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ABSTRACT
This paper presents a novel two-phase method for audio
representation: Discriminative and Compact Audio Repre-
sentation (DCAR). In the first phase, each audio track is
modeled using a Gaussian mixture model (GMM) that in-
cludes several components to capture the variability within
that track. The second phase takes into account both global
structure and local structure. In this phase, the compo-
nents are rendered more discriminative and compact by for-
mulating an optimization problem on Grassmannian mani-
folds, which we found represents the structure of audio ef-
fectively. Experimental results on the YLI-MED dataset
show that the proposed DCAR representation consistently
outperforms state-of-the-art audio representations: i-vector,
mv-vector, and GMM.

CCS Concepts
•Information systems → Multimedia and multi-
modal retrieval; •Computing methodologies → Ma-
chine learning;

Keywords
Event Detection; Audio Data; Discriminative and Compact
Representation

1. INTRODUCTION
With the rapid increase in the number of user-generated

videos shared on the Internet, it is becoming increasingly ad-
vantageous to explore new ways of retrieving them—for ex-
ample, by automatically detecting events occurring in them.

Approaches to the event detection task have largely
focused on visual-based methods—but audio content of-
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ten provides complementary information. Multimodal ap-
proaches that use both visual and audio cues have recently
gained traction. However, there has not been much in-depth
exploration of how to best leverage audio information, espe-
cially unfiltered user-generated audio—though the focus is
changing. For example, sound event detection was included
in the 2013 DCASE challenge at IEEE AASP [18].

Major aspects of audio-based event detection include au-
dio data representation and learning methodologies. In this
work, we focus on the first aspect, audio data representation,
which aims to extract specific features that can refine raw
audio into higher-level information. These include low-level
features (e.g., energy, cepstral, and harmonic features) and
intermediate-level features [3]. The most popular low-level
features are Mel-frequency cepstral coefficients (MFCCs) [7],
as well as first-order statistics [9] and second-order statistics
[15] (e.g., mv-vector [16]) derived from the MFCC features.

Another exciting recent approach is i-vectors, which use
latent factor analysis to compensate for foreground and
background variability [5, 6, 8]. Though these representa-
tion methods have shown promising performance, they have
some limitations with regard to event detection. For exam-
ple, most audio representations are derived unsupervised,
i.e., they do not make use of existing label information—
though label information is very useful in tasks such as im-
age classification [11] and text classification [12]. In addi-
tion, these methods risk losing information about geometric
structure within the data [17], and they do not capture sig-
nal variance within tracks, nor explicitly consider the local
structure between Gaussian components, which may be use-
ful for distinguishing events.

In this paper, we address these issues by introducing a
Discriminative and Compact Audio Representation (DCAR)
to model audio information. This method is implemented
in two phases. First, each audio track is modeled using a
Gaussian mixture model (GMM) with several components,
to capture within-track variability and reduce storage space.
Second, by integrating the labels for the audio tracks and the
local structure among the Gaussian components, we identify
an embedding to reduce the dimensionality of the mixture
components and render them more discriminative. Conse-
quently, the discriminative mixture components of the train-
ing data can be represented with low dimensionality.
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The DCAR model is presented in Sec. 2. Sec. 3 describes
experiments with a real-world dataset, demonstrating that
DCAR significantly improves event-detection performance.
Conclusions and future work are discussed in Sec. 4.

2. DISCRIMINATIVE AND COMPACT AU-
DIO REPRESENTATION

2.1 Characterizing Per-Track Variability
Given a set of audio tracks, we first extract their low-level

MFCC features. Let X = {Xi}ni=1 denote a set of n labeled
audio files; each file is segmented into mi frames. Each frame
is modeled via a vector with d-dimension MFCC features
(d = 60), i.e., xij ∈ R60 (including the first 20 MFCC features
and their first-order and second-order derivatives). Previ-
ous work has demonstrated that second-order statistics are
much more appropriate for describing complicated multime-
dia data [5]. Therefore, we train a GMM with P components
for each audio file (P can be tuned via cross-validation in
experiments), and a set of components G={gi}Ni=1 (N=nP )
can be obtained from n training audio files. Each compo-
nent has its weight wi, mean µi, and covariance matrix Σi,
i.e., gi = {wi, µi,Σi}.

2.2 Identifying a Discriminative Embedding
The audio file can be represented using these mixture com-

ponents, but this ignores the global structure of the data
(e.g., label information) and the local structure among the
components (e.g., nearest neighbors). Meanwhile, the orig-
inal feature representation is usually large (since there are
60 MFCC features, each mean vector has 60 elements, and
each covariance matrix contains 60 × 60 elements), which
may be time-consuming in later processing. Therefore we
propose a new method for generating a discriminative and
compact representation from the high-dimensional mixture
components. The DCAR method is summarized in Fig. 1.

Our main goal is to learn an embedding W ∈ Rd×r (r < d,
here d is number MFCC features, r is embedding space size)
based on N components generated from all labeled audio
tracks, belonging to L event classes (i.e., G = {gi, `i}Ni=1,
where `i is the label for component gi, based on the label
of the corresponding audio file from which gi was generated,
and L = |{`i}Ni=1|). Therefore, the resulting low-dimensional
GMM components should preserve the important structure
of the original GMM components as much as possible. We
introduce an embedding W and define new GMM compo-
nents with mean

µ̂ = WTµ (1)

and covariance matrix

Σ̂ = WTΣW. (2)

The covariance matrix Σ can easily be transformed to a sym-
metric positive definite matrix by adding a small constant
to its diagonal elements. To maintain this property, the em-
bedding W is constrained to be full rank. A simple way of
enforcing this requirement is to impose orthonormality con-
straints on W (i.e., WTW = Ir), so that the embedding
can be identified by solving an optimization problem on the
Grassmannian manifold.

For event detection, each training file has label informa-
tion, which we also assign to its GMM components. This

Figure 1: Framework for generating the discrimi-
native and compact audio representation (DCAR).
The left side shows the original d-dim GMM com-
ponents (i.e., µ ∈ Rd and Σ ∈ Rd×d); the right side
shows the DCAR representation with r-dim (r < d)

mixture components (i.e., µ̂ ∈ Rr and Σ̂ ∈ Rr×r).

valuable information can be interpreted as global structure
for those components. There is also intrinsic internal struc-
ture among the components, such as the affinity between
each pair. When reducing the dimensionality of GMM com-
ponents, it is necessary to maintain these two types of struc-
ture. Motivated by the idea of linear discriminative analysis
[14] and the Maximum Margin Criterion [13], DCAR aims
to minimize intra-class distance while maximizing inter-class
distance, by solving the optimization problem in (3):

F(W) = min
WTW=Ir

∑
i,j

Aij
(
λ‖WT (µi − µj)‖22

+ ‖ log(WTΣiW)− log(WTΣjW)‖2F
) (3)

The first term indicates the euclidean distance between
mean vectors, and the second term is the distance between
two covariance matrices measured by the Log-Euclidean
Metric (LEM) [2]. The tunable trade-off parameter λ bal-
ances the effects of the two terms. The affinity matrix A is
defined by building an intra- (within)-class similarity graph
and an inter- (between)-class similarity graph.

Aij = Sw − Sb (4)

Sw and Sb are two binary matrices describing the intra-class
and inter-class similarity graphs respectively, formulated as:

Sw(gi, gj) =

{
1 if gi ∈ NNw(gj) or gj ∈ NNw(gi)

0 otherwise
(5)

Sb(gi, gj) =

{
1 if gi ∈ NNb(gj) or gj ∈ NNb(gi)

0 otherwise,
(6)

where NNw(gi) contains the nw nearest neighbors of com-
ponent gi drawn from G that share the same label as `i, and
NNb(gi) is the set of nb nearest neighbors of gi that have
different labels. Here, the nearest neighbors of each com-
ponent can be identified via their similarity. We use heat
kernel weight with a self-tuning technique (for parameters
σµ and σΣ) to measure the similarity between components:

S(gi, gj) = λ exp
(−δ2

µ(µi, µj)

2σ2
µ

)
+ exp

(−δ2
Σ(Σi,Σj)

2σ2
Σ

)
(7)
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where λ is a trade-off parameter, δµ is the euclidean metric
and δΣ is the LEM metric. This matrix A serves to effec-
tively combine local structure (nearest neighbors) and global
structure (label information).

The problem in (3) is a typical optimization problem with
orthogonality constraints; it can therefore be formulated
as a unconstrained optimization problem on Grassmannian
manifolds [1]. Given that the objective function F(W) has
the property that for any rotation matrix R ∈ SO(r) (i.e.,
RRT = RTR = Ir), F(W) = F(WR), this optimization
problem is most compatible with a Grassmannian manifold.
In other words, we can model the embedding W as a point
on a Grassmannian manifold G(r, d), which consists of the
set of all linear r-dimensional subspaces of Rd.

We employ the conjugate gradient (CG) technique [1]
to solve (3). On a Grassmannian manifold, CG performs
minimization along geodesics with specific search directions.
Here, the geodesic is the shortest path between two points on
the manifold. For each point on the manifold G, its tangent
space is a vector space that contains the tangent vectors of
all possible curves passing through that point. On the man-
ifold, the tangent vectors must parallel transport along the
geodesics. Optimizing F(W) results in a situation where the
low-dimensional components are close if their correspond-
ing original high-dimensional components are event-aware
neighbors; otherwise, they will be as far apart as possible.

2.3 Detecting Events Using DCAR
To make use of the manifold structure, we adopted the

Kernel Ridge Regression (KRR) method [17] to build the

event classifiers. Let Ĝ= {ĝi}Ni=1 and ĝi = {µ̂i, Σ̂i} be the
learned low-dimensional components. Y ∈ RN×L is the la-
bel information (where Yij=1 if ĝi belongs to the jth event;
otherwise Yij=0). The KRR method aims to train a classi-
fier by solving the following optimization problem:

min
H

J(H) = ‖φ(Ĝ)TH−Y‖2F + α‖H‖2F (8)

where the kernel function can be written as K =
φ(Ĝ)Tφ(Ĝ). Since each component ĝi has a mean µ̂i and

a covariance matrix Σ̂i, we adopt the similarity (7) as the
kernel function, i.e., K(ĝi, ĝj) = S(ĝi, ĝj). The problem in
(8), as a quadratic convex problem, can be optimized by
setting its derivative with respect to H to zero, and then
computing H in closed form:

H = φ(Ĝ)(K + αI)−1Y

Given a new test audio track, the P mixture components
{gp}Pp=1 = {wp, µp,Σp}Pp=1 can be obtained. Then the cor-
responding discriminative, low-dimension mixture compo-
nents {ĝp}Pp=1 can be generated, as in (1) for µ̂p = WTµp,

and as in (2) for Σ̂p = WTΣpW , where the embedding W
is learned from the training data. The class membership
matrix M = {Mp}Pp=1 (where Mp ∈ R1×L is the event mem-
bership of the p-th component) can be calculated:

Mp=φ(ĝp)
TH=φ(ĝp)

Tφ(Ĝ)(K + αI)−1Y=Kp(K + αI)−1Y

Here Kp = [K(ĝp, ĝi)]
N
i=1, indicating the similarity between

ĝp and all of the training mixture components in Ĝ. We can
then make a final event prediction for the new audio track

with P components using an average voting scheme

` = argmax
j

P∑
p=1

wpMp(j)

where wp is the weight of the pth component.

3. EXPERIMENTAL RESULTS

3.1 Dataset and Methodology
Our experiments used YLI-MED [4], a recently re-

leased public video corpus with ten events, based on the
YFCC100M [19]. Table 1 describes YLI-MED; the variation
in track length makes event detection more challenging.

We compared the proposed DCAR with the state-of-the-
art audio representations used for event detection: mv-
vector [16], i-vector [6], and GMM. By “GMM”, we mean
the base GMMs extracting the GMM components from each
audio file, but without discriminative dimensional reduc-
tion. For each method, we tuned the parameters using cross-
validation on the training data to obtain the best result.

We describe results using the same classification method,
KRR, with all representations.1 For the l-th event in t test-
ing tracks, we compared the prediction result to the ground
truth to determine the number of true positives (TPl), false
positives (FPl), true negatives (TNl), and false negatives
(FNl). We evaluated event detection performance using
four common metrics, Accuracy, FScore, FalseAlarmRate
(FAR), and MissRate. Higher Accuracy and FScore and
lower FAR and MissRate indicate better performance.

3.2 Results and Discussion
We evaluated DCAR and the three baseline representa-

tions on a ten-event detection task. Table 2 shows de-
tection performance for each event and the average over
the ten events, in terms of FScore and MissRate. Com-
bined Accuracy for mv-vector, i-vector, GMM, and DCAR is
0.3907, 0.4640, 0.4923, and 0.5321, respectively (p=0.01 for
DCAR vs. each baseline [McNemar’s two-tailed]), and the
average FAR scores are 0.0674, 0.0593, 0.0570, and 0.0523.

For each individual event and on average, DCAR achieves
superior or competitive performance. In particular, DCAR
consistently performs best for all four metrics on the average
or combined scores (an average of more than 8% gain on all
metrics relative to the second-best representation).

To explore DCAR’s performance under different difficulty
levels, we extracted two subsets (based on results from other
tasks). Events in EC5 (“EasyCase”) (Ev101, Ev104, Ev105,
Ev108, and Ev109) are easy to distinguish from (most of) the
others; those in HC4 (“HardCase”) (Ev103, Ev106, Ev107,
and Ev110) are more difficult. For both subsets, DCAR
achieved the best results on each evaluation metric, for ex-
ample, FScores of 0.7067 on EC5 and 0.5283 on HC4 for
DCAR, as opposed to 0.4773, 0.6415, and 0.6670 on EC5 and
0.4278, 0.2795, and 0.4821 on HC4 for mv-vector, i-vector,
and GMM respectively. Interestingly, i-vector performs bet-
ter than mv-vector on EC5, but worse on HC4.

We can make a number of observations about these re-
sults. First, it seems that modeling GMM components for
each audio track (as in GMM, mv-vector, and DCAR) is

1Using SVM, KNN, or PLDA for this step does not change
the performance rankings between representations.
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Table 1: Dataset Composition
Training Data Testing Data

Event ID Event Name # of Videos length (ms) # of Videos length (ms)
Ev101 Birthday Party 99 6850∼248950 131 8380∼328960
Ev102 Flash Mob 91 8290∼325630 49 11710∼152560
Ev103 Getting a Vehicle Unstuck 89 5590∼591670 39 11170∼157690
Ev104 Parade 95 7840∼303850 127 5770∼216460
Ev105 Person Attempting a Board Trick 99 5950∼391150 88 5500∼254980
Ev106 Person Grooming an Animal 97 5950∼574300 38 7210∼292870
Ev107 Person Hand-Feeding an Animal 95 6850∼174880 113 7840∼244450
Ev108 Person Landing a Fish 99 7930∼363610 41 7480∼250120
Ev109 Wedding Ceremony 90 9640∼631630 108 9820∼646300
Ev110 Working on a Woodworking Project 98 5590∼373690 44 6760∼281080

Table 2: Per-event comparison of detection performance (as FScore and MissRate) using four representations:
mv-vector, i-vector, GMM, and DCAR. (Best results in boldface; second-best underlined.)

FScore (↑) MissRate (↓)
mv-vector i-vector GMM DCAR mv-vector i-vector GMM DCAR

Ev101 0.7259 0.7842 0.7303 0.7835 0.2824 0.1679 0.1527 0.1298
Ev102 0.2837 0.3396 0.3651 0.4603 0.5918 0.6327 0.5306 0.4082
Ev103 0.2178 0.2569 0.2410 0.3820 0.7179 0.6410 0.7436 0.5641
Ev104 0.4274 0.6206 0.6000 0.6207 0.6063 0.4331 0.3622 0.3621
Ev105 0.3354 0.3899 0.5714 0.5178 0.6932 0.6477 0.3864 0.4205
Ev106 0.1964 0.1835 0.2963 0.3750 0.7105 0.7368 0.6842 0.6053
Ev107 0.3850 0.3298 0.3250 0.4024 0.6814 0.7257 0.7699 0.7080
Ev108 0.3191 0.3853 0.3878 0.4231 0.6341 0.4878 0.5366 0.4634
Ev109 0.4211 0.5028 0.4286 0.5176 0.6667 0.5833 0.6667 0.5926
Ev110 0.0833 0.2299 0.2857 0.2162 0.9091 0.7727 0.7500 0.8182

Average 0.3395 0.4023 0.4231 0.4699 0.6494 0.5829 0.5583 0.5072

more effective than modeling a GMM on all the training
audio tracks together (as in i-vector) when the events are
closely related, as in HC4. We believe this is because, in
real-world applications (e.g., with user-generated content),
each track may have a large variance. The set of strategies
that model each track via GMM capture the hidden struc-
ture within each audio track, while the i-vector strategy may
smooth away that structure (even between events), leading
to a less useful representation.

Second, GMM and DCAR perform better than mv-vector
on both subsets, which indicates that one mixture compo-
nent (as in mv-vector) may not sufficiently capture the full
structure of the audio; in addition, vectorizing the mean and
variance inevitably distorts the intrinsic geometrical struc-
ture among the data. Third, DCAR outperforms the base
GMM, because DCAR takes into account the label informa-
tion and the intrinsic nearest neighbor structure among the
audio files when modeling the training data, and outputs a
mapping function to effectively represent the test data. This
result confirms that discriminative dimensionality reduction
is beneficial for characterizing the distinguishing informa-
tion for each audio file, leading to a better representation
and significantly improving event detection performance.

4. CONCLUSIONS AND FUTURE WORK
We have presented a new audio representation, DCAR,

and demonstrated its use in event detection.2 The DCAR

2Further details about how DCAR is built and additional
experimental results can be found in Jing et al. 2016 [10].

method stands out in its ability to capture the variabil-
ity within each audio file. In addition, it achieves better
discriminativity by integrating label information and the
graph of the components’ nearest neighbors among the audio
files. In experiments, representing audio using the proposed
DCAR notably improves performance on event detection. In
a nutshell, the novelty of DCAR lies in its being a compact
representation of an audio signal that captures variability
and has better discriminative ability than other representa-
tions.

Videos are of course multimodal; visual content, cap-
tions, and other metadata can provide valuable informa-
tion. We therefore plan to use these to extend the cur-
rent model, along with complex information about tempo-
ral evolution [3]. We may also explore modeling only the
most information-rich audio segments. Within audio, we
also hope to evaluate the use of DCAR for other related
tasks, such as audio scene classification (for example, test-
ing it with the DCASE acoustic scenes dataset [18]).
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