
Running Alchemist on Cray XC and CS Series Supercomputers: Dask and PySpark
Interfaces, Deployment Options, and Data Transfer Times

Kai Rothauge
ICSI and Dept. of Statistics

UC Berkeley
Berkeley, CA, USA

kai.rothauge@berkeley.edu

Haripriya Ayyalasomayajula
Cray Inc.

Seattle, WA, USA
payyalasom@cray.com

Kristyn J. Maschhoff
Cray Inc.

Seattle, WA, USA
kristyn@cray.com

Michael Ringenburg
Cray Inc.

Seattle, WA, USA
mikeri@cray.com

Michael W. Mahoney
ICSI and Dept. of Statistics

UC Berkeley
Berkeley, CA, USA

mahoneymw@berkeley.edu

Abstract—Alchemist allows Apache Spark to achieve better
performance by interfacing with HPC libraries for large-
scale distributed computations. In this paper we highlight
some recent developments in Alchemist that are of interest
to Cray users and the scientific community in general. We
discuss our experience porting Alchemist to container images
and deploying it on Cray XC (using Shifter) and CS (using
Singularity) series supercomputers, on a local Kubernetes
cluster, and on the cloud.

Newly developed interfaces for Python, Dask and PySpark
enable the use of Alchemist with additional data analy-
sis frameworks. We also briefly discuss the combination of
Alchemist with RLlib, an increasingly popular library for
reinforcement learning, and consider the benefits of leveraging
HPC simulations in reinforcement learning. Finally, since data
transfer between the client applications and Alchemist are the
main overhead Alchemist encounters, we give a qualitative
assessment of these transfer times with respect to different
factors.

Keywords-Alchemist; Dask; PySpark; RLlib; MPI; Elemen-
tal; Cray XC; Cray CS; Shifter; Singularity; Kubernetes.

I. INTRODUCTION

Alchemist [1], [2], [3] allows Apache Spark [4] to achieve
better performance by interfacing with high-performance
computing (HPC) libraries for large-scale distributed com-
putations. The motivation for the development of Alchemist
was the inadequate performance of distributed linear algebra
operations in Spark’s linear algebra and machine learning
module, MLlib. It was found that not only are there signifi-
cant overheads when performing the operations in Spark up
to an order of magnitude greater than the actual execution
time of the distributed operation but these overheads in fact
anti-scale, i.e. they increase faster than the execution time
of the operation as the data sets increase in size.

Alchemist was designed to alleviate this problem by al-
lowing users to easily interface with existing or custom HPC
libraries. Efficiently implemented MPI-based linear algebra

libraries do not suffer from the anti-scaling behaviour of
MLlib or from large overheads not related to the execution of
the actual linear algebra operation, but are generally difficult
to use for practitioners not familiar with them or with HPC
in general. Alchemist therefore combines the best of both
worlds: the high productivity of Spark, allowing users to
make use of its numerous data analysis components, and the
high productivity of HPC libraries that can perform large-
scale distributed operations faster than Spark can.

After giving a brief overview of the Alchemist framework
in Section II, we discuss some of Alchemist’s recent devel-
opments that are of interest to Cray users and the scientific
community in general. Alchemist is no longer an HPC
interface just for Spark and can, in principle, be used by any
data analytics framework, given a suitable client interface,
and in Section III we introduce new client interfaces for
Python, Dask and PySpark. Alchemist can also be used in
applications other than data analysis and we briefly discuss
the potentially exciting combination of Alchemist with a
reinforcement learning framework in Section IV, although
a detailed case study will be the subject of future research.
In Section V we discuss the deployment of Alchemist
on different platforms using recently developed container
images. While Alchemist does not suffer from the overheads
that are incurred by Spark, some overheads are encountered
when transmitting the data sets from the client application
to Alchemist, and in Section VI we try to quantify these
transfer times by taking various factors into account, namely
matrix layouts, message buffer sizes, and variability in the
network communication times due to varying network loads.

II. OVERVIEW OF ALCHEMIST

Here we briefly review Alchemist—for a more extensive
discussion, see [1], [2]. The basic framework of Alchemist
is given in Figure 1: a client application (which is a Spark

Figure 1. Overview of the basic Alchemist framework

application in the figure) connects to Alchemist using a
suitable Alchemist-Client Interface (ACI). All communica-
tion between the client application and Alchemist occurs
through the ACI. The client interface requests a number of
workers from Alchemist and each of its executors connects
to each of the Alchemist workers. The client interface can
specify which HPC libraries it wishes to use, and these
libraries are loaded by the connected Alchemist workers
dynamically. Each HPC library requires a corresponding
Alchemist-Library Interface (ALI) that imports the HPC
library and provides wrapper functions for every function in
the HPC library that is of interest. It also provides a standard
interface for Alchemist and calls the desired function(s) in
the HPC library in the required format.

Communication between the client interface and Al-
chemist is primarily between the client driver process and the
Alchemist driver process. If distributed data sets need to be
transferred between the client interface and Alchemist, then
this is done between the client workers and the Alchemist
workers, where each client worker sends its portion of the
data to the connected Alchemist workers. These data sets
will be in the form distributed matrices that require some
method of storing them, and to this end Alchemist makes
use of the Elemental [5] library. Elemental is an MPI-based
library that provides a convenient interface for storing dis-
tributed matrices (called DistMatrices), although using
Elemental comes at the cost of requiring that the HPC
libraries use Elemental as well so that they can access the
data in the DistMatrices. Alchemist will also provide
support for ScaLAPACK in a future version.

III. PYTHON, DASK, AND PYSPARK INTERFACES

As mentioned above, Alchemist was originally written as
an interface between Scala-based Apache Spark and MPI-
based libraries, but recent extensions have allowed client
interfaces for other languages and data analysis frameworks
to be easily developed. To this end, a Python [3] interface
has been written and serves as a basis for client interfaces for
Dask [6], a popular library that supports parallel computing
in Python, and PySpark.

The ability to use Alchemist from these additional frame-
works enables more users to easily connect to HPC libraries.
We will describe each of these interfaces in turn.

A. ACIPython: Alchemist-Client Interface for Python

Python has established itself as the most popular language
for data analysis and machine learning tasks, therefore sub-

Figure 2. An illustration of Alchemist in use: A Spark application connects
to Alchemist and requests 4 workers, which Alchemist provides by creating
a group of workers that the Spark application can connect to. The Spark
application wishes to use functions in Libraries A and C, so the Alchemist
workers allocated to the Spark application load these libraries dynamically.
Distributed data sets are transferred between the Spark and Alchemist
workers. At the same time, a Dask application connects to Alchemist and
requests 3 workers, which Alchemist provides, as well as access to the
requested Library C.

stantial effort has been spent on the development of a client
interface for Python. This allows Python users to connect to
Alchemist and make use of existing HPC libraries for their
data analysis and machine learning needs. We note that while
there already are Python bindings for MPI (for instance
the MPI4Py library [7]) that allow a Python program to
exploit multiple processors, our purpose is different in that
we allow users to easily connect to existing or custom HPC
libraries, in particular when Alchemist is running remotely.
The Python interface does not require the installation of any
additional packages aside from ACIPython, and does not
require the installation of Alchemist, MPI, or any HPC li-
braries if connecting to Alchemist remotely or when running
Alchemist from inside a container.

The design of ACIPython resembles that of the Spark
interface. As described in Section 2, the user connects to
Alchemist via the Python interface and requests a certain
number of workers. Communication is primarily with the
Alchemist driver, but large matrices (or other large data sets)
are sent to the Alchemist workers.

An important difference is that the Python interface as-
sumes that the underlying application is running on a single
process, so that all data that is sent to Alchemist is small
enough to fit in memory of the machine that the application
is running on. This means that at this point Python appli-
cations running on multiple processors, for instance using
MPI4Py, are not yet supported in general, although see the
ACIDask and ACIPySpark interfaces described below. The
reader may question the usefulness of using Alchemist with
data that is small enough to fit on a single machine, but there
are several scenarios that come to mind:

• If the data can be loaded from a file that is accessible
to Alchemist, it can be loaded by Alchemist directly
and there is no need for the client application to load
the data and transfer it. In this case it does not matter

Figure 3. Screenshot of a Jupyter notebook in which Alchemist is called using ACIPython. In this simple example the Python application connects
to Alchemist, requests access to 3 workers, and loads the test library TestLib (a simple MPI-based library that provides a small set of test functions,
including the truncated SVD). A randomly generated NumPy array of size 1, 000 × 1, 000 is sent to the Alchemist workers, which then perform the
rank-10 decomposition of it. Alchemist returns handles to each of the output matrices (the 10 left singular vectors in U , the 10 right singular vectors in
V , and the singular values on the diagonal of S, but in this case we are interested only in the singular values and we use fetch_matrix to receive the
entries of S from Alchemist.

if the data is too large to fit on a single machine, as
long as Alchemist has allocated a sufficient number of
worker nodes.

• The client application may also load or generate data
that is too large to fit in memory in chunks, and then
transfer each chunk to Alchemist. In this way large data
sets that are too large to fit in the memory of a single
machine can be transmitted.

• Some computations may generate large data sets during
intermediate stages of computation that have to be
stored as distributed matrices, but the input and output
data sets may be significantly smaller and fit easily
inside the memory of a single machine.

These are some of the circumstances under which Alchemist
and its Python interface make it easy to access HPC libraries
from a Python application, even if the Python application
itself is not designed for parallel computations. The Python
interface also serves as the basis for Alchemist interfaces
that do run on multiple processes, for instance the Dask and
PySpark interfaces described below.

ACIPython assumes that all data sets of interest can be
represented by, or converted to, NumPy arrays. The data
in the array, or a subset of it, is then serialized and sent
to each of the connected Alchemist workers sequentially,
where they are stored in an Elemental DistMatrix. Each
Alchemist worker receives a different chunk of the data;

for instance, when transferring a 10, 000 × 10, 000 array
to 10 Alchemist workers using a row-major layout (see
Section VI), each of the workers will receive every 10th row
of the array. Transmitting data from Alchemist back to the
Python application is similarly straightforward, in this case
the data, or a subset of it, in an Elemental DistMatrix is
transmitted from Alchemist to the client application, where
it is deserialized and stored in a NumPy array.

See the screenshot of the Jupyter notebook shown in
Figure 3 for an illustration of the use of ACIPython.

B. ACIDask: Alchemist-Client Interface for Dask

Dask is a popular scalable data analytics platform for
Python that is designed to integrate with existing appli-
cations. It provides data structures such as arrays and
dataframes for storing data in larger-than-memory or dis-
tributed environments, and these parallel collections run
on top of dynamic task schedulers that are optimized for
computation.

ACIDask provides a convenient interface, built on top
of ACIPython, for connecting Dask applications to HPC
libraries using Alchemist. Our primary interest is in trans-
mitting data stored in a Dask array to Alchemist, where it
is then accessible to HPC libraries. Dask arrays are used
in fields like atmospheric and oceanographic science, ge-
nomics, numerical algorithms for optimization or statistics,
large scale imaging, and more, and all of these applications
can potentially benefit from access to general-purpose or
domain-specific HPC libraries.

Dask arrays are actually a collection of many smaller
arrays, referred to as chunks or blocks, that may be NumPy
arrays or functions that produce arrays; if they are actual
arrays, they may be stored on disk or on other machines.
These arrays are arranged into a grid and the Dask array
coordinates their interaction with each other or other Dask
arrays. Dask arrays implement a subset of the NumPy
ndarray interface using blocked algorithms.

The approach taken by ACIDask is to work with the
individual chunks that compose the Dask array and send
them to an Elemental DistMatrix. Each Dask array x
has a unique name that can be accessed using x.name,
and every chunk in the array is referred to by the tuple
(x.name, i, j), with i, j being the indices of the
block ranging from 0 to the number of blocks in that
dimension1. The (i, j)th chunk can be accessed by the code
shown in Figure ??. In both cases x_ij is a NumPy array
containing the data of the (i, j)th chunk, which ACIDask
then sends from the Dask process storing the chunk to
Alchemist.

1Dask actually accepts up to three indices i, j, k, and can therefore
store 3-dimensional arrays, not just matrices. Since Elemental does not
support higher-dimensional arrays, we restrict ourselves to Dask arrays
representing vectors or matrices

Extract the (i,j)−th chunk from a Dask Array A
def get chunk(A, i, j):

layers = A.dask.layers[x.name]

a = layers[(A.name, i, j)]

Chunks are functions that produce NumPy arrays

return a[0](∗a[1])
OR

Chunks are actual NumPy arrays

return a[0](layers[a[1]], a[2])

If the function in the HPC library returns a distributed
matrix, Alchemist sends the dimensions of the matrix back
to ACIDask, which then builds a Dask array that can
store the data. Each Dask process then requests the data
corresponding to its chunk from Alchemist and inserts it
into the Dask array.

Support for Dask dataframes and other constructs may be
introduced in future.

C. ACIPySpark: Alchemist-Client Interface for PySpark

Given that the original purpose of Alchemist was to
accelerate and extend the functionality of Apache Spark
when working with large, distributed data sets, it is only
natural to extend the Python interface to support PySpark,
the Python API for Spark, built using the popular Py4J
library that is integrated within PySpark and allows Python
to dynamically interface with JVM objects. Python generally
offers improved readability of code and ease of use and
maintenance compared to Scala, and PySpark has therefore
become a popular interface for working with Spark’s various
features and libraries. For users wishing to use Spark with
Alchemist, but reluctant to work with Scala, we recommend
using PySpark with ACIPySpark.

As with ACISpark, ACIPySpark supports RDD-
based distributed data structures defined in MLlib’s
linalg.distributed module. In particular,
ACIPySpark supports BlockMatrix, CoordinateMatrix,
RowMatrix, and IndexedRowMatrix, which represent
distributively stored matrices backed by one or more RDDs
derived from DistributedMatrix2.

ACIPySpark does not first convert local submatrices
of a distributed matrix in PySpark into NumPy arrays
before sending the data over to Alchemist. Instead, the
data from the DistributedMatrix is serialized directly
into the message buffer. Likewise, if the HPC library re-
turns a distributed matrix, Alchemist sends the dimensions
of the matrix back to ACIPySpark, which then builds a
DistributedMatrix array to store it. Each PySpark
process then requests the data corresponding to its local

2As of Spark 2.0, Spark is moving to a Dataframe-based API in the
spark.ml package for its linear algebra and machine learning operations.
Support for DataFrames will be introduced in future versions of ACISpark
and ACIPySpark

submatrix from Alchemist and inserts the deserialized entries
into the DistributedMatrix.

IV. RLLIB + ALCHEMIST FOR REINFORCEMENT
LEARNING WITH HPC SIMULATIONS

Reinforcement learning (RL) [8] is an exciting area of
machine learning that allows a (simulated) learner to learn
by interacting with a simulated environment via a series of
rewards, with the goal being to maximize the number of
accumulated rewards by the end of the training. The learner
must find which actions to take to obtain the maximum
number of rewards independently, and therefore, due to its
trial-and-error approach, a large number of simulations are
required in order to successfully train the learner. While the
computational cost of these simulations may be unimportant
when applying RL to small problems that are commonly
used to illustrate its usefulness, it becomes a significant
bottleneck when applying RL to large-scale problems in sci-
ence and engineering that require appreciable computational
resources.

It is therefore of interest to enable reinforcement learning
packages to call HPC libraries for the simulations. There are
potentially many areas in science and engineering that would
benefit from this, in particular areas which traditionally
require expensive HPC simulations and where some set of
constraints and optimality conditions has to be met (airplane
design, drug discovery, etc.). The rewards given to the
learner reflect how well the current set of parameters satisfies
these criteria.

RLlib [9] is an open-source library for RL that is based
on the Ray [10] framework. It provides a collection of RL
algorithms and scalable primitives for composing new ones.
It has seen a significant increase in interest recently, and
a compelling use case of Alchemist’s Python interface is
in providing a simple interface through which the user of
RLlib can call HPC libraries for the simulations. Alchemist
thereby allows users to employ efficient HPC libraries for
the simulations while still working with the extensive tool
set and convenient interface provided by RLlib, hopefully
facilitating the adoption of RL by the scientific and engi-
neering communities.

A detailed case study will be the subject of future work.
Here we simply illustrate how one could call an HPC library
through Alchemist inside a Python script given the current
RLlib API. RLlib makes use of OpenAI Gym, a toolkit for
developing and comparing RL algorithms; we omit a lot of
the details since these will be discussed at a later point in
time.

First, we need to create the class in which the simulation
environment is defined:

class HPCSimulator(gym.Env):

Initialize simulation environment

def init (self, config):

hostname = config["hostname"]

port = config["port"]

num workers = config["num workers"]

lname = config["lib name"]

lpath = config["lib path"]

self.als = AlchemistSession()

self.als.connect(hostname, port)

self.als.request workers(num workers)

self.HPClib = self.als.load library(lname, lpath)

Reset simulator

def reset(self):

self.HPClib.reset()

return self.HPClib.get state()

Take a step in the simulation in response

to an action

def step(self, action):

self.HPClib.step(action)

return self.HPClib.get state(), self.HPClib.get score()

In the above sample listing, the HPCSimulator class
is derived from OpenAI Gym’s Environment class. An
AlchemistSession is set up during initialization, and
in this case we have opted that all pertinent settings are
contained in a dictionary (which we called config here),
although of course one could also read them from file. As
before, we need to connect to Alchemist, request a certain
number of workers, and get Alchemist to load the HPC
library we want to use, denoted by HPClib. Presumably
HPClib has an efficient simulator implemented that we
want to use during our training procedure. To run with RLlib,
HPClib needs to define reset, to set the simulator’s state
to its default configuration; step, to advance the simulation
by one step in response to the action; get_state, to
return the simulators current state; and get_score, to
evaluate how well the current state does with regard to some
problem-specific optimality condition.

To use the simulator with RLlib, we simply provide the
class name as the environment within Tune, which is Ray’s
scalable hyperparameter search framework (a discussion of
Tune lies outside the scope of this paper). For example:

if name == " main ":

ray.init()

ModelCatalog.register custom model(...

"my model", CustomModel)

tune.run(

"PPO",

stop={"timesteps total": 10000,},
config={
"env": HPCSimulator ,

more configuration options ...

}
)

See the documentation for Ray, RLlib and Tune for a clearer
understanding of their APIs. The sample listings given here
are just to give a flavor of what the combination of RLlib
with Alchemist might look like, actual implementations may
vary.

V. DEPLOYING ALCHEMIST ON DIFFERENT PLATFORMS
USING CONTAINERS

In this section we discuss our experiences porting Al-
chemist to container images and deploying it on Cray XC
(using Shifter) and CS (using Singularity) series supercom-
puters, on a local Kubernetes cluster, and on the cloud.

Container images allow us to bundle applications and their
dependencies together into a single entity. We deploy the
Alchemist image on the host machine to run Alchemist in a
container and the client application can connect to it. Moving
to a container-based deployment means users do not need
to worry about building the applications from source and
managing dependencies every time they want to run their
application on a new platform. We will discuss deploying
Alchemist using four major container technologies: Docker,
Singularity, Shifter, and Kubernetes. Docker is an open
source container technology that has gained wide adoption.
We start our discussion by describing how we package
Alchemist into a Dockerfile, a construct that lets users
define software specification applications and their runtime
environment. As an example, we will demonstrate running
the Docker image on a laptop, which is usually the initial
development environment from most researchers. As an
example of how moving to Docker solves the problem of
consistently building the dependencies, we discuss building
the Elemental library with different versions of gcc, gcc++,
gfortran and MPI.

Cray XC series supercomputers use Shifter, developed at
NERSC to deploy container images. We highlight how we
can reuse the Dockerfile we developed earlier, by making
minor changes to deploy Alchemist on Cray XC. The
changes allow us to leverage the Cray MPI library stack.
Cray CS series supercomputers use Singularity for launching
container images on the nodes, which provides flexibility to
import Docker images without having Docker installed or
being a superuser. We leverage this ability to run Alchemist
on CS systems with optimized OpenMPI libraries.

Kubernetes is an open source orchestration framework
that has gained popularity both in cloud and on-premise
clusters. It supports running, scaling and management of
containers. We use the Alchemist Docker image to run
Alchemist on Kubernetes and we demonstrate running this
on a local Kubernetes cluster. Users can follow the same
steps they used on a local kubernetes installation to run
alchemist on kubernetes cluster deployed on the Google

Figure 4. Commands to build the Alchemist Docker image and run them
Alchemist using Docker on a laptop

Cloud Platform. While there are subtle differences between
each of these flavors of container orchestration, it provides
the flexibility for users to choose their favorite container
technology as opposed to being restricted to one single mode
of deployment.

The containers discussed here are available on [3].

A. The Alchemist Docker Image

The first step to containerizing Alchemist involves writ-
ing a Dockerfile. Dockerfile is a configuration file with
commands to install a base operating system followed by
different software components and dependency libraries in
an image. It provides us with a clean slate where we
can customize an operating system of our choice followed
by different software components that are needed for our
application. Once we have the Dockerfile in place, we build
it using the Docker build command and push it to the Docker
registry.

For our alchemist Dockerfile, we use the latest version
of Debian operating system. The Dockerfile includes com-
mands to install necessary compilers and other libraries
followed by commands to install the required dependencies
such as Elemental, SPDLog, asio and finally commands to
install Alchemist. The recipe to build the Alchemist Docker
image is listed in Figure 4. Figure 5 shows a screenshot of
running Alchemist using Docker on a laptop.

Once we have Alchemist running as shown in the screen-
shot above, we can connect to it from a client application,
assuming the client application has imported the appropriate
client interface.

Without containers it would take a significant amount
of work to download and install Alchemist with all of its
dependencies, a tedious and time consuming process, but
with the Docker image the users can instead focus on their
workflow.

B. Deploying Alchemist Images on Urika-XC using Shifter
and on Urika-CS systems using Singularity

In this section, we describe our initial efforts to run
Alchemist on Cray XC series supercomputers using Shifter
containers. We re-used the Dockerfile from running Al-
chemist using Docker on local machine. We integrate this
with the existing container launching scripts and build the
Shifter container.

Figure 5. Screenshot showing Alchemist running on a laptop using Docker

Build Alchemist docker
image

Push the image to the
docker repository

Write Dockerfile

Alchemist Dev
Community

Figure 6. Workflow: Building Alchemist container image

Pull the Alchemist image from the
repository

Run Alchemist image using Docker on
laptop

USER

Figure 7. Running Alchemist image using Docker on a laptop

We use Singularity to run Alchemist images on Cray CS
series super computers. We continue to use the base Dock-
erfile from running Alchemist using Docker on a laptop. We
build this using Open MPI libraries that are unique to CS
series super computers.

Whether it is XC or CS, to provide a uniform experience,
we run alchemist using the run training script that is a part
of the existing container launch scripts. The commands to

Figure 8. Running Alchemist using Shifter on Cray XC systems

Figure 9. Commands to run Alchemist on Cray systems

run alchemist on XC and CS systems are listed in 9

C. Deploying the Alchemist Docker Image on a Kubernetes
Cluster

Kubernetes, an open source orchestration framework,
gained wide adoption over the last few years and deploying
Alchemist on a Kubernetes cluster makes it available to
different user communities. It helps enterprise users to
experiment with great ease without having to worry about
the internals of setting up and configuring Alchemist and its
dependencies.

We use the Docker image we created in the first step to

Figure 10. Commands to run Alchemist on a Kubernetes cluster

deploy Alchemist on a Kubernetes cluster. Whether it is a
local Kubernetes cluster or a cluster configured on a cloud
platform, we can use the same commands to run Alchemist.
We start by creating a Kubernetes namespace, which is
the abstraction Kubernetes uses that provides isolation to
different users in a cluster. We can have multiple groups in
an organization connect to different instances of the same
Kubernetes cluster using different namespaces. We then use
the same Docker image and create a Kubernetes deployment
for Alchemist. We will instantly see Alchemist running in
a Kubernetes pod, the basic building block of Kubernetes.
Pods are the smallest and simplest units in the Kubernetes
object model that can be created or deployed and represent
a running process in the cluster. A pod can run any number
of containers. There are two stages involved in running
Alchemist on a Kubernetes cluster: run the container on the
Kubernetes cluster, then expose the ports by setting up port-
forwarding to be able to connect to Alchemist from a client
interface.

The commands to run alchemist on Kubernetes cluster are
listed in Figure 9.

VI. EVALUATING COMMUNICATION OVERHEADS

As discussed in [1], the main computational overhead of
Alchemist is the time it takes to transfer the data between
the Spark application and the HPC libraries. A simple
experiment to quantify these communication times for two
400GB matrices with different shapes was performed (see
Tables 2 and 3 in that reference). It was observed that there is
significant variability in the communication times, governed
by two major factors: the number of messages sent across
the network and the transfer time variability.

A. Factors impacting communication times

The variability of the transfer times stems mainly from
variable network loads. It will generally take longer to
transmit a large amount of data if the network is in heavy
use, but it may also be the case that the communication

between only a small number of nodes is impacted, which
will still lead to a higher overall transfer time if some of
the data has to be sent between these nodes. In general,
we expect that a larger number of small messages will
have more variability compared to a small number of large
messages, simply due to the increased likelihood that some
of the messages will be delayed at some point while being
transmitted across the network. Since the simulations cannot
proceed until all of the data has been transferred, even one
straggler can cause a higher measured transfer time.

On the other hand, it is generally more efficient for sockets
to handle smaller messages, and larger messages may in
fact lead to network blockages. Also, a large number of
small messages sent between a large number of nodes means
that more of the data is sent concurrently and one would
therefore expect, under optimal conditions, smaller transfer
times.

There are several (not necessarily independent) factors
that influence the number of messages sent across the
network:

• Amount of data: The amount of data that needs to be
sent across the network is determined by both the size
of the matrix and the size of its datatypes in memory
(for instance doubles vs. floats).

• Message buffer size: Larger buffers allow for fewer
messages, but having large messages may have adverse
effects, such as taking up too much memory on a core
(leaving less for the actual data), and causing network
blockages.

• Number of Alchemist processes: A larger number of Al-
chemist workers may accelerate certain computations,
but it comes at the price of an increased number of
messages, both between the workers during the com-
putation, and (more importantly for us) between Al-
chemist and its client interface. This is counterbalanced
by the messages being shorter and more communication
happening concurrently.

• Number of Spark partitions: Apache Spark divides its
RDDs into a number of partitions, and all tasks are
then performed on these partitions in parallel, including
sending the data over to Alchemist. The exact number
of partitions that Spark uses depends on several factors,
but generally one would expect to have at least one
partition per core. With a large number of cores, this
would mean that one would have a significant number
of partitions that all need to connect to Alchemist
concurrently to send their data, and leading to a large
number of small messages being sent. Since the data
of a lot of these partitions is physically located on the
same nodes, one would hope to be able to combine
the data from several of the partitions destined for the
same Alchemist worker before sending it across the
network, but this is impossible given Spark’s current
API. The drawback of having each partition com-

municate with Alchemist directly is the number of
network connections that have to be opened between
the Spark application and Alchemist; even with only
a dozen nodes allocated to the Spark application and
Alchemist respectively, the number of partitions will
be in the hundreds if there are a lot of cores on each
node. The number of network connections will be in
the thousands, and opening each of them incurs an
overhead that may dominate the time it takes to send
and receive the actual data if the messages are small.
The rule of thumb here is that one wants to have the
data in the Spark application be in the smallest number
of partitions possible, i.e. each partition should hold has
much data as possible, to minimize the communication
overheads. This means not allocating more nodes to the
Spark application than needed.

• Matrix layout: The layout used by the Elemental
DistMatrices can have a significant impact on the
performance of the HPC libraries, so it may be desirable
to send the data from Spark to a DistMatrix that has
a more favorable layout for the computations that are
going to be performed on it. However, some layouts
may require more messages to be sent across the
network than others, for instance if a particular layout
requires the local entries on one Alchemist worker to
be sent from a large number of Spark partitions vs. a
small number.

• Aspect ratio of the matrix: The aspect ratio of the
matrix (its height-to-width ratio) will have an impact
as well, as was found in the previous study, where
sending the rows of an IndexedRowMatrix is more
efficient and less variable if the matrix is short and
wide rather than tall and thin. This is due to a
smaller number of larger messages being sent, with the
messages not being large enough to adversely affect
communication across the network. Due to the structure
of IndexedRowMatrices and the row-based layout
used by the Elemental DistMatrix in that study,
it also means that the partitions needed to send data
to fewer Alchemist workers, leading to fewer network
connections having to be opened.

We do not discuss here the time it takes to serialize and
deserialize the data, but this of course has an impact on
the communication times as well. Recent improvements in
Alchemist and its client interfaces have managed to decrease
this overhead significantly.

Instead, here we are concerned with understanding the
impact of the matrix layouts on the transmission times, but
we also consider the message buffer sizes. A comprehensive
study of the combined effect of all of the above factors lies
outside the scope of this paper, but may be performed in
future work.

B. DistMatrix layouts

See [11] for a discussion of different matrix layouts in Ele-
mental that are possible with respect to the process grid. The
process grid is Elemental’s two-dimensional arrangement of
the worker processes associated with a given DistMatrix.
For simplicity, let us assume that there are 6 workers with
IDs 1, . . . , 6 that Elemental has arranged in a 2× 3 process
grid P :

P =

[
1 3 5
2 4 6

]
.

There are several distribution schemes that Elemental de-
fines, which we list here:

• CIRC: Only give the data to a single process;
• STAR: Give the data to every process;
• MC: Distribute round-robin within each column of the

2D process grid (Matrix Column);
• MR: Distribute round-robin within each row of the 2D

process grid (Matrix Row);
• VC: Distribute round-robin within a column-major or-

dering of the entire 2D process grid (Vector Column);
• VR: Distribute round-robin within a row-major order-

ing of the entire 2D process grid (Vector Row);
• MD: Distribute round-robin over a diagonal of the tiling

of the 2D process grid (Matrix Diagonal).

The layout of a DistMatrix is defined by one of thirteen
different legal distribution pairs (colDist,rowDist).
Some of these layouts allow for data to be stored redundantly
(i.e. the same matrix element may be on multiple processes),
and these layouts are not important for our purposes. We
illustrate the layouts in Elemental that do not store the data
redundantly for a sample 7 × 7 matrix. The entries in the
matrix correspond to the ID of the worker that that particular
entry in the matrix is stored on.

• [MC, MR]: The majority of parallel routines in Ele-
mental expect the matrices to have this layout, but it
may not be the optimal layout for all purposes. Note
that the process grid is tessellated with this distribution
pair.

1 3 5 1 3 5 1
2 4 6 2 4 6 2
1 3 5 1 3 5 1
2 4 6 2 4 6 2
1 3 5 1 3 5 1
2 4 6 2 4 6 2
1 3 5 1 3 5 1

• [MR, MC]: Note that the transpose of the process grid

[MC, MR]

[* , VC]

[VC, *]

Figure 11. Data transmission times for various matrix layout and message buffer sizes. On left we have results for an IndexedRowMatrix of size
250, 000 × 200, 000, and on the right an IndexedRowMatrix of size 1, 000, 000 × 50, 000. The matrix was sent from the Spark application to
Alchemist 50 times, with the transfer times represented by the box plots. Note that the transfer times decrease and become less variable as the message
buffer sizes increase. Actual transfer times are subject to change with further development of Alchemist’s serialization protocol, we are interested in the
general trends shown by these plots.

is tessellated with this distribution pair.

1 2 1 2 1 2 1
3 4 3 4 3 4 3
5 6 5 6 5 6 5
1 2 1 2 1 2 1
3 4 3 4 3 4 3
5 6 5 6 5 6 5
1 2 1 2 1 2 1

• [STAR, VC]:

1 2 3 4 5 6 1
1 2 3 4 5 6 1
1 2 3 4 5 6 1
1 2 3 4 5 6 1
1 2 3 4 5 6 1
1 2 3 4 5 6 1
1 2 3 4 5 6 1

• [VC, STAR]:

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6
1 1 1 1 1 1 1

Not shown here are the layouts [VR, STAR] and [MD,
STAR], which are similar to [VC, STAR] but with the rows
permuted. Likewise, we do not consider [STAR, VR] and
[STAR, MD], since these are similar to [STAR, VC] but
with the columns permuted.

Some of these layouts may not be appropriate for all cases,
for instance it may not be possible to store entire rows or
columns on a single process if the matrices are too wide or
tall, respectively.

C. Experiment

We run our experiments on Cori [12], a Cray XC40 su-
percomputer administered by NERSC. We use its Intel Xeon
”Haswell” processor nodes, each of which have 32 cores and
128GB of memory. Nodes on Cori are communicated using
the Cray Aries interconnect.

For our experiment we send a 400GB
IndexedRowMatrix of doubles to an Elemental
DistMatrix of the same dimensions. We look at the
effect of the above layouts on the communication times and
also take different message buffer sizes into account. For
brevity of exposition, we only consider two different matrix
dimensions: 250, 000 × 200, 000 and 1, 000, 000 × 50, 000.
For a given layout and buffer size, the matrix is sent to
Alchemist 50 times at intervals of 30 minutes in order
quantify the variability of transmission times due to network
loads over a stretch of time.

On Cori, all software is managed using a modules soft-
ware environment, which we use to load Spark 2.3.0. Al-
chemist and its dependencies are compiled from scratch and
run natively on Cori. It was found that Spark has difficulties
communicating with Alchemist when running within the
same job, therefore we instead run Spark and Alchemist
as separate jobs concurrently, with the user connecting the
Spark application to Alchemist by providing it with the
hostname of the node that the Alchemist driver is running
on (one should therefore start the Alchemist job before
the Spark job if not running in interactive mode). For the
purposes of this experiment, we run the Spark application on
four nodes, and allocate five nodes to Alchemist—one for
the driver, four for the workers that will actually store the
data. Since we have four Alchemist workers, the process grid
will be square and there is no appreciable difference between
the [MC, MR] and [MR, MC] distributions, therefore we do
not consider the [MR, MC] distribution in this experiment.

The results of the experiment are shown in Figure 11. We
report the communication times from Spark to Alchemist
for the 250, 000 × 200, 000 matrix on the left, and the
1, 000, 000×50, 000 on the right; communication times from
Alchemist to Spark are similar, so we do not report them
here.

In general one can conclude that it is better to have
larger message buffers rather than smaller ones, but only
up to a point, with 100MB seemingly a good compro-
mise. It is generally faster to send matrices that are
wider rather than narrower, although this is an artifact of
IndexedRowMatrices storing data in rows. This also
explains why sending data to Alchemist is faster if the
DistMatrix uses a [VC, STAR] layout, since Spark is
sending the data from rows to rows. In contrast, a [STAR,
VC] layout requires the data in rows to be sent across
columns that may be stored on different nodes by the
DistMatrix, resulting in significantly more messages
with less data and thereby increasing the overall communica-
tion times. The [MC, MR] layout is slightly more expensive
than the [VC, STAR] layout since it again requires more
messages to be sent, but most distributed operations will
perform faster with this layout and it is expected that it
is worth the additional communication cost; the same may
apply to the [STAR, VC] layout in the right context.

Note that the communication times are subject to change
as Alchemist’s serialization protocol continues to improve.
We are interested here in the general trends shown by the
communication times, not the actual times themselves.

VII. SUMMARY

Several recent developments have enabled more practi-
tioners to use Alchemist to easily access HPC libraries
from data analysis frameworks such as Spark, Dask and
PySpark, or from single-process Python applications. The
availability of Docker and other containers enables users to
get started with Alchemist quickly, and we briefly discussed
the potentially exciting combination of Alchemist with rein-
forcement learning frameworks such as RLlib. Alchemist’s
main overhead comes from the data transfer between client
applications and Alchemist, and we ran some experiments to
better understand the behaviour of these transfer times with
respect to message buffer sizes, matrix layouts, and network
variability.

REFERENCES

[1] A. Gittens, K. Rothauge, S. Wang, M. W. Mahoney, J. Kotta-
lam, Prabhat, L. Gerhardt, M. Ringenburg, and K. Maschhoff,
“Alchemist: An Apache Spark ¡=¿ MPI interface,” in Concur-
rency and Control: Practice and Experience: Special Issue of
the Cray User Group (CUG 2018), 2018.

[2] A. Gittens, K. Rothauge, M. W. Mahoney, S. Wang, J. Kotta-
lam, Prabhat, L. Gerhardt, M. Ringenburg, and K. Maschhoff,
“Accelerating Large-Scale Data Analysis by offloading to
High-Performance Computing Libraries using Alchemist,” in
Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’18),
2018, pp. 293–301.

[3] Alchemist: An HPC Interface for Data Analytics Frameworks,
2018. [Online]. Available: github.com/project-alchemist/

[4] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache
Spark: a unified engine for big data processing,” in Commu-
nications of the ACM, vol. 59, 2016, pp. 56–65.

[5] J. Poulson, B. Marker, R. van de Geijn, J. Hammond, and
N. Romero, “Elemental: A new framework for distributed
memory dense matrix computations,” ACM Transactions on
Mathematical Software, vol. 39, pp. 1–24, 2013.

[6] Dask Development Team, Dask: Library for dynamic task
scheduling, 2016. [Online]. Available: dask.org

[7] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel
distributed computing using python,” Advances in Water
Resources, vol. 34, no. 9, pp. 1124 – 1139, 2011.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. Cambridge, MA, USA: MIT Press,
2018.

[9] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Gold-
berg, J. E. Gonzalez, M. I. Jordan, and I. Stoica, “RLlib:
Abstractions for distributed reinforcement learning,” in Inter-
national Conference on Machine Learning (ICML), 2018.

[10] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica, “Ray: A Distributed Framework for Emerging
AI Application,” in 13th USENIX Symposium on Operating
Systems Design and Implementation, 2018.

[11] Elemental Development Team, Elemental DistMatrix
documentation, 2018. [Online]. Available: libelemen-
tal.org/documentation/dev/core/dist matrix/DM.html

[12] NERSC Cori. [Online]. Available:
nersc.gov/users/computational-systems/cori/

