used in the empirical
results. In Step 1, the ANP outputs a mean 𝜇 and covariance 𝛴 (yellow) of the solution profile 𝑢 evaluated at the 𝑁 target points (red). The ANP takes as input the context set
𝐷 that comprises 𝑁𝐷 labeled points (blue). The parameter 𝜃 encapsulates the neural network weights within the ANP. In Step 2, the probabilistic constraint in Eq. (8) is applied
yielding an updated mean 𝜇̃ and covariance 𝛴̃ (green). The probabilistic constraint is determined by the matrix 𝐺, value 𝑏, and variance 𝜎2

𝐺 in Eq. (7).
Table 6
Training details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter  Time domain [0, 𝑡] Spatial domain 𝛺 𝑛train 𝑁𝐷 𝑁train

Diffusion 𝑘 [1, 5] [0, 1] [0, 2𝜋] 10,000 100 100
PME 𝑚 [1, 6] [0, 1] [0, 1] 10,000 100 100
Stefan 𝑢⋆ [0.55, 7] [0, 0.1] [0, 1] 10,000 100 100
Table 7
Testing details for each instance of the GPME (Diffusion, PME, Stefan) used in the experiments.

PDE Parameter values Test time Spatial domain 𝛺 𝑛test 𝑁𝐷 𝑇test 𝑀test 𝑁test

Diffusion 𝑘 ∈ {1, 5} 0.5 [0, 2𝜋] 50 100 201 201 40,401
PME 𝑚 ∈ {1, 3, 6} 0.5 [0, 1] 50 100 201 201 40,401
Stefan 𝑢⋆ ∈ {0.6} 0.05 [0, 1] 50 100 201 201 40,401
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parameter 𝛼 ∈ . The input data (a.k.a. the context set) 𝐷 is gener-
ted as follows. First, draw samples from the spatiotemporal domain
𝑡𝑛, 𝑥𝑛) ∼ Uniform([0, 𝑡] × 𝛺), for 𝑛 = 1,… , 𝑁𝐷. For each sample
𝑡𝑛, 𝑥𝑛), evaluate the reference solution 𝑢𝑛 ∶= 𝑢(𝑡𝑛, 𝑥𝑛) for 𝛼. Then 𝐷 =
(𝑡𝑛, 𝑥𝑛, 𝑢𝑛)}𝑛=1,…,𝑁𝐷

.
We create input points (𝑡1, 𝑥1),… , (𝑡𝑁 , 𝑥𝑁 ) differently depending on

whether we are training or testing. At train-time, the input points are
sampled uniformly from the spatiotemporal domain

(𝑡𝑛, 𝑥𝑛) ∼ Uniform([0, 𝑡] ×𝛺),

for 𝑛 = 1,… , 𝑁train. At test-time, we divide up the time domain [0, 𝑡]
into 𝑇test evenly-spaced points and the spatial domain 𝛺 into 𝑀test
evenly-spaced points. We then take the cross product of these as the
set of input points, whose size is 𝑁test = 𝑇test ×𝑀test.

Finally, over the set of input points, we evaluate the reference
solution for 𝛼 as: 𝑢 = [𝑢(𝑡𝑛, 𝑥𝑛)]𝑛=1,…,𝑁train .

Attentive Neural Processes (ANP). The Attentive Neural Process (ANP)
[13] models the conditional distribution of a function 𝑢 at target input
points {𝑥𝑛} ∶= 𝑥1,… , 𝑥𝑁 for 𝑥𝑖 ∈ R𝐷+1 given a small set of context
points 𝐷 ∶= {𝑥𝑖, 𝑢𝑖}𝑖∈𝐶 . The function values at each target point 𝑥𝑛,
written as 𝑢𝑛, are conditionally independent given the latent variable 𝑧
with the following distribution for 𝑢𝑛:

𝑝𝜃(𝑢𝑛|𝐷) = ∫𝑧
𝑝𝜃(𝑢𝑛|𝑧,𝐷)𝑝𝜃(𝑧|𝐷)𝑑𝑧,

𝑝𝜃(𝑢𝑛|𝑧,𝐷) = 𝑝 (𝑢𝑛|𝜇𝑛, 𝜎2𝑛 ),

𝑝𝜃(𝑧|𝜇𝑧, 𝛴𝑧) = 𝑝 (𝑧|𝜇𝑧, 𝛴𝑧),

𝜇𝑛, 𝜎𝑛 = 𝑓 𝑢
𝜃 (𝑥𝑛, 𝑧, 𝑓

𝑟
𝜃 (𝑥𝑛, 𝐷)),

𝜇𝑧, 𝛴𝑧 = 𝑓 𝑧
𝜃 (𝐷).

(45)

Here, 𝑝 (𝑢|𝜇, 𝜎2) ∶= (2𝜋𝜎2)−1∕2 exp
(

− 1
2𝜎2 (𝑥 − 𝜇)2

)

denotes the uni-
variate normal distribution with mean 𝜇 and variance 𝜎2 and 𝑓 𝑧, 𝑓 𝑢,
18

𝜃 𝜃
and 𝑓 𝑟
𝜃 are neural networks whose architecture is described in more

detail below.
As standard in variational inference, the attentive neural process

(ANP) is trained to maximize the evidence lower bound (ELBO), which
is a tractable lower bound to the marginal likelihood E𝑢,𝐷∼𝑝 log 𝑝𝜃(𝑢|𝐷)
that we want to maximize in Eq. (44):

E𝑢,𝐷∼𝑝 log 𝑝𝜃(𝑢|𝐷) ≥ E𝑢,𝐷∼𝑝E𝑧∼𝑞𝜙 log 𝑝𝜃(𝑢, 𝑧|𝐷) − log 𝑞𝜃(𝑧|𝑢,𝐷),

𝑞𝜃(𝑧|𝑢,𝐷) = 𝑝 (𝑧|𝜇𝑞
𝑧 , 𝛴

𝑞
𝑧 ),

𝜇𝑞
𝑧 , 𝛴

𝑞
𝑧 = 𝑓 𝑧

𝜃 (𝐷 ∪ {(𝑡1, 𝑥1, 𝑢1),…(𝑡𝑁 , 𝑥𝑁 , 𝑢𝑁 )}).

(46)

y concatenating the context set 𝐷 with the target set, the ANP can
se the same networks for both the generative model 𝑝𝜃 and the
ariational model 𝑞𝜃 . This differs from methods such as the variational
uto-encoder (VAE) that train a separate network for the variational
odel.

In the experiments, we train the ELBO in Eq. (46) using stochastic
radient descent over random mini-batches of the supervised pairs
𝑢,𝐷) and a sample of the latent variable 𝑧 (using the reparameteri-
ation trick for an unbiased gradient estimate). Specifically, we use the
DAM optimizer with a learning rate of 1 × 10−4 and a batch size of
50.

rchitectural details. Here, we briefly describe the architecture of the
NP used in experiments; a more thorough description of the ANP in
eneral can be found in the original paper [13].

The ANP consists of three distinct networks:

1. The latent encoder 𝑓 𝑧
𝜃 takes the context set 𝐷 = {𝑥𝑖, 𝑢𝑖}𝑖∈𝐶 as

input and outputs a mean 𝜇𝑧 and diagonal covariance 𝛴𝑧 for the
latent representation 𝑧. Note that 𝑓 𝑧

𝜃 is invariant to the order of

the context set inputs in 𝐷.
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Table 8
ANP hyperparameters.

Symbol Value Description

𝑑𝑥 2 Input dimension
𝑑𝑢 1 Output dimension
𝑑𝑧 128 Latent dimension
ℎ 128 Size of hidden layer
𝑛heads 4 Number of heads in MultiHead
𝑑ℎ 128 Column dimension in MultiHead layers

2. The deterministic encoder 𝑓 𝑟
𝜃 takes the context set 𝐷 = {𝑥𝑖, 𝑢𝑖}𝑖∈𝐶

and the target points {𝑥𝑛} as input, and outputs a set of deter-
ministic representations {𝑟𝑛} corresponding to each target point.
Note that 𝑓 𝑟

𝜃 is permutation-invariant to the order of the context
set inputs in 𝐷, and is applied pointwise across the target inputs
{𝑥𝑛}.

3. The decoder 𝑓 𝑢
𝜃 takes the outputs from the latent encoder, deter-

ministic encoder, and the target points {𝑥𝑛} as input, and outputs
a set of mean and variances {𝜇𝑛, 𝜎𝑛} corresponding to each target
point. The decoder is applied pointwise across the target inputs
{𝑥𝑛} and deterministic representation {𝑟𝑛}.

For reproducibility, Fig. 8 shows how each network is constructed
nd Table 8 shows the ANP hyperparameters. Each building blocks is
lso briefly described below:

• Linear(𝑑in, 𝑑out): dense linear layer 𝑥𝐴 + 𝑏.
• Mean: Averages the inputs of the input set; i.e., Mean({𝑠𝑖}) =

1
|{𝑠𝑖}|

∑

𝑖 𝑠𝑖.

• ReLU: Applies ReLU activation pointwise.
• Cross-Attention and Self-Attention. These are multi-head atten-

tion blocks first introduced in Vaswani et al. [50]. The three
inputs to the multi-head attention block are the queries 𝑄 =
[𝑞1|… |𝑞𝑑𝑞 ]

⊤, keys 𝐾 = [𝑘1|… |𝑞𝑑𝑘 ]
⊤, and values 𝑉 = [𝑣1|… |𝑣𝑑𝑘 ]

⊤.
The hyperparameters are the number of heads, 𝑛heads and the
number of columns of the matrices 𝑊 𝑄

𝑖 ,𝑊 𝐾
𝑖 ,𝑊 𝑉

𝑖 , denoted as 𝑑ℎ.
We summarize the notations below:

Self-Attention(𝑄) ∶= MultiHead(𝑄,𝑄,𝑄),

Cross-Attention(𝑄,𝐾, 𝑉 ), ∶= MultiHead(𝑄,𝐾, 𝑉 ),

MultiHead(𝑄,𝐾, 𝑉 ) ∶= [𝐻1|… |𝐻𝑛heads ]𝑊
𝑂 ,

𝐻𝑖 ∶= Attention(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ),

Attention(𝑄,𝐾, 𝑉 ) ∶= sof tmax

(

𝑄𝐾⊤
√

𝑑𝑘

)

𝑉 ,

sof tmax
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑥1,1 … 𝑥1,𝑛
⋮ ⋱ ⋮

𝑥𝑚,1 … 𝑥𝑚,𝑛

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

∶=

⎡

⎢

⎢

⎢

⎢

⎣

exp(𝑥1,1)
∑𝑛

𝑖=𝑗 exp(𝑥1,𝑗 )
… exp(𝑥1,𝑛)

∑𝑛
𝑗=1 exp(𝑥1,𝑗 )

⋮ ⋱ ⋮
exp(𝑥𝑚,1)

∑𝑚
𝑖=1 exp(𝑥𝑚,𝑗 )

… exp(𝑥𝑚,𝑛)
∑𝑛

𝑗=1 exp(𝑥𝑚,𝑗 )

⎤

⎥

⎥

⎥

⎥

⎦

.

Appendix J. Additional empirical results

In this section, we provide additional empirical results for the
degenerate parabolic Generalized Porous Medium (GPME) family of
conservation laws as well as for hyperbolic conservation laws.

J.1. GPME family of conservation laws

Here, we include additional solution profiles and conservation pro-
files over time for the GPME family of equations, ranging from the
‘‘easy’’ diffusion (heat), ‘‘medium’’ PME, to the ‘‘hard’’ Stefan equations.

J.1.1. Diffusion (heat) equation
Solution profiles. Fig. 9 shows the solution profiles for the ‘‘easy’’
diffusion equation, at time 𝑡 = 0.5, where a sine curve is damped over
time for test-time parameter 𝑘 = 1, 5 ∈  = [1, 5]. Table 9 shows the
orresponding metrics.
19
J.1.2. Porous Medium Equation (PME)
Results for different 𝜆 for softc-anp. As is the case with PINNs [4], the
SoftC-ANP method has a hyper-parameter 𝜆 that controls the balance
in the training loss between the reconstruction and differential term. A
higher value of 𝜆 places more emphasis on the residual of the PDE term
nd less emphasis on the evidence lower bound (ELBO) from the ANP.

To investigate whether tuning 𝜆 will lead to significantly different
results, we report results for different values of 𝜆 for the SoftC-ANP on
the Porous Medium Equation (PME). Since these results are presented
on the same test dataset used in Table 2, it provides an optimistic case
on how tuning 𝜆 could improve the results for SoftC-ANP. Table 10
shows that the predictive performance is roughly the same across
different values of 𝜆, with both MSE and LL worse than the original
ANP across the board and the conservation error (CE) 𝐺𝜇 − 𝑏 at the
final time worse for 𝑚 = 6.

robconserv-anp with diffusion. As described in Appendix D.2, we ex-
plore adding numerical diffusion for eliminating artificial small-scale
noises when enforcing conservation. Table 11 shows that adding artifi-
cial diffusion improves both MSE and LL compared to the conservation
constraint alone. Figs. 10–11 illustrate that by removing such artificial
noises, ProbConserv-ANP with diffusion leads to tighter uncertainty
bounds as well as higher LL than the other baselines.

Solution and error profiles. Figs. 10–11 illustrate the differing solution
profiles and errors for the PME for various values of 𝑚 ∈ {1, 3, 6},
respectively. As expected, we see a gradient for 𝑚 > 1 that becomes
sharper and approaches infinity for 𝑚 = 6. Increasing 𝑚 results in
smaller values of the PDE parameter denoting the pressure 𝑘(𝑢) = 𝑢𝑚,
which increases the degeneracy for smaller values of 𝑘(𝑢), i.e., larger
alues of 𝑚. In this case the problem also becomes more challenging.
or 𝑚 = 1, we have a piecewise linear solution, and for 𝑚 = 3, 6
e see sharper oscillatory uncertainty bounds at the front or free
oundary, resulting in some negative values at this boundary as well.
e see the value of the uncertainty quantification to reflect that the
odel is certain in the parabolic regions to the left and right of the

harp boundary especially in the zero (degeneracy) region, and is most
ncertain at the boundary (degeneracy) point.

.1.3. Stefan
Fig. 12 shows ProbConserv-ANP follows the true profile of conserved

ass in the system over time by design. We also see that the un-
onstrained ANP and surprisingly the soft-constrained SoftC-ANP that
pplied the differential form as a soft constraint does not result in
onservation being satisfied since it does not enforce it exactly. For
hese baselines, the mass profile over time is linear and does not match
he true profile which is proportional to

√

𝑡.

J.2. Hyperbolic equations

Here, we demonstrate that our approach ProbConserv-ANP also
works for hyperbolic conservation laws by considering the linear ad-
vection problem (‘‘medium’’) and Burgers’ equation (‘‘hard’’), which are
both introduced in Table 5 in Appendix C.

J.2.1. Linear advection
Fig. 13 displays the system total mass, 𝑈 (𝑡) = ∫𝛺 𝑢(𝑡, 𝑥)𝑑𝛺 as a

function of time, obtained by our ProbConserv-ANP model and the other
baselines and compared against the true curve. The results are obtained
for two values of test-time parameter 𝛽 = 1, 3 denoting the velocity with
training range 𝛽 ∈  = [1, 5]. The unconstrained ANP contradicts the
system true mass at all times including 𝑡 = 0. By proper incorporation
of the conservation constraint, both ProbConserv-ANP and HardC-ANP
methods are able to predict the system mass and capture the actual
trend over time exactly while the soft-constrained differential form
SoftC-ANP baseline results in little improvement.
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Fig. 8. Architectural diagram of the three main networks that make up the Attentive Neural Process (ANP) from Kim et al. [13] that is used in the experiments as the Step 1
lack-box model.
Table 9
Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and MSE ×10−4 (lower is better) over 𝑛test = 50 for the (‘‘easy’’)
diffusion equation at time 𝑡 = 0.5 with variable diffusivity constant 𝑘 parameter in the range  = [1, 5] and test-time parameter values 𝑘 = 1, 5.

𝑘 = 1 𝑘 = 5

CE LL MSE CE LL MSE

ANP 4.68 (0.10) 2.72 (0.02) 1.71 (0.41) 1.76 (0.04) 3.28 (0.02) 0.547 (0.08)
SoftC-ANP 3.47 (0.17) 2.40 (0.02) 2.24 (0.78) 2.86 (0.05) 2.83 (0.02) 1.75 (0.24)
HardC-ANP 0 (0.00) 3.08 (0.04) 𝟏.𝟑𝟕 (0.33) 0 (0.00) 3.64 (0.03) 𝟎.𝟒𝟔𝟏 (0.07)
ProbConserv-ANP 0 (0.00) 2.74 (0.02) 1.55 (0.33) 0 (0.00) 3.30 (0.02) 0.485 (0.07)
Table 10
Investigation of the effect of the soft constraint penalty parameter 𝜆 in the SoftC-ANP baseline. The metrics CE ×10−3 (should be zero), LL
(higher is better) and MSE ×10−4 (lower is better) are reported for the (‘‘medium’’) PME at time 𝑡 = 0.5 with variable 𝑚 parameter in the
range  = [0.99, 6] and test-time parameters 𝑚 ∈ {1, 3, 6}. We see that the performance is not significantly changed as a function of 𝜆, and,
surprisingly, that the unconstrained ANP (𝜆 = 0) performs better in most metrics than SoftC-ANP.

𝑚 = 1 𝑚 = 3 𝑚 = 6

CE LL MSE CE LL MSE CE LL MSE

ANP (𝜆 = 0) 6.67 𝟑.𝟒𝟗 𝟎.𝟗𝟒 −1.23 𝟑.𝟔𝟕 𝟏.𝟗𝟎 −𝟐.𝟓𝟖 𝟑.𝟖𝟏 𝟕.𝟔𝟐

SoftC-ANP (𝜆 = 0.01) 5.58 3.11 1.11 −0.61 3.46 2.03 −3.00 3.49 7.76
SoftC-ANP (𝜆 = 0.1) 5.58 3.11 1.11 −0.67 3.46 2.07 −3.01 3.49 7.87
SoftC-ANP (𝜆 = 1) 5.62 3.11 1.11 −0.65 3.46 2.06 −3.03 3.49 7.82
SoftC-ANP (𝜆 = 10) 𝟓.𝟓𝟐 3.11 1.08 −𝟎.𝟓𝟔 3.46 2.04 −3.02 3.49 7.76
SoftC-ANP (𝜆 = 100) 5.62 3.11 1.11 −0.59 3.46 2.03 −3.03 3.49 7.69
20
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Fig. 9. Solution profiles for the diffusion (heat) equation at time 𝑡 = 0.5 for diffusivity (conductivity) test-time parameter 𝑘 = 1 in the top row and 𝑘 = 5 in the bottom row. Each
odel is trained on samples of 𝑘 ∈  = [1, 5]. The shaded region illustrates ±3 standard deviation uncertainty intervals. ProbConserv-ANP and HardC-ANP both display tighter
ncertainty bounds than the baseline ANP, while SoftC-ANP is more diffuse. The uncertainty is relatively homoscedastic on this ‘‘easy’’ case.
Table 11
Mean and standard error for CE ×10−3 (should be zero), LL (higher is better) and MSE ×10−4 (lower is better) over 𝑛test = 50 runs for the (‘‘medium’’) PME at time 𝑡 = 0.5 with
ariable 𝑚 parameter in the range  = [0.99, 6]. We see that ProbConserv-ANP (w/diff) improves the performance on ProbConserv-ANP by applying smoothing at the sharp boundary
s the test-time parameter 𝑚 is increased.

𝑚 = 1 𝑚 = 3 𝑚 = 6

CE LL MSE CE LL MSE CE LL MSE

ANP 6.67 (0.39) 3.49 (0.01) 0.94 (0.09) −1.23 (0.29) 3.67 (0.00) 1.90 (0.04) −2.58 (0.23) 3.81 (0.01) 7.67 (0.09)
SoftC-ANP 5.62 (0.35) 3.11 (0.01) 1.11 (0.14) −0.65 (0.30) 3.46 (0.00) 2.06 (0.03) −3.03 (0.26) 3.49 (0.00) 7.82 (0.09)
HardC-ANP 0 (0.00) 3.16 (0.04) 0.43 (0.04) 0 (0.00) 3.44 (0.03) 1.86 (0.03) 0 (0.00) 3.40 (0.05) 7.61 (0.09)
ProbConserv-ANP 0 (0.00) 3.56 (0.01) 0.17 (0.02) 0 (0.00) 3.68 (0.00) 2.10 (0.07) 0 (0.00) 3.83 (0.01) 10.4 (0.04)
ProbConserv-ANP (w/diff) 0 (0.00) 4.04 (0.02) 0.15 (0.02) 0 (0.00) 3.96 (0.00) 1.43 (0.05) 0 (0.00) 4.03 (0.01) 7.91 (0.03)
Fig. 10. Solution profiles and uncertainty intervals for the PME predicted by our ProbConserv-ANP and other baselines. The solutions are obtained for three scenarios with increasing
harpness in the profile as 𝑚 is increased from 𝑚 = 1 to 𝑚 = 6 from left to right, respectively. The HardC-ANP model, which assumes constant variance for the whole domain,
esults in too high uncertainty in the zero (degenerate) region, unlike our proposed ProbConserv-ANP approach that incorporates the variance information to effectively handle this
eteroscedasticity. Adding diffusion to ProbConserv-ANP removes the oscillations locally at the degeneracy, as desired.
21
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Fig. 11. Solution errors with uncertainty bounds as a function of 𝑥 for our ProbConserv-ANP and other baselines for the PME with parameter 𝑚 ∈ {1, 3, 6} after training on
𝑚 ∈  = [0.99, 6]. The shaded region indicates ±3 standard deviations as estimated by each model. For 𝑚 = 1, both ProbConserv-ANP with and without diffusion result in solutions
with smaller errors. While HardC-ANP model reduces the error scale, it underestimates the zero portion of the solution, which is nonphysical, as the solution quantity cannot be
egative. For 𝑚 ∈ {3, 6}, while the error magnitude becomes dominant at the shock position for all methods, ProbConserv-ANP with diffusion provides the lowest errors with the
ightest confidence interval.
Fig. 12. True mass over time for each model for the (‘‘hard’’) Stefan equation. The true mass conservation profile over time is matched exactly by our proposed method ProbConserv-
NP and the hard-constrained HardC-ANP by design. The unconstrained ANP and surprisingly even the differential form soft-constrained SoftC-ANP have a non-physical linear
ass profile over time.
Fig. 13. System total mass as a function of time 𝑡 for the linear advection equation with test-time parameter 𝛽 = 1, 3 and training parameter range  = [1, 5]. Both ProbConserv-ANP
and HardC-ANP satisfy conservation of mass while the unconstrained ANP and soft-constrained SoftC-ANP baselines deviate from the actual trend completely at all times.
Fig. 14 shows the predicted solution profiles and corresponding
uncertainty intervals for time 𝑡 = 0.1 and test-time parameter 𝛽 = 1, 3.
Our ProbConserv-ANP model predicts sharper shock profile centered
around the actual shock position. On the contrary, both ANP and
ardC-ANP lead to highly diffusive profiles which are shifted toward
22
the left of actual shock interface, leading to the under-estimation of the
shock position on this downstream task. This under-estimation becomes
more evident in Fig. 15, which indicates the corresponding histograms
of shock position. The histograms associated with the ANP and HardC-

ANP models are skewed to the left and both result in the averaged
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Fig. 14. Solution profiles and uncertainty intervals for the linear advection equation at time 𝑡 = 0.1 for test-time parameter 𝛽 = 1, 3 and training parameter range  = [1, 5].
espite satisfaction of conservation constraint, HardC-ANP predicts a highly diffusive profile and remarkable underestimation of shock interface region especially for 𝛽 = 1. The

prediction error is even higher for the unconstrained ANP model which does not enforce the conservation, and the shock interface is shifted further away from the true solution.
ProbConserv-ANP results in a sharper profile than other the baselines and the predicted shock interface is around the actual shock position leading to more accurate shock position
estimation.
Fig. 15. The histogram of shock position for the linear advection equation, computed as the mean plus or minus 3 standard deviations. Due to the shift in the shock interface,
oth the ANP and HardC-ANP models underestimate the position of the shock, and the underestimation is more significant for 𝛽 = 1. The ProbConserv-ANP model provides a

histogram distributed almost symmetrically around the true shock interface and thus leads to an accurate estimate of the shock position.
Table 12
Mean and standard error for CE (should be zero), LL (higher is better) and MSE ×10−2 (lower is better) over 𝑛test = 50 runs for the hyperbolic
linear advection equation at time 𝑡 = 0.1 with variable 𝛽 parameter in the range  = [1, 5].

𝛽 = 1 𝛽 = 3

CE LL MSE CE LL MSE

ANP −0.136 (0.004) 0.96 (0.01) 5.72 (0.25) 0.042 (0.003) 0.51 (0.01) 2.03 (0.01)
SoftC-ANP −0.137 (0.004) 1.58 (0.03) 7.64 (0.34) 0.013 (0.003) 2.31 (0.02) 2.87 (0.20)
HardC-ANP 0 (0.00) −2.96 (0.34) 4.59 (0.17) 0 (0.00) 1.34 (0.21) 1.93 (0.07)
ProbConserv-ANP 0 (0.00) 1.06 (0.01) 2.00 (0.06) 0 (0.00) 0.52 (0.01) 1.62 (0.01)
23
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Fig. 16. True mass as a function of time 𝑡 for Burgers’ equation with test-time parameter 𝑎 = 1, 3 and training parameter range  = [1, 4].
Fig. 17. Solution profiles and uncertainty intervals for Burgers’ equation at time 𝑡 = 0.5 for test-time parameter 𝑎 = 1, 3 and training parameter range  = [1, 4].
shock positions which are lower than the actual value depicted by the
solid vertical line. By proper leveraging of our finite volume based
physical constraint, our ProbConserv-ANP results in proper uncertainty
quantification which leads to accurate prediction of shock location
compared to the other baseline models. Table 12 also shows this
accuracy improvement with a maximum improvement of 2.86× in MSE
for 𝛽 = 1.

J.2.2. Burgers’ equation
Fig. 16 illustrates that the total mass is linear over time, and in

this case is approximately satisfied by our ProbConserv-ANP and the
baselines. Fig. 17 shows the waiting time phenomenon, where the
piecewise linear initial condition self-sharpens until the breaking time
𝑡𝑏 = 1∕𝑎, where it forms a rightward moving shock. We see that the
breaking time is inversely proportional to the slope, and that the shock
forms sooner for larger values of 𝑎.
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