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Abstract
We consider variants of trust-region and adaptive cubic regularization methods for
non-convex optimization, in which the Hessian matrix is approximated. Under certain
condition on the inexact Hessian, and using approximate solution of the corresponding
sub-problems, we provide iteration complexity to achieve ε-approximate second-order
optimality which have been shown to be tight. Our Hessian approximation condi-
tion offers a range of advantages as compared with the prior works and allows for
direct construction of the approximate Hessian with a priori guarantees through var-
ious techniques, including randomized sampling methods. In this light, we consider
the canonical problem of finite-sum minimization, provide appropriate uniform and
non-uniform sub-sampling strategies to construct such Hessian approximations, and
obtain optimal iteration complexity for the corresponding sub-sampled trust-region
and adaptive cubic regularization methods.

Keywords Non-convex optimization · Inexact Hessian · Trust region · Cubic
regularization · Randomized numerical linear algebra

Mathematics Subject Classification 49M15 · 65K05 · 90C25 · 90C06

B Fred Roosta
fred.roosta@uq.edu.au

Peng Xu
pengxu@stanford.edu

Michael W. Mahoney
mmahoney@stat.berkeley.edu

1 Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA

2 School of Mathematics and Physics, University of Queensland, Brisbane, Australia

3 International Computer Science Institute, Berkeley, USA

4 Department of Statistics, University of California at Berkeley, Berkeley, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01405-z&domain=pdf


36 P. Xu et al.

1 Introduction

Consider the generic unconstrained optimization problem

min
x∈Rd

F(x), (P0)

where F : Rd → R is smooth and non-convex. Faced with the large-scale nature
of modern “big-data” problems, many of the classical optimization algorithms might
prove to be inefficient, if applicable at all. In this light, many of the recent research
efforts have been centered around designing variants of classical algorithms which, by
employing suitable approximations of the gradient and/or Hessian, improve upon the
cost-per-iteration, while maintaining the original iteration complexity. In this light,
we focus on trust-region (TR) [17] and cubic regularization (CR) [34], two algorithms
which are considered as among the most elegant and theoretically sound general-
purpose Newton-type methods for non-convex problems.

In doing so, we first consider (P0), and study the theoretical convergence properties
of variants of these two algorithms in which, under favorable conditions, Hessian
is suitably approximated. We show that our Hessian approximation conditions, in
many cases, are weaker than the existing ones in the literature. In addition, and in
contrast to some prior works, our conditions allow for efficient constructions of the
inexact Hessian with a priori guarantees via various approximation methods, of which
Randomized Numerical Linear Algebra (RandNLA), [22,42], techniques are shown
to be highly effective.

Subsequently, to showcase the application of randomized techniques for construc-
tion of the approximate Hessian, we consider an important instance of (P0), i.e.,
large-scale finite-sum minimization, of the form

min
x∈Rd

F(x) � 1

n

n∑

i=1

fi (x), (P1)

and its special case

min
x∈Rd

F(x) � 1

n

n∑

i=1

fi (aTi x), (P2)

where n � 1, each fi is a smooth but possibly non-convex function, and ai ∈
R
d , i = 1, . . . , n, are given. Problems of the form (P1) and (P2) arise very often in

machine learning, e.g., [51] as well as scientific computing, e.g., [47,48]. In big-data
regime where n � 1, operations with the Hessian of F , e.g., matrix-vector products,
typically constitute the main bottleneck of computations. Here, we show that our
relaxed Hessian approximation conditions allow one to draw upon the sub-sampling
ideas of [6,49,62], to design variants of TR and CR algorithms where the Hessian is
(non-)uniformly sub-sampled. We then present the theoretical convergence properties
of these variants for non-convex finite-sum problems of the form (P1) and (P2).
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Newton-type methods for non-convex optimization under… 37

The rest of this paper is organized as follows. In Sect. 1.1, we first introduce the
notation and definitions used throughout the paper. For completeness, in Sect. 1.2, we
give a brief review of trust region (Sect. 1.2.1) and cubic regularization (Sect. 1.2.2)
along with related prior works. Our main contributions are summarized in Sect. 1.3.
Theoretical analysis of the proposed algorithms for solving generic non-convex prob-
lem (P0) are presented in Sect. 2. Various randomized sub-sampling strategies as well
as theoretical properties of the proposed algorithms for finite-sum minimization prob-
lems (P1) and (P2) are given in Sect. 3. Conclusions and further thoughts are gathered
in Sect. 4.

1.1 Notation and definitions

Throughout the paper, vectors are denoted by bold lowercase letters, e.g., v, and
matrices or randomvariables are denoted by bold upper case letters, e.g.,V. vT denotes
the transpose of a real vector v. We use regular lower-case and upper-case letters to
denote scalar constants, e.g., c or K . For two vectors, v,w, their inner-product is
denoted as 〈v,w〉 = vTw. For a vector v, and a matrix V, ‖v‖ and ‖V‖ denote the
vector �2 norm and the matrix spectral norm, respectively, while ‖V‖F is the matrix
Frobenius norm. ∇F(x) and ∇2F(x) are the gradient and the Hessian of F at x,
respectively, and I denotes the identity matrix. For two symmetric matrices A and B,
A 	 B indicates thatA−B is symmetric positive semi-definite. The subscript, e.g., xt ,
denotes iteration counter and log(x) is the natural logarithm of x . The inexact Hessian
is denoted by H(x), but for notational simplicity, we may use Ht to, instead, denote
the approximate Hessian evaluated at the iterate xt in iteration t , i.e., Ht � H(xt ).
Throughout the paper, S denotes a collection of indices from {1, 2, · · · , n}, with
potentially repeated items and its cardinality is denoted by |S |.

Unlike convex functions for which “local optimality” and “global optimality” are in
fact the same, in non-convex settings, we are often left with designing algorithms that
can guarantee convergence to approximate local optimality. In this light, throughout
this paper, we make use of the following definition of (εg, εH )-Optimality:

Definition 1 ((εg, εH )-Optimality) Given εg, εH ∈ (0, 1), x ∈ R
d is an (εg, εH )-

optimal solution to the problem (P0), if

‖∇F(x)‖ ≤ εg, λmin(∇2F(x)) ≥ −εH . (1)

We note that (εg, εH )-Optimality (even with εg = εH = 0) does not necessarily imply
closeness to any localminimum,neither in iterate nor in theobjective value.However, if
the saddle points satisfy the strict-saddle property [26,40], then an (εg, εH )-optimality
guarantees vicinity to a local minimum for sufficiently small εg and εH .

1.2 Background and related work

Arguably, the most straightforward approach for globalization of many Newton-type
algorithms is the application of line-search. However, near saddle points where the
gradientmagnitude canbe small, traditional line searchmethods can be very ineffective
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38 P. Xu et al.

and in fact produce iterates that can get stuck at a saddle point [46]. Trust region and
cubic regularization methods are two elegant globalization alternatives that, specially
recently, have attracted much attention. The main advantage of these methods is that
they are reliably able to take advantage of the direction of negative curvature and
escape saddle points. In this section we briefly review these algorithms as they pertain
to the present paper and mention the relevant prior works.

1.2.1 Trust region

TRmethods [17,54] encompass a general class of iterative methods which specifically
define a region around the current iterate within which they trust the model to be
a reasonable approximation of the true objective function. The most widely used
approximating model, which we consider here, is done via a quadratic function. More
specifically, using the current iterate xt , the quadratic variant of TR algorithm finds
the next iterate as xt+1 = xt +st where st is a solution of the constrained sub-problem

min mt (s) � 〈s,∇F(xt )〉 + 1

2
〈s,∇2F(xt )s〉

s.t. ‖s‖2 ≤ Δt . (2a)

Here, Δt is the region in which we “trust” our quadratic model to be an acceptable
approximation of the true objective for the current iteration. The major bottleneck of
computations in TR algorithm is the minimization of the constrained quadratic sub-
problem (2a), for which numerous approaches have been proposed, e.g., [23,28,29,
36,41,43,53,56].

For a smooth non-convex objective and in order to obtain approximate first-order
criticality, i.e., ‖∇F(xt )‖ ≤ εg for some εg ∈ (0, 1), the complexity of an (inexact)
trust-region method, which ensures at least a Cauchy (steepest-descent-like) decrease
at each iteration, is shown to be of the same order as that of steepest descent, i.e.,
O(ε−2

g ); e.g., [5,13,31–33]. Recent non-trivial modifications of the classical TRmeth-

ods have also been proposed which improve upon the complexity to O(ε
−3/2
g ); see

[20] and further extensions to a more general framework in [19]. These bounds can
be shown to be tight [9] in the worst case. Under a more general algorithmic frame-
work and in terms of objective function sub-optimality, i.e., F(x) − F∗ ≤ ε, better
complexity bounds, in the convex and strongly-convex settings, have been obtained
which are of the orders of O(ε−1

g ) and O(log(1/εg)), respectively [30].
For non-convex problems, however, it is more desired to obtain complexity bounds

for achieving approximate second-order criticality, i.e., Definition 1. For this, bounds
in the orders of O(max{ε−1

H ε−2
g , ε−3

H }) and O(max{ε−3
g , ε−3

H }) have been obtained in
[13] and [30], respectively. Similar bounds were also given in [32] under probabilistic
model. Bounds of this order have shown to be optimal in certain cases [13].

More closely related to the present paper, there have been several results which
study the role of derivative-free and probabilistic models in general, and Hessian
approximation in particular, e.g., see [2,5,13,16,18,32,39,52] and references therein.
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1.2.2 Cubic regularization

An alternative to the traditional line-search and TR for globalization of Newton-type
methods is the application of cubic regularization. Such class of methods is charac-
terized by generating iterates as xt+1 = xt + st where st is a solution of the following
unconstrained sub-problem

min
s∈Rd

mt (s) � 〈s,∇F(xt )〉 + 1

2
〈s,∇2F(xt )s〉 + σt

3
‖s‖3, (2b)

where σt is the cubic regularization parameter chosen for the current iteration. As in
the case of TR, the major bottleneck of CR involved solving the sub-problem (2b), for
which various techniques have been proposed, e.g., [1,4,8,10].

To the best of our knowledge, the use of such regularization, was first introduced in
the pioneering work of [34], and subsequently further studied in the seminal works of
[10,11,45]. From the worst-case complexity point of view, CR has a better dependence
on εg compared to TR. More specifically, [45] showed that, under global Lipschitz
continuity assumption on the Hessian, if the sub-problem (2b) is solved exactly, then
the resulting CR algorithm achieves the approximate first-order criticality with com-
plexity ofO(ε

−3/2
g ). These results were extended by the pioneering and seminal works

of [10,11] to an adaptive variant, which is often referred to as ARC (Adaptive Regular-
ization with Cubics). In particular, the authors showed that the worst case complexity
of O(ε

−3/2
g ) can be achieved without requiring the knowledge of the Hessian’s Lips-

chitz constant, access to the exact Hessian, or multi-dimensional global optimization
of the sub-problem (2b). These results were further refined in [13] where it was shown
that, not only, multi-dimensional global minimization of (2b) is unnecessary, but also
the same complexity can be achieved with mere one or two dimensional search. This
O(ε−3/2) bound has been shown to be tight [12]. As for the approximate second-
order criticality, [13] showed that at least O(max{ε−2

g , ε−3
H }) is required. With further

assumptions on the inexactness of sub-problem solution, [11,13] also show that one
can achieve O(max{ε−3/2

g , ε−3
H }), which is shown to be tight [9]. Better dependence

on εg can be obtained if one assumes additional structure, such as convexity, e.g., see
[14,45] as well as the acceleration scheme of [44].

Recently, for (strongly) convex problems, [27] obtained sub-optimal complexity
for ARC and its accelerated variants using Hessian approximations. In the context
of stochastic optimization problems, [57] considers cubic regularization with a priori
chosen fixed regularization parameter using both approximations of the gradients and
Hessian. Specific to the finite-sum problem (P1) , and by a direct application of the
theoretical results of [10,11,37] presents a sub-sampled variant of ARC, in which the
exact Hessian and the gradient are replaced by sub-samples. However, unfortunately,
their analysis suffers from a rather vicious circle: the approximateHessian and gradient
are formed based on an a priori unknown step which can only be determined after
such approximations are formed.
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1.3 Contributions

In this section, we summarize the key aspects of our contributions. In Sect. 2, we
consider (P0) and establish the worst-case iteration complexities for variants of trust-
region and adaptive cubic regularization methods in which the Hessian is suitably
approximated. More specifically, our entire analysis is based on the following key
condition on the approximate Hessian H(x):
Condition 1 (Inexact Hessian regularity) For some 0 < KH < ∞, ε > 0, the approx-
imating Hessian, H(xt ), satisfies

∥∥∥
(
H(xt ) − ∇2F(xt )

)
st
∥∥∥ ≤ ε · ‖st‖, (3a)

‖H(xt )‖ ≤ KH , (3b)

where xt and st are, respectively, the iterate and the update at iteration t.

UnderCondition 1,we show that our proposed algorithms (Algorithms1 and2) achieve
the same worst-case iteration complexity to obtain approximate second order critical
solution as that of the exact variants (Theorems 1, 2, and 3).

In Sect. 3, we describe schemes for constructing H(xt ) to satisfy Condition 1.
Specifically, in the context of finite-sum optimization framework, i.e., problems (P1)
and (P2), we present various sub-sampling schemes to probabilistically ensure Con-
dition 1 (Lemmas 16 and 17). Our proposed randomized sub-sampling strategies
guarantee, with high probability, a stronger condition than (3a), namely

‖H(x) − ∇2F(x)‖ ≤ ε. (4)

It is clear that (4) implies (3a). We then give optimal iteration complexities for Algo-
rithms 1 and 2 for optimization of non-convex finite-sum problems where the Hessian
is approximated by means of appropriate sub-sampling (Theorems 4, 5 and 6).

To establish optimal second-order iteration complexity, many previous works con-
sideredHessian approximation conditions that,while enjoyingmany advantages, come
with certain disadvantages. Our proposed Condition 1 aims to remedy some of these
disadvantages. We first briefly review the conditions used in the prior works, and
subsequently highlight the merits of Condition 1 in comparison.

1.3.1 Conditions used in prior works

For the analysis of trust-region, many authors have considered the following condition

∥∥∥H(xt ) − ∇2F(xt + s)
∥∥∥ ≤ C1Δt , ∀s ∈ {s; ‖s‖ ≤ Δt }, (5a)

for some 0 < C1 < ∞, where Δt is the current trust-region radius, e.g., [2,32]. In [5],
condition (5a) is replaced with

∥∥∥H(xt ) − ∇2F(xt )
∥∥∥ ≤ C2Δt , (5b)
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for some 0 < C2 < ∞. In fact, by assuming Lipschitz continuity of Hessian, it is
easy to show that (5a) and (5b) are equivalent, in that one implies the other, albeit with
modified constants. We also note that [2,5,32] study a more general framework under
which the entire sub-problemmodel is probabilistically constructed and approximation
extends beyond just the Hessian.

For cubic regularization, the condition imposed on the inexact Hessian is often
considered as

∥∥∥
(
H(xt ) − ∇2F(xt )

)
st
∥∥∥ ≤ C3‖st‖2, (5c)

for some 0 < C3 < ∞, e.g., [10,11,13] and other follow-up works. In fact, [13] has
also established optimal iteration complexity for trust-region algorithm under (5c).
Both of (5a) and (5c), are stronger than the celebrated Dennis-Moré [21] condition,
i.e.,

lim
t→∞

∥∥(H(xt ) − ∇2F(xt )
)
st
∥∥

‖st‖ = 0.

Indeed, under certain assumptions, Dennis-Moré condition is satisfied by a number of
quasi-Newton methods, although the same cannot be said about (5a) and (5c) [10].

1.3.2 Merits of Condition 1

For our trust-region analysis, we require Condition 1 with ε ∈ O(max {εH ,Δt }); see
(11) in Theorem 1. Hence, when Δt is large, e.g., at the beginning of iterations, all
the conditions (3a), (5a), and (5b) are equivalent, up to some constants. However, the
constants in (5a) and (5b) can be larger than what is implied by (3a), amounting to
cruder approximations in practice for when Δt is large. As iterations progress, the
trust-region radius will get smaller, and in fact it is expected that Δt will eventually
shrink to be Δt ∈ Θ

(
min{εg, εH }). In prior works, e.g., [5,32], the convergence

analysis is derived using εH = εg , whereas here we allow εH = √
εg . As a result, the

requirements (5a) and (5b) can eventually amount to stricter conditions than (3a).
As for (5c), the main drawback lies in the difficulty of enforcing it. Despite the

fact that for certain values of ‖st‖ and ε, e.g., ε � ‖st‖, (5c) can be less restrictive
than (3a), a priori enforcing (5c) requires one to have already computed the search
direction st , which itself can be done only after H(xt ) is constructed, hence creating
a vicious circle. A posteriori guarantees can be given if one obtains a lower-bound
estimate on the yet-to-be-computed step-size, i.e., to have s0 > 0 such that s0 ≤ ‖st‖.
This allows one to consider a stronger condition as

∥∥(H(xt ) − ∇2F(xt )
)∥∥ ≤ C3s0,

which can be enforced using a variety of methods such as those described in Sect. 3.
However, to obtain such a lower-bound estimate on the next step-size, one has to resort
to a recursive procedure, which necessitates repeated constructions of the approximate
Hessian and subsequent solutions of the corresponding subproblems. Consequently,
this procedure may result in a significant computational overhead and will lead to
undesirable theoretical complexities.
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In sharp contrast to (5c), the condition (3a) allows for theoretically principled use
of many practical techniques to construct Ht . For example, under (3a), the use of
quasi-Newton methods to approximate the Hessian is theoretically justified. Further,
by considering the stronger condition (4), many randomized matrix approximation
techniques can be readily applied, e.g., [42,58–60]; see Sect. 3. To the best of our
knowledge, the only successful attempt at guaranteed a priori construction of Ht

using (5c) is done in [15]. Specifically, by considering probabilistic models, which
are “sufficiently accurate” in that they are partly based on (5c), [15] studies first-order
complexity of a large class ofmethods, includingARC, and discussesways to construct
such probabilistic models as long as the gradient is large enough, i.e., before first-order
approximate-optimality is achieved. Here, by considering (3a), we are able to provide
an alternative analysis, which allows us to obtain second-order complexity results.

Requiring (4), as a way of enforcing (3a), offers a variety of other practical advan-
tages, which are not readily available with other conditions. For example, consider
distributed/parallel environments where the data is distributed across a network and
the main bottleneck of computations is the communications across the nodes. In such
settings, since (4) allows for the Hessian accuracy to be set a priori and to remain fixed
across all iterations, the number of samples in each node can stay the same throughout
iterations. This prevents unnecessary communications to re-distribute the data at every
iteration.

Furthermore, in case of failed iterations, i.e., when the computed steps are rejected,
the previous Ht may seamlessly be used in the next iteration, which avoids repeat-
ing many such, potentially expensive, computations throughout the iterations. For
example, consider approximate solutions to the underlying sub-problems by means
of dimensionality reduction, i.e., Ht is projected onto a lower dimensional sub-space
as UTHtU for some U ∈ R

d×p with p � d, resulting in a smaller dimensional sub-
problem. Now if the current iteration leads to a rejected step, the projection of the Ht

from the previous iteration can be readily re-used in the next iteration. This naturally
amounts to saving further Hessian computations.

2 Algorithms and convergence analysis

We are now ready to present our main algorithms for solving the generic non-convex
optimization (P0) alongwith their corresponding iteration complexity results to obtain
a (εg, εH )-optimal solution as in (1).More precisely, in Sects. 2.1 and 2.2 , respectively,
we present modifications of the TR and ARC methods which incorporate inexact
Hessian information, according to Condition 1.

We remind that, though not specifically mentioned in the statement of the theorems
or the algorithms, when the computed steps are rejected and an iteration needs to be
repeated with different Δt or σt , the previous Ht may seamlessly be used in the next
iteration. This can be a desirable feature in many practical situations and is directly
the result of enforcing (4); see also the discussion in Sect. 1.3.2.

For our analysis throughout the paper, we make the following standard assumption
regarding the regularity of the exact Hessian of the objective function F .
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Assumption 1 (Hessian regularity) F(x) is twice differentiable and has bounded and
Lipschitz continuous Hessian on the piece-wise linear path generated by the iterates,
i.e. for some 0 < K , L < ∞ and all iterations

∥∥∥∇2F(x) − ∇2F(xt )
∥∥∥ ≤ L‖x − xt‖, ∀x ∈ [xt , xt + st ], (6a)

∥∥∥∇2F(xt )
∥∥∥ ≤ K , (6b)

where xt and st are, respectively, the iterate and the update step at iteration t .

Although, we do not know of a particular way to, a priori, verify (6a), it is clear that
Assumption (6a) is weaker than Lipschitz continuity of the Hessian for all x, i.e.,

∥∥∥∇2F(x) − ∇2F(y)
∥∥∥ ≤ L‖x − y‖, ∀x, y ∈ R

d . (7)

Despite the fact that theoretically (6a) is weaker than (7), to the best of our knowledge
as of yet, (7) is the only practical sufficient condition for verifying (6a).

2.1 Trust region with inexact Hessian

Algorithm 1 depicts a trust-region algorithm where at each iteration t , instead of the
true Hessian ∇2F(xt ), only an inexact approximation, Ht , is used. For Algorithm 1,
the accuracy tolerance in (3a) is adaptively chosen as εt ≤ max {ε0,Δt }, where Δt

is the trust region in the t-th iteration and ε0 ∈ O(εH ) is some fixed threshold. This
allows for a very crude approximation at the beginning of iterations, when Δt is large.

Algorithm 1 Trust Region with Inexact Hessian
1: Input: Starting point x0, initial radius 0 < Δ0 < ∞, hyper-parameters ε0, εg, εH , η ∈ (0, 1), γ > 1
2: for t = 0, 1, . . . do
3: Set the approximate Hessian, Ht , as in (3) with εt ≤ max {ε0,Δt }
4: if ‖∇F(xt )‖ ≤ εg, λmin(Ht ) ≥ −εH then
5: Return xt .
6: end if
7: Solve the sub-problem approximately

st ≈ arg min‖s‖≤Δt
mt (s) � 〈∇F(xt ), s〉 + 1

2
〈s,Ht s〉 (8)

8: Set ρt � F(xt ) − F(xt + st )
−mt (st )

9: if ρt ≥ η then
10: xt+1 = xt + st
11: Δt+1 = γΔt
12: else
13: xt+1 = xt
14: Δt+1 = Δt/γ

15: end if
16: end for
17: Output: xt
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As iterations progress towards optimality and Δt gets small, the threshold ε0 can
prevent ε from getting unnecessarily too small.

In Algorithm 1, we require that the sub-problem (8) is solved only approximately.
Indeed, in large-scale problems, where the exact solution of the sub-problem is the
main bottleneck of the computations, this is a very crucial relaxation. Such approxi-
mate solution of the sub-problem (8) has been adopted in many previous work. Here,
we follow the inexactness conditions discussed in [17], which are widely known as
Cauchy and Eigenpoint conditions. Recall that the Cauchy and Eigen directions cor-
respond, respectively, to one dimensional minimization of the sub-problem (8) along
the directions given by the gradient and negative curvature.

Condition 2 (Sufficient descent Cauchy and Eigen directions [17]) Assume that we
solve the sub-problem (8) approximately to find st such that

− mt (st ) ≥ −mt (sCt ) ≥ 1

2
‖∇F(xt )‖min

{‖∇F(xt )‖
1 + ‖Ht‖ ,Δt

}
, (9a)

− mt (st ) ≥ −mt (sEt ) ≥ 1

2
ν|λmin(Ht )|Δ2

t , if λmin(Ht ) < 0. (9b)

Here, mt (·) is defined in (8), sCt (Cauchy point) is along negative gradient direction
and sEt is along approximate negative curvature direction such that 〈sEt ,Ht sEt 〉 ≤
νλmin(Ht )‖sEt ‖2 < 0, for some ν ∈ (0, 1] (see Appendix B for a way to efficiently
compute sEt ).

One way to ensure that an approximate solution to the sub-problem (8) satisfies (9), is
by replacing (8) with the following reduced-dimension problem, in which the search
space is a two-dimensional sub-space containing vectors sCt , and sEt , i.e.,

st = arg min
‖s‖≤Δt

s∈Span{sCt ,sEt }
〈∇F(xt ), s〉 + 1

2
〈s,Ht s〉.

Of course, any larger dimensional sub-spaceP for whichwe have Span{sCt , sEt } ⊆ P
would also guarantee (9). In fact, a larger dimensional sub-space implies a more
accurate solution to our original sub-problem (8).

We now set out to provide iteration complexity for Algorithm 1. Our analysis
follows similar line of reasoning as that in [10,11,13]. First, we show the discrepancy
between the quadratic model and objective function in Lemma 1.

Lemma 1 Given Assumption 1 and Condition (3a) with any εt > 0, we have

|F(xt + st ) − F(xt ) − mt (st )| ≤ L

2
Δ3

t + εt

2
Δ2

t . (10)

123



Newton-type methods for non-convex optimization under… 45

Proof Applying Mean Value Theorem on F at xt gives F(xt + st ) = F(xt ) +
∇F(xt )T st + 1

2 s
T
t ∇2F(ξt )st , for some ξt in the segment of [xt , xt + st ]. We have

|F(xt + st ) − F(xt ) − mt (st )| = 1

2

∣∣∣sTt (∇2F(ξt ) − Ht )st
∣∣∣

= 1

2

∣∣∣sTt (∇2F(ξt ) − ∇2F(xt ) + ∇2F(xt ) − Ht )st
∣∣∣

≤ 1

2

∣∣∣sTt (∇2F(ξt ) − ∇2F(xt ))st
∣∣∣+ 1

2

∣∣∣sTt (∇2F(xt ) − Ht )st
∣∣∣

≤ L

2
‖st‖3 + εt

2
‖st‖2 ≤ L

2
Δ3

t + εt

2
Δ2

t .

��
Combining with Conditions 1 and 2 , we get the following two lemmas that char-

acterize sufficient conditions for successful iterations.

Lemma 2 Consider any εH > 0, let ε0 � α(1 − η)νεH for some α ∈ (0, 1), and
suppose Condition 1 is satisfied with εt ≤ max{ε0,Δt }, where Δt is the trust region
at the t-th iteration. Given Assumption 1 and Condition 2, if λmin(Ht ) < −εH and
Δt ≤ (1 − α)(1 − η)ν |λmin(Ht )| /(L + 1), then the t-th iteration is successful, i.e.
Δt+1 = γΔt .

Proof Suppose Δt ≤ ε0. From (9b) and (10), we have

1 − ρt = F(xt + st ) − F(xt ) − mt (st )
−mt (st )

≤ LΔ3
t + εtΔ

2
t

ν |λmin(Ht )| Δ2
t

≤ LΔ3
t + α(1 − η)νεHΔ2

t

ν |λmin(Ht )| Δ2
t

≤ LΔ3
t + α(1 − η)ν |λmin(Ht )| Δ2

t

ν |λmin(Ht )| Δ2
t

≤ LΔt + α(1 − η)ν |λmin(Ht )|
ν |λmin(Ht )| .

By the assumption on Δt , we get ρt ≥ η and the iteration is successful. Now consider
Δt ≥ ε0. Similar to the above, we have

1 − ρt = F(xt + st ) − F(xt ) − mt (st )
−mt (st )

≤ LΔ3
t + εtΔ

2
t

ν |λmin(Ht )| Δ2
t

≤ (L + 1)Δ3
t

ν |λmin(Ht )| Δ2
t

≤ (L + 1)Δt

ν |λmin(Ht )| ,

which again by assumption on Δt and noting α < 1, we get ρt ≥ η and the iteration
is successful. ��
Lemma 3 Suppose Condition 1 is satisfied with any εt > 0. Given Assumption 1 and
Condition 2, if ‖∇F(xt )‖ > εg and

Δt ≤ min

⎧
⎨

⎩
‖∇F(xt )‖
(1 + KH )

,

√
ε2t + 4L(1 − η)‖∇F(xt )‖ − εt

2L

⎫
⎬

⎭ ,
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then, the t-th iteration is successful, i.e. Δt+1 = γΔt .

Proof By assumption on Δt , (9a), and since ‖∇F(xt )‖ > εg , we have

−mt (st ) ≥ 1

2
‖∇F(xt )‖min

{‖∇F(xt )‖
1 + ‖Ht‖ ,Δt

}
≥ 1

2
‖∇F(xt )‖Δt .

Therefore,

1 − ρt = F(xt + st ) − F(xt ) − mt (st )
−mt (st )

≤ LΔ3
t + εtΔ

2
t

‖∇F(xt )‖Δt
≤ LΔ2

t + εtΔt

‖∇F(xt )‖ ≤ 1 − η,

where the last inequality follows by assumption on Δt . So ρt ≥ η, which means the
iteration is successful. ��

Lemma 4 gives a lower bound for the trust region radius before the algorithm
terminates, i.e., this ensures that the trust region never shrinks to become too small.

Lemma 4 Consider any εg, εH > 0 such that εH ≤ √
εg and let ε0 � α(1 − η)νεH

for some α ∈ (0, 1). Further, suppose Condition 1 is satisfied with εt ≤ max{ε0,Δt },
where Δt is the trust region at the t-th iteration. For Algorithm 1, under Assumption 1
and Condition 2, we have Δt ≥ κΔ min{εg, εH },∀t ≥ 0, where

κΔ � min {κ1, κ2, κ3, κ4} /γ, κ1 � (1 − α)(1 − η)ν/(L + 1), κ2 � α(1 − η)ν,

κ3 � 1/(1 + KH ), κ4 �
√

(α(1 − η)ν)2 + 4L(1 − η) − α(1 − η)ν/(2L).

Proof Weprove by contradiction. Assume that the t-th iteration is the first unsuccessful
iteration such that Δt+1 = Δt/γ ≤ κΔ min{εg, εH }, i.e., we have

Δt ≤ min {κ1, κ2, κ3, κ4} · min{εg, εH }.

Suppose λmin(Ht ) < −εH . By Lemma 2, since Δt ≤ (1 − α)(1 − η)ν |λmin(Ht )| /
(L + 1), iteration t must have been accepted and we must have Δt+1 = γΔt > Δt ,
which is a contradiction. Now suppose ‖∇F(xt )‖ ≥ εg . By assumption on Δt , we
have that Δt ≤ κ2εH = ε0, which implies that εt ≤ ε0. Since the function h(a, b) �
−a + √

a2 + b, for anyfixedb > 0, is decreasing ina, and for anyfixeda, is increasing
in b ≥ 0, we have

h(εt , 4L(1 − η)‖∇F(xt )‖) ≥ h(ε0, 4L(1 − η)‖∇F(xt )‖)
≥ h(ε0, 4L(1 − η)εg) ≥ h(ε0, 4L(1 − η)ε2H ),

which implies

√
ε2t + 4L(1 − η)‖∇F(xt )‖ − εt

2L
≥ κ4εH .
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As a result, since Δt ≤ min{κ3εg, κ4εH }, it must satisfy the condition of Lemma 3.
This implies that iteration t must have been accepted, which is a contradiction. ��

The following lemma follows closely the line of reasoning in [13, Lemma 4.5].

Lemma 5 (Successful iterations) Consider any εg, εH > 0 such that εH ≤ √
εg and

let ε0 � α(1 − η)νεH for some α ∈ (0, 1). Further, suppose Condition 1 is satisfied
with εt ≤ max{ε0,Δt }, where Δt is the trust region at the t-th iteration. Let Tsucc

denote the set of all the successful iterations before Algorithm 1 stops. Then, under
Assumption 1, Condition 2, the number of successful iterations is upper bounded by,

|Tsucc| ≤ (F(x0) − Fmin)

ηmin {̂κΔ, κ̃Δ} · max{ε−2
g ε−1

H , ε−3
H }

where κ̂Δ � κΔ/2, κ̃Δ � νκ2
Δ/2, and κΔ is as defined in Lemma 4.

Proof Suppose Algorithm 1 doesn’t terminate at the t-th iteration. Then we have either
‖∇F(xt )‖ ≥ εg or λmin(Δ

2F(xt )) ≤ −εH . In the first case, from (9a), we have

−mt (st ) ≥ εg

2
min

{
εg

1 + KH
,Δt

}
≥ εg

2
min

{
εg

1 + KH
, κΔεg, κΔεH

}

≥ κ̂Δεg min{εg, εH },

where κΔ is as defined in Lemma 4. Similarly, in the second case, from (9b), we obtain

−mt (st ) ≥ 1

2
ν |λmin(Ht )| Δ2

t ≥ 1

2
νκ2

ΔεH min{ε2g, ε2H } = κ̃ΔεH min{ε2g, ε2H }.

Since F(xt ) is monotonically decreasing, we have

F(x0) − Fmin ≥
∞∑

t=0

F(xt ) − F(xt+1) ≥
∑

t∈Tsucc

F(xt ) − F(xt+1)

≥ η
∑

t∈Tsucc

min
{
κ̂Δεg min{εg, εH }, κ̃ΔεH min{ε2g, ε2H }

}

≥ |Tsucc| ηmin {̂κΔ, κ̃Δ}min{ε2gεH , ε3H }.

Hence, we have |Tsucc| ≤ (F(x0) − Fmin)max{ε−2
g ε−1

H , ε−3
H }/(ηmin {̂κΔ, κ̃Δ}). ��

Now we are ready to present the final complexity in Theorem 1.

Theorem 1 (Optimal complexity of Algorithm 1) Consider any εg, εH > 0 such that
εH ≤ √

εg and let ε0 � α(1 − η)νεH for some α ∈ (0, 1) where η is a hyper-
parameter in Algorithm 1, and ν is as in (9b). Suppose the inexact Hessian, H(x),
satisfies Condition 1 with the approximation tolerance, εt , in (3a) as

εt ≤ max {ε0,Δt } , (11)
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whereΔt is the trust region at the t-th iteration. For Problem (P0), under Assumption 1

and Condition 2, Algorithm 1 terminates after at most T ∈ O
(
max{ε−2

g ε−1
H , ε−3

H }
)

iterations.

Proof Suppose Algorithm 1 terminates at the t-th iteration. Let Tsucc and T f ail

denote the sets of all the successful and unsuccessful iterations, respectively. Then
T = |Tsucc| + ∣∣T f ail

∣∣ and ΔT = Δ0γ
|Tsucc|−|T f ail |, where γ is a hyper-

parameter of Algorithm 1. From Lemma 4, we have ΔT ≥ κΔ min{εg, εH }. Hence,(|Tsucc| − ∣∣T f ail
∣∣) log γ ≥ log

(
κΔ · min{εg, εH }/Δ0

)
, which implies

∣∣T f ail
∣∣ ≤

log
(
Δ0/

(
κΔ · min{εg, εH })) / log γ + |Tsucc|. Combine the result from Lemma 5,

we have the total iteration complexity as

T ≤ 1

log γ
log

(
Δ0

κΔ · min{εg, εH }
)

+ 2(F(x0) − Fmin)

ηmin {̂κΔ, κ̃Δ} · max{ε−2
g ε−1

H , ε−3
H }

∈ O
(
max{ε−2

g ε−1
H , ε−3

H }
)

,

where κΔ, κ̂Δ, κ̃Δ are defined in the proofs of Lemmas 4 and 5, respectively. ��

As it can be seen, the worst-case total number of iterations required by Algorithm 1
before termination, matches the optimal iteration complexity obtained in [13]. Fur-
thermore, from (3a), it follows that upon termination of Algorithm 1 after T iterations,
in addition to ‖∇F(xT )‖ ≤ εg , we have λmin

(∇2F(xT )
) ≥ −(εH + εT ), i.e., the

obtained solution satisfies (εg, εT + εH )-Optimality as in (1).
ForAlgorithm1, theHessian approximation tolerance εt is allowed to be chosenper-

iteration as εt ≤ O (max{εH ,Δt }). This way, when Δt is large (e.g., at the beginning
of iterations), one can employ crude Hessian approximations. As iterations progress
towards optimality, Δt can get very small, in which case Hessian accuracy is set in
the order of εH . Note that by Lemma 4, we are always guaranteed to have Δt ∈
Ω
(
min

{
εg, εH

})
. As a result, when εg � εH , e.g., ε2H = εg = ε, we can have that

Δt � εH . In such cases, the choice εt ≤ O (max{εH ,Δt }) ensures that the Hessian
approximation tolerance never gets unnecessarily too small.

2.2 Adaptive cubic regularization with inexact Hessian

Similar to Sect. 2.1, in this section, we present the algorithm and its corresponding
convergence results for the case of adaptive cubic regularization with inexact Hessian.
In particular, Algorithm 2 depicts a variant of ARC algorithm where at each iteration
t , the inexact approximation,Ht , is constructed according to Condition 1. Here, unlike
Sect. 2.1, we were unable to provide convergence guarantees with adaptive tolerance
in (3a) and as result, ε is set fixed a priori to a sufficiently small value, i.e., ε ∈
O(

√
εg, εH ) to guarantee (εg, εH )-optimality.

Similar to Algorithm 1, here we also require that the sub-problem (12) in Algo-
rithm 2 is solved only approximately. Although similar inexact solutions to the
sub-problem (12) by using Cauchy and Eigenpoint has been considered in several
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Algorithm 2 Adaptive Cubic Regularization with Inexact Hessian
1: Input:Starting point x0, initial regularization 0 < σ0 < ∞, hyper-parameters εg, εH , η ∈ (0, 1), γ > 1

2: for t = 0, 1, . . . do
3: Set the approximating Hessian, Ht , as in (3)
4: if ‖∇F(xt )‖ ≤ εg, λmin(Ht ) ≥ −εH then
5: Return xt .
6: end if
7: Solve the sub-problem approximately

st ≈ arg min
s∈Rd

mt (s) � 〈∇F(xt ), s〉 + 1

2
〈s,Ht s〉 + σt

3
‖s‖3 (12)

8: Set ρt � F(xt ) − F(xt + st )
−mt (st )

9: if ρt ≥ η then
10: xt+1 = xt + st
11: σt+1 = σt/γ

12: else
13: xt+1 = xt
14: σt+1 = γ σt
15: end if
16: end for
17: Output: xt

previous work, e.g., [13], here we provide refined conditions which prove to be instru-
mental in obtaining iteration complexities with the relaxed Hessian approximation
(3a), as opposed to the stronger Condition (5c).

Condition 3 (Sufficient descent Cauchy and Eigen directions) Assume that we solve
the sub-problem (12) approximately to find st such that

−mt (st ) ≥ −mt (sCt ) ≥ max

{
1

12
‖sCt ‖2

(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)
,

‖∇F(xt )‖
2
√
3

min

{‖∇F(xt )‖
KH

,

√
‖∇F(xt )‖

σt

}}
, (13a)

−mt (st ) ≥ −mt (sEt ) ≥ ν|λmin(Ht )|
6

max

{
‖sEt ‖2, ν2|λmin(Ht )|2

σ 2
t

}
, if λmin(Ht ) < 0.

(13b)

Here mt (·) is defined in (12), sCt (Cauchy point) is along negative gradient direction
and sEt is along approximate negative curvature direction such that 〈sEt ,Ht sEt 〉 ≤
νλmin(Ht )‖sEt ‖2 < 0 for some ν ∈ (0, 1] (see Appendix B for a way to efficiently
compute sEt ).

Note that Condition (13) describes the quality of the descent obtained by Cauchy and
Eigen directions more accurately than is usually found in similar literature. A natural
way to ensure that the approximate solution to the sub-problem (12) satisfies (13), is
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by replacing the unconstrained high-dimensional sub-problem (12) with the following
constrained but lower-dimensional problem, in which the search space is reduced to a
two-dimensional sub-space containing vectors sCt , and sEt , i.e.,

st = arg min
s∈Span{sCt ,sEt }

〈∇F(xt ), s〉 + 1

2
〈s,Ht s〉 + σt

3
‖s‖3.

Note that, if U ∈ R
d×p is an orthogonal basis for the sub-space “Span{sCt , sEt }”, by

a linear transformation, we can turn the above sub-problem into an unconstrained
problem as

vt = arg min
v∈Rp

〈UT∇F(xt ), v〉 + 1

2
〈v,UTHtUv〉 + σt

3
‖v‖3,

and set st = Uvt . As before, any larger dimensional sub-space P for which we have
Span{sCt , sEt } ⊆ P would also ensure (13), and, indeed, implies a more accurate
solution to our original sub-problem (12).

Lemmas 6 and 7 describe the model reduction obtained by Cauchy and eigen points
as required by Condition (3).

Lemma 6 (Descent with Cauchy direction) Consider the Cauchy direction as sCt =
−α∇F(xt ) where α = argminα̂≥0 mt (−α̂∇F(xt )). We have

− mt (sCt ) ≥ max

{
1

12
‖sCt ‖2

(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)
,

‖∇F(xt )‖
2
√
3

min

{‖∇F(xt )‖
KH

,

√
‖∇F(xt )‖

σt

}}
.

Proof For any α̂ ≥ 0, we have mt (−α̂∇F(xt )) ≤ mt (̂α∇F(xt )), which implies α =
argminα̂∈R mt (−α̂∇F(xt )). Hence,wehave−‖∇F(xt )‖2+α〈∇F(xt ),Ht∇F(xt )〉+
σtα

2‖∇F(xt )‖3 = 0.We canfind explicit formula for suchα byfinding the roots of the
quadratic function r(α) = σt‖∇F(xt )‖3α2 + 〈∇F(xt ),Ht∇F(xt )〉α − ‖∇F(xt )‖2.
Hence, we must have

α = −〈∇F(xt ),Ht∇F(xt )〉 +
√(〈∇F(xt ),Ht∇F(xt )〉

)2 + 4σt‖∇F(xt )‖5
2σt‖∇F(xt )‖3 ≥ 0.

It follows that

2ασt‖∇F(xt )‖ =
√( 〈∇F(xt ),Ht∇F(xt )〉

‖∇F(xt )‖2
)2

+ 4σt‖∇F(xt )‖

− 〈∇F(xt ),Ht∇F(xt )〉
‖∇F(xt )‖2 .
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Consider the function h(x;β) = √
x2 + β − x . It is easy to verify that, for β ≥ 0,

h(x) is decreasing function of x . Now since 〈∇F(xt ),Ht∇F(xt )〉 ≤ KH‖∇F(xt )‖2,
we get

‖sCt ‖ = α‖∇F(xt )‖ ≥ 1

2σt

[√
K 2

H + 4σt‖∇F(xt )‖ − KH

]
. (14)

Now, from [13, Lemma 2.1], we get

−mt (s
C
t ) ≥ σt‖sCt ‖3

6
= ‖sCt ‖2

6
ασt‖∇F(xt )‖

≥ ‖sCt ‖2
12

(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)
.

Alternatively, following the proof of [10, Lemma 2.1], for any α ≥ 0, we get

mt (s
C
t ) ≤ mt (−α∇F(xt ))

= −α‖∇F(xt )‖2 + 1

2
α2〈∇F(xt ),Ht∇F(xt )〉 + α3

3
σt‖∇F(xt )‖3

≤ α‖∇F(xt )‖2
6

(
−6 + 3αKH + 2α2σt‖∇F(xt )‖

)
.

Consider the quadratic polynomial r(α) = 2α2σt‖∇F(xt )‖ + 3αKH − 6. We have
r(α) ≤ 0 for α ∈ [0, ᾱ], where

ᾱ =
−3KH +

√
9K 2

H + 48σt‖∇F(xt )‖
4σt‖∇F(xt )‖ = 12(

3KH +
√
9K 2

H + 48σt‖∇F(xt )‖
) .

Note that
√
9K 2

H + 48σt‖∇F(xt )‖ ≤ 8
√
3max

{
KH ,

√
σt‖∇F(xt )‖

}
and trivially

3KH ≤ 4
√
3max

{
KH ,

√
σt‖∇F(xt )‖

}
. Hence, defining α0 � 1/(

√
3max{KH ,√

σt‖∇F(xt )‖}), it is easy to see that 0 < α0 ≤ ᾱ. With this α0, we get r(α0) ≤
2/9 + 3/

√
3 − 6 ≤ −3. Therefore

mt (st ) ≤ −3‖∇F(xt )‖2
6
√
3max

{
KH ,

√
σt‖∇F(xt )‖

}

= −‖∇F(xt )‖
2
√
3

min

{
‖∇F(xt )‖

KH
,

√
‖∇F(xt )‖

σt

}
.

��
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Lemma 7 (Descent with negative curvature) Suppose λmin(Ht ) < 0. For some
ν ∈ (0, 1], define sEt = αut , where α = argminα̂∈Rmt (̂αut ), and 〈ut ,Htut 〉 ≤
νλmin(Ht )‖ut‖2 < 0.

We have

−mt (sEt ) ≥ ν|λmin(Ht )|
6

max

{
‖sEt ‖2, ν2|λmin(Ht )|2

σ 2
t

}
.

Proof By the first-order necessary optimality condition of α, we get 〈∇F(xt ),ut 〉 +
α〈ut ,Htut 〉 + σtα

2‖ut‖3 = 0, which implies 〈∇F(xt ), sEt 〉 + 〈sEt ,Ht sEt 〉 +
σt‖sEt ‖3 = 0. Next, since α is a minimizer of mt (̂αut ), we have mt (αut ) ≤
mt (−αut ), which implies 〈∇F(xt ), sEt 〉 ≤ 0. Hence, we also obtain 〈sEt ,Ht sEt 〉 +
σt‖sEt ‖3 ≥ 0. From [13, Lemma 2.1], we get −mt (sEt ) ≥ σt‖sEt ‖3/6 =(−〈∇F(xt ), sEt 〉 − 〈sEt ,Ht sEt 〉) /6 ≥ ν|λmin(Ht )|‖sEt ‖2/6. Now, we have

σt‖sEt ‖ ≥ −〈sEt ,Ht sEt 〉
‖sEt ‖2 ≥ ν|λmin(Ht )|, (15)

which gives σt‖sEt ‖3 ≥ ν|λmin(Ht )|‖sEt ‖2 and σt‖sEt ‖3 ≥ ν3σ−2
t |λmin(Ht )|3.

Hence, we have −mt (sEt ) ≥ σt‖sEt ‖3/6 ≥ ν|λmin(Ht )|‖sEt ‖2/6 and −mt (sEt ) ≥
σt‖sEt ‖3/6 ≥ ν3σ−2

t |λmin(Ht )|3/6. ��

The next lemma is used to show sufficient decrease in the objective function using
the approximate solution of the sub-problem (12).

Lemma 8 Given Assumption 1 and Condition 1, we have

F(xt + st ) − F(xt ) − mt (st ) ≤
(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2.

Proof ApplyMeanValue Theoremon F at xt gives F(xt+st ) = F(xt )+∇F(xt )T st+
1
2 s

T
t ∇2F(ξt )st , for some ξt in the segment of [xt , xt + st ]. Now, it follows that

F(xt + st ) − F(xt ) − mt (st ) = 1

2
sTt (∇2F(ξt ) − Ht )st − σt

3
‖st‖3

= 1

2
sTt (∇2F(ξt ) − ∇2F(xt ) + ∇2F(xt ) − Ht )st − σt

3
‖st‖3

≤ 1

2
sTt (∇2F(ξt ) − ∇2F(xt ))st + 1

2
sTt (∇2F(xt ) − Ht )st − σt

3
‖st‖3

≤ L

2
‖st‖3 + 1

2
ε‖st‖2 − σt

3
‖st‖3 ≤

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2.

��
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Lemma 9 Given Assumption 1, Conditions 1 and 3, suppose

σt ≥ 2L, ε ≤ min

{
1

12

(√
K 2

H + 8Lεg − KH

)
,
νεH

6γ

}
.

Then, we have

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2 ≤

{
ε
2‖sCt ‖2,
ε
2‖sEt ‖2, If λmin(Ht ) ≥ −εH

.

Proof First consider ‖sCt ‖ for which we have two cases.

(i) If ‖st‖ ≤ ‖sCt ‖, then from assumption on σt , it immediately follows that

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2 ≤ ε

2
‖st‖2 ≤ ε

2
‖sCt ‖2.

(ii) If ‖st‖ ≥ ‖sCt ‖, since L ≤ σt/2, then

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2 ≤ − σt

12
‖st‖3 + ε

2
‖st‖2 ≤

(
− σt

12

∥∥∥sCt
∥∥∥+ ε

2

)
‖st‖2

≤
⎛

⎝−
√
K 2

H + 8Lεg − KH

24
+ ε

2

⎞

⎠ ‖st‖2 ≤ 0 ≤ ε

2

∥∥∥sCt
∥∥∥
2
.

The second last inequality follows from (14).

Similarly, for ‖sEt ‖, we have two cases.
i. If ‖st‖ ≤ ‖sEt ‖, then from assumption on σt , it immediately follows that

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2 ≤ ε

2
‖st‖2 ≤ ε

2
‖sEt ‖2.

ii. If ‖st‖ ≥ ‖sEt ‖, since L ≤ σt/2, then

(
L

2
− σt

3

)
‖st‖3 + ε

2
‖st‖2 ≤ − σt

12
‖st‖3 + ε

2
‖st‖2 ≤ − σt

12

∥∥∥sEt
∥∥∥‖st‖2 + ε

2
‖st‖2

≤ −νεH

12
‖st‖2 + ε

2
‖st‖2 ≤ 0 <

ε

2

∥∥∥sEt
∥∥∥
2
.

The second last inequality follows from (15) and the last line follows from ε ≤ νεH
6 .

��
Lemma 10 Given Assumption 1, Conditions 1 and 3, suppose at the t-th iteration,
λmin(Ht ) < −εH , σt ≥ 2L, and ε ≤ min{1/6, (1−η)/3}νεH . Then, the t-th iteration
is successful, i.e. σt+1 = σt/γ .

123



54 P. Xu et al.

Proof From (13b), Lemmas 8 and 9, as well as assumptions on σt and ε, we have

1 − ρt = F(xt + st ) − F(xt ) − mt (st )
−mt (st )

≤ (L/2 − σt/3) ‖st‖3 + ε‖st‖2/2
ν|λmin(Ht )|‖sEt ‖2/6

≤ 3ε‖sEt ‖2
ν|λmin(Ht )|‖sEt ‖2 ≤ 3ε

νεH
≤ 1 − η.

Hence, ρt ≥ η, and the iteration is successful. ��
Lemma 11 Given Assumption 1, Conditions 1 and 3, suppose at the t-th iteration,
‖∇F(xt )‖ ≥ εg, σt ≥ 2L, and

ε ≤ min

{
1

12
,
1 − η

6

}(√
K 2

H + 8Lεg − KH

)
.

Then, the t-th iteration is successful, i.e. σt+1 = σt/γ .

Proof First note that, from (13a), we have

−mt (st ) ≥ −mt (sCt ) ≥ 1

12
‖sCt ‖2

(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)
.

Hence, again, by (13a), Lemmas 8 and 9 , it follows that

1 − ρt = F(xt + st ) − F(xt ) − mt (st )
−mt (st )

≤
( L
2 − σt

3

) ‖st‖3 + ε
2‖st‖2

−mt (sCt )

≤
ε
2‖sCt ‖2

1
12‖sCt ‖2

(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)

≤ 6ε(√
K 2

H + 4σt‖∇F(xt )‖ − KH

)

≤ 6ε(√
K 2

H + 8Lεg − KH

) ≤ 1 − η.

Hence, ρt ≥ η, and the iteration is successful. ��
Now we can upper bound the cubic regularization parameter before the algorithm

terminates, as in Lemma 12.

Lemma 12 Consider Assumption 1, Conditions 1 and 3, and

ε ≤ min

{
min

{
1

12
,
1 − η

6

}(√
K 2

H + 8Lεg − KH

)
,min

{
1

6
,
1 − η

3

}
νεH

}
,

(16)
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where ν, L, KH are, respectively, defined as in (13b), (6a), (3b), and η is a hyper-
parameter of Algorithm 2. For Algorithm 2 we have for all t , σt ≤ max{σ0, 2γ L}.
Proof We prove by contradiction. Assume the t-th iteration is the first unsuccessful
iteration such that σt+1 = γ σt ≥ 2γ L , which implies that σt ≥ 2L . However,
according to Lemmas 10 and 11 , respectively, if λmin(Ht ) < −εH or ‖∇F(xt )‖ ≥ εg ,
then the iteration is successful and hence we must have σt+1 = σt/γ ≤ σt , which is
a contradiction. ��

Now, similar to [13, Lemma 2.8], we can get the following result about the estimate
of the total number of successful iterations before algorithm terminates.

Lemma 13 (Success iterations) Given Assumption 1, Conditions 1 and 3, let Tsucc

denote the set of all the successful iterations before Algorithm 2 stops. The number of
successful iterations is upper bounded by,

|Tsucc| ≤ (F(x0) − Fmin)

ηκσ

· max{ε−2
g , ε−3

H },

where κσ � min
{
ν3/(24γ 2L2),min

{
1/KH ,

√
1/(2γ L)

}
/(2

√
3)
}
.

Proof Suppose Algorithm 2 doesn’t terminate at the t-th iteration. Then either we have
‖∇F(xt )‖ ≥ εg or λmin(∇2Ht ) ≤ −εH . In the first case, (13a) and Lemma 12 gives

−mt (st ) ≥ ‖∇F(xt )‖
2
√
3

min

{
‖∇F(xt )‖

KH
,

√
‖∇F(xt )‖

σt

}
≥ ε2g

2
√
3
min

{
1

KH
,

√
1

2γ L

}
.

Similarly, in the case where λmin(∇2Ht ) ≤ −εH , from (13b) and Lemma 12, we
obtain −mt (st ) ≥ ν3|λmin(Ht )|3/(6σ 2

t ) ≥ ν3ε3H/(24γ 2L2).
Since F(xt ) is monotonically decreasing, we have

F(x0) − Fmin ≥
∞∑

t=0

F(xt ) − F(xt+1) ≥
∑

t∈T succ

F(xt ) − F(xt+1) ≥ −η
∑

t∈T succ

mt (st )

≥ η |Tsucc|min

{
ν3ε3H

24γ 2L2 ,
ε2g

2
√
3
min

{
1

KH
,

√
1

2γ L

}}

≥ |Tsucc| ηκσ min{ε2g, ε3H }.

��
Now we show the final complexity bounds of Algorithm 2 in Theorem 2.

Theorem 2 (Complexity of Algorithm 2) Consider any 0 < εg, εH < 1. Suppose the
inexact Hessian, H(x), satisfies Condition 1 with the approximation tolerance, ε, in
(3a) as (16). For Problem (P0), under Assumption 1 and Condition 3, Algorithm 2

terminates after at most T ∈ O
(
max{ε−2

g , ε−3
H }
)
iterations.
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Proof Suppose Algorithm 2 terminates at the t-th iteration. LetTsucc andT f ail denote
the sets of all the successful and unsuccessful iterations, respectively. Then T =
|Tsucc|+

∣∣T f ail
∣∣ and σT = σ0γ

|T f ail |−|Tsucc|. From Lemma 12, we have σT ≤ 2γ L .
Hence,

∣∣T f ail
∣∣ ≤ log (2γ L/σ0) / log γ + |Tsucc|, which, using Lemma 13 gives the

total iteration complexity as

T ≤ log (2γ L/σ0) / log γ + 2(F(x0) − Fmin) · max{ε−2
g , ε−3

H }/(ηκσ ),

where κσ is defined in Lemma 13. ��
In Theorem 2 (as well as Theorem 3 below), we require ε ∈ O(

√
εg, εH ). This

can be rather strict and computationally unattractive, unless either crude solutions
are required (e.g., in most machine learning applications very rough solutions are
encouraged to avoid over-fitting), or the inexact Hessian is formed from a sub-set
of data that is significantly smaller than the original dataset (e.g., see Sect. 3 in the
context of big-data regimes where n � 1 and |S | � n). Nonetheless, the theoretical
existence of such tolerance, though small, implies a certain level of robustness of the
algorithm, i.e., the complexity of the algorithm is not adversely affected by small
errors in Hessian computations.

Wenote that, for iterationswhere ε � ‖st‖, (3a) is indeed amore stringent condition
than (5c). As iterations progress towards optimality, step-size can become small, in
which case (3a) might be theoretically more preferable. Nonetheless, beyond a direct
theoretical comparison among various Hessian approximation bounds in terms of their
tightness, themain advantage of (3a) should be regarded in light of its simplicity,which
allows for direct constructions of Ht with a priori guarantees.

Condition 3 seems to be the bare minimum required to guarantee convergence to an
approximate second-order criticality. Intuitively, however, if an approximate solution
to the sub-problem (12) satisfies more than (13), i.e., if we solve (12) more exactly
than just requiring (13), one could expect to be able to improve upon the iteration
complexity of Theorem 2. Indeed, suppose we solve the reduced sub-problem on
progressively embedded sub-spaces with increasingly higher dimensions, all of which
including “Span{sCt , sEt }”, and stop when the corresponding solution st satisfies the
following conditions.

Condition 4 (Sufficient descent for optimal complexity) Assume that we solve the
sub-problem (12) approximately to find st such that, in addition to (13), we have

‖∇mt (st )‖ ≤ ζ max
{
‖st‖2, θt‖∇F(xt )‖

}
, θt � min {1, ‖st‖} , (17)

for some prescribed ζ ∈ (0, 1). Here, mt (·) is defined in (12).

Conditions on the inexactness of the sub-problems were initially pioneered in
[10,11,13]. However, the main drawback for these conditions is that the inexactness
tolerance is closely tied with the magnitude of the gradient. More specifically, when
gradient is small, e.g., near saddle points, the sub-problems are required to be solved
exceedingly more accurately. In fact, at a saddle point where ‖∇F(xt )‖ = 0, these
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conditions imply an exact solution to the sub-problem. To the best of our knowledge,
Condition 4 represents a novel criterion, which offers the best of both worlds: when
gradient is large, we allow for crude solutions to the sub-problem, but near saddle-
points where the gradient is small, inexactness will be determined by the step length,
which can be significantly larger than the gradient. Using Condition 4, we can obtain
the optimal iteration complexity for Algorithm 2, as shown in Theorem 3. First, we
prove the following two lemmas which will be used later for the proof of Theorem 3.

Lemma 14 Suppose ‖∇F(xt )‖ ≥ εg. Given Assumption 1 and Condition 3, let (3a)
hold with εt = min{ε, ζ‖∇F(xt )‖} where ε is as in (16) and ζ ∈ (0, 1/2). Further-
more, suppose (12) is solved such that Condition 4 eventually holds. Then, we have
‖st‖ ≥ κg

√‖∇F(xt+1)‖, where

κg � 2(1 − 2ζ )

((1 + 4γ )L + 2max {(ε + ζ max{1, K }), 2ζ max{1, K }}) .

Proof First, suppose ‖st‖2 ≤ θt‖∇F(xt )‖. Using Condition 4, we get ‖∇F(xt+1)‖ ≤
‖∇F(xt+1) − ∇mt (st )‖ + ‖∇mt (st )‖ ≤ ‖∇F(xt+1) − ∇mt (st )‖ + θt‖∇F(xt )‖.
Noting that ∇mt (st ) = ∇F(xt ) + Ht st + σt‖st‖st , and using Mean Value Theorem
for vector-valued functions, (6a) and (3a), we get

‖∇F(xt+1) − ∇mt (st )‖ ≤
∥∥∥∥
∫ 1

0
∇2F(xt + τ st )st dτ − Ht st

∥∥∥∥+ σt‖st‖2

≤
∥∥∥∥
∫ 1

0

(
∇2F(xt + τ st ) − ∇2F(xt )

)
st dτ +

(
∇2F(xt ) − Ht

)
st

∥∥∥∥+ σt‖st‖2

≤
∥∥∥∥st‖

∫ 1

0
‖∇2F(xt + τ st ) − ∇2F(xt )‖dτ + ‖

(
∇2F(xt ) − Ht

)
st

∥∥∥∥+ σt‖st‖2

≤ L‖st‖2
∫ 1

0
τdτ + εt‖st‖ + σt‖st‖2 ≤

(
L

2
+ 2γ L

)
‖st‖2 + εt‖st‖,

where the last equality follows from Lemma 12. From (6b), it follows that

‖∇F(xt )‖ ≤ K‖st‖ + ‖∇F(xt+1)‖. (18)

As such, using θt ≤ ζ from Condition 4 as well as the assumption on εt , we get

‖∇F(xt+1)‖ ≤
(
L

2
+ 2γ L

)
‖st‖2 + εt‖st‖ + θt K‖st‖ + θt‖∇F(xt+1)‖

≤
(
L

2
+ 2γ L

)
‖st‖2 + εt‖st‖ + θt K‖st‖ + ζ‖∇F(xt+1)‖,

which implies that (1−ζ )‖∇F(xt+1)‖ ≤ (L/2 + 2γ L) ‖st‖2+(εt + θt K ) ‖st‖. Now
using Condition 4, we consider two cases:
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(i) If ‖st‖ ≥ 1, then we get (εt + θt K ) ‖st‖ ≤ (εt + θt K ) ‖st‖2 ≤ (ε + ζK )‖st‖2.
Hence, it follows that (1 − ζ )‖∇F(xt+1)‖ ≤ (L/2 + 2γ L + (ε + ζK )) ‖st‖2.

(ii) If ‖st‖ ≤ 1, then from assumption on εt and (18), we have εt‖st‖ ≤
ζ‖∇F(xt )‖‖st‖ ≤ ζ(K‖st‖2 + ‖∇F(xt+1)‖‖st‖) ≤ ζ(K‖st‖2 + ‖∇F(xt+1)‖).
Now by assumption on θt , we get (εt + θt K ) ‖st‖ = εt‖st‖ + θt K‖st‖ ≤
2ζK‖st‖2 + ζ‖∇F(xt+1)‖, which, in turn, implies that (1 − 2ζ )‖∇F(xt+1)‖ ≤
(L/2 + 2γ L + 2ζK ) ‖st‖2.

Now suppose, ‖st‖2 ≥ θt‖∇F(xt )‖. As above, we have ‖∇F(xt+1)‖ ≤ ‖∇F(xt+1)−
∇mt (st )‖ + ‖∇mt (st )‖ ≤ (L/2 + 2γ L + ζ ) ‖st‖2 + εt‖st‖. If ‖st‖ ≥ 1, we have
εt‖st‖ ≤ ε‖st‖2, which gives ‖∇F(xt+1)‖ ≤ (L/2 + 2γ L + ζ + ε) ‖st‖2. Other-
wise, if ‖st‖ ≤ 1, then ‖st‖2 ≥ θt‖∇F(xt )‖ implies that ‖st‖ ≥ ‖∇F(xt )‖. From
assumption on εt , it follows that εt‖st‖ ≤ ζ‖∇F(xt )‖‖st‖ ≤ ζ‖st‖2, which in turn
gives ‖∇F(xt+1)‖ ≤ (L/2 + 2γ L + 2ζ ) ‖st‖2. ��
Lemma 15 (Success iterations: optimal case) Let

Tsucc � {t; ‖∇F(xt )‖ ≥ εg ∨ λmin(Ht ) ≤ −εH },

be the set of all successful iterations, before Algorithm 2 terminates. Under the con-
ditions of Lemma 14, we must have |Tsucc| ∈ O(max{ε−3

H , ε
−3/2
g }).

Proof From (13b) and Lemma 12, if λmin(∇2Ht ) ≤ −εH , it follows that −mt (st ) ≥
ν3|λmin(Ht )|3/(6σ 2

t ) ≥ ν3ε3H/(24γ 2L2). Note that Tsucc = T 1
succ
⋃

T 2
succ
⋃

T 3
succ,

where

T 1
succ �

{
t ∈ Tsucc; ‖∇F(xt+1)‖ ≥ εg

}
,

T 2
succ �

{
t ∈ Tsucc; ‖∇F(xt+1)‖ ≤ εg and λmin(Ht+1) ≤ −εH

}

T 3
succ �

{
t ∈ Tsucc; ‖∇F(xt+1)‖ ≤ εg and λmin(Ht+1) ≥ −εH

}
.

We bound each of these sets individually. Since F(xt ) is monotonically decreasing,
from [10, Lemma 3.3], σt ≥ σmin, and Lemmas 12 and 14 , we have

F(x0) − Fmin ≥
∞∑

t=0

F(xt ) − F(xt+1) ≥
∑

t∈T 1
succ

F(xt ) − F(xt+1) ≥ −η
∑

t∈T 1
succ

mt (st )

≥ η
∑

t∈T 1
succ

min

{
ν3ε3H

24γ 2L2 ,
σmin

6
‖st‖3

}

≥ η
∑

t∈T 1
succ

min

{
ν3ε3H

24γ 2L2 ,
σminκ

3
g

6
‖∇F(xt+1)‖3/2

}

≥ η
∑

t∈T 1
succ

min

{
ν3ε3H

24γ 2L2 ,
σminκ

3
g

6
ε
3/2
g

}
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≥ η
∑

t∈T 1
succ

min

{
ν3

24γ 2L2 ,
σminκ

3
g

6

}
min{ε3H , ε

3/2
g }.

Hence,
∣∣T 1

succ

∣∣ ≤ κ1
Tsucc

max{ε−3
H , ε

−3/2
g }, where

κ1
Tsucc

� (F(x0) − Fmin)max{24γ 2L2/ν3, 6/(σminκ
3
g )}/η.

As for T 2
succ, we have

F(x0) − Fmin ≥ F(x0) − F(x1) +
∞∑

t=0

F(xt+1) − F(xt+2)

≥ F(x0) − F(x1) +
∑

t∈T 2
succ

F(xt+1) − F(xt+2)

≥ F(x0) − F(x1) − η
∑

t∈T 2
succ

mt+1(st+1)

≥ F(x0) − F(x1) + η
∑

t∈T 2
succ

ν3ε3H

24γ 2L2 .

Hence,
∣∣T 2

succ

∣∣ ≤ κ2
Tsucc

ε−3
H , where κ2

Tsucc
� (F(x1) − Fmin)24γ 2L2/(ην3). Finally,

we have
∣∣T 3

succ

∣∣ = 1, because in such a case, the algorithm stops in one iteration.
Putting these bounds all together, we get |Tsucc| ≤ max{1, κ1

Tsucc
, κ2

Tsucc
}max{ε−3

H ,

ε
−3/2
g }. ��
Now we can obtain the optimal complexity bound of Algorithm 2 in Theorem 3.

The proof follows similarly as that of Theorem 2, and hence is omitted here.

Theorem 3 (Optimal complexity of Algorithm 2) Consider any 0 < εg, εH < 1.
Suppose the inexact Hessian, H(x), satisfies Conditions (3) with the approximation
tolerance, ε, in (3a) as ε = min{ε0, ζ εg} where ε0 is as in (16), and ζ ∈ (0, 1/2).
For Problem (P0) and under Assumption 1, if the approximate solution to the sub-
problem (12) satisfies Conditions 3 and 4, then Algorithm 2 terminates after at most

T ∈ O
(
max{ε−3/2

g , ε−3
H }
)
iterations.

From (3a), upon termination of Algorithm 2, the obtained solution satisfies (εg, ε+
εH )-Optimality as in (1), i.e., ‖∇F(xT )‖ ≤ εg and λmin

(∇2F(xT )
) ≥ −(εH + ε).

3 Finite-summinimization

In this section, we give concrete and practical examples to demonstrate ways to con-
struct the approximate Hessian, which satisfies Condition 1. By considering finite-sum
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minimization, a ubiquitous problem arising frequently in machine learning, we show-
case the practical benefits of the proposed relaxed requirement (3a) for approximating
Hessian, compared to the stronger alternative (5c). In Sect. 3.1, we describe random-
ized techniques to appropriately construct the approximate Hessian, followed by the
convergence analysis of Algorithms 1 and 2 with such Hessian approximations in
Sect. 3.2.

3.1 Randomized sub-sampling

Indeed, a major advantage of (3a) over (5c) is that there are many approximation
techniques that can produce an inexact Hessian satisfying (3a). Of particular interest
in our present paper is the application of randomizedmatrix approximation techniques,
which have recently shown great success in the area of RandNLA at solving various
numerical linear algebra tasks [22,42,60]. For this, we consider the highly prevalent
finite-sum minimization problem (P1) and employ random sampling as a way to
construct approximations to the exact Hessian, which are, probabilistically, ensured
to satisfy (3a). Many machine learning and scientific computing applications involve
finite-sum optimization problems of the form (P1) where each fi is a loss (or misfit)
function corresponding to i th observation (or measurement), e.g., see [7,24,47,48,50,
55] and references therein.

Here, we consider (P1) in large-scale regime where n, d � 1. In such settings, the
mere evaluations of the Hessian and the gradient increase linearly in n. Indeed, for big-
data problems, the operations with the Hessian, e.g., matrix-vector products involved
in the (approximate) solution of the sub-problems (8) and (12), typically constitute the
main bottleneck of computations, and in particular when n � 1, are computationally
prohibitive. For the special case of (P1) in which each fi is convex, randomized
sub-sampling has shown to be effective in reducing such costs, e.g., [6,49,62]. We
now show that such randomized approximation techniques can indeed be effectively
employed for the non-convex settings considered in this paper.

In this light, suppose we have a probability distribution, p = {pi }ni=1, over the
set {1, 2, . . . , n}, such that for each index i = 1, 2 . . . , n, we have Pr(i) = pi > 0
and

∑n
i=1 pi = 1. Consider picking a sample of indices from {1, 2, . . . , n}, at each

iteration, randomly according to the distribution p. LetS and |S | denote the sample
collection and its cardinality, respectively and define

H(x) � 1

n|S |
∑

j∈S

1

p j
∇2 f j (x), (19)

to be the sub-sampled Hessian. In big-data regime when n � 1, if |S | � n, such
sub-sampling can offer significant computational savings.

Now, suppose

sup
x∈Rd

‖∇2 fi (x)‖ ≤ Ki , i = 1, 2, . . . , n, (20a)
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and define

Kmax � max
i=1,...,n

Ki . (20b)

K̂ � 1

n

n∑

i=1

Ki . (20c)

In this case, we can naturally consider uniform distribution over {1, 2, . . . , n}, i.e.,
pi = 1/n, ; ∀i . Lemma 16 gives the sample size required for the inexact Hessian,
H(x), to probabilistically satisfy (3), for when the indices are picked uniformly at
random with or without replacement.

Lemma 16 (Complexity of uniform sampling) Given (20a), (20b) , and 0 < ε, δ < 1,
let

|S | ≥ 16K 2
max

ε2
log

2d

δ
, (21)

where Kmax is defined as in (20b). At any x ∈ R
d , suppose picking the elements ofS

uniformly at random with or without replacement, and forming H(x) as in (19) with
pi = 1/n, ; ∀i . We have

Pr
(
‖H(x) − ∇2F(x)‖ ≤ ε

)
≥ 1 − δ. (22)

Proof Consider |S | random matrices H j (x), j = 1, . . . , |S | s.t. Pr (H j (x) = ∇2 fi
(x)
) = 1/n; ∀i = 1, 2, . . . , n. Define X j �

(
H j − ∇2F(x)

)
, H �

∑
j∈S H j/|S |,

and X �
∑

j∈S X j = |S | (H − ∇2F(x)
)
. Note that E(X j ) = 0 and for H j =

∇2 f1(x) we have

‖X j‖2 =
∥∥∥∥∥
n − 1

n
∇2 f1(x) −

n∑

i=2

1

n
∇2 fi (x)

∥∥∥∥∥

2

≤ 4

(
n − 1

n

)2

K 2
max ≤ 4K 2

max.

Hence, we can apply Operator-Bernstein inequality [35, Theorem 1] to get

Pr
(
‖H − ∇2F(x)‖ ≥ ε

)
= Pr

(
‖X‖ ≥ ε|S |

)
≤ 2d exp{−ε2|S |/(16K 2

max)}.

Now (21) ensure that 2d exp{−ε2|S |/(16K 2
max)} ≤ δ, which gives (22). ��

Indeed, if (22) holds, then (3a) follows with the same probability. In addition, if
H is constructed according to Lemma 16, it is easy to see that (3b) is satisfied with
KH = Kmax (in fact this is a deterministic statement). These two, together, imply that
H satisfies Condition 1, with probability 1 − δ.

ASpecial Case: In certain settings, onemight be able to construct amore “informative”
distribution,p, over the indices in the set {1, 2, . . . , n}, as opposed to oblivious uniform
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sampling. In particular, it might be advantageous to bias the probability distribution
towards picking indices corresponding to those fi ’s which aremore relevant, in certain
sense, in forming the Hessian. If this is possible, then we can only expect to require
smaller sample size as compared with oblivious uniform sampling. One such setting
where this is possible is the finite-sum optimization of the form (P2), which is indeed
a special case of (P1) and arise often in many machine learning problems [51].

It is easy to see that, the Hessian of F in this case can be written as ∇2F(x) =
ATBA =∑n

i=1 f ′′
i (aTi x)aia

T
i /n, where

AT =
⎡

⎣
| | . . . |
a1 a2 . . . an
| | . . . |

⎤

⎦

d×n

and

B = 1

n

⎡

⎢⎢⎢⎣

f ′′
1 (aT1 x) 0 . . . 0
0 f ′′

2 (aT2 x) . . . 0
...

...
. . .

...

0 0 . . . f ′′
n (aTn x)

⎤

⎥⎥⎥⎦

n×n

.

Now let S ∈ R
n×|S | be the sampling matrix and define the approximate Hessian

as H � ATSSTBA. It can be seen that approximating the Hessian matrix ∇2F(x) =
ATBA can be regarded as approximatingmatrix-matrixmultiplication fromRandNLA
[42,60]. For this, consider the sampling distribution p as

pi = | f ′′
i (aTi x)|‖ai‖22∑n

j=1 | f ′′
j (a

T
j x)|‖a j‖22

. (23)

Note that the absolute values are needed since for non-convex fi , we might have
f ′′
j (a

T
j x) < 0 (for the convex case where all f ′′

j (a
T
j x) ≥ 0, one can obtain stronger

guarantees than Lemmas 16 and 17; see [62]). Using non-uniform sampling distribu-
tion (23), Lemma 17 gives sampling complexity for the approximate Hessian of (P2)
to, probabilistically, satisfy (3).

Lemma 17 (Complexity of non-uniform sampling)Given (20a), (20c) and 0 < ε, δ <

1, let

|S | ≥ 4K̂ 2

ε2
log

2d

δ
, (24)

where K̂ is defined as in (20c). At any x ∈ R
d , suppose picking the elements of S

randomly according to the probability distribution (23), and formingH(x) as in (19).
We have

Pr
(
‖H − ∇2F(x)‖ ≤ ε

)
≥ 1 − δ. (25)
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Proof Define B = diag{ f ′′
1 (aT1 x)/n, · · · , f ′′

n (aTn x)/n} ∈ R
n×n . Let S ∈ R

n×|S |
be the sampling matrix and define H � ATSSTBA. Further, let the diagonals of
B be denoted by bi and define c �

∑n
i=1 |b j |‖a j‖2. Consider s random matri-

ces H j such that Pr(H j = biaiaTi /pi ) = pi , ∀ j = 1, 2, . . . , |S |, where pi =
|bi |‖ai‖2/(∑n

i=1 |b j |‖a j‖2). Define

X j � H j − ATBA, H � 1

|S |
|S |∑

j=1

H j , X �
|S |∑

j=1

X j = |S |
(
H − ATBA

)
.

Note that E[X j ] =∑n
i=1 pi

(
biaiaTi /pi − ATBA

) = 0, and

E[X2
j ] = E[H j − ATBA] = E[H2

j ] + (ATBA)2 − E[H j ]ATBA − ATBAE[H j ]

= E[H2
j ] − (ATBA)2 � E[H2

j ] =
n∑

i=1

pi

(
bi
pi
aiaTi

)2

=
n∑

i=1

b2i ‖ai‖2
pi

aiaTi

=
n∑

i=1

|b j |‖a j‖2
n∑

i=1

|b|iaiaTi = c
n∑

i=1

|b|iaiaTi = cAT |B|A.

So we have ‖E[X2
j ]‖ ≤ c‖AT |B|A‖. Now we can apply the Operator-Bernstein

inequality [35, Theorem 1] to get

Pr
(
‖H − ATBA‖2 ≥ ε

)
≤ Pr (‖X‖2 ≥ ε|S |) ≤ 2deε2|S |/(4c‖AT |B|A‖).

Since c =∑n
i=1 |bi | ‖ai‖2 = 1

n

∑n
i=1

∣∣ f ′′
i

∣∣ ‖ai‖2 ≤ 1
n

∑n
i=1 Ki = K̂ and

∥∥∥AT |B|A
∥∥∥ =

∥∥∥∥∥
1

n

n∑

i=1

∣∣ f ′′
i

∣∣ aiaTi

∥∥∥∥∥ ≤ 1

n

n∑

i=1

∥∥∥
∣∣ f ′′

i

∣∣ aiaTi
∥∥∥ ≤ 1

n

n∑

i=1

Ki = K̂ ,

then we have

Pr
(
‖H − ATBA‖2 ≥ ε

)
≤ 2deε2|S |/(4K̂ 2),

which gives the desired result. ��
The bound in (24) can be improved by replacing the dimension d with a smaller

quantity, known as intrinsic dimension; see Appendix A. As it can be seen from
(20b) and (20c), since K̂ ≤ Kmax, the sampling complexity given by Lemma 17
always provides a smaller sample-size compared with that prescribed by Lemma 16.
Indeed, the advantage of non-uniform sampling is more pronounced in cases where
the distribution of Ki ’s are highly skewed, i.e., a few large ones and many small ones,
in which case we can have K̂ � Kmax; see numerical experiments in [61]. Also, from
(25), it follows that the approximate matrix H, constructed according to Lemma 17
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Table 1 Examples of problems in the form (P2) with the corresponding estimates for Ki in (20a)

Problem Data fi (aTi x) ∇2 fi (aTi x) Ki

Robust linear
regression

ai ∈ R
d bi ∈ R

(
aTi x − bi

)2

1 + (aTi x − bi
)2

⎛

⎜⎝
2
(
1 − 3

(
aTi x

)2)

((
aTi x

)2 + 1
)3

⎞

⎟⎠ aiaTi
‖ai‖2
6
√
3

Non-linear
binary
classification

ai ∈ R
d bi ∈ {0, 1}

(
1

1 + exp
(−aTi x

) − bi

)2 (
exp
(
aTi x

) (
1 − exp

(
aTi x

))

(
exp
(
aTi x

)+ 1
)3

)
aiaTi 2‖ai‖2

satisfies (3b) with KH = K̂ + ε, with probability 1 − δ, which in turn, implies that
Condition 1 is ensured, with probability 1 − δ.

As concrete examples of the problems in the form (P2) where Lemma 17 can be
readily used, Table 1 gives estimates for Ki in (20a) for robust linear regression with
smooth non-convex bi-weight loss, [3], as well as non-convex binary-classification
using logistic regression with least squares loss, [61].

3.2 Probabilistic convergence analysis

Now, we are in the position to give iteration complexity for Algorithms 1 and 2 where
the inexact Hessian matrixHt is constructed according to Lemmas 16 or 17. Since the
approximation is a probabilistic construction, in order to guarantee success, we need
to ensure that we require a small failure probability across all iterations. In particular,
in order to get an overall and accumulative success probability of 1−δ for the entire T
iterations, the per-iteration failure probability is set as (1− T

√
(1 − δ)) ∈ O(δ/T ). This

failure probability appears only in the “log factor” for sample size in all of our results,
and so it is not the dominating cost. Hence, requiring that all T iterations are successful
for a large T , only necessitates a small (logarithmic) increase in the sample size. For
example, for T ∈ O(max{ε−2

g , ε−3
H }), as in Theorem 2, we can set the per-iteration

failure probability to δmin{ε2g, ε3H }, and ensure that when Algorithm 2 terminates,
all Hessian approximations have been, accumulatively, successful with probability of
1 − δ.

Using these results, we can have the following probabilistic, but optimal, guarantee
on the worst-case iteration complexity of Algorithm 1 for solving finite-sum problem
(P1) (or (P2)) and in the case where the inexact Hessian is formed by sub-sampling.
Their proofs follow very similar line of reasoning as that used for obtaining the results
of Sect. 2, and hence are omitted.

Theorem 4 (Optimal complexity ofAlgorithm1 for finite-sumproblem)Consider any
0 < εg, εH , δ < 1. Let ε be as in (11) and set δ0 = δmin{ε2gεH , ε3H }. Furthermore, for
such (ε, δ0), let the sample-size |S | be as in (21) (or (24)) and form the sub-sampled
matrixH as in (19). For Problem (P1) (or (P2)), under Assumption 1 and Condition 2,
Algorithm 1 terminates in at most T ∈ O(max{ε−2

g ε−1
H , ε−3

H }) iterations, upon which,
with probability 1−δ, we have that ‖∇F(x)‖ ≤ εg, and λmin(∇2F(x)) ≥ − (ε + εH ).
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Similarly, in the setting of optimization problems (P1) and (P2), with appropriate sub-
sampling of the Hessian as in Lemmas 16 and 17 , we can also obtain probabilistic
worst-case iteration complexities for Algorithm 2 as in the deterministic case. Again,
the proofs are similar to those in Sect. 2, and hence are omitted.

Theorem 5 (Complexity of Algorithm 2 for finite-sum problem) Consider any 0 <

εg, εH , δ < 1. Let ε be as in (16) and set δ0 = δmin{ε2g, ε3H }. Furthermore, for
such (ε, δ0), let the sample-size |S | be as in (21) (or (24)) and form the sub-sampled
matrixH as in (19). For Problem (P1) (or (P2)), under Assumption 1 and Condition 3,
Algorithm 2 terminates in at most T ∈ O(max{ε−2

g , ε−3
H }) iterations, upon which, with

probability 1 − δ, we have that ‖∇F(x)‖ ≤ εg, and λmin(∇2F(x)) ≥ − (ε + εH ).

Theorem 6 (Optimal complexity of Algorithm 2 for finite-sum problem) Consider
any 0 < εg, εH , δ < 1. Let ε be as in Theorem 3 and set δ0 = δmin{ε3/2g , ε3H }.
Furthermore, for such (ε, δ0), let the sample-size |S | be as in (21) (or (24)) and form
the sub-sampledmatrixH as in (19). For Problem (P1) (or (P2)), under Assumption 1,
Conditions 3 and 4 , Algorithm 2 terminates in at most T ∈ O(max{ε−3/2

g , ε−3
H })

iterations, upon which, with probability 1 − δ, we have that ‖∇F(x)‖ ≤ εg, and
λmin(∇2F(x)) ≥ − (ε + εH ).

As it can be seen, the main difference between Theorems 5 and 6 is in the solution to
the sub-problem (12). More specifically, if in addition to Condition 3, Condition 4 is
also satisfied, then Theorem 6 gives optimal worst-case iteration complexity.

4 Conclusion

We considered non-convex optimization settings and developed efficient variants of
the trust region and adaptive cubic regularization methods in which both the sub-
problems as well as the the curvature information are suitably approximated. For all
of our proposed variants, we obtained iteration complexities to achieve approximate
second order criticality, which are shown to be the same (up to some constant) as that
of the exact variants.

As compared with previous works, our proposed Hessian approximation condi-
tion offers a range of theoretical and practical advantages. As a concrete example,
we considered the large-scale finite-sum optimization problem and proposed uniform
and non-uniform sub-sampling strategies as ways to efficiently construct the desired
approximate Hessian. We then, probabilistically, established optimal iteration com-
plexity for variants of trust region and adaptive cubic regularization methods in which
the Hessian is appropriately sub-sampled.

In this paper, we focused on approximating the Hessian under the exact gradient
information. Arguably, the bottleneck of the computations in such second-order meth-
ods involves the computations with the Hessian, e.g., matrix-vector products in the
(approximate) solution of the sub-problem. In fact, the cost of the exact gradient com-
putation is typically amortized by that of the operations with the Hessian. In spite of
this, approximating the gradient in a computationally feasible way and with minimum
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assumptions could improve upon the efficiency of the methods proposed here. How-
ever, care has to be taken as cheaper iterations with inaccurate gradients could in fact
result in more iterations overall. This could have the adverse effect of slowing down
the algorithm’s convergence. As a result, approximating the gradient has to be done
with care to avoid such pitfalls.

Finally, wemention that our focus here has been solely on developing the theoretical
foundations of such randomized algorithms. Extensive empirical evaluations of these
algorithms on various machine learning applications are given in the [61].
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Appendix A: Intrinsic dimension and improving the sampling com-
plexity (24)

We can still improve the sampling complexity (24) by considering the intrinsic dimen-
sion of the matrix AT |B|A. Recall that for a SPSD matrix A ∈ R

d×d , the intrinsic
dimension is defined as t(A) = tr(A)/‖A‖, where tr(A) is the trace ofA. The intrinsic
dimension can be regarded as a measure for the number of dimensions where A has a
significant spectrum. It is easy to see that 1 ≤ t(A) ≤ rank(A) ≤ d; see [59] for more
details. Now let t = tr(AT |B|A)/‖AT |B|A‖ be the intrinsic dimension of the SPSD
matrix AT |B|A. We have the following improved sampling complexity result:

Lemma 18 (Complexity of non-uniform sampling: intrinsic dimension) The result of
Lemma 17 holds with (24) replaced with

|S | ≥ 16K̂ 2

3ε2
log

8t

δ
, (26)

where t = tr(AT |B|A)/‖AT |B|A‖ ≤ d is the intrinsic dimension of the matrix
AT |B|A.

Proof It is easy to see that Var(X) = E(X2) = ∑|S |
j=1 E(X2

j ) � |S |cAT |B|A, where
X and c are given in the proof of Lemma 17. For H j = bi

pi
aiaTi , we have

λmax(X j ) ≤ ‖X j‖ = ‖ bi
pi
aiaTi − ATBA‖ =

∥∥∥∥∥∥

(
1 − pi
pi

)
biaiaTi −

∑

j �=i

b ja jaTj

∥∥∥∥∥∥

≤
(
1 − pi
pi

)
|bi |‖ai‖2 +

∑

j �=i

|b j |‖a j‖2

123



Newton-type methods for non-convex optimization under… 67

= (1 − pi )
n∑

i=1

|b j |‖a j‖2 +
∑

j �=i

|b j |‖a j‖2

= 2
∑

j �=i

|b j |‖a j‖2 ≤ 2
n∑

i=1

|b j |‖a j‖2 = 2c.

Hence, if ε|S | ≥ √|S |c‖AT |B|A‖ + 2c/3, we can apply Matrix Bernstein using
the intrinsic dimension [59, Theorem 7.7.1] to get for ε ≤ 1/2

Pr (λmax(X) ≥ ε|S |) ≤ 4t exp

{ −ε2|S |
2c‖AT |B|A‖ + 4cε/3

}
≤ 4t exp

{−3ε2|S |
16c2

}
.

Applying the same bound for Y j = −X j and Y = ∑s
j=1Y j , followed by the union

bound, we get the desired result. ��

Appendix B: Computation of Approximate Negative Curvature Direc-
tion

Throughout our analysis, we assume that, if a sufficiently negative curvature exists,
i.e., λmin(H) ≤ −εH for some εH ∈ (0, 1), we can approximately compute the
corresponding negative curvature direction vector u, i.e., 〈u,Hu〉 ≤ −νεH‖u‖2,
for some ν ∈ (0, 1). We note that this can be done efficiently by applying a vari-
ety of methods such as Lanczos [38] or shift-and-invert [25] on the SPSD matrix
H̃ = KH − H. These methods only employ matrix vector products and, hence, are
suitable for large scale problems.More specifically, with any κ ∈ (0, 1), thesemethods
using O(log(d/δ)

√
KH/κ) matrix-vector products and with probability 1 − δ, yield

a vector u satisfying KH‖u‖2 − 〈u,Hu〉 = 〈u, H̃u〉 ≥ κλmin(H̃)‖u‖2 = κ(KH −
λmin(H))‖u‖2. Rearranging, we obtain 〈u,Hu〉 ≤ (1− κ)KH‖u‖2 + κλmin(H)‖u‖2.
Setting 1 > ν = 2κ ≥ (2KH )/(2KH + εH ), gives 〈u,Hu〉 ≤ −νεH‖u‖2.
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38. Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the power and Lanczos algo-
rithms with a random start. SIAM J. Matrix Anal. Appl. 13(4), 1094–1122 (1992)

39. Larson, J., Billups, S.C.: Stochastic derivative-free optimization using a trust region framework. Com-
put. Optim. Appl. 64(3), 619–645 (2016)

40. Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient descent only converges to minimizers.
In: Conference on Learning Theory, pp. 1246–1257 (2016)

41. Lenders, F., Kirches, C., Potschka, A.: trlib: a vector-free implementation of the GLTR method for
iterative solution of the trust region problem (2016). ArXiv preprint arXiv:1611.04718

42. Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends® Mach. Learn. 3(2),
123–224 (2011)

43. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572
(1983)

44. Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math.
Program. 112(1), 159–181 (2008)

45. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math.
Program. 108(1), 177–205 (2006)

46. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)
47. Roosta-Khorasani, F., van den Doel, K., Ascher, U.: Data completion and stochastic algorithms for

PDE inversion problems with many measurements. Electron. Trans. Numer. Anal. 42, 177–196 (2014)
48. Roosta-Khorasani, F., van den Doel, K., Ascher, U.: Stochastic algorithms for inverse problems involv-

ing PDEs and many measurements. SIAM J. Sci. Comput. 36(5), S3–S22 (2014)
49. Roosta-Khorasani, F., Mahoney, M.W.: Sub-sampled Newton methods. Math. Program. 174(1), 293–

326 (2019)
50. Roosta-Khorasani, F., Székely, G.J., Ascher, U.: Assessing stochastic algorithms for large scale non-

linear least squares problems using extremal probabilities of linear combinations of gamma random
variables. SIAM/ASA J. Uncertain. Quantif. 3(1), 61–90 (2015)

51. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, Cambridge (2014)

52. Shashaani, S., Hashemi, F., Pasupathy, R.: ASTRO-DF: a class of adaptive sampling trust-region
algorithms for derivative-free stochastic optimization (2016). ArXiv preprint arXiv:1610.06506

53. Sorensen, D.: Minimization of a large-scale quadratic functionsubject to a spherical constraint. SIAM
J. Optim. 7(1), 141–161 (1997)

54. Sorensen, D.C.: Newton’smethodwith amodel trust regionmodification. SIAM J. Numer. Anal. 19(2),
409–426 (1982)

55. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)
56. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J.

Numer. Anal. 20(3), 626–637 (1983)
57. Tripuraneni, N., Stern, M., Jin, C., Regier, J., Jordan, M.I.: Stochastic cubic regularization for fast

nonconvex optimization (2017). ArXiv preprint arXiv:1711.02838
58. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4),

389–434 (2012)
59. Tropp, J.A.: An introduction to matrix concentration inequalities (2015). ArXiv preprint

arXiv:1501.01571
60. Woodruff, D.P.: Sketching as a tool for numerical linear algebra (2014). ArXiv preprint

arXiv:1411.4357
61. Xu, P., Roosta-Khorasani, F., Mahoney, M.W.: Second-order optimization for non-convex machine

learning: an empirical study (2017). ArXiv preprint arXiv:1708.07827

123

http://arxiv.org/abs/1001.2738
http://arxiv.org/abs/1705.05933
http://arxiv.org/abs/1611.04718
http://arxiv.org/abs/1610.06506
http://arxiv.org/abs/1711.02838
http://arxiv.org/abs/1501.01571
http://arxiv.org/abs/1411.4357
http://arxiv.org/abs/1708.07827


70 P. Xu et al.

62. Xu, P., Yang, J., Roosta-Khorasani, F., Ré, C., Mahoney, M.W.: Sub-sampled Newton methods with
non-uniform sampling. In: Advances inNeural Information Processing Systems, pp. 3000–3008 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Newton-type methods for non-convex optimization under inexact Hessian information
	Abstract
	1 Introduction
	1.1 Notation and definitions
	1.2 Background and related work
	1.2.1 Trust region
	1.2.2 Cubic regularization

	1.3 Contributions
	1.3.1 Conditions used in prior works
	1.3.2 Merits of Condition 1 


	2 Algorithms and convergence analysis
	2.1 Trust region with inexact Hessian
	2.2 Adaptive cubic regularization with inexact Hessian

	3 Finite-sum minimization
	3.1 Randomized sub-sampling
	3.2 Probabilistic convergence analysis

	4 Conclusion
	Acknowledgements
	Appendix A: Intrinsic dimension and improving the sampling complexity (24)
	Appendix B: Computation of Approximate Negative Curvature Direction
	References




