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Abstract

We provide a general framework for studying recurrent neural networks (RNNs)
trained by injecting noise into hidden states. Specifically, we consider RNNs
that can be viewed as discretizations of stochastic differential equations driven by
input data. This framework allows us to study the implicit regularization effect of
general noise injection schemes by deriving an approximate explicit regularizer in
the small noise regime. We find that, under reasonable assumptions, this implicit
regularization promotes flatter minima; it biases towards models with more stable
dynamics; and, in classification tasks, it favors models with larger classification
margin. Sufficient conditions for global stability are obtained, highlighting the
phenomenon of stochastic stabilization, where noise injection can improve stability
during training. Our theory is supported by empirical results which demonstrate
that the RNNs have improved robustness with respect to various input perturbations.

1 Introduction

Viewing recurrent neural networks (RNNs) as discretizations of ordinary differential equations (ODEs)
driven by input data has recently gained attention [7, 27, 16, 49]. The “formulate in continuous time,
and then discretize” approach [38] motivates novel architecture designs before experimentation, and
it provides a useful interpretation as a dynamical system. This, in turn, has led to gains in reliability
and robustness to data perturbations.

Recent efforts have shown how adding noise can also improve stability during training, and con-
sequently improve robustness [35]. In this work, we consider discretizations of the corresponding
stochastic differential equations (SDEs) obtained from ODE formulations of RNNs through the
addition of a diffusion (noise) term. We refer to these as Noisy RNNs (NRNNs). By dropping the
noisy elements at inference time, NRNNs become a stochastic learning strategy which, as we shall
prove, has a number of important benefits. In particular, stochastic learning strategies (including
dropout) are often used as natural regularizers, favoring solutions in regions of the loss landscape with
desirable properties (often improved generalization and/or robustness). This mechanism is commonly
referred to as implicit regularization [40, 39, 50], differing from explicit regularization where the
loss is explicitly modified. For neural network (NN) models, implicit regularization towards wider
minima is conjectured to be a prominent ingredient in the success of stochastic optimization [67, 28].
Indeed, implicit regularization has been linked to increases in classification margins [47], which can
lead to improved generalization performance [51]. A common approach to identify and study implicit
regularization is to approximate the implicit regularization by an appropriate explicit regularizer
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[40, 39, 1, 6, 21]. Doing so, we will see that NRNNs favor wide minima (like SGD); more stable
dynamics; and classifiers with a large classification margin, keeping generalization error small.

SDEs have also seen recent appearances in neural SDEs [59, 24], stochastic generalizations of neural
ODEs [9] which can be seen as an analogue of NRNNs for non-sequential data, with a similar
relationship to NRNNs as feedforward NNs do to RNNs. They have been shown to be robust in
practice [35]. Analogously, we shall show that the NRNN framework leads to more reliable and
robust RNN classifiers, whose promise is demonstrated by experiments on benchmark data sets.

Contributions. For the class of NRNNs (formulated first as a continuous-time model, which is then
discretized), the following are our main contributions:

• we identify the form of the implicit regularization for NRNNs through a corresponding (data-
dependent) explicit regularizer in the small noise regime (see Theorem 1);

• we focus on its effect in classification tasks, providing bounds for the classification margin for the
deterministic RNN classifiers (see Theorem 2); in particular, Theorem 2 reveals that stable RNN
dynamics can lead to large classification margin;

• we show that noise injection can also lead to improved stability (see Theorem 3) via a Lyapunov
stability analysis of continuous-time NRNNs;

• we demonstrate via empirical experiments on benchmark data sets that NRNN classifiers
are more robust to data perturbations when compared to other recurrent models, while
retaining state-of-the-art performance for clean data. Research code is provided here:
https://github.com/erichson/NoisyRNN.

Notation. We use ‖v‖ := ‖v‖2 to denote the Euclidean norm of the vector v, and ‖A‖2 and ‖A‖F
to denote the spectral norm and Frobenius norm of the matrix A, respectively. The ith element of
a vector v is denoted by vi or [v]i, and the (i, j)-entry of a matrix A by Aij or [A]ij . For a vector
v = (v1, . . . , vd), diag(v) denotes the diagonalization of v with diag(v)ii = vi. I denotes the
identity matrix (with dimension clear from context), while superscript T denotes transposition. For
a matrix M , M sym = (M + MT )/2 denotes its symmetric part, λmin(M) and λmax(M) denote
its minimum and maximum eigenvalue respectively, σmax(M) denotes its maximum singular value,
and Tr(M) denotes its trace. For a function f : Rn → Rm such that each of its first-order partial
derivatives (with respect to x) exist, ∂f∂x ∈ Rm×n is the Jacobian matrix of f . For a scalar-valued
function g : Rn → R, ∇hg is the gradient of g with respect to the variable h ∈ Rn and Hhg is the
Hessian of g with respect to h.

2 Related Work

Dynamical Systems and Machine Learning. There are various interesting connections between
machine learning and dynamical systems. Formulating machine learning in the framework of
continuous-time dynamical systems was recently popularized by [62]. Subsequent efforts focus on
constructing learning models by approximating continuous-time dynamical systems [9, 29, 48] and
studying them using tools from numerical analysis [36, 64, 69, 68]. On the other hand, dynamical
systems theory provides useful theoretical tools for analyzing NNs, including RNNs [60, 15, 34,
7, 16], and useful principles for designing NNs [23, 54]. Other examples of dynamical systems
inspired models include the learning of invariant quantities via their Hamiltonian or Lagrangian
representations [37, 22, 10, 71, 58]. Another class of models is inspired by Koopman theory, yielding
models where the evolution operator is linear [56, 43, 17, 45, 33, 4, 3, 13].

Stochastic Training and Regularization Strategies. Regularization techniques such as noise injec-
tion and dropout can help to prevent overfitting in NNs. Following the classical work [5] that studies
regularizing effects of noise injection on data, several work studies the effects of noise injection
into different parts of networks for various architectures [25, 44, 35, 54, 2, 26, 66, 61]. In particular,
recently [6] studies the regularizing effect of isotropic Gaussian noise injection into the layers of
feedforward networks. For RNNs, [12] shows that noise additions on the hidden states outperform
Bernoulli dropout in terms of performance and bias, whereas [18] introduces a variant of stochastic
RNNs for generative modeling of sequential data. Some specific formulations of RNNs as SDEs were
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also considered in Chapter 10 of [41]. Implicit regularization has also been studied more generally
than stochastic gradient based training of NNs [40, 39, 19, 11].

3 Noisy Recurrent Neural Networks

We formulate continuous-time recurrent neural networks (CT-RNNs) at full generality as a system of
input-driven ODEs: for a terminal time T > 0 and an input signal x = (xt)t∈[0,T ] ∈ C([0, T ];Rdx),
the output yt ∈ Rdy , for t ∈ [0, T ], is a linear map of hidden states ht ∈ Rdh satisfying

dht = f(ht, xt)dt, yt = V ht, (1)

where V ∈ Rdy×dh , and f : Rdh × Rdx → Rdh is typically Lipschitz continuous, guaranteeing
existence and uniqueness of solutions to (1).

A natural stochastic variant of CT-RNNs arises by replacing the ODE in (1) by an Itô SDE, that is,

dht = f(ht, xt)dt+ σ(ht, xt)dBt, yt = V ht, (2)

where σ : Rdh × Rdx → Rdh×r and (Bt)t≥0 is an r-dimensional Brownian motion. The functions
f, σ are referred to as the drift and diffusion coefficients, respectively. Intuitively, (2) amounts to a
noisy perturbation of the corresponding deterministic CT-RNN (1). At full generality, we refer to
the system (2) as a continuous-time Noisy RNN (CT-NRNN). To guarantee the existence of a unique
solution to (2), in the sequel, we assume that {f(·, xt)}t∈[0,T ] and {σ(·, xt)}t∈[0,T ] are uniformly
Lipschitz continuous, and t 7→ f(h, xt), t 7→ σ(h, xt) are bounded in t ∈ [0, T ] for each fixed
h ∈ Rdh . For further details, see Section B in Supplementary Material (SM).

While much of our theoretical analysis will focus on this general formulation of CT-NRNNs, our
empirical and stability analyses focus on the choice of drift function

f(h, x) = Ah+ a(Wh+ Ux+ b), (3)

where a : R → R is a Lipschitz continuous scalar activation function extended to act on vectors
pointwise, A,W ∈ Rdh×dh , U ∈ Rdh×dx and b ∈ Rdh . Typical examples of activation functions
include a(x) = tanh(x). The matrices A,W,U, V, b are all assumed to be trainable parameters. This
particular choice of drift dates back to the early Cohen-Grossberg formulation of CT-RNNs, and was
recently reconsidered in [16].

3.1 Noise Injections as Stochastic Learning Strategies

While precise choices of drift functions f are the subject of existing deterministic RNN theory, good
choices of the diffusion coefficient σ are less clear. Here, we shall consider a parametric class of
diffusion coefficients given by:

σ(h, x) ≡ ε(σ1I + σ2diag(f(h, x))), (4)

where the noise level ε > 0 is small, and σ1 ≥ 0 and σ2 ≥ 0 are tunable parameters describing the
relative strength of additive noise and a multiplicative noise respectively.

While the stochastic component is an important part of the model, one can set ε ≡ 0 at inference time.
In doing so, noise injections in NRNNs may be viewed as a learning strategy. A similar stance is
considered in [35] for treating neural SDEs. From this point of view, we may relate noise injections
generally to regularization mechanisms considered in previous works. For example, additive noise
injection was studied in the context of feedforward NNs in [6], in which case a Gaussian noise is
injected to the activation function at each layer of the NN. Furthermore, multiplicative noise injections
includes stochastic depth and dropout strategies as special cases [36, 35]. By taking a Gaussian
approximation to Bernoulli noise and taking a continuous-time limit, NNs with stochastic dropout
can be weakly approximated by an SDE with appropriate multiplicative noise, see [36]. All of these
works highlight various advantages of noise injection for training NNs.

3.2 Numerical Discretizations

As in the deterministic case, exact simulation of the SDE in (2) is infeasible in practice, and so one
must specify a numerical integration scheme. We will focus on the explicit Euler-Maruyama (E-M)
integrators [30], which are the stochastic analogues of Euler-type integration schemes for ODEs.
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Let 0 := t0 < t1 < · · · < tM := T be a partition of the interval [0, T ]. Denote δm := tm+1 − tm for
each m = 0, 1, . . . ,M − 1, and δ := (δm). The E-M scheme provides a family (parametrized by δ)
of approximations to the solution of the SDE in (2):

hδm+1 = hδm + f(hδm, x̂m)δm + σ(hδm, x̂m)
√
δmξm, (5)

for m = 0, 1, . . . ,M − 1, where (x̂m)m=0,...,M−1 is a given sequential data, the ξm ∼ N (0, I) are
independent r-dimensional standard normal random vectors, and hδ0 = h0. As ∆ := maxm δm → 0,
the family of approximations (hδm) converges strongly to the Itô process (ht) satisfying (2) (at rate
O(
√

∆) when the step sizes are uniform; see Theorem 10.2.2 in [30]). See Section C in SM for
details on the general case.

4 Implicit Regularization

To highlight the advantages of NRNNs over their deterministic counterpart, we show that, under
reasonable assumptions, NRNNs exhibit a natural form of implicit regularization. By this, we mean
regularization imposed implicitly by the stochastic learning strategy, without explicitly modifying
the loss, but that, e.g., may promote flatter minima. Our goal is achieved by deriving an appropriate
explicit regularizer through a perturbation analysis in the small noise regime. This becomes useful
when considering NRNNs as a learning strategy, since we can precisely determine the effect of the
noise injection as a regularization mechanism.

The study for discrete-time NRNNs is of practical interest and is our focus here. Nevertheless,
analogous results for continuous-time NRNNs are also valuable for exploring other discretization
schemes. For this reason, we also study the continuous-time case in Section E in SM. Our analysis
covers general NRNNs, not necessarily those with the drift term (3) and diffusion term (4), that
satisfy the following assumption, which is typically reasonable in practice. We remark that a ReLU
activation will violate the assumption. However, RNNs with ReLU activation are less widely used in
practice. Without careful initialization [31, 57], they typically suffer more from exploding gradient
problems compared to those with bounded activation functions such as tanh.
Assumption A. The drift f and diffusion coefficient σ of the SDE in (2) satisfy the following:

(i) for all t ∈ [0, T ] and x ∈ Rdx , h 7→ f(h, x) and h 7→ σij(h, x) have Lipschitz continuous
partial derivatives in each coordinate up to order three (inclusive);

(ii) for any h ∈ Rdh , t 7→ f(h, xt) and t 7→ σ(h, xt) are bounded and Borel measurable on [0, T ].

We consider a rescaling of the noise σ 7→ εσ in (2), where ε > 0 is assumed to be a small parameter,
in line with our noise injection strategies in Subsection 3.1.

In the sequel, we let h̄δm denote the hidden states of the corresponding deterministic RNN model,
satisfying

h̄δm+1 = h̄δm + δmf(h̄δm, x̂m), m = 0, 1, . . . ,M − 1, (6)

with h̄δ0 = h0. Let ∆ := maxm∈{0,...,M−1} δm, and denote the state-to-state Jacobians by

Ĵm = I + δm
∂f

∂h
(h̄δm, x̂m). (7)

For m, k = 0, . . . ,M − 1, also let

Φ̂m,k = ĴmĴm−1 · · · Ĵk, (8)

where the empty product is assumed to be the identity. Note that the Φ̂m,k are products of the
state-to-state Jacobian matrices, important for analyzing signal propagation in RNNs [8]. For the
sake of brevity, we denote fm = f(h̄δm, x̂m) and σm = σ(h̄δm, x̂m) for m = 0, 1, . . . ,M .

The following result, which is our first main result, relates the loss function, averaged over realizations
of the injected noise, used for training NRNN to that for training deterministic RNN in the small
noise regime.
Theorem 1 (Implicit regularization induced by noise injection). Under Assumption A,

E`(hδM ) = `(h̄δM ) +
ε2

2
[Q̂(h̄δ) + R̂(h̄δ)] +O(ε3), (9)
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as ε→ 0, where the terms Q̂ and R̂ are given by

Q̂(h̄δ) = ∇l(h̄δM )T
M∑
k=1

δk−1Φ̂M−1,k

M−1∑
m=1

δm−1vm, (10)

R̂(h̄δ) =

M∑
m=1

δm−1tr(σTm−1Φ̂TM−1,mHh̄δ l Φ̂M−1,mσm−1), (11)

with vm a vector with the pth component:

[vm]p = tr(σTm−1Φ̂TM−2,mHh̄δ [fM ]pΦ̂M−2,mσm−1), (12)

for p = 1, . . . , dh. Moreover,

|Q̂(h̄δ)| ≤ CQ∆2, |R̂(h̄δ)| ≤ CR∆, (13)

for CQ, CR > 0 independent of ∆.

If the loss is convex, then R̂ is non-negative, but Q̂ needs not be. However, Q̂ can be made negligible
relative to R̂ provided that ∆ is taken sufficiently small. This also ensures that the E-M approximations
are accurate.

To summarize, Theorem 1 implies that the injection of noise into the hidden states of deterministic
RNN is, on average, approximately equivalent to a regularized objective functional. Moreover,
the explicit regularizer is solely determined by the discrete-time flow generated by the Jacobians
∂fm
∂h̄

(h̄δm), the diffusion coefficients σn, and the Hessian of the loss function, all evaluated along the
dynamics of the deterministic RNN. We can therefore expect that the use of NRNNs as a regularization
mechanism should reduce the state-to-state Jacobians and Hessian of the loss function according to
the noise level ε. Indeed, NRNNs exhibit a smoother Hessian landscape than that of the deterministic
counterpart (see Figure 3 in SM).

The Hessian of the loss function commonly appears in implicit regularization analyses, and suggests
a preference towards wider minima in the loss landscape. Commonly considered a positive attribute
[28], this, in turn, suggests a degree of robustness in the loss to perturbations in the hidden states [65].
More interesting, however, is the appearance of the Jacobians, which is indicative of a preference
towards slower, more stable dynamics. Both of these attributes suggest NRNNs could exhibit a strong
tendency towards models which are less sensitive to input perturbations. Overall, we can see that the
use of NRNNs as a regularization mechanism reduces the state-to-state Jacobians and Hessian of the
loss function according to the noise level.

5 Implications in Classification Tasks

Our focus now turns to an investigation of the benefits of NRNNs over their deterministic counter-
parts for classification tasks. From Theorem 1, it is clear that adding noise to deterministic RNN
implicitly regularizes the state-to-state Jacobians. Here, we show that doing so also enhances an
implicit tendency towards classifiers with large classification margin. Our analysis here covers
general deterministic RNNs, although we also apply our results to obtain explicit expressions for
Lipschitz RNNs.

Let SN denote a set of training samples sn := (xn, yn) for n = 1, . . . , N , where each input
sequence xn = (xn,0, xn,1, . . . , xn,M−1) ∈ X ⊂ RdxM has a corresponding class label yn ∈
Y = {1, . . . , dy}. Following the statistical learning framework, these samples are assumed to be
independently drawn from an underlying probability distribution µ on the sample space S = X × Y .
An RNN-based classifier gδ(x) is constructed in the usual way by taking

gδ(x) = argmaxi=1,...,dyp
i(V h̄δM [x]), (14)

where pi(x) = ex
i

/
∑
j e
xj is the softmax function. Letting ` denoting the cross-entropy

loss, such a classifier is trained from SN by minimizing the empirical risk (training error),
RN (gδ) := 1

N

∑N
n=1 `(g

δ(xn), yn), as a proxy for the true (population) risk (test error), R(gδ) =
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E(x,y)∼µ`(g
δ(x), y), with (x, y) ∈ S. The measure used to quantify the prediction quality is the

generalization error (or estimation error), which is the difference between the empirical risk of the
classifier on the training set and the true risk: GE(gδ) := |R(gδ)−RN (gδ)|.
The classifier is a function of the output of the deterministic RNN, which is an Euler discretization of
the ODE (1) with step sizes δ = (δm). In particular, for the Lipschitz RNN,

Φ̂m,k = ĴmĴm−1 · · · Ĵk, (15)

where Ĵl = I + δl(A+DlW ), with Dij
l = a′([Wh̄δl + Ux̂l + b]i)eij .

In the following, we let conv(X ) denote the convex hull of X . We let x̂0:m := (x̂0, . . . , x̂m) so that
x̂ = x̂0:M−1, and use the notation f [x] to indicate the dependence of the function f on the vector x.
Our result will depend on two characterizations of a training sample si = (xi, yi).
Definition 1 (Classification Margin). The classification margin of a training sample si = (xi, yi)
measured by the Euclidean metric d is defined as the radius of the largest d-metric ball in X
centered at xi that is contained in the decision region associated with the class label yi, i.e., it is:
γd(si) = sup{a : d(xi,x) ≤ a⇒ gδ(x) = yi ∀x}.

Intuitively, a larger classification margin allows a classifier to associate a larger region centered
on a point xi in the input space to the same class. This makes the classifier less sensitive to input
perturbations, and a perturbation of xi is still likely to fall within this region, keeping the classifier
prediction. In this sense, the classifier becomes more robust. In our case, the networks are trained by
a loss (cross-entropy) that promotes separation of different classes in the network output. This, in
turn, maximizes a certain notion of score of each training sample.
Definition 2 (Score). For a training sample si = (xi, yi), we define its score as o(si) =

minj 6=yi
√

2(eyi − ej)TSδ[xi] ≥ 0, where ei ∈ Rdy is the Kronecker delta vector with eii = 1

and eji = 0 for i 6= j, Sδ[xi] := p(V h̄δM [xi]) with h̄δM [xi] denoting the hidden state of the RNN,
driven by the input sequence xi, at terminal index M .

Recall that the classifier gδ(x) = arg maxi∈1,...,dy [Sδ]i[x], and the decision boundary between class
i and class j in the feature space is given by the hyperplane {z = Sδ : zi = zj}. A positive score
implies that at the network output, classes are separated by a margin that corresponds to the score.
However, a large score may not imply a large classification margin.

Following the approach of [52, 63], we obtain the second main result, providing bounds for classifi-
cation margin for the deterministic RNN classifiers gδ. We also provide a generalization bound in
terms of the classification margin under additional assumptions (see Theorem 11 in SM).
Theorem 2. Suppose that Assumption A holds. Assume that the score o(si) > 0 and

γ(si) :=
o(si)

C
∑M−1
m=0 δm supx̂∈conv(X ) ‖Φ̂M,m+1[x̂]‖2

> 0, (16)

where C = ‖V ‖2
(

maxm=0,1,...,M−1

∥∥∥∂f(h̄δm,x̂m)
∂x̂m

∥∥∥
2

)
> 0 is independent of si (in particular,

C = ‖V ‖2[maxm=0,...,M−1 ‖DmU‖2] for Lipschitz RNNs), the Φ̂m,k are defined in (15) and the δm
are the step sizes. Then, the classification margin for the training sample si:

γd(si) ≥ γ(si). (17)

Now, recalling from Section 4, up to O(ε2) and under the assumption that Q̂ vanishes, the loss
minimized by the NRNN classifer is, on average, `(h̄δM ) + ε2R̂(h̄δ), as ε→ 0, with regularizer

R̂(h̄δ) =
1

2

M∑
m=1

δm−1‖M̂M−1Φ̂M−1,mσm−1‖2F , (18)

where M̂T
MM̂M := Hh̄δM

l is the Cholesky decomposition of the Hessian matrix of the convex cross-
entropy loss. The appearance of the state-to-state Jacobians in Φm,k in both the regularizer (18)
and the lower bound (16) suggests that noise injection implicitly aids generalization performance.
More precisely, in the small noise regime and on average, NRNNs promote classifiers with large
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classification margin, an attribute linked to both improved robustness and generalization [63]. In
this sense, training with NRNN classifiers is a stochastic strategy to improve generalization over
deterministic RNN classifiers, particularly in learning tasks where the given data is corrupted (c.f. the
caveats pointed out in [53]).

Theorem 2 implies that the lower bound for the classification margin is determined by the spectrum
of the Φ̂M−1,m. To make the lower bound large, keeping δm and M fixed, the spectral norm of
the Φ̂M−1,m should be made small. Doing so improves stability of the RNN, but may also lead to
vanishing gradients, hindering capacity of the model to learn. To maximize the lower bound while
avoiding the vanishing gradient problem, one should tune the numerical step sizes δm and noise level
ε in NRNN appropriately. RNN architectures for the drift which help to ensure moderate Jacobians
(e.g., ‖Φ̂M−1,m‖2 ≈ 1 for all m [8]) also remain valuable in this respect.

6 Stability and Noise-Induced Stabilization

Here we obtain sufficient conditions to guarantee stochastic stability of CT-NRNNs. This will also
provide another lens to highlight the potential of NRNNs for improved robustness. A dynamical
system is considered stable if trajectories which are close to each other initially remain close at
subsequent times. As observed in [46, 42, 7], stability plays an essential role in the study of RNNs to
avoid the exploding gradient problem, a property of unstable systems where the gradient increases in
magnitude with the depth. While gradient clipping during training can somewhat alleviate this issue,
better performance and robustness is achieved by enforcing stability in the model itself.

Our stability analysis will focus on establishing almost sure exponential stability (for other notions
of stability, see SM) for CT-NRNNs with the drift function (3). To preface the definition, consider
initializing the SDE at two different random variables h0 and h′0 := h0 + ε0, where ε0 ∈ Rdh is
a constant non-random perturbation with ‖ε0‖ ≤ δ. The resulting hidden states, ht and h′t, are
set to satisfy (2) with the same Brownian motion Bt, starting from their initial values h0 and h′0,
respectively. The evolution of εt = h′t − ht satisfies

dεt = Aεtdt+ ∆at(εt)dt+ ∆σt(εt)dBt, (19)

where ∆at(εt) = a(Wh′t+Uxt+b)−a(Wht+Uxt+b) and ∆σt(εt) = σ(ht+εt, xt)−σ(ht, xt).
Since ∆at(0) = 0, ∆σt(0) = 0 for all t ∈ [0, T ], εt = 0 admits a trivial equilibrium for (19). Our
objective is to analyze the stability of the solution εt = 0, that is, to see how the final state εT (and
hence the output of the RNN) changes for an arbitrarily small initial perturbation ε0 6= 0. To this end,
we consider an extension of the Lyapunov exponent to SDEs at the level of sample path [41].

Definition 3 (Almost sure global exponential stability). The sample (or pathwise) Lyapunov exponent
of the trivial solution of (19) is Λ = lim supt→∞ t−1 log ‖εt‖. The trivial solution εt = 0 is almost
surely globally exponentially stable if Λ is almost surely negative for all ε0 ∈ Rdh .

For the sample Lyapunov exponent Λ(ω), there is a constant C > 0 and a random variable 0 ≤
τ(ω) <∞ such that for all t > τ(ω), ‖εt‖ = ‖h′t − ht‖ ≤ CeΛt almost surely. Therefore, almost
sure exponential stability implies that almost all sample paths of (19) will tend to the equilibrium
solution ε = 0 exponentially fast. With this definition in tow, we obtain the following stability result.

Theorem 3. Assume that a is monotone non-decreasing, and σ1‖ε‖ ≤ ‖∆σt(ε)‖F ≤ σ2‖ε‖ for all
nonzero ε ∈ Rdh , t ∈ [0, T ]. Then for any ε0 ∈ Rdh , with probability one,

φ+ λmin(Asym) ≤ Λ ≤ ψ + Laσmax(W ) + λmax(Asym), (20)

with φ = −σ2
2 +

σ2
1

2 and ψ = −σ2
1 +

σ2
2

2 , where La is the Lipschitz constant of a.

In the special case without noise (σ1 = σ2 = 0), we recover case (a) of Theorem 1 in [16]: whenAsym

is negative definite and σmin(Asym) > Laσmax(W ), Theorem 3 implies that (2) is exponentially
stable. Most strikingly, and similar to [35], Theorem 3 implies that even if the deterministic CT-RNN
is not exponentially stable, it can be stabilized through a stochastic perturbation. Consequently,
injecting noise appropriately can improve training performance.
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7 Empirical Results

The evaluation of robustness of neural networks (RNNs in particular) is an often neglected yet crucial
aspect. In this section, we investigate the robustness of NRNNs and compare their performance
to other recently introduced state-of-the-art models on both clean and corrupted data. We refer to
Section G in SM for further details of our experiments.

Here, we study the sensitivity of different RNN models with respect to a sequence of perturbed inputs
during inference time. We consider different types of perturbations: (a) white noise; (b) multiplicative
white noise; (c) salt and pepper; and (d) adversarial perturbations. To be more concrete, let x be a
sequence. The perturbations in consideration are as follows.

• Additive white noise perturbations are constructed as x̃ = x+∆x, where the additive noise is drawn
from a Gaussian distribution ∆x ∼ N (0, σ). This perturbation strategy emulates measurement
errors that can result from data acquisition with poor sensors (where σ can be used to vary the
strength of these errors). Multiplicative white noise perturbations are constructed as x̃ = x ·∆x,
where the additive noise is drawn from a Gaussian distribution ∆x ∼ N (1, σM ).

• Salt and pepper perturbations emulate defective pixels that result from converting analog signals
to digital signals. The noise model takes the form P(X̃ = X) = 1 − α, and P(X̃ = max) =

P(X̃ = min) = α/2, where X̃(i, j) denotes the corrupted image and min and max denote to the
minimum and maximum pixel values. The parameter α controls the proportion of defective pixels.

• Adversarial perturbations are “worst-case” non-random perturbations maximizing the loss
`(gδ(X + ∆X), y) subject to the constraint that the norm of the perturbation ‖∆X‖ ≤ r. We
consider the fast gradient sign method for constructing these perturbations [55].

We consider in addition to the NRNN three other RNNs derived from continuous-time models,
including the Lipschitz RNN [16] (the deterministic counterpart to our NRNN), the coupled oscillatory
RNN (coRNN) [49] and the antisymmetric RNN [7]. We also consider the exponential RNN [32], a
discrete-time model that uses orthogonal recurrent weights. We train each model with the prescribed
tuning parameters for the ordered (see Sec. 7.1) and permuted (see SM) MNIST task. For the
Electrocardiogram (ECG) classification task we performed a non-exhaustive hyper-tuning parameter
search. For comparison, we train all models with hidden-to-hidden weight matrices of dimension
dh = 128. We average the classification performance over ten different seed values.

7.1 Ordered Pixel-by-Pixel MNIST Classification

First, we consider the ordered pixel-by-pixel MNIST classification task [31]. This task sequentially
presents 784 pixels to the model and uses the final hidden state to predict the class membership
probability of the input image. In the SM we present additional results for the situation when instead
of an ordered sequence a fixed random permutation of the input sequence is presented to the model.

Table 1 shows the average test accuracy (evaluated for models that are trained with 10 different seed
values) for the ordered task. Here we present results for white noise and salt and pepper (S&P)
perturbations. While the Lipschitz RNN performs best on clean input sequences, the NRNNs show
an improved resilience to input perturbations. Here, we consider two different configuration for the
NRNN. In both cases, we set the multiplicative noise level to 0.02, whereas we consider the additive
noise levels 0.02 and 0.05. We chose these configurations as they appear to provide a good trade-off
between accuracy and robustness. Note that the predictive accuracy on clean inputs starts to drop
when the noise level becomes too large.

Table 1: Robustness w.r.t. white noise (σ) and S&P (α) perturbations on the ordered MNIST task.

Name clean σ = 0.1 σ = 0.2 σ = 0.3 α = 0.03 α = 0.05 α = 0.1

Antisymmetric RNN [7] 97.5% 45.7% 22.3% 17.0% 77.1% 63.9% 42.6%
CoRNN [49] 99.1% 96.6% 61.9% 32.1% 95.6% 88.1% 58.9%
Exponential RNN [32] 96.7% 86.7% 58.1% 33.3% 83.6% 70.7% 43.4%
Lipschitz RNN [16] 99.2% 98.4% 78.9% 47.1% 97.6% 93.4% 73.5%
NRNN (mult./add. noise: 0.02/0.02) 99.1% 98.9% 88.4% 62.9% 98.3% 95.6% 78.7%
NRNN (mult./add. noise: 0.02/0.05) 99.1% 98.9% 92.2% 73.5% 98.5% 97.1% 85.5%
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Figure 1: Test accuracy for the ordered MNIST task as function of the strength of input perturbations.

Table 2 shows the average test accuracy for the ordered MNIST task for adversarial perturbations.
Again, the NRNNs show a superior resilience even to large perturbations, whereas the Antisymmetric
and Exponential RNN appear to be sensitive even to small perturbations.

Figure 1 summarizes the performance of different models with respect to white noise and salt
and pepper perturbations. The colored bands indicate ±1 standard deviation around the average
performance. In all cases, the NRNN appears to be less sensitive to input perturbations as compared
to the other models, while maintaining state-of-the-art performance for clean inputs.

7.2 Electrocardiogram (ECG) Classification

Next, we consider the Electrocardiogram (ECG) classification task that aims to discriminate between
normal and abnormal heart beats of a patient that has severe congestive heart failure [20]. We use 500
sequences of length 140 for training, 500 sequences for validation, and 4000 sequences for testing.

Table 3 shows the average test accuracy (evaluated for models that are trained with 10 different
seed values) for this task. We present results for additive white noise and multiplicative white noise
perturbations. Here, the NRNN, trained with multiplicative noise level set to 0.03 and additive noise
levels set to 0.06, performs best both on clean as well as on perturbed input sequences.

Figure 2 summarizes the performance of different models with respect to additive and multiplicative
white noise perturbations. Again, the NRNN appears to be less sensitive to input perturbations as
compared to the other models, while achieving state-of-the-art performance for clean inputs.

Table 2: Robustness w.r.t. adversarial perturbations on the ordered pixel-by-pixel MNIST task.

Name r = 0.01 r = 0.05 r = 0.1 r = 0.15

Antisymmetric RNN [7] 79.4% 24.7% 11.4% 10.2%
CoRNN [49] 97.5% 85.5% 55.9% 35.1%
Exponential RNN [32] 94.5% 59.3% 19.7% 14.3%
Lipschitz RNN [16] 98.1% 85.7% 58.9% 37.1%
NRNN (mult./add. noise: 0.02/0.02) 98.8% 94.3% 79.6% 58.3%
NRNN (mult./add. noise: 0.02/0.05) 98.8% 95.5% 86.8% 70.6%

Table 3: Robustness w.r.t. white (σ) and multiplicative (σM ) noise perturbations on the ECG task.

Name clean σ = 0.4 σ = 0.8 σ = 1.2 σM = 0.4 σM = 0.8 σM = 1.2

Antisymmetric RNN [7] 97.1% 96.6% 91.6% 77.0% 96.6% 94.6% 91.2%
CoRNN [49] 97.5% 96.8% 92.9% 87.2% 93.9% 85.4% 78.4%
Exponential RNN [32] 97.4% 95.6% 86.4% 76.7% 95.7% 89.4% 81.3%
Lipschitz RNN [16] 97.7% 97.4% 95.1% 88.9% 97.6% 97.0% 95.6%
NRNN (mult./add. noise: 0.03/0.06) 97.7% 97.5% 96.3% 92.6% 97.7% 97.3% 96.5%
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Figure 2: Test accuracy for the ECG task as function of the strength of input perturbations.

8 Conclusion

In this paper we provide a thorough theoretical analysis of RNNs trained by injecting noise into the
hidden states. Within the framework of SDEs, we study the regularizing effects of general noise
injection schemes. The experimental results are in agreement with our theory and its implications,
finding that Noisy RNNs achieve superior robustness to input perturbations, while maintaining
state-of-the-art generalization performance. We believe our framework can be used to guide the
principled design of a class of reliable and robust RNN classifiers.

Our work opens up a range of interesting future directions. In particular, for deterministic RNNs,
it was shown that the models learn optimally near the edge of stability [8]. One could extend these
analyses to NRNNs with the ultimate goal of improving their performance. On the other hand,
as discussed in Section 5, although the noise is shown here to implicitly stabilize RNNs, it could
negatively impact capacity for long-term memory [42, 70]. Providing analyses to account for this and
the implicit bias due to the stochastic optimization procedure [50, 14] is the subject of future work.
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