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Predicting trends in the quality of state-of-the-art
neural networks without access to training
or testing data
Charles H. Martin1, Tongsu (Serena) Peng1 & Michael W. Mahoney 2✉

In many applications, one works with neural network models trained by someone else. For

such pretrained models, one may not have access to training data or test data. Moreover, one

may not know details about the model, e.g., the specifics of the training data, the loss

function, the hyperparameter values, etc. Given one or many pretrained models, it is a

challenge to say anything about the expected performance or quality of the models. Here, we

address this challenge by providing a detailed meta-analysis of hundreds of publicly available

pretrained models. We examine norm-based capacity control metrics as well as power law

based metrics from the recently-developed Theory of Heavy-Tailed Self Regularization. We

find that norm based metrics correlate well with reported test accuracies for well-trained

models, but that they often cannot distinguish well-trained versus poorly trained models. We

also find that power law based metrics can do much better—quantitatively better at dis-

criminating among series of well-trained models with a given architecture; and qualitatively

better at discriminating well-trained versus poorly trained models. These methods can be

used to identify when a pretrained neural network has problems that cannot be detected

simply by examining training/test accuracies.
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A common problem in machine learning (ML) is to eval-
uate the quality of a given model. A popular way to
accomplish this is to train a model and then evaluate its

training/testing error. There are many problems with this
approach. The training/testing curves give very limited insight
into the overall properties of the model; they do not take into
account the (often large human and CPU/GPU) time for
hyperparameter fiddling; they typically do not correlate with
other properties of interest such as robustness or fairness or
interpretability; and so on. A related problem, in particular in
industrial-scale artificial intelligence (AI), arises when the model
user is not the model developer. Then, one may not have access to
the training data or the testing data. Instead, one may simply be
given a model that has already been trained—a pretrained model
—and need to use it as-is, or to fine-tune and/or compress it and
then use it.

Naïvely—but in our experience commonly, among ML practi-
tioners and ML theorists—if one does not have access to training
or testing data, then one can say absolutely nothing about the
quality of a ML model. This may be true in worst-case theory, but
models are used in practice, and there is a need for a practical
theory to guide that practice. Moreover, if ML is to become an
industrial process, then that process will become compartmenta-
lized in order to scale: some groups will gather data, other groups
will develop models, and other groups will use those models. Users
of models cannot be expected to know the precise details of how
models were built, the specifics of data that were used to train the
model, what was the loss function or hyperparameter values, how
precisely the model was regularized, etc.

Moreover, for many large scale, practical applications, there is
no obvious way to define an ideal test metric. For example,
models that generate fake text or conversational chatbots may use
a proxy, like perplexity, as a test metric. In the end, however, they
really require human evaluation. Alternatively, models that
cluster user profiles, which are widely used in areas such as
marketing and advertising, are unsupervised and have no obvious
labels for comparison and/or evaluation. In these and other areas,
ML objectives can be poor proxies for downstream goals.

Most importantly, in industry, one faces unique practical
problems such as determining whether one has enough data for a
given model. Indeed, high quality, labeled data can be very
expensive to acquire, and this cost can make or break a project.
Methods that are developed and evaluated on any well-defined
publicly available corpus of data, no matter how large or diverse
or interesting, are clearly not going to be well-suited to address
problems such as this. It is of great practical interest to have
metrics to evaluate the quality of a trained model—in the absence
of training/testing data and without any detailed knowledge of
the training/testing process. There is a need for a practical theory
for pretrained models which can predict how, when, and why
such models can be expected to perform well or poorly.

In the absence of training and testing data, obvious quantities
to examine are the weight matrices of pretrained models, e.g.,
properties such as norms of weight matrices and/or parameters of
Power Law (PL) fits of the eigenvalues of weight matrices. Norm-
based metrics have been used in traditional statistical learning
theory to bound capacity and construct regularizers; and PL fits
are based on statistical mechanics approaches to deep neural
networks (DNNs). While we use traditional norm-based and PL-
based metrics, our goals are not the traditional goals. Unlike more
common ML approaches, we do not seek a bound on the gen-
eralization (e.g., by evaluating training/test errors), we do not seek
a new regularizer, and we do not aim to evaluate a single model
(e.g., as with hyperparameter optimization). Instead, we want to
examine different models across common architecture series, and
we want to compare models between different architectures

themselves. In both cases, one can ask whether it is possible to
predict trends in the quality of pretrained DNN models without
access to training or testing data.

To answer this question, we provide a detailed empirical ana-
lysis, evaluating quality metrics for pretrained DNN models, and
we do so at scale. Our approach may be viewed as a statistical
meta-analysis of previously published work, where we consider a
large suite of hundreds of publicly available models, mostly from
computer vision (CV) and natural language processing (NLP). By
now, there are many such state-of-the-art models that are pub-
licly available, e.g., hundreds of pretrained models in CV (≥500)
and NLP (≈100). (When we began this work in 2018, there were
fewer than tens of such models; then in 2020, there are hundreds
of such models; and we expect that in a year or two there will be
an order of magnitude or more of such models.) For all these
models, we have no access to training data or testing data, and
we have no specific knowledge of the training/testing protocols.
Here is a summary of our main results. First, norm-based metrics
do a reasonably good job at predicting quality trends in well-
trained CV/NLP models. Second, norm-based metrics may give
spurious results when applied to poorly trained models (e.g.,
models trained without enough data, etc.). For example, they may
exhibit what we call Scale Collapse for these models. Third, PL-
based metrics can do much better at predicting quality trends in
pretrained CV/NLP models. In particular, a weighted PL expo-
nent (weighted by the log of the spectral norm of the corre-
sponding layer) is quantitatively better at discriminating among a
series of well-trained versus very-well-trained models within a
given architecture series; and the (unweighted) average PL
exponent is qualitatively better at discriminating well-trained
versus poorly-trained models. Fourth, PL-based metrics can also
be used to characterize fine-scale model properties, including
what we call layer-wise Correlation Flow, in well-trained and
poorly-trained models; and they can be used to evaluate model
enhancements (e.g., distillation, fine-tuning, etc.). Our work
provides a theoretically principled empirical evaluation—by far
the largest, most detailed, and most comprehensive to date—and
the theory we apply was developed previously1–3. Performing
such a meta-analysis of previously published work is common in
certain areas, but it is quite rare in ML, where the emphasis is on
developing better training protocols.

Results
After describing our overall approach, we study in detail three
well-known CV architecture series (the VGG, ResNet, and Den-
seNet series of models). Then, we look in detail at several varia-
tions of a popular NLP architecture series (the OpenAI GPT and
GPT2 series of models), and we present results from a broader
analysis of hundreds of pretrained DNN models.

Overall approach. Consider the objective/optimization function
(parameterized by Wls and bls) for a DNN with L layers, and
weight matrices Wl and bias vectors bl, as the minimization of a
general loss function L over the training data instances and labels,
fxi; yig 2 D. For a typical supervised classification problem, the
goal of training is to construct (or learn) Wl and bl that capture
correlations in the data, in the sense of solving

argmin
Wl ;bL

∑
N

i¼1
LðEDNN ðxiÞ; yiÞ; ð1Þ

where the loss function Lð�; �Þ can take on a myriad of forms4,
and where the energy (or optimization) landscape function

EDNN ¼ f ðxi;W1; ¼ ;WL; b1; ¼ ; bLÞ ð2Þ
depends parametrically on the weights and biases. For a trained
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model, the form of the function EDNN does not explicitly depend
on the data (but it does explicitly depend on the weights and
biases). The function EDNN maps data instance vectors (xi values)
to predictions (yi labels), and thus the output of this function does
depend on the data. Therefore, one can analyze the form of EDNN
in the absence of any training or test data.

Test accuracies have been reported online for publicly available
pretrained pyTorch models5. These models have been trained and
evaluated on labeled data fxi; yig 2 D, using standard techniques.
We do not have access to this data, and we have not trained any
of the models ourselves. Our methodological approach is thus
similar to a statistical meta-analysis, common in biomedical
research, but uncommon in ML. Computations were performed
with the publicly available WeightWatcher tool (version
0.2.7)6. To be fully reproducible, we only examine publicly
available, pretrained models, and we provide all Jupyter and
Google Colab notebooks used in an accompanying github
repository7. See Supplementary Note 1 for details.

Our approach involves analyzing individual DNN weight
matrices, for (depending on the architecture) fully connected
and/or convolutional layers. Each DNN layer contains one or
more layer 2D Nl ×Ml weight matrices, Wl, or pre-activation
maps, Wi,l, e.g., extracted from 2D Convolutional layers, where
N >M. (We may drop the i and/or i, l subscripts below.) The best
performing quality metrics depend on the norms and/or spectral
properties of each weight matrix, W, and/or, equivalently, it’s
empirical correlation matrix, X=WTW. To evaluate the quality of
state-of-the-art DNNs, we consider the following metrics:

Frobenius Norm :k Wk2F ¼k XkF ¼ ∑
M

i¼1
λi ð3Þ

Spectral Norm :k Wk21 ¼k Xk1 ¼ λmax ð4Þ

Weighted Alpha : α̂ ¼ α log λmax ð5Þ

α�Normðor α�Shatten NormÞ :k Wk2α2α ¼k Xkαα ¼ ∑
M

i¼1
λαi : ð6Þ

To perform diagnostics on potentially problematic DNNs, we
will decompose α̂ into its two components, α and λmax. Here, λi is
the ith eigenvalue of the X, λmax is the maximum eigenvalue, and
α is the fitted PL exponent. These eigenvalues are squares of the
singular values σi ofW, λi ¼ σ2i . All four metrics can be computed
easily from DNN weight matrices. The first two metrics are well-
known in ML. The last two metrics deserve special mention, as
they depend on an empirical parameter α that is the PL exponent
that arises in the recently developed Heavy Tailed Self
Regularization (HT-SR) Theory1–3.

In the HT-SR Theory, one analyzes the eigenvalue spectrum,
i.e., the Empirical Spectral Density (ESD), of the associated
correlation matrices1–3. From this, one characterizes the amount
and form of correlation, and therefore implicit self-regularizar-
tion, present in the DNN’s weight matrices. For each layer weight
matrix W, of size N ×M, construct the associated M ×M
(uncentered) correlation matrix X. Dropping the L and l, i
indices, one has

X ¼ 1
N
WTW:

If we compute the eigenvalue spectrum of X, i.e., λi such that Xvi
= λivi, then the ESD of eigenvalues, ρ(λ), is just a histogram of the
eigenvalues, formally written as ρðλÞ ¼ ∑M

i¼1 δðλ� λiÞ: Using HT-
SR Theory, one characterizes the correlations in a weight matrix
by examining its ESD, ρ(λ). It can be well-fit to a truncated PL

distribution, given as

ρðλÞ � λ�α; ð7Þ
which is (at least) valid within a bounded range of eigenvalues
λ∈ [λmin, λmax].

The original work on HT-SR Theory considered a small
number of NNs, including AlexNet and InceptionV3. It showed
that for nearly every W, the (bulk and tail) of the ESDs can be fit
to a truncated PL, and that PL exponents α nearly all lie within
the range α∈ (1.5, 5)1–3. As for the mechanism responsible for
these properties, statistical physics offers several possibilities8,9,
e.g., self-organized criticality10,11 or multiplicative noise in the
stochastic optimization algorithms used to train these
models12,13. Alternatively, related techniques have been used to
analyze correlations and information propogation in actual
spiking neurons14,15. Our meta-analysis does not require knowl-
edge of mechanisms; and it is not even clear that one mechanism
is responsible for every case. Crucially, HT-SR Theory predicts
that smaller values of α should correspond to models with better
correlation over multiple size scales and thus to better models.
The notion of “size scale” is well-defined in physical systems, to
which this style of analysis is usually applied, but it is less well-
defined in CV and NLP applications. Informally, it would
correspond to pixel groups that are at a greater distance in some
metric, or between sentence parts that are at a greater distance in
text. Relatedly, previous work observed that smaller exponents α
correspond to more implicit self-regularization and better
generalization, and that we expect a linear correlation between
α̂ and model quality1–3.

For norm-based metrics, we use the average of the log norm, to
the appropriate power. Informally, this amounts to assuming that
the layer weight matrices are statistically independent, in which
case we can estimate the model complexity C, or test accuracy,
with a standard Product Norm (which resembles a data
dependent VC complexity),

C �k W1 k ´ k W2 k ´ � � � ´ k WL k; ð8Þ
where ∥ ⋅ ∥ is a matrix norm. The log complexity,

log C � log k W1 k þlog k W2 k þ � � � þ log k WL k¼ ∑
l
log k Wl k; ð9Þ

takes the form of an average Log Norm. For the Frobenius Norm
metric and Spectral Norm metric, we can use Eq. (9) directly
(since, when taking log k Wlk2F , the 2 comes down and out of the
sum, and thus ignoring it only changes the metric by a constant
factor).

The Weighted Alpha metric is an average of αl over all layers
l∈ {1,…, l}, weighted by the size, or scale, or each matrix,

α̂ ¼ 1
L
∑
l
αllog λmax;l � hlog k Xkααi; ð10Þ

where L is the total number of layer weight matrices. The
Weighted Alpha metric was introduced previously3, where it was
shown to correlate well with trends in reported test accuracies of
pretrained DNNs, albeit on a much smaller and more limited set
of models than we consider here.

Based on this, in this paper, we introduce and evaluate the α-
Shatten Norm metric,

∑
l
log k Xlkαlαl ¼ ∑

l
αllog k Xlkαl : ð11Þ

For the α-Shatten Norm metric, αl varies from layer to layer,
and so in Eq. (11) it cannot be taken out of the sum. For small α,
the Weighted Alpha metric approximates the Log α-Shatten
norm, as can be shown with a statistical mechanics and random
matrix theory derivation; and the Weighted Alpha and α-Shatten
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norm metrics often behave like an improved, weighted average
Log Spectral Norm.

Finally, although it does less well for predicting trends in state-
of-the-art model series, e.g., as depth changes, the average value of
α, i.e.,

�α ¼ 1
L
∑
l
αl ¼ hαi; ð12Þ

can be used to perform model diagnostics, to identify problems
that cannot be detected by examining training/test accuracies, and
to discriminate poorly trained models from well-trained models.

One determines α for a given layer by fitting the ESD of that
layer’s weight matrix to a truncated PL, using the commonly
accepted Maximum Likelihood method16,17. This method works
very well for exponents between α∈ (2, 4); and it is adequate,
although imprecise, for smaller and especially larger α18.
Operationally, α is determined by using the WeightWatcher
tool6 to fit the histogram of eigenvalues, ρ(λ), to a truncated PL,

ρðλÞ � λα; λ 2 ½λmin; λmax�; ð13Þ

where λmax is the largest eigenvalue of X=WTW, and where λmin

is selected automatically to yield the best (in the sense of
minimizing the K-S distance) PL fit. Each of these quantities is
defined for a given layer W matrix. See Fig. 1 for an illustration.

To avoid confusion, let us clarify the relationship between α
and α̂. We fit the ESD of the correlation matrix X to a truncated
PL, parameterized by 2 values: the PL exponent α, and the
maximum eigenvalue λmax. The PL exponent α measures the
amount of correlation in a DNN layer weight matrixW. It is valid
for λ ≤ λmax, and it is scale-invariant, i.e., it does not depend on
the normalization of W or X. The λmax is a measure of the size, or
scale, of W. Multiplying each α by the corresponding log λmax
weighs “bigger” layers more, and averaging this product leads to a
balanced, Weighted Alpha metric α̂ for the entire DNN. We will
see that for well-trained CV and NLP models, α̂ performs quite
well and as expected, but for CV and NLP models that are
potentially problematic or less well-trained, metrics that depend
on the scale of the problem can perform anomalously. In these

cases, separating α̂ into its two components, α and λmax, and
examining the distributions of each, can be helpful.

Comparison of CV models. Each of the VGG, ResNet, and
DenseNet series of models consists of several pretrained DNN
models, with a given base architecture, trained on the full
ImageNet19 dataset, and each is distributed with the current open
source pyTorch framework (version 1.4)20. In addition, we
examine a larger set of ResNet models, which we call the ResNet-
1K series, trained on the ImageNet-1K dataset19 and provided on
the OSMR Sandbox5. For these models, we first perform coarse
model analysis, comparing and contrasting the four model series,
and predicting trends in model quality. We then perform fine
layer analysis, as a function of depth. This layer analysis goes
beyond predicting trends in model quality, instead illustrating
that PL-based metrics can provide novel insights among the
VGG, ResNet/ResNet-1K, and DenseNet architectures.

We examine the performance of the four quality metrics—Log
Frobenius norm (hlog k Wk2Fi), Log Spectral norm
(hlog k Wk21i), Weighted Alpha (α̂), and Log α-Norm
(hlog k Xkααi)—applied to each of the VGG, ResNet, ResNet-
1K, and DenseNet series. Figure 2 plots the four quality metrics
versus reported test accuracies20, as well as a basic linear
regression line, for the VGG series. (These test accuracies have
been previously reported and made publicly available by others.
We take them as given. We do not attempt to reproduce/verify
them, since we do not permit ourselves access to training/test
data.) Here, smaller norms and smaller values of α̂ imply better
generalization (i.e., greater accuracy, lower error). Quantitatively,
Log Spectral norm is the best; but, visually, all four metrics
correlate quite well with reported Top1 accuracies. The DenseNet
series has similar behavior. (These and many other such plots can
be seen on our publicly available repo.)

To examine visually how the four quality metrics depend on
data set size on a larger, more complex model series, we next look
at results on ResNet versus ResNet-1K. Figure 3 compares the Log
α-Norm metric for the full ResNet model, trained on the full
ImageNet dataset, against the ResNet-1K model, trained on a
much smaller ImageNet-1K data set. Here, the Log α-Norm is

Fig. 1 Schematic of analyzing DNN layer weight matrices W. Given an individual layer weight matrix W, from either a fully connected layer or a
convolutional layer, perform a Singular Value Decomposition (SVD) to obtainW=UΣVT, and examine the histogram of eigenvalues ofWTW. Norm-based
metrics and PL-based metrics (that depend on fitting the histogram of eigenvalues to a truncated PL) can be used to compare models. For example, one can
analyze one layer of a pre-trained model, compare multiple layers of a pre-trained model, make comparisons across model architectures, monitor neural
network properties during training, etc.
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much better than the Log Frobenius/Spectral norm metrics
(although, as Table 1 shows, it is slightly worse than the Weighted
Alpha metric). The ResNet series has strong correlation (RMSE of
0.66, R2 of 0.9, and Kendall-τ of−1.0), whereas the ResNet-1K
series also shows good but weaker correlation (much larger RMSE
of 1.9, R2 of 0.88, and Kendall-τ of−0.88).

See Table 1 for a summary of results for Top1 accuracies for all
four metrics for the VGG, ResNet, ResNet-1K, and DenseNet
series. Similar results are obtained for the Top5 accuracies. The
Log Frobenius norm performs well but not extremely well; the
Log Spectral norm performs very well on smaller, simpler models
like the VGG and DenseNet architectures; and, when moving to

Fig. 2 Comparison of average Log Norm andWeighted Alpha quality metrics for CV models. Comparison of average Log Norms (in (a), (b), and (d)) and
Weighted Alpha (in (c)) quality metrics versus reported test accuracy for pretrained VGG models: VGG11, VGG13, VGG16, and VGG19, with and without
Batch Normalization (BN), trained on ImageNet, available in pyTorch (v1.4). Metrics fit by linear regression, RMSE, R2, and the Kendal-tau rank correlation
metric reported.

Fig. 3 Comparison of average α-Norm quality metric for CV models. Comparison of average α-Norm quality metric versus reported Top1 test accuracy for the
ResNet (in (a)) and ResNet-1K (in (b)) pretrained (pyTorch) models. Metrics fit by linear regression, RMSE, R2, and the Kendal-tau rank correlation metric reported.
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the larger, more complex ResNet series, the PL-based metrics,
Weighted Alpha and the Log α-Norm, perform the best. Overall,
though, these model series are all very well-trodden; and our
results indicate that norm-based metrics and PL-based metrics
can both distinguish among a series of well-trained versus very-
well-trained models, with PL-based metrics performing some-
what (i.e., quantitatively) better on the larger, more complex
ResNet series.

In particular, the PL-based Weighted Alpha and Log α-Norm
metrics tend to perform better when there is a wider variation in
the hyperparameters, going beyond just increasing the depth. In
addition, sometimes the purely norm-based metrics such as the
Log Spectral norm can be uncorrelated or even anti-correlated
with the test accuracy, while the PL-metrrics are positively
correlated. See Supplementary Note 2 for additional details.

Going beyond coarse averages to examining quality metrics for
each layer weight matrix as a function of depth (or layer id), our
metrics can be used to perform model diagnostics and to identify
fine-scale properties in a pretrained model. Doing so involves
separating α̂ into its two components, α and λmax, and examining
the distributions of each. We provide examples of this.

Figure 4 plots the PL exponent α, as a function of depth, for
each layer (first layer corresponds to data, last layer to labels) for
the least accurate (shallowest) and most accurate (deepest) model
in each of the VGG (no BN), ResNet, and DenseNet series. (Many
more such plots are available at our repo.)

In the VGG models, Fig. 4a shows that the PL exponent α
systematically increases as we move down the network, from data
to labels, in the Conv2D layers, starting with α≲ 2.0 and reaching
all the way to α ~ 5.0; and then, in the last three, large, fully
connected (FC) layers, α stabilizes back down to α∈ [2, 2.5]. This
is seen for all the VGG models (again, only the shallowest and
deepest are shown), indicating that the main effect of increasing
depth is to increase the range over which α increases, thus leading
to larger α values in later Conv2D layers of the VGG models. This
is quite different than the behavior of either the ResNet-1K
models or the DenseNet models.

For the ResNet-1K models, Fig. 4b shows that α also increases
in the last few layers (more dramatically than for VGG, observe
the differing scales on the Y axes). However, as the ResNet-1K
models get deeper, there is a wide range over which α values tend
to remain small. This is seen for other models in the ResNet-1K
series, but it is most pronounced for the larger ResNet-1K (152)
model, where α remains relatively stable at α ~ 2.0, from the
earliest layers all the way until we reach close to the final layers.

For the DenseNet models, Fig. 4c shows that α tends to
increase as the layer id increases, in particular for layers toward

the end. While this is similar to the VGG models, with the
DenseNet models, α values increase almost immediately after the
first few layers, and the variance is much larger (in particular for
the earlier and middle layers, where it can range all the way to
α ~ 8.0) and much less systematic throughout the network.

Overall, Fig. 4 demonstrates that the distribution of α values
among layers is architecture dependent, and that it can vary in a
systematic way within an architecture series. This is to be
expected, since some architectures enable better extraction of
signal from the data. This also suggests that, while performing
very well at predicting trends within an architecture series, PL-
based metrics (as well as norm-based metrics) should be used
with caution when comparing models with very different
architectures.

Figure 4 can be understood in terms of what we will call
Correlation Flow. Recall that the average Log α-Norm metric and
the Weighted Alpha metric are based on HT-SR Theory1–3,
which is in turn based on the statistical mechanics of heavy tailed
and strongly correlated systems8,21–23. There, one expects that the
weight matrices of well-trained DNNs will exhibit correlations
over many size scales, as is well-known in other strongly
correlated systems8,21. This would imply that their ESDs can be
well-fit by a truncated PL, with exponents α∈ [2, 4]. Much larger
values (α≫ 6) may reflect poorer PL fits, whereas smaller values
(α ~ 2), are associated with models that generalize better.

Informally, one would expect a DNN model to perform well
when it facilitates the propagation of information/features across
layers. In the absence of training/test data, one might hypothesize
that this flow of information leaves empirical signatures on
weight matrices, and that we can quantify this by measuring the
PL properties of weight matrices. In this case, smaller α values
correspond to layers in which information correlations between
data across multiple scales are better captured1,8. This leads to the
hypothesis that small α values that are stable across multiple
layers enable better correlation flow through the network. This is
similar to recent work on the information bottleneck24,25, except
that here we work in an entirely unsupervised setting.

The similarity between norm-based metrics and PL-based
metrics may lead one to wonder whether the Weighted Alpha
metric is just a variation of more familiar norm-based metrics.
Among hundreds of pretrained models, there are “exceptions that
prove the rule”, and these can be used to show that fitted α values
do contain information not captured by norms. To illustrate this,
we show that some compression/distillation methods26 may
actually damage models unexpectedly, by introducing what we
call Scale Collapse, where several distilled layers have unexpect-
edly small Spectral Norms. By Scale Collapse, we mean that the

Table 1 Quality metrics (for RMSE, smaller is better; for R2, larger is better; for Kendall-τ rank correlation, larger magnitude is
better; best is bold) for reported Top1 test error for pretrained models in each architecture series.

Series # Metric hlog k Wk2Fi hlog k Wk21i α̂ hlog k Xkααi
VGG 6 RMSE 0.56 0.23 0.48 0.34

R2 0.88 0.98 0.92 0.96
Kendall-τ −0.79 −0.93 −0.93 −0.93

ResNet 5 RMSE 0.9 0.97 0.61 0.66
R2 0.92 0.9 0.96 0.9
Kendall-τ −1.0 −1.0 −1.0 −1.0

ResNet-1K 19 RMSE 2.4 2.8 1.8 1.9
R2 0.81 0.74 0.89 0.88
Kendall-τ −0.79 −0.79 −0.89 −0.88

DenseNet 4 RMSE 0.3 0.11 0.16 0.21
R2 0.93 0.99 0.98 0.97
Kendall-τ −1.0 −1.0 −1.0 −1.0

Column # refers to number of models. VGG, ResNet, and DenseNet were pretrained on ImageNet. ResNet-1K was pretrained on ImageNet-1K.
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size scale, e.g., as measured by the Spectral or Frobenius Norm, of
one or more layers changes dramatically, while the size scale of
other layers changes very little, as a function of some change to or
perturbation of a model. The size scales of different parts of a
DNN model are typically defined implicitly by the model training
process, and they typically vary in a gradual way for high-quality
models. Examples of changes of interest include model compres-
sion or distillation (discussed here for a CV model), data
augmentation (discussed below for an NLP model), additional
training, model fine-tuning, etc.

Consider ResNet20, trained on CIFAR10, before and after
applying the Group Regularization distillation technique, as
implemented in the distiller package27. We analyze the
pretrained 4D_regularized_5Lremoved baseline and fine-tuned
models. The reported baseline test accuracies (Top1= 91.45 and
Top5= 99.75) are better than the reported fine-tuned test
accuracies (Top1= 91.02 and Top5= 99.67). Because the base-
line accuracy is greater, the previous results on ResNet (Table 1
and Fig. 3) suggest that the baseline Spectral Norms should be
smaller on average than the fine-tuned ones. The opposite is
observed. Figure 5 presents the Spectral Norm (here denoted
log λmax) and PL exponent (α) for each individual layer weight

matrix W. On the other hand, the α values (in Fig. 5b) do not
differ systematically between the baseline and fine-tuned models.
Also, �α, the average unweighted baseline α, from Eq. (12), is
smaller for the original model than for the fine-tuned model (as
predicted by HT-SR Theory, the basis of α̂). In spite of this,
Fig. 5b also depicts two very large α≫ 6 values for the baseline,
but not for the fine-tuned, model. This suggests the baseline
model has at least two over-parameterized/under-trained layers,
and that the distillation method does, in fact, improve the fine-
tuned model by compressing these layers.

Pretrained models in the distiller package have passed
some quality metric, but they are much less well-trodden than
any of the VGG, ResNet, or DenseNet series. The obvious
interpretation is that, while norms make good regularizers for a
single model, there is no reason a priori to expect them correlate
well with test accuracies across different models, and they may
not differentiate well-trained versus poorly trained models. We
do expect, however, the PL α to do so, because it effectively
measures the amount of information correlation in the model1–3.
This suggests that the α values will improve, i.e., decrease, over
time, as distillation techniques continue to improve. The reason
for the anomalous behavior shown in Fig. 5 is that the

Fig. 4 PL exponent (α) versus layer id for VGG, ResNet, and DenseNet. PL exponent (α) versus layer id, for the least and the most accurate models in
VGG (a), ResNet (b), and DenseNet (c) series. (VGG is without BN; and note that the Y axes on each plot are different.) Subfigure (d) displays the ResNet
models (b), zoomed in to α∈ [1, 5], and with the layer ids overlaid on the X-axis, from smallest to largest, to allow a more detailed analysis of the most
strongly correlated layers. Notice that ResNet152 exhibits different and much more stable behavior of α across layers. This contrasts with how both VGG
models gradually worsen in deeper layers and how the DenseNet models are much more erratic. In the text, this is interpreted in terms of Correlation Flow.
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distiller Group Regularization technique causes the norms
of the W pre-activation maps for two Conv2D layers to increase
spuriously. This is difficult to diagnose by analyzing training/test
curves, but it is easy to diagnose with our approach.

Comparison of NLP Models. Within the past few years, nearly
100 open source, pretrained NLP DNNs based on the revolu-
tionary Transformer architecture have emerged. These include
variants of BERT, Transformer-XML, GPT, etc. The Transformer
architectures consist of blocks of so-called Attention layers,
containing two large, Feed Forward (Linear) weight matrices28. In
contrast to smaller pre-Activation maps arising in Cond2D layers,
Attention matrices are significantly larger. In general, they have
larger PL exponents α. Based on HT-SR Theory (in particular, the
interpretation of values of α ~ 2 as modeling systems with good
correlations over many size scales8,21), this suggests that these
models fail to capture successfully many of the information
correlations in the data (relative to their size) and thus are sub-
stantially under-trained. More generally, compared to CV mod-
els, modern NLP models have larger weight matrices and display
different spectral properties.

While norm-based metrics perform reasonably well on well-
trained NLP models, they often behave anomalously on poorly
trained models. For such models, weight matrices may display
rank collapse, decreased Frobenius mass, or unusually small
Spectral norms. This may be misinterpreted as “smaller is better”.
Instead, it should probably be interpreted as being due to a
similar mechanism to how distillation can “damage” otherwise
good models. In contrast to norm-based metrics, PL-based
metrics, including the Log α-Norm metric and the Weighted
Alpha metric, display more consistent behavior, even on less well-
trained models. To help identify when architectures need repair
and when more and/or better data are needed, one can use these
metrics, as well as the decomposition of the Weighted Alpha
metric (αlog λmax) into its PL component (α) and its norm
component (log λmax), for each layer.

Many NLP models, such as early variants of GPT and BERT,
have weight matrices with unusually large PL exponents (e.g.,
α≫ 6). This indicates these matrices may be under-correlated
(i.e., over-parameterized, relative to the amount of data). In this
regime, the truncated PL fit itself may not be very reliable because
the Maximum Likelihood estimator it uses is unreliable in this

range. In this case, the specific α values returned by the truncated
PL fits are less reliable, but having large versus small α is reliable.
If the ESD is visually examined, one can usually describe these
W as in the BULK-DECAY or BULK+SPIKES phase from HT-
ST Theory1,2. Previous work1,2 has conjectured that very well-
trained DNNs would not have many outlier α≫ 6. Consistent
with this, more recent improved versions of GPT (shown below)
and BERT (not shown) confirm this.

The OpenAI GPT and GPT2 series of models provide the
opportunity to analyze two effects: increasing the sizes of both
the data set and the architectures simultaneously; and training the
same model with low-quality data versus high-quality data. These
models have the ability to generate fake text that appears to the
human to be real, and they have generated media attention
because of the potential for their misuse. For this reason, the
original GPT model released by OpenAI was trained on a
deficient data set, rendering the model interesting but not fully
functional. Later, OpenAI released a much improved model,
GPT2-small, which has the same architecture and number of
layers as GPT, but which has been trained on a larger and better
data set, making it remarkably good at generating (near) human-
quality fake text. Subsequent models in the GPT2 were larger and
trained to more data. By comparing GPT2-small to GPT2-
medium to GPT2-large to GPT2-xl, we can examine the effect of
increasing data set and model size simultaneously, as well as
analyze well-trained versus very-well-trained models. By compar-
ing the poorly trained GPT to the well-trained GPT2-small, we
can identify empirical indicators for when a model has been
poorly trained and thus may perform poorly when deployed. The
GPT models we analyze are deployed with the popular
HuggingFace PyTorch library29.

We examine the performance of the four quality metrics (Log
Frobenius norm, Log Spectral norm, Weighted Alpha, and Log α-
Norm) for the OpenAI GPT and GPT2 pretrained models. See
Table 2 for a summary of results. Comparing trends between
GPT2-medium to GPT2-large to GPT2-xl, observe that (with one
minor exception involving the log Frobenius norm metric) all
four metrics decrease as one goes from medium to large to xl.
This indicates that the larger models indeed look better than the
smaller models, as expected. GPT2-small violates this general
trend, but only very slightly. This could be due to under-
optimization of the GPT2-small model, or since it is the smallest
of the GPT2 series, and the metrics we present are most relevant

Fig. 5 ResNet20, distilled with Group Regularization, as implemented in the distiller (4D_regularized_5Lremoved) pretrained models. Log Spectral
Norm (log λmax, in (a)) and PL exponent (α, in (b)) for individual layers, versus layer id, for both baseline (before distillation, green) and fine-tuned (after
distillation, red) pretrained models.
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for models at scale. Aside from this minor discrepancy, overall for
these well-trained models, all these metrics now behave as
expected, i.e., there is no Scale Collapse and norms are decreasing
with increasing accuracy.

Comparing trends between GPT and GPT2-small reveals a
different story. Observe that all four metrics increase when going
from GPT to GPT2-small, i.e., they are larger for the higher-
quality model (higher quality since GPT2-small was trained to
better data) and smaller for the lower-quality model, when the
number of layers is held fixed. This is unexpected. Here, too, we
can perform model diagnostics, by separating α̂ into its two
components, α and λmax, and examining the distributions of each.
In doing so, we see additional examples of Scale Collapse and
additional evidence for Correlation Flow.

We next examine the Spectral norm in GPT versus GPT2-
small. In Fig. 6a, the poorly-trained GPT model has a smaller
mean/median Spectral norm as well as, spuriously, many much
smaller Spectral norms, compared to the well-trained GPT2-
small. This violates the conventional wisdom that smaller
Spectral norms are better. Because there are so many
anomalously small Spectral norms, the GPT model appears to
be exhibiting a kind of Scale Collapse, like that observed (in
Fig. 5) for the distilled CV models. This demonstrates that, while
the Spectral (or Frobenius) norm may correlate well with
predicted test error, at least among reasonably well-trained
models, it is not a good indicator of the overall model quality in
general. Naïvely using it as an empirical quality metric may give
spurious results when applied to poorly trained or otherwise
deficient models.

Figure 7a shows the Spectral norm as a function of depth (layer
id). This illustrates two phenomenon. First, the large value of
Spectral norm (in Fig. 6a) corresponds to the first embedding
layer(s). These layers have a different effective normalization, and
therefore a different scale. See Supplementary Note 2 for details.
We do not include them in our computed average metrics in
Table 2. Second, for GPT, there seems to be two types of layers
with very different Spectral norms (an effect which is seen, but to
a much weaker extent, for GPT2-small). Recall that attention
models have two types of layers, one small and large; and the
Spectral norm (in particular, other norms do too) displays
unusually small values for some of these layers for GPT. This
Scale Collapse for the poorly trained GPT is similar to what we
observed for the distilled ResNet20 model in Fig. 5b. Because of
the anomalous Scale Collapse that is frequently observed in
poorly trained models, these results suggest that scale-dependent
norm metrics should not be directly applied to distinguish well-
trained versus poorly trained models.

We next examine the distribution of α values in GPT versus
GPT2-small. Figure 6b shows the histogram (empirical density),
for all layers, of α for GPT and GPT2-small. The older deficient
GPT has numerous unusually large α exponents—meaning they
are not well-described by a PL fit. Indeed, we expect that a poorly
trained model will lack good (i.e., small α) PL behavior in many/
most layers. On the other hand, the newer improved GPT2-small
model has, on average, smaller α values than the older GPT, with
all α ≤ 6 and with smaller mean/median α. It also has far fewer
unusually large outlying α values than GPT. From this (and other
results not shown), we see that �α from Eq. (12), provides a good
quality metric for comparing the poorly trained GPT versus
the well-trained GPT2-small. This should be contrasted with the
behavior displayed by scale-dependent metrics such as the
Frobenius norm (not shown) and the Spectral norm. This also
reveals why α̂ performs unusually in Table 2. The PL exponent α
behaves as expected, and thus the scale-invariant �α metric lets us
identify potentially poorly trained models. It is the Scale Collapse
that causes problems for α̂ (recall that the scale enters into α̂ via
the weights log λmax).

Figure 7b plots α versus the depth (layer id) for each model.
The deficient GPT model displays two trends in α, one stable with
α ~ 4, and one increasing with layer id, with α reaching as high as
12. In contrast, the well-trained GPT2-small model shows
consistent and stable patterns, again with one stable α ~ 3.5
(and below the GPT trend), and the other only slightly trending
up, with α ≤ 6. These results show that the behavior of α across
layers differs significantly between GPT and GPT2-small, with the
better GPT2-small looking more like the better ResNet-1K from
Fig. 4b. These results also suggest that smaller more stable values
of α across depth is beneficial, i.e., that the Correlation Flow is
also a useful concept for NLP models.

Fig. 6 Histogram of PL exponents and Log Spectral Norms for NLP models. Histogram of Log Spectral Norms (in a) and PL exponents (in b) for weight
matrices from the OpenAI GPT and GPT2-small pretrained models.

Table 2 Average value for the average Log Norm and
Weighted Alpha metrics for pretrained OpenAI GPT and
GPT2 models.

Series # hlog k WkFi hlog k Wk1i α̂ hlog k Xkααi
GPT 49 1.64 1.72 7.01 7.28
GPT2-small 49 2.04 2.54 9.62 9.87
GPT2-medium 98 2.08 2.58 9.74 10.01
GPT2-large 146 1.85 1.99 7.67 7.94
GPT2-xl 194 1.86 1.92 7.17 7.51

Column # refers to number of layers treated. Averages do not include the first embedding layer
(s) because they are not (implicitly) normalized. GPT has 12 layers, with 4 Multi-head Attention
Blocks, giving 48 layer Weight Matrices, W. Each Block has 2 components, the Self Attention
(attn) and the Projection (proj) matrices. Self-attention matrices are larger, of dimension
(2304 × 768) or (3072 × 768). The projection layer concatenates the self-attention results into
a vector (of dimension 768). This gives 50 large matrices. Because GPT and GPT2 are trained
on different data sets, the initial Embedding matrices differ in shape. GPT has an initial Token
and Positional Embedding layers, of dimension (40478 × 768) and (512 × 768), respectively,
whereas GPT2 has input Embeddings of shape (50257 × 768) and (1024 × 768), respectively.
The OpenAI GPT2 (English) models are: GPT2-small, GPT2-medium, GPT2-large, and GPT2-xl,
having 12, 24, 36, and 48 layers, respectively, with increasingly larger weight matrices.
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We now look across series of increasingly improving GPT2
models (well-trained versus very-well-trained models), by exam-
ining both the PL exponent α as well as the Log Norm metrics.
Figure 8 shows the histograms over the layer weight matrices for
fitted PL exponent α and the Log Alpha Norm metric. In general,
and as expected, as we move from GPT2-medium to GPT2-xl,
histograms for both α exponents and the Log Norm metrics
downshift from larger to smaller values.

From Fig. 8a, we see that �α, the average α value, decreases with
increasing model size (3.82 for GPT2-medium, 3.97 for GPT2-
large, and 3.81 for GPT2-xl), although the differences are less
noticeable between the differing well-trained versus very-well-
trained GTP2 models than between the poorly trained versus
well-trained GPT and GPT2-small models. Also, from Fig. 8b, we
see that, unlike GPT, the layer Log Alpha Norms behave more as
expected for GPT2 layers, with the larger models consistently
having smaller norms (9.96 for GPT2-medium, 7.982 for GPT2-
large, and 7.49 for GPT2-xl). Similarly, the Log Spectral Norm
also decreases on average with the larger models (2.58 for GPT2-
medium, 1.99 for GPT2-large, and 1.92 for GPT2-xl). As
expected, the norm metrics can indeed distinguish among well-
trained versus very-well-trained models.

While the means and peaks of the α distributions are getting
smaller, towards 2.0, as expected, Fig. 8a also shows that the tails of
the α distributions shift right, with larger GPT2 models having more
unusually large α values. This is unexpected. It suggests that these

larger GPT2 models are still under-optimized/over-parameterized
(relative to the data on which they were trained) and that they have
capacity to support datasets even larger than the recent XL 1.5B
release30. This does not contradict recent theoretical work on the
benefits of over-parameterization31, e.g., since in practice these
extremely large models are not fully optimized. Subsequent
refinements to these models, and other models such as BERT,
indicate that this is likely the case.

Comparing hundreds of models. We have performed a large-
scale analysis of hundreds of publicly available models. This
broader analysis is on a much larger set of CV and NLP models,
with a more diverse set of architectures, that have been developed
for a wider range of tasks; and it complements the previous more
detailed analysis on CV and NLP models, where we have analyzed
only a single architecture series at a time. See Supplementary
Note 2 (and our publicly available repo) for details. To quantify
the relationship between quality metrics and the reported test
error and/or accuracy metrics, we use ordinary least squares to
regress the metrics on the Top1 (and Top5) reported errors (as
dependent variables), and we report the RMSE, the R2 (R2)
regresssion metric, and the Kendal-τ rank correlation metric.
These include Top5 errors for the ImageNet-1K model, percent
error for the CIFAR-10/100, SVHN, CUB-200-2011 models, and
Pixel accuracy (Pix.Acc.) and Intersection-Over-Union (IOU) for

Fig. 7 Log Spectral Norms and PL exponents for NLP models. Log Spectral Norms (in (a)) and PL exponents (in (b)) for weight matrices from the OpenAI
GPT and GPT2-small pretrained models. (Note that the quantities shown on each Y axis are different). In the text, this is interpreted in terms of Scale
Collapse and Correlation Flow.

Fig. 8 Histogram of PL exponents and Log Alpha Norm for weight matrices from models of different sizes in the GPT2 architecture series. (Plots omit
the first 2 (embedding) layers, because they are normalized differently giving anomalously large values).
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other models. We regress them individually on each of the norm-
based and PL-based metrics.

Results are summarized in Table 3 (and Supplementary
Note 2). For the mean, smaller RMSE, larger R2, and larger
Kendal-τ are desirable; and, for the standard deviation, smaller
values are desirable. Taken as a whole, over the entire corpus of
data, PL-based metrics are somewhat better for both the R2 mean
and standard deviation; and PL-based metrics are much better for
RMSE mean and standard deviation. Model diagnostics (Supple-
mentary Note 2) indicate many outliers and imperfect fits.
Overall, though, these and other results suggest our conclusions
hold much more generally.

Discussion
Going beyond the goal of predicting trends in the quality of state-
of-the-art neural networks without access to training or testing
data, observations such as the layer-wise observations we
described in Fig. 4 can be understood in terms of architectural
differences between VGG, ResNet, and DenseNet. VGG resem-
bles the traditional convolutional architectures, such as LeNet5,
and consists of several [Conv2D-Maxpool-ReLu] blocks, followed
by 3 large Fully Connected (FC) layers. ResNet greatly improved
on VGG by replacing the large FC layers, shrinking the Conv2D
blocks, and introducing residual connections. This optimized
approach allows for greater accuracy with far fewer parameters,
and ResNet models of up to 1000 layers have been trained32.

The efficiency and effectiveness of ResNet seems to be reflected
in the smaller and more stable α ~ 2.0, across nearly all layers,
indicating that the inner layers are very well correlated and more
strongly optimized. This contrasts with the DenseNet models,
which contains many connections between every layer. These
results (large α, meaning that even a PL model is probably a poor
fit) suggest that DenseNet has too many connections, diluting
high quality interactions across layers, and leaving many layers
very poorly optimized. Fine-scale measurements such as these
enable us to form hypotheses as to the inner workings of DNN
models, opening the door to an improved understanding of why
DNNs work, as well as how to design better DNN models.
Correlation Flow and Scale Collapse are two such examples.

Statistical mechanics has long had influence on DNN theory
and practice33–35. Our best-performing PL-based metrics are
based on statistical mechanics via HT-SR Theory1–3,34,36. The
way in which we (and HT-SR Theory) use statistical mechanics
theory is quite different than the way it is more commonly
formulated33,35. Going beyond idealized models, we use statistical
mechanics in a broader sense, drawing upon techniques from
quantitative finance, random matrix theory, and the statistical
mechanics of heavy tailed and strongly correlated systems34.

There is also a large body of work in ML on using norm-based
metrics to bound generalization error37–39. This theoretical work
aims to prove generalization bounds, and this applied work then
uses these norms to construct regularizers to improve training.
Proving generalization bounds and developing new regularizers is
very different than our focus on validating pretrained models.

Our work also has intriguing similarities and differences with
work on understanding DNNs with the information bottleneck
principle24,25, which posits that DNNs can be quantified by the
mutual information between their layers and the input and out-
put variables. Most importantly, our approach does not require
access to any data, while information measures used in the
information bottleneck approach do require this. Nevertheless,
several results from HT-SR Theory, on which our metrics are
based, have parallels in the information bottleneck approach.
Perhaps most notably, the quick transition from a RANDOM-
LIKE phase to BULK+SPIKES phase, followed by slow transition
to a HEAVY-TAILED phase, as noted previously1, is reminiscent
of the dynamics on the Information Plane25.

Finally, our work, starting in 2018 with the WeightWatcher
tool6, is the first to perform a detailed analysis of the weight
matrices of DNNs1–3. Subsequent to the initial version of this
paper, we became aware of two other works that were posted in
2020 within weeks of the initial version of this paper40,41. Both of
these papers validate our basic result that one can gain substantial
insight into model quality by examining weight matrices without
access to any training or testing data. However, both consider
smaller models drawn from a much narrower range of applica-
tions than we consider. Previous results in HT-SR Theory suggest
that insights from these smaller models may not extend to the
state-of-the-art CV and NLP models we consider.

We have developed and evaluated methods to predict trends in
the quality of state-of-the-art neural networks—without access to
training or testing data. Our main methodology involved weight
matrix meta-analysis, using the publicly available Weight-
Watcher tool6, and informed by the recently developed HT-SR
Theory1–3. Prior to our work, it was not even obvious that norm-
based metrics would perform well to predict trends in quality
across models (as they are usually used within a given model or
parameterized model class, e.g., to bound generalization error or
to construct regularizers). Our results are the first to demonstrate
that they can be used for this important practical problem. Our
results also demonstrate that PL-based metrics perform better
than norm-based metrics. This should not be surprising—at least
to those familiar with the statistical mechanics of heavy tailed and
strongly correlated systems8,21–23—since our use of PL exponents
is designed to capture the idea that well-trained models capture
information correlations over many size scales in the data. Again,
though, our results are the first to demonstrate this. Our approach
can also be used to provide fine-scale insight (rationalizing the
flow of correlations or the collapse of size scale) throughout a
network. Both Correlation Flow and Scale Collapse are important
for improved diagnostics on pretrained models as well as for
improved training methodologies.

More generally, our results suggest what a practical theory of
DNNs should look like. To see this, let’s distinguish between two
types of theories: non-empirical or analogical theories, in which
one creates, often from general principles, a very simple toy
model that can be analyzed rigorously, and one then claims that
the model is relevant to the system of interest; and semi-empirical
theories, in which there exists a rigorous asymptotic theory,
which comes with parameters, for the system of interest, and one
then adjusts or fits those parameters to the finite non-asymptotic
data, to make predictions about practical problems. A drawback
of the former approach is that it typically makes very strong
assumptions, and the strength of those assumptions can limit the

Table 3 Comparison of linear regression fits for different
average Log Norm and Weighted Alpha metrics across 5 CV
datasets, 17 architectures, covering 108 (out of over 400)
different pretrained DNNs.

log k �k2F log k �k21 α̂ log k �kαα
RMSE (mean) 4.84 5.57 4.58 4.55
RMSE (std) 9.14 9.16 9.16 9.17
R2 (mean) 3.9 3.85 3.89 3.89
R2 (std) 9.34 9.36 9.34 9.34
Kendal-
tau (mean)

3.84 3.77 3.86 3.85

Kendal-tau (std) 9.37 9.4 9.36 9.36

We include regressions only for architectures with five or more data points, and which are
positively correlated with test error. These results can be readily reproduced using the Google
Colab notebooks. (See Supplementary Note 2 for details.).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24025-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4122 | https://doi.org/10.1038/s41467-021-24025-8 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


practical applicability of the theory. Nearly all of the work on
DNN theory focuses on the former type of theory. Our approach
focuses on the latter type of theory. Our results, which are based
on using sophisticated statistical mechanics theory and solving
important practical DNN problems, suggests that the latter
approach should be of interest more generally for those interested
in developing a practical DNN theory.

Methods
To be fully reproducible, we only examine publicly available, pretrained models. All
of our computations were performed with the WeightWatcher tool (version
0.2.7)6, and we provide all Jupyter and Google Colab notebooks used in an
accompanying github repository7, which includes more details and more results.

Additional details on layer weight matrices. Recall that we can express the
objective/optimization function for a typical DNN with L layers and with N ×M
weight matrices Wl and bias vectors bl as Eq. (2). We expect that most well-trained,
production-quality models will employ one or more forms of regularization, such
as Batch Normalization (BN), Dropout, etc., and many will also contain additional
structure such as Skip Connections, etc. Here, we will ignore these details, and will
focus only on the pretrained layer weight matrices Wl. Typically, this model would
be trained on some labeled data fdi; yig 2 D, using Backprop, by minimizing the
loss L. For simplicity, we do not indicate the structural details of the layers (e.g.,
Dense or not, Convolutions or not, Residual/Skip Connections, etc.). Each layer is
defined by one or more layer 2D weight matrices Wl, and/or the 2D feature maps
Wl,i extracted from 2D Convolutional (Conv2D) layers. A typical modern DNN
may have anywhere between 5 and 5000 2D layer matrices.

For each Linear Layer, we get a single (N ×M) (real-valued) 2D weight matrix,
denoted Wl, for layer l. This includes Dense or Fully Connected (FC) layers, as well
as 1D Convolutional (Conv1D) layers, Attention matrices, etc. We ignore the bias
terms bl in this analysis. Let the aspect ratio be Q ¼ N

M, with Q ≥ 1. For the Conv2D
layers, we have a 4-index Tensor, of the form (N ×M × c × d), consisting of c × d 2D
feature maps of shape (N ×M). We extract nl= c × d 2D weight matrices Wl,i, one
for each feature map i= [1,…, nl] for layer l.

SVD of convolutional 2D layers. There is some ambiguity in performing spectral
analysis on Conv2D layers. Each layer is a 4-index tensor of dimension (w, h, in,
out), with an (w × h) filter (or kernel) and (in, out) channels. When w= h= k, it
gives (k × k) tensor slices, or pre-Activation Maps, Wi,L of dimension (in × out)
each. We identify 3 different approaches for running SVD on a Conv2D layer:

1. run SVD on each pre-Activation Map Wi,L, yielding (k × k) sets of M
singular values;

2. stack the maps into a single matrix of, say, dimension ((k × k × out) × in),
and run SVD to get in singular values;

3. compute the 2D Fourier Transform (FFT) for each of the (in, out) pairs, and
run SVD on the Fourier coefficients42, leading to ~ (k × in × out) non-zero
singular values.

Each method has tradeoffs. Method (3) is mathematically sound, but
computationally expensive. Method (2) is ambiguous. For our analysis, because we
need thousands of runs, we select method (1), which is the fastest (and is easiest to
reproduce).

Normalization of empirical matrices. Normalization is an important, if under-
appreciated, practical issue. Importantly, the normalization of weight matrices does
not affect the PL fits because α is scale-invariant. Norm-based metrics, however, do
depend strongly on the scale of the weight matrix—that is the point. To apply
RMT, we usually define X with a 1/N normalization, assuming variance of σ2= 1.0.
Pretrained DNNs are typically initialized with random weight matrices W0, with

σ2 � 1=
ffiffiffiffi

N
p

, or some variant, e.g., the Glorot/Xavier normalization43, or a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2=Nk2
q

normalization for Convolutional 2D Layers. With this implicit scale, we do not
“renormalize” the empirical weight matrices, i.e., we use them as-is. The only
exception is that we do rescale the Conv2D pre-activation maps Wi,L by k=

ffiffiffi

2
p

so
that they are on the same scale as the Linear/Fully Connected (FC) layers.

Special consideration for NLP models. NLP models, and other models with large
initial embeddings, require special care because the embedding layers frequently
lack the implicit 1=

ffiffiffiffi

N
p

normalization present in other layers. For example, in GPT,
for most layers, the maximum eigenvalue λmax � Oð10� 100Þ, but in the first
embedding layer, the maximum eigenvalue is of order N (the number of words in
the embedding), or λmax � Oð105Þ. For GPT and GPT2, we treat all layers as-is
(although one may want to normalize the first 2 layers X by 1/N, or to treat them as
outliers).

Data availability
Data analyzed during the study are all publicly available; and data generated during the
study are available along with the code to generate them in our public repository (https://
github.com/CalculatedContent/ww-trends-2020).

Code availability
Code sufficient to generate the results of the study is available in our public repository
(https://github.com/CalculatedContent/ww-trends-2020).
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