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a r t i c l e i n f o a b s t r a c t

We consider a variant of inexact Newton Method [20,40], 
called Newton-MR, in which the least-squares sub-problems 
are solved approximately using Minimum Residual method 
[79]. By construction, Newton-MR can be readily applied for 
unconstrained optimization of a class of non-convex problems 
known as invex, which subsumes convexity as a sub-class. 
For invex optimization, instead of the classical Lipschitz 
continuity assumptions on gradient and Hessian, Newton-
MR’s global convergence can be guaranteed under a weaker 
notion of joint regularity of Hessian and gradient. We also 
obtain Newton-MR’s problem-independent local convergence 
to the set of minima. We show that fast local/global 
convergence can be guaranteed under a novel inexactness 
condition, which, to our knowledge, is much weaker than 
the prior related works. Numerical results demonstrate the 
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performance of Newton-MR as compared with several other 
Newton-type alternatives on a few machine learning problems.
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 
(EURO). This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For a twice differentiable function f : Rd → R, consider the unconstrained optimiza-
tion problem

min
x∈Rd

f(x). (1)

The canonical example of second-order methods is arguably the classical Newton’s 
method whose iterations are typically written as

xk+1 = xk + αkpk, with pk = − [H(xk)]−1 g(xk), (2)

where xk, g(xk) = ∇f(xk), H(xk) = ∇2f(xk), and αk are respectively the current 
iterate, the gradient, the Hessian matrix, and the step-size that is often chosen using 
an Armijo-type line-search to enforce sufficient decrease in f [76]. When f is smooth 
and strongly convex, it is well known that the local and global convergence rates of the 
classical Newton’s method are, respectively, quadratic and linear [18,73,76]. For such 
problems, the Hessian matrix is uniformly positive definite. As a result, if forming the 
Hessian matrix explicitly and/or solving the linear system in (2) exactly is prohibitive, 
the update direction pk is obtained approximately using conjugate gradient (CG), re-
sulting in the celebrated Newton-CG [76].

Newton-CG is elegantly simple in that its iterations merely involve solving linear 
systems followed by a certain type of line-search. Despite its simplicity, it has been shown 
to enjoy various desirable theoretical and algorithmic properties including insensitivity 
to problem ill-conditioning [81,94] as well as robustness to hyper-parameter tuning [15,
60]. However, in the absence of strong-convexity, Newton’s method lacks any favorable 
convergence analysis. Indeed, recall that to obtain the update direction, pk, Newton-CG 
aims at (approximately) solving quadratic sub-problems of the form ([76])

min
p∈Rd

〈g(xk),p〉 + 1
2 〈p,H(xk)p〉 . (3)

However, if the Hessian is indefinite (as in non-convex settings) or if its positive semi-
definite but g(xk) /∈ Range (H(xk)) (as in weakly convex problems), (3) is simply 
unbounded below.

http://creativecommons.org/licenses/by/4.0/
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In this light, many Newton-type variants have been proposed which aim at extending 
Newton-CG beyond strongly convex problems to more general settings, e.g., trust-region 
[32] and cubic regularization [25,26,75]. However, many of these extensions involve sub-
problems that are themselves non-trivial to solve, e.g., the sub-problems of trust-region 
and cubic regularization methods are themselves non-linear and (potentially) non-convex 
[92,93]. This has prompted many authors to design effective methods for approximately 
solving such sub-problems, e.g., [16,24,25,34,52,61,85]. These methods can be highly 
effective in many settings. For example, the trust-region method coupled with CG-
Steihaug [85] has shown great promise in several machine learning applications [93]. 
However, solving such non-trivial sub-problems can be a major challenge in many other 
settings. For instance, despite the obvious advantages of the CG-Steihaug method, e.g., 
one matrix-vector product per iteration and the ability to naturally detect negative 
curvature directions, it is not guaranteed to solve the trust-region sub-problem to an 
arbitrary accuracy. This can have negative consequences for the convergence speed of 
the trust-region method. Indeed, if either of the negative curvature or the boundary 
is encountered too early, the CG-Steihaug method terminates and the resulting step is 
only slightly, if at all, better than the Cauchy direction [32]. If this occurs too often, the 
trust-region method’s convergence can slow down to be comparable to that of the simple 
gradient descent method.

Recently, [68] proposes a novel Newton-type method, which not only enjoys sub-
problems in the form of linear-systems, but as long as these sub-problems are solved 
exactly, it has provably fast global convergence for weakly convex objectives. To allow for 
optimization of a larger class of problems beyond convex, while maintaining the simplicity 
offered by linear sub-problems, one can consider replacing (3) with an equivalently simple 
ordinary least-squares (OLS)

min
p∈Rd

1
2 ‖H(xk)p + g(xk)‖2

. (4)

Clearly, regardless of the Hessian matrix, there is always a solution (in fact at times 
infinitely many solutions) to the above OLS problem. For example, exact minimum 
norm solution to the above OLS amounts to iterations of the form

xk+1 = xk + αkpk, with pk = − [H(xk)]† g(xk), (5)

where A† denotes the Moore-Penrose generalized inverse of matrix A, and αk is an 
appropriately chosen step-size. Our aim in this paper is to give an in-depth treatment of 
the above alternative and study the convergence properties of the resulting algorithm, 
which we call Newton-MR,1 under a variety of settings.

1 The term “MR” refers to the fact that the sub-problems are in the form of Minimum Residual, i.e., 
least squares, as depicted in Algorithms 1 and 2.



4 F. Roosta et al. / EURO Journal on Computational Optimization 10 (2022) 100035
The rest of this paper is organized as follows. We end Section 1 by introducing the 
notation used throughout the paper. In Section 2, we take a look at high-level conse-
quences of using a direction from (an approximation of) (4). Convergence properties 
of Newton-MR are gathered in Section 3. This is done, first, by extensive discussion 
on various assumptions underlying the analysis in Section 3.1, followed by a detailed 
theoretical development to obtain local and global convergence of Newton-MR in Sec-
tion 3.2. Numerical examples are provided in Section 4. Conclusions and further thoughts 
are gathered in Section 5.

Notation In what follows, vectors and matrices are denoted by bold lowercase and bold 
uppercase letters, e.g., v and V, respectively. We use regular lowercase and uppercase 
letters to denote scalar constants, e.g., c or L. The transpose of a real vector v is denoted 
by vᵀ. For two vectors, v, w, their inner-product is denoted as 〈v,w〉 = vᵀw. For a 
vector v, and a matrix V, ‖v‖ and ‖V‖ denote the vector �2 norm and the matrix 
spectral norm, respectively. For any x, z ∈ Rd, y ∈ [x, z] denotes y = x + τ(z − x) for 
some 0 ≤ τ ≤ 1. For a natural number n, we denote [n] = {1, 2, . . . , n}. For any finite 
collection S, its cardinality is denoted by |S|. The subscript, e.g., xk, denotes iteration 
counter. For a matrix A ∈ Rd×d, Range (A) and Null (A) denote, respectively, its range, 
i.e., Range (A) =

{
Ax | x ∈ Rd

}
and its null-space, i.e., Null (A) =

{
y ∈ Rd | Ay = 0

}
. 

The Moore-Penrose generalized inverse of a matrix A is denoted by A†. The identity 
matrix is written as I and the indicator function of a set S is denoted as 1{S}. When the 
minimum is attained at more than one point, “Arg min” denotes the set of minimizers, 
otherwise “arg min” implies a unique minimizer. Finally, we use g(x) � ∇f (x) and 
H(x) � ∇2f (x) for the gradient and the Hessian of f at x, respectively, and at times we 
drop the dependence on x by simply using g and H, e.g., gk = g(xk) and Hk = H(xk).

2. Newton-MR

Before providing a detailed look into the convergence implications of using (4), let us 
first study higher-level consequences of such a choice as they relate to solving (1).

2.1. Minimum residual sub-problem solver

For solving OLS problems, a plethora of iterative solvers exists. Each of these itera-
tive methods can be highly effective once applied to the class of problems for which they 
have been designed. Among them, the one method which has been specifically designed 
to effectively obtain the least-norm solution for all systems, compatible or otherwise, in-
volving real symmetric but potentially indefinite/singular matrices (such as those in (4)) 
is MINRES-QLP [29,30]. In fact, by requiring only marginally more computations/stor-
age, it has been shown that MINRES-QLP is numerically more stable than MINRES 
[79] on ill-conditioned problems.
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Perhaps a natural question at this stage is “what are the descent properties of the 
(approximate) solution to (4) using MINRES-QLP?” Recall that the tth iteration of 
MINRES-QLP yields a search direction, p(t)

k , which satisfies

p(t)
k = arg min

p∈Kt(Hk,gk)
rk(p) � ‖gk + Hkp‖ , (6)

where Kt(Hk, gk) = Span{gk, Hkgk, . . . , [Hk]t−1 gk} denotes the Krylov sub-space of 
order t, [49]. Since 0 ∈ Kt(Hk, gk), it follows that for any t in (6), we have rk(p(t)

k ) ≤
rk(0), which implies

〈
p(t)
k ,Hkgk

〉
≤ −

∥∥∥Hkp(t)
k

∥∥∥2 /2 ≤ 0.

In other words, p(t)
k from MINRES, for all t, is a descent direction for ‖g(x)‖ at xk. Let 

pk = p(t)
k for some t ≥ 1. As a consequence of such particular descent property of pk, 

the step-size, αk, can be chosen using Armijo-type line search [76] to reduce the norm of 
the gradient. Hence, we chose αk ≤ 1 as the largest value such that for some 0 < ρ < 1, 
we get

‖gk+1‖2 ≤ ‖gk‖2 + 2ραk 〈pk,Hkgk〉 . (7)

This can be approximately achieved using any standard back-tracking line-search strat-
egy.

2.2. Invexity

From the above discussion, we always have 〈pk,Hkgk〉 ≤ 0, which implies that

‖gk+1‖ ≤ ‖gk‖ . (8)

In other words, by appropriate application of Hessian and regardless of non-convexity 
of the problem, one can always obtain descent directions corresponding to the auxiliary 
problem

min
x∈Rd

‖g(x)‖ . (9)

In certain applications, e.g., chemical physics [2,66] and deep learning [46–48], instead 
of minimizing the function, the goal is to find zeros of its gradient field, which can be 
obtained by solving (9). However, when the goal is solving (1), a natural question is 
“what is the class of objective functions for which (9) is equivalent to (1)?” Clearly, any 
global optimum of (1) is also a solution to (9). However, the converse only holds for a 
special class of non-convex functions, known as invex [55,69].



6 F. Roosta et al. / EURO Journal on Computational Optimization 10 (2022) 100035
Definition 1 (Invexity). Let X ⊆ Rd be an open set. A differentiable function f : X → R

is said to be invex on X if there exists a vector-valued function φ : X × X → Rd such 
that

f(y) − f(x) ≥ 〈φ(y,x),g(x)〉 , ∀x,y ∈ X . (10)

The class of functions satisfying (10) with the same φ is denoted by Fφ. The class of all 
invex functions is denoted by F .

Invexity characterizes the class of functions for which the first order optimality con-
dition is also sufficient. It is also easily seen that, by choosing φ(y, x) = y − x in 
Definition 1, differentiable convex functions are subsumed in the class of invex functions; 
see [14,69] for detailed treatments of invexity. Much like all generalized convex functions 
[23], invexity has been introduced in order to weaken, as much as possible, the convex-
ity requirements in optimization problems, and extend many results related to convex 
optimization theory to more general functions.

Invexity has recently garnered attention in the machine learning community. Re-
stricted to a special subclass, often referred to as Polyak-Łojasiewicz functions (cf. 
Section 3.2.3), numerous works have established the convergence of first-order optimiza-
tion algorithms, e.g., [7,37,57,59,78,90]. In addition, it has recently been shown that 
several deep learning models enjoy such invex properties in certain regimes, e.g., [6,64]. 
For more general non-convex machine learning models, [33] proposes a novel regulariza-
tion framework, which ensures the invexity of the regularized function and is shown to 
be advantageous over the classical �2-regularization in terms of the sensitivity to hyper-
parameter tuning and out-of-sample generalization performance.

2.3. Connections to root finding algorithms

Considering (9) in lieu of g(x) = 0 is, in fact, a special case of a more general 
framework for solving non-linear system of equations involving a vector valued function 
F : Rm → Rn. More specifically, as an alternative to solving F(x) = 0, minimization 
of ‖F(x)‖ has been considered extensively in the literature; e.g., [10,11,28,74,80,97,100]. 
Consequently, Newton-MR can be regarded as a member of the class of inexact Newton 
methods with line-search for solving nonlinear systems [35,40,41,70]. In our case, the non-
linear system of equations arises from optimality condition g(x) = 0, i.e., F(x) = g(x), 
which has a symmetric Jacobian. Hence, through the perspective of the application of 
MINRES within its iterations, Newton-MR can be viewed as a special case of more 
general Newton-GMRES algorithms for solving non-linear systems [1,12,13,19,20,58].

In light of these connections, the bare-bones iterations of Newton-MR do not consti-
tute novel elements of our work here. What sets our contributions in this paper apart is 
studying the plethora of desirable theoretical and algorithmic properties of Newton-MR 
in the context of (9) and its connection to (1). In particular, we give a thorough treat-
ment of the implications of the assumptions that we make as well as the novel inexactness 
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conditions that we propose as they relate to convergence of Newton-MR. For example, 
in most prior works on Newton-GMRES, the Jacobian of the non-linear function is as-
sumed full-rank [12,13,20,91]. This, in our setting here, amounts to assuming that the 
Hessian matrix is invertible, which can be easily violated in the non-convex settings. In 
fact, to address rank deficient cases, the ubiquitous approach has been to employ reg-
ularization techniques such as Levenberg-Marquardt [8,9,36,45,53,95]. By introducing a 
novel assumption on the interplay between the gradient and the sub-space spanned by 
the Hessian matrix, we obviate the need for full-rank assumptions or the Hessian regu-
larization techniques. As another example, to guarantee convergence, we will introduce 
a novel inexactness condition that constitute a major relaxation from the typical relative 
residual conditions used, almost ubiquitously, in prior works.

3. Theoretical analysis

In this section, we study the convergence properties of some variants of Newton-MR 
(Algorithms 1 and 2). For this, in Section 3.1, we first give the assumptions underlying 
our analysis. Under these assumptions, in Section 3.2, we provide detailed local/global 
convergence analysis of these Newton-MR variants.

3.1. Assumptions

For the theoretical analysis of Newton-MR, we make the following blanket assumptions 
regarding the properties of the objective function f in (1). Some of these assumptions 
might seem unconventional at first, however, they are simply generalizations of many typ-
ical assumptions made in the similar literature. For example, a strongly-convex function 
with Lipschitz continuous gradient and Hessian satisfies all of the following assumptions 
in this Section.

Assumption 1 (Differentiability). The function f is twice-differentiable.

In particular, all the first partial derivatives are themselves differentiable, but the 
second partial derivatives are allowed to be discontinuous. Recall that requiring the first 
partials be differentiable implies the equality of crossed-partials, which amounts to the 
symmetric Hessian matrix [56, pp. 732-733].

In the literature for the analysis of non-convex Newton-type methods for (1), to obtain 
non-asymptotic quantitative convergence rates, it is typically assumed that the function is 
sufficiently smooth in that its gradient and Hessian are Lipschitz continuous. Specifically, 
for some 0 ≤ Lg < ∞, 0 ≤ LH < ∞, and ∀ x, y ∈ Rd, it is assumed that

‖g(x) − g(y)‖ ≤ Lg ‖x − y‖ , (11a)

‖H(x) − H(y)‖ ≤ LH ‖x − y‖ . (11b)
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For Newton-MR, the smoothness is required for the auxiliary function ‖g(x)‖2, which 
amounts to a more relaxed smoothness condition.

Assumption 2 (Moral-smoothness). For any x0 ∈ Rd, there is 0 ≤ L(x0) < ∞, such that

‖H(x)g(x) − H(y)g(y)‖ ≤ L(x0) ‖x − y‖β , ∀(x,y) ∈ X0 ×Rd, (12)

where X0 �
{
x ∈ Rd | ‖g(x)‖ ≤ ‖g(x0)‖

}
and 0 < β < ∞.

Note that in Assumption 2, the constant L(x0) depends on the choice of x0. We recall 
that, for β = 1, Assumption 2 is similar to the assumption that is often made in the 
analysis of many non-linear least-squares algorithms for minimizing ‖F(x)‖2 for some 
non-linear mapping F(x) in which ∇ ‖F(x)‖2 is assumed Lipschitz continuous (on a 
level-set). We refer to Assumption 2 as “moral-smoothness” since by (12), it is only the 
action of Hessian on the gradient that is required to be Lipschitz continuous, and each 
gradient and/or Hessian individually can be highly irregular, e.g., gradient can be very 
non-smooth and Hessian can even be discontinuous.

Example 1 (A morally-smooth function with discontinuous Hessian). Consider a quadrat-
ically smoothed variant of hinge-loss function,

f(x) = 1
2 max

{
0, b 〈a,x〉

}2
,

for a given (a, b) ∈ Rd ×R. It is easy to see that

g(x) = b2 〈a,x〉a 1{b〈a,x〉>0}, ∀x ∈ Rd,

H(x) = b2aaᵀ 1{b〈a,x〉>0}, ∀x /∈ N ,

where N �
{
x ∈ Rd | b 〈a,x〉 = 0

}
. Clearly, Hessian is discontinuous on N . Since N is 

a set of measure zero, i.e., μ(N ) = 0 with respect to the Lebesgue measure μ, we can 
arbitrarily define H(x) � 0 for x ∈ N (in fact, any other definition would work as well). 
It follows that for any x, y ∈ Rd, we have

‖H(x)g(x) − H(x)g(x)‖ = b4 ‖a‖2 ∥∥〈a,x〉a 1{b〈a,x〉>0} − 〈a,y〉a 1{b〈a,y〉>0}
∥∥

≤ b4 ‖a‖3 ∣∣〈a,x〉 1{b〈a,x〉>0} − 〈a,y〉 1{b〈a,y〉>0}
∣∣

≤ b4 ‖a‖4 ‖x − y‖ .

The last inequality follows by considering four cases with 1{b〈a,x〉>0} = 1{b〈a,y〉>0}
and 1{b〈a,x〉>0} 
= 1{b〈a,y〉>0}. Indeed, for the former two cases, the last inequality 
follows immediately. For the latter two cases, suppose without loss of generality that 
1{b〈a,x〉>0} = 1 and 1{b〈a,y〉>0} = 0. In this case, we use the fact that by b 〈a,y〉 ≤ 0, we 
have b 〈a,x〉 ≤ b 〈a,x〉 − b 〈a,y〉.



F. Roosta et al. / EURO Journal on Computational Optimization 10 (2022) 100035 9
It is easy to show that (12) is implied by (11), and hence, it constitutes a relaxation 
on the typical smoothness requirements for gradient and Hessian, commonly found in 
the literature.

Lemma 1 (Moral-smoothness (12) is less strict than smoothness (11)). Suppose (11)
holds. Then, for any x0, we have (12) with β = 1 and L(x0) = L2

g + LH ‖g(x0)‖.

Proof. Suppose (11) is satisfied and fix any x0 with the corresponding X0 as defined in 
Assumption 2. Since for any two matrices A, B and two vectors x, y, we have ‖Ax −
By‖ ≤ ‖A‖‖x − y‖ + ‖y‖‖A − B‖, it implies that ∀x ∈ X0, ∀y ∈ Rd

‖H(y)g(y) − H(x)g(x)‖ ≤ ‖H(y)‖ ‖g(x) − g(y)‖ + ‖g(x)‖ ‖H(x) − H(y)‖
≤ L2

g ‖y − x‖ + LH ‖g(x)‖ ‖y − x‖
≤
(
L2

g + LH ‖g(x0)‖
)
‖y − x‖ ,

where the last inequality follows since x ∈ X0. �
By Lemma 1, any smooth function satisfying (11) would also satisfy Assumption 2

with β = 1. Below, we bring examples which show that the converse does not necessarily 
hold.

Example 2 (Smoothness (11) is strictly stronger than moral-smoothness (12)). In this 
example, for three regimes of 0 < β < 1, β = 1, and β > 1, we give concrete counter-
examples of functions on R, i.e., d = 1, which satisfy (12) but not (11).

1. For 0 < β < 1, consider a solution to the following ODE

f ′′(x)f ′(x) = xβ , x > x0 �
(
(1 + β)a

) 1
(1+β)

, f(x0) = b, f ′(x0) = 0,

where b ∈ R, a ∈ R+. Such a solution can be of the form

f(x) = b +
√

2
1 + β

x∫
x0

√
tβ+1 − (1 + β)a dt, (13a)

and satisfies (12) with 0 < β < 1, and L = 1. It is easily verified that f ′′(x) and f ′′′(x)
are both unbounded; hence f violates (11). Note that, on (x0, ∞), (13a) is convex, 
and hence by definition, it is invex.

2. For β = 1, the condition (12) implies that 
∥∥∥[∇2f(x)

]2 +
〈
∇3f(x),g(x)

〉∥∥∥ ≤ L. In 

one variable, for b ∈ R, a ∈ R++, the solution to the following ODE

f ′′(x)f ′(x) = x, x > x0 �
√

2a, f(x0) = b− a log(
√

2a), f ′(x0) = 0,
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can be written as

f(x) = 1
2x
√

x2 − 2a− a log
(√

x2 − 2a + x
)

+ b, (13b)

which satisfies (12) with β = L = 1. It can be easily verified that

f ′′(x) = x√
x2 − 2a

, and f ′′′(x) = − 2a
(x2 − 2a)

3
2
,

which are unbounded, and so, f does not satisfy (11a) or (11b). It is clear that, on 
(x0, ∞), (13b) is convex, and hence it is invex.

Similarly, for b ∈ R, a ∈ R++, one can consider

f ′′(x)f ′(x) = −x, x ∈ (−
√

2a,
√

2a), f(0) = b, f ′(0) = −
√

2a.

The solution to this ODE is of the form

f(x) = b− x

2
√

2a− x2 − a arctan
(

x√
2a− x2

)
, (13c)

which satisfies (12) with β = L = 1. However, since

f ′′(x) = x√
2a− x2

, and f ′′′(x) = 2a
(2a− x2)

3
2
,

are both unbounded, such a function does not satisfy either of (11a) or (11b).
3. For β > 1, the condition (12) implies that 

[
∇2f(x)

]2 +
〈
∇3f(x),g(x)

〉
= 0. In one 

variable, the solution to the following ODE

(f ′′(x))2 + f ′′′(x)f ′(x) = 0, x > c/2, f(c/2) = a, f ′(c/2) = 0, f ′′(c) = 3b/
√
c,

can be written as

f(x) = a + b(2x− c)3/2. (13d)

This implies that there are non-trivial function which can satisfy (12) for β > 1. In 
addition, since

f ′′(x) = 3b
(2x− c)1/2

, f ′′′(x) = −3b
(2x− c)3/2

,

are both unbounded, it implies that such f does not satisfy either assumptions in
(11). It is clear that, on (c/2, ∞), (13d) is convex, and hence it is invex.
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Assumption 2 allows for Hessian to grow unboundedly, however it implies a certain 
restriction on the growth rate of the action of Hessian on the gradient, i.e., H(x)g(x).

Lemma 2 (Growth rate of H(x)g(x)). Under Assumption 2, for any x0 ∈ Rd, we have

L(x0) ≥
(

2β
β + 1

)β ‖H(x)g(x)‖β+1

‖g(x)‖2β , ∀x ∈ X0,

where L(x0), β and X0 are as defined in Assumption 2.

Proof. If L(x0) = 0, then the result follows immediately. Suppose L(x0) > 0. Under 
Assumption 2, Lemma 5 with h(x) = ‖g(x)‖2

/2, gives

‖g(x + p)‖2 ≤ ‖g(x)‖2 + 2 〈H(x)g(x),p〉 + 2L(x0)
(β + 1) ‖p‖

β+1
, ∀x ∈ X0, ∀p ∈ Rd.

Let m(p) � ‖g(x)‖2 + 2 〈H(x)g(x),p〉 + 2L(x0)/(β + 1) ‖p‖β+1. Consider p� 
= 0 such 
that

∇m(p�) = 2H(x)g(x) + 2L(x0) ‖p�‖β−1 p� = 0.

It implies that ‖p�‖β−1 p� = −H(x)g(x)/L(x0). As a result, for such p�, we must 
have ‖p�‖β = ‖H(x)g(x)‖ /L(x0), and 〈H(x)g(x),p�〉 = − ‖H(x)g(x)‖ ‖p�‖, where 
the equality follows since p� is a scalar multiple of H(x)g(x). Since m(p) is convex, it 
follows that

min
p

m(p) = ‖g(x)‖2 − 2 ‖H(x)g(x)‖ ‖p�‖ + 2L(x0)
(β + 1) ‖p

�‖β+1

= ‖g(x)‖2 − 2 ‖H(x)g(x)‖
β+1
β

L(x0)
1
β

+ 2 ‖H(x)g(x)‖
β+1
β

(β + 1)L(x0)
1
β

= ‖g(x)‖2 −
(

β

β + 1

)(
2

L(x0)
1
β

)
‖H(x)g(x)‖

β+1
β .

The result follows since we have m(p) ≥ ‖g(x + p)‖2 ≥ 0, ∀p. �
We also require the following regularity on the pseudo-inverse of the Hessian matrix.

Assumption 3 (Pseudo-inverse regularity). For any x0 ∈ Rd, there is a γ(x0) > 0, s.t.

‖[H(x)]†‖ ≤ 1/γ(x0), ∀x ∈ X0, (14)

where X0 is as in Assumption 2.
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It turns out that (14) is equivalent to the regularity of the Hessian matrix on its range 
space.

Lemma 3. (14) is equivalent to

‖H(x)p‖ ≥ γ(x0) ‖p‖ , ∀x ∈ X0, and ∀p ∈ Range (H(x)) . (15)

The proof of Lemma 3 follows simply by considering the eigenvalue decomposition of 
H. Assumption 3 is trivially satisfied for all strongly convex functions. However, it is also 
satisfied for any function whose (possibly rank-deficient) Hessian is uniformly positive 
definite in the sup-space spanned by its range.

Example 3 (Functions satisfying Assumption 3). A simple example of a non-strongly 
convex function satisfying Assumption 3 is the undetermined least squares f(x) =
‖Ax − b‖2

/2 with full row rank matrix A ∈ Rn×d, n ≤ d. This problem is clearly 
only weakly convex since the Hessian matrix, AᵀA ∈ Rd×d, is rank-deficient. However, 
it is easy to see that (14) holds with γ(x0) = γ = σ2

n(A), where σn is the smallest 
non-zero singular value of A.

Finally, we make the following structural assumption about f with regards to the 
gradient and its projection onto the range space of Hessian.

Assumption 4 (Gradient-Hessian null-space property). For any x ∈ Rd, let Ux and U⊥
x

denote arbitrary orthogonal bases for Range(H(x)) and its orthogonal complement, re-
spectively. A function is said to satisfy the Gradient-Hessian Null-Space property, if for 
any x0 ∈ Rd, there is a 0 < ν(x0) ≤ 1, such that

ν(x0)
∥∥∥(U⊥

x
)ᵀ g(x)

∥∥∥2
≤
(
1 − ν(x0)

)
‖Uᵀ

xg(x)‖2
, ∀x ∈ X0, (16)

where X0 is as in Assumption 2.

Lemma 4 gives some simple, yet useful, consequences of Assumption 4.

Lemma 4. Under Assumption 4, we have

ν(x0) ‖g(x)‖2 ≤ ‖Uᵀ
xg(x)‖2

, ∀x ∈ X0, (17a)(
1 − ν(x0)

)
‖g(x)‖2 ≥

∥∥∥(U⊥
x
)ᵀ g(x)

∥∥∥2
, ∀x ∈ X0. (17b)

Proof. For a given x0 ∈ Rd, take any x ∈ X0. For (17a), we have

‖g(x)‖2 =
∥∥∥(UxUᵀ

x + U⊥
x
(
U⊥

x
)ᵀ)g(x)

∥∥∥2
= ‖Uᵀ

xg(x)‖2 +
∥∥∥(U⊥

x
)ᵀ g(x)

∥∥∥2
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≤ 1 − ν(x0)
ν(x0)

‖Uᵀ
xg(x)‖2 + ‖Uᵀ

xg(x)‖2 = 1
ν(x0)

‖Uᵀ
xg(x)‖2

.

Also, (17b) is obtained similarly. �
Assumption 4 ensures that, as long as the gradient is non-zero, its angle with the 

sub-space spanned by the Hessian matrix is uniformly bounded away from zero. In other 
words, the gradient will never become arbitrarily orthogonal to the range space of Hes-
sian.

Example 4 (Over-parameterized ERM using linear predictor models). Consider an em-
pirical risk minimization (ERM) problem involving linear predictor models [84],

f(x) =
n∑

i=1
fi(aᵀ

i x), (18)

where ai ∈ Rd, i = 1, . . . n are given data points and each fi : R → R is some nonlin-
ear misfit or loss corresponding to the ith data point. Consider the over-parameterized 
settings (n ≤ d), which has recently garnered significant attention within the machine 
learning community, e.g., [64,71,86,88]. Assume that the data points are linearly inde-
pendent, i.e., Range ({ai}ni=1) = Rn. Further, suppose each loss function fi is such that if 
f ′′
i (t) = 0 then we must also have that f ′

i(t) = 0. Many loss functions satisfy this assump-
tion, e.g., the convex function t2p for any p ≥ 1, so that fi(aᵀ

i x) = 〈ai,x〉2p. Another 
example is when each fi is such that f ′′

i (t) > 0, ∀t, e.g., logistic function log(1 + e−t) or 
any strongly convex. Note that even if each fi is strongly convex, since we have n ≤ d, 
the overall objective f in (18) is still only weakly convex.

Define

A =

⎛⎜⎝aᵀ
1
...

aᵀ
n

⎞⎟⎠ ∈ Rn×d, D =

⎛⎜⎜⎝
f ′′(aᵀ

1x)
f ′′(aᵀ

2x)
. . .

f ′′(aᵀ
nx)

⎞⎟⎟⎠ ∈ Rn×n.

It is easy to see that

g(x) = Aᵀ

⎛⎜⎝f ′
i(a

ᵀ
1x)
...

f ′
i(aᵀ

nx)

⎞⎟⎠ , H(x) = AᵀDA.

For the gradient to be in the range of the Hessian, we must have for some v ∈ Rd

AᵀDAv = Aᵀ[f ′(aᵀ
1x), . . . , f ′(aᵀ

nx)]ᵀ. (19)
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Under the assumption on fi, it can be seen that v = A†D†[f ′(aᵀ
1x), . . . , f ′(aᵀ

nx)]ᵀ, 
satisfies (19), where A† = Aᵀ (AAᵀ)−1 ∈ Rd×n. Hence, Assumption 4 holds with 
ν(x0) = ν = 1.

3.2. Convergence analysis

In this section, we discuss the convergence properties of Newton-MR. For this, in 
Section 3.2.1, we first consider the slightly simpler, yet less practical, case where the sub-
problems (20) are solved exactly (Algorithm 1). Clearly, this is too stringent, and as a 
result, in Section 3.2.2, it is subsequently relaxed to allow inexact solutions (Algorithm 2). 
Convergence under a generalized variant of Polyak-Łojasiewicz inequality will be treated 
in Section 3.2.3.

The following simple Lemma relating to (12) is frequently used in our theoretical anal-
ysis. The proof can be found in most textbooks and is only given here for completeness.

Lemma 5. Consider any x, z ∈ Rd, 0 < β < ∞, 0 ≤ L < ∞ and h : Rd → R. If

‖∇h(y) −∇h(x)‖ ≤ L ‖y − x‖β , ∀y ∈ [x, z] ,

then

h(y) ≤ h(x) + 〈∇h(x),y − x〉 + L ‖y − x‖β+1
/(β + 1), ∀y ∈ [x, z] .

Proof. For any y ∈ [x, z], using the mean value theorem, we have

h(y) − h(x) − 〈∇h(x),y − x〉 =
1∫

0

〈∇h(x + τ(y − x)),y − x〉 dτ − 〈∇h(x),y − x〉

≤ ‖y − x‖
1∫

0

‖∇h(x + τ(y − x)) −∇h(x)‖ dτ

≤ L ‖y − x‖β+1
1∫

0

τβdτ ≤ L

β + 1 ‖y − x‖β+1
. �

3.2.1. Exact update
The underlying sub-problem of Newton-MR, at kth iteration, involves OLS problem 

of the form (4). Under the invexity assumption, the Hessian matrix can be indefinite 
and rank deficient, and as a result, the sub-problem (4) may contain infinitely many 
solutions. Indeed, the general solution of (4) is written as

p = − [Hk]† gk +
(
I − Hk [Hk]†

)
q, ∀q ∈ Rd,
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Algorithm 1 Exact Newton-MR.
Input:

- Initial iterate x0 ∈ Rd, Line-search parameter 0 < ρ < 1, Termination tolerance 0 < ε

for k = 0, 1, 2, · · · until ‖gk‖ ≤ ε do
Find pk using (20), i.e., set pk = − [Hk]† gk

Find step-size, αk, such that (7) holds with ρ
Set xk+1 = xk + αkpk

end for
Output: x for which ‖g(x)‖ ≤ ε

which implies that when Hk has a non-trivial null-space, the sub-problem (4) has in-
finitely many solutions. Among these, the one with the minimum norm is defined uniquely 
as

min
p∈Rd

‖p‖ s.t. p ∈ Arg min
p̂∈Rd

‖gk + Hkp̂‖ , (20)

which yields pk = − [Hk]† gk. In our analysis below, among all possible solutions, we 
will choose the least norm solution, to get iterations of the form (5). The resulting 
Newton-MR variant with exact update (20) is depicted in Algorithm 1.

Theorem 1 gives the convergence guarantees of Algorithm 1.

Theorem 1 (Convergence of Algorithm 1). Consider Assumptions 1 to 4. For the iterates 
of Algorithm 1, we have

‖gk+1‖2 ≤
(
1 − 2ρτ(x0) ‖gk‖(1−β)/β

)
‖gk‖2

,

where τ(x0) �
(
(1 − ρ)(1 + β) (ν(x0)γ(x0))1+β

/L(x0)
)1/β

, ρ is the line-search parame-
ter of Algorithm 1, x0 is the initial iterate, (β, L(x0)) are as in Assumption 2, γ(x0) is 
as in Assumption 3, and ν(x0) is defined in Assumption 4.

Proof. We first note that, by (8), all iterates of Algorithm 1 remain in X0. Let Uk ∈ Rd×r

be any orthogonal basis for the range of Hk and r = rank (Hk) ≤ d. It follows that 
〈Hkgk,pk〉 = − 

〈
gk,Hk [Hk]† gk

〉
= − ‖Uᵀ

kgk‖2. Using (7), we get the reduction in the 
gradient norm as

‖gk+1‖2 ≤ ‖gk‖2 − 2ραk ‖Uᵀ
kgk‖2

. (21)

All that is left is to obtain a non-zero iteration independent lower-bound on αk, i.e., 
αk ≥ α > 0, for which (21) holds. For this, using Assumption 2 and Lemma 5, with 
x = xk, z = xk + pk, y = xk + αpk, and h(x) = ‖g‖2

/2, we get

‖gk+1‖2 ≤ ‖gk‖2 + 2α 〈Hkgk,pk〉 + 2αβ+1L(x0)
(β + 1) ‖pk‖β+1

. (22)
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Assumption 3 implies ‖pk‖ =
∥∥∥[Hk]† gk

∥∥∥ ≤ ‖gk‖ /[γ(x0)]β+1. Hence, it follows that

‖gk+1‖2 ≤ ‖gk‖2 − 2α ‖Uᵀ
kgk‖2 + 2αβ+1L(x0)

[γ(x0)]β+1(β + 1) ‖gk‖β+1
.

Using the above as well as (21), we require for α to satisfy

‖gk‖2 − 2α ‖Uᵀ
kgk‖2 + 2αβ+1L(x0)

[γ(x0)]β+1(β + 1) ‖gk‖β+1 ≤ ‖gk‖2 − 2ρα ‖Uᵀ
kgk‖2

.

But from (17a) and Assumption 4, this is implied if α satisfies αβ+1L(x0) ‖gk‖β+1 ≤
[γ(x0)]β+1(β+1)(1 −ρ)ν(x0)α ‖gk‖2, which is given if α≤((1 − ρ)(1+β)ν(x0)[γ(x0)]1+β/

L(x0))1/β ‖gk‖(1−β)/β . This implies that any step-size returned from the line-search will 
be at least as large as the right-hand side. Now, using Assumption 4 and Lemma 4 again, 
we get ‖gk+1‖2 ≤ ‖gk‖2 − 2ρα ‖Uᵀ

kgk‖2 ≤ (1 − 2ρν(x0)α) ‖gk‖2. �
Remark 1. The convergence rate of Theorem 1, for β 
= 1, seems rather complicated. 
However, one can ensure that it is indeed meaningful, i.e., the rate is positive and strictly 
less than one. From Lemma 2 and Assumptions 3 and 4, it follows that ∀x ∈ X0, we have

L(x0) ≥
(

2β
β + 1

)β ‖H(x)g(x)‖β+1

‖g(x)‖2β =
(

2β
β + 1

)β ‖H(x) (UxUᵀ
xg(x))‖β+1

‖g(x)‖2β

≥
(

2β
β + 1

)β

(γ(x0)
√

ν(x0))β+1 ‖g(x)‖1−β
,

where Ux ∈ Rd×r is any orthogonal basis for the range of H(x). It can also be shown 
that

ρ ((1 + β)(1 − ρ))1/β ≤ β

1 + β
, ∀ρ ∈ (0, 1), ∀β ∈ (0,∞),

with equality holding at ρ = β/(1 + β). Hence, noting that ν(x0) ≤ 1, we obtain

L(x0) ≥ 2βρβ(1 − ρ)(1 + β) (ν(x0)γ(x0))β+1 ‖g(x)‖1−β
, ∀x ∈ X0,

which ensures

0 ≤ 1 − 2ρτ(x0) ‖gk‖(1−β)/β
< 1, k = 0, 1, . . . . (23)

Remark 2 (Parallels between Newton-MR/Newton-CG and MINRES/CG). In the tradi-
tional settings of strongly convex and smooth functions, the global convergence rate in 
Theorem 1 with β = 1 is identical to that of Newton-CG; see [81] for example. However, 
the former indicates the rate of reduction in the norm of the gradient of the function, 
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while the latter corresponds to the reduction in the function value itself. This relationship 
is reminiscent of the convergence guarantees of MINRES and CG for linear systems in-
volving symmetric positive-definite matrices. Indeed, while having identical convergence 
rates, the former is stated in terms of the reduction in the norm of the residual of the 
iterates, while the latter indicates the reduction in the error of the iterates themselves. 
Also, recall that MINRES, unlike CG, can be applied beyond positive-definite matrices. 
In the same spirit, Newton-MR, unlike Newton-CG, is applicable beyond the traditional 
convex settings to invex functions.

Similarly as in the case of many Newton-type methods, we can obtain local conver-
gence guarantees for Newton-MR with unit step-size, i.e., αk = 1. We further show that 
such result greatly generalizes the classical analysis of Newton-CG. We will show that 
local (super-)linear rate of convergence is possible under either Assumption 2 with β > 1, 
or Assumption 5.

Assumption 5. For some 0 < β < ∞ and 0 ≤ LH < ∞, we have ∀x ∈ Rd, ∀p ∈
Range(H(x)),

〈
g(x + p),

(
H(x + p) − H(x)

)
p
〉
≤ LH ‖g(x + p)‖ ‖p‖1+β

. (24)

Although, we do not know of a particular way to, a priori, verify Assumption 5, it is 
easy to see that (24) with β = 1 is implied by (11b), and hence weaker. In fact, unlike the 
usual local convergence analysis of Newton-type methods, analyzing iterations in terms 
of gradient norm allows us to weaken (11b) and instead consider (24).

Theorem 2 (Error recursion of Algorithm 1 with αk = 1). Consider Assumptions 1, 3, 
and 4. Suppose xk ∈ X0 and consider one iteration of Algorithm 1 with αk = 1.

(i) If Assumption 2 holds, then

‖gk+1‖2 ≤ 2L(x0)
(1 + β)[γ(x0)]1+β

‖gk‖1+β + (1 − 2ν(x0)) ‖gk‖2
.

(ii) If Assumption 5 holds and H(x) is continuous, then

‖gk+1‖ ≤ LH

(1 + β)[γ(x0)]1+β
‖gk‖1+β +

√
1 − ν(x0) ‖gk‖ .

Here, L(x0), γ(x0), ν(x0) and LH are defined, respectively, in Assumptions 2, 3, 4, and 
5. Also, β refers to the respective constants of Assumptions 2 and 5.

Proof. Recall that (20) and αk = 1 implies that xk+1 = xk + pk, where we have pk =
− [H (xk)]† g (xk). Throughout the proof, let Ux and U⊥

x denote any orthogonal bases 
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for Range(H(x)) and its orthogonal complement, respectively. (i) From (22) with αk = 1
and using Assumptions 3 and 4, we get

‖gk+1‖2 ≤ ‖gk‖2 − 2 ‖Uᵀ
kgk‖2 + 2L(x0)

(β + 1)[γ(x0)]β+1 ‖gk‖β+1

≤ (1 − 2ν(x0)) ‖gk‖2 + 2L(x0)
(1 + β)[γ(x0)]1+β

‖gk‖1+β
.

(ii) Since by assumption g(x) is continuously differentiable, using mean-value theorem 
for vector-valued functions ([31, Theorem 7.9-1(d)]) for gk+1 = g (xk + pk), we have

‖gk+1‖2 = 〈gk+1,gk+1〉 =
〈

gk+1,gk +
1∫

0

[H (xk + tpk)pk] dt
〉
. (25)

Note that

g (xk) = H (xk) [H (xk)]† g (xk) + U⊥
x
[
U⊥

x
]ᵀ g (xk) = −H (xk)pk + U⊥

x
[
U⊥

x
]ᵀ g (xk) .

Hence, it follows that

‖gk+1‖2 =
〈

gk+1,−H (xk)pk +
1∫

0

[H (xk + tpk)pk] dt
〉

+
〈
gk+1,U⊥

x
[
U⊥

x
]ᵀ g (xk)

〉

≤
〈

gk+1,

1∫
0

[(H (xk + tpk) − H (xk))pk] dt
〉

+ ‖gk+1‖
∥∥∥[U⊥

x
]ᵀ g (xk)

∥∥∥
≤

1∫
0

t−1 [〈gk+1, (H (xk + tpk) − H (xk)) tpk〉] dt +
√

1 − ν(x0) ‖gk+1‖ ‖gk‖ ,

where the inequality follows by Lemma 4. Using Assumptions 3 and 5, we get

‖gk+1‖2 ≤ LH ‖gk+1‖ ‖pk‖1+β

1∫
0

tβdt +
√

1 − ν(x0) ‖gk+1‖ ‖gk‖ ,

and hence,

‖gk+1‖ ≤ LH

(1 + β) ‖pk‖1+β +
√

1 − ν(x0) ‖gk‖

≤ LH

(1 + β)

∥∥∥[Hk]† gk

∥∥∥1+β

+
√

1 − ν(x0) ‖gk‖

≤ LH
1+β

‖gk‖1+β +
√

1 − ν(x0) ‖gk‖ . �
(1 + β)[γ(x0)]
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Remark 3. Theorem 2-(ii) implies convergence in gradient norm with a local rate that 
is linear when ν(x0) < 1, super-linear when ν(x0) = 1, and quadratic when ν(x0) =
β = 1. For example, when ν(x0) < 1, for any given 

√
1 − ν(x0) < c < 1, if ‖gk‖ ≤(

(c−
√

1 − ν(x0))(1 + β)[γ(x0)]1+β/LH

)1/β
, we get ‖gk+1‖ ≤ c ‖gk‖. In other words, 

the local convergence rate is problem-independent, which is a similar characteristic to 
that of exact Newton-CG; see [81]. If ν(x0) = β = 1, then Theorem 2-(ii) implies that

‖gk+1‖ ≤ LH

2γ(x0)2
‖gk‖2

, (26)

which greatly resembles the quadratic convergence of Newton-CG, but in terms of ‖gk‖
in lieu of ‖xk − x�‖. For strongly-convex objectives, (26) coincides exactly with the well-
known bound on ‖g‖ in the literature, e.g., see [18, Eqn. (9.33)]. For comparison, the 
local convergence rate of the Newton-type method proposed in [68] for strongly-convex 
objectives is superlinear.

3.2.2. Inexact update
Clearly, in almost all practical application, it is rather unreasonable to assume that

(20) can be solved exactly. Approximations to (20), in the similar literature, are typically
done by requiring

‖Hkpk + gk‖ ≤ θ ‖gk‖ , (27)

for some appropriate 0 ≤ θ < 1. In other words, we can simply require that an ap-
proximate solution pk is, at least, better than “p = 0” by some factor. Such inexactness 
conditions have long been used in the analysis of Newton-CG, e.g., see [17,21,76,81]. How-
ever, Newton-MR allows for further relaxation of this condition. Indeed, as we will later 
see in this section, we can further loosen (27) by merely requiring that an approximate 
solution satisfies

〈Hkpk,gk〉 ≤ − (1 − θ)
2 ‖gk‖2

. (28)

It is easy to see that (27) implies (28). In our theoretical analysis below, we will employ
(15) and hence we need to ensure that for the update directions, pk, we have pk ∈
Range(Hk). In this light, we introduce the following relaxation of (27)

Find p ∈ Range(Hk) s.t. p satisfies (28). (29)

The inexactness condition in (29) involves two criteria for an approximate solution p, 
namely feasibility of p in (28) and that p ∈ Range(Hk). To seamlessly enforce the latter, 
recall that the tth iteration of MINRES-QLP can be described as follows [29, Table 5.1 
and Eqn (3.1)]
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p(t) = arg min
p∈Rd

‖p‖, subject to p ∈ Arg min
p̂∈Kt(H,g)

‖Hp̂ + g‖ , (30)

where Kt(A, b) = Span
{
b,Ab, . . . ,At−1b

}
denotes the tth-Krylov sub-space generated 

by A and b with t ≤ r � rank (A). If ν(x0) = 1 in Assumption 4, then we necessarily 
have g ∈ Range(H), and hence p(t) ∈ Range(H), ∀t. Otherwise, when ν(x0) < 1 in 
Assumption 4, which implies g /∈ Range(H), we cannot necessarily expect to have p(t) ∈
Range(H). However, one can easily remedy this by modifying MINRES-QLP iterations to 
incorporate Kt(H, Hg) instead of Kt(H, g). Compared with (30), this essentially boils 
down to performing one additional matrix-vector product to compute the vector Hg, 
which is then normalized and used as the initial vector within the Lanczos process; see 
[22,54] for similar modifications applied to MINRES. Clearly, this will not change the 
guarantees of MINRES-QLP regarding the monotonicity of the residuals as well as the 
final solution at termination, i.e., p† = − [H]† g. Since for all t, we have pt ∈ Range(H), 
it follows that any feasible pt satisfies (29). We note that, in general, the Krylov subspace 
methods that define their iterates in H · Kt(H, g), as opposed to Kt(H, g), can have a 
slower convergence, e.g., see [43]. However, in our experience, such a side-effect can be 
negligible given the relatively small number of iterations that is often required to satisfy 
the inexactness condition (28), as opposed to (27); see also Remark 4.

For the analysis of Newton-type methods, to the best of our knowledge, (29) has never 
been considered before and constitutes the most relaxed inexactness condition on the 
sub-problems in the similar literature.

Remark 4 ( (28) is more relaxed than (27)). For a fixed θ, the relative residual of any 
solution to (28) is often much larger than that required by (27). Indeed, from (30) and 
[29, Lemma 3.3], we have 〈pk,Hk (Hkpk + gk)〉 = 0. Now, from (28) we get

(1 + θ) ‖gk‖2

≥ 2 〈gk,Hkpk + gk〉 (From (28))

= 2 〈gk,Hkpk + gk〉 + 2 〈Hkpk, (Hkpk + gk)〉 (〈pk,Hk (Hkpk + gk)〉 = 0)

= 2 〈gk + Hkpk,Hkpk + gk〉 = 2 ‖Hkpk + gk‖2
,

which implies

‖Hkpk + gk‖ ≤
√

1 + θ

2 ‖gk‖ . (31)

Hence, (28) is equivalent to requiring the relative residual condition albeit with the 
tolerance of 

√
(1 + θ)/2. This in turn implies that for a given θ, we can satisfy (29) in 

roughly less than half as many iterations as what is needed to ensure the more stringent
(27).
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Algorithm 2 Inexact Newton-MR.
Input:

- Initial iterate x0 ∈ Rd, Inexactness tolerance θ as in Condition 1, Line-search parameter 0 < ρ < 1, 
Termination tolerance 0 < ε

for k = 0, 1, 2, · · · until ‖gk‖ ≤ ε do
Find pk using (29) with inexactness tolerance θ
Find step-size, αk, such that (7) holds with ρ
Set xk+1 = xk + αkpk

end for
Output: x for which ‖g(x)‖ ≤ ε

The inexactness tolerance has to be chosen with regards to Assumption 4. Indeed, 
under Assumption 4, for the exact solution, pk = − [Hk]† gk, we have 〈Hkpk,gk〉 =
−〈Hk [Hk]† gk, gk〉 ≤ −ν(x0) ‖gk‖2. Hence, it suffices to choose θ in (28) such that 
θ ≥ 1 − 2ν(x0).

Condition 1 (Inexactness tolerance θ). The inexactness tolerance in, θ, in (28) is chosen 
such that θ ∈ [1 − 2ν(x0), 1), where ν(x0) is as in Assumption 4.

Of course, because of ν(x0), the interval in Condition 1 also depends on x0, which con-
sequently affect the range of possible choices for θ. In this sense, the proper notation for 
inexactness tolerance is θ(x0). However, to simplify our results, we drop the dependence 
of θ(x0) on x0. Also, note that if ν(x0) > 1/2, then we can take θ to be negative.

Replacing the exact update (20) in Algorithm 1 with the inexact condition (29) and 
considering Condition 1, we get an inexact variant of Newton-MR, depicted in Algo-
rithm 2, and Theorem 3 provides its convergence properties.

Theorem 3 (Convergence of Algorithm 2). Consider Assumptions 1 to 4. For the iterates 
of Algorithm 2, we have

‖gk+1‖2 ≤
(
1 − 2ρτ̂(x0) ‖gk‖(1−β)/β

)
‖gk‖2

, (32)

where τ̂(x0) � τ(x0) [(1 − θ) / (2ν(x0))](1+β)/β, and ρ is the line-search parameter of 
Algorithm 2, ν(x0) is defined in Assumption 4, τ(x0) is as defined in Theorem 1 and θ
is given in Condition 1.

Proof. Similar to the proof of Theorem 1, we get (22). By [30, Lemma 3.3 and Section 
6.6], we know that ‖Hkpk‖ is monotonically non-decreasing in MINRES-type solvers, 
i.e., ‖Hkpk‖ ≤

∥∥∥Hk [Hk]† gk

∥∥∥ ≤ ‖gk‖. Since pk ∈ Range(Hk), from Assumption 3 it 
follows that

‖pk‖ ≤ 1
γ(x0)

‖Hkpk‖ ≤ 1
γ(x0)

‖gk‖ . (33)
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This, in turn, implies that

‖gk+1‖2 ≤ ‖gk‖2 + 2α 〈Hkgk,pk〉 + 2L(x0)αβ+1

(β + 1)[γ(x0)]β+1 ‖gk‖β+1
.

Now, as in the proof of Theorem 1, to obtain a lower bound on the step-size 
returned from the line-search, using the above and (7), we consider α satisfying 
2L(x0)αβ+1 ‖gk‖β+1 ≤ (β + 1)[γ(x0)]β+1α(1 − ρ)(1 − θ) ‖gk‖2. This, in turn, im-
plies that the step-size returned from the line-search (7) must be such that α ≥(
(1 − θ)(1 − ρ)(1 + β)[γ(x0)]1+β/(2L(x0))

)1/β ‖gk‖(1−β)/β . With this lower-bound on 
the step-size, we obtain the desired result by noting that ‖gk‖2 + 2ρα 〈pk,Hkgk〉 ≤
(1 − ρα(1 − θ)) ‖gk‖2. �

Recalling that 1 − θ ≤ 2ν(x0) from Condition 1, we can obtain a bound similar to
(23) with τ̂(x0) replacing τ(x0), for the rate given by Theorem 3.

Remark 5. For θ = 1 − 2ν(x0), i.e., when sub-problems are solved exactly, Theorem 3
coincides with Theorem 1. More generally, for any ν(x0) ∈ (0, 1] and θ ∈ [1 − 2ν(x0), 1), 
we get a rate similar, up to a constant factor of (1 − θ)/(2ν(x0)), to that of the exact 
update in Theorem 1, i.e., the effects of the problem-related quantities such as L(x0) and 
γ(x0) remain the same. This is in contrast to Newton-CG, for which in order to obtain 
a rate similar to that of the exact algorithm, one has to solve the linear system to a 
high enough accuracy, i.e., θ ≤ √

κ, where κ is the condition number of the problem. 
Otherwise, the dependence of the convergence rate on the problem-related quantities is 
significantly worsened; see [81, Theorem 2].

Similar local convergence results as in Theorem 2 can also be obtained for the case 
where the update direction, pk, is obtained approximately. Note that, again as in Re-
mark 5, when θ = 1 −2ν(x0), the results of Theorem 4 coincide with those of Theorem 2.

Theorem 4 (Error recursion of Algorithm 2 with αk = 1). Under the same assumptions 
of Theorem 2, suppose xk ∈ X0, and consider one iteration of Algorithm 2 with αk = 1.

(i) If Assumption 2 holds, then

‖gk+1‖2 ≤ 2L(x0)
(1 + β)[γ(x0)]1+β

‖gk‖1+β + θ ‖gk‖2
.

(ii) If Assumption 5 holds and H(x) is continuous, then

‖gk+1‖ ≤ LH
1+β

‖gk‖1+β +
√

1 + θ ‖gk‖ .
(1 + β)[γ(x0)] 2
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Here, L(x0), γ(x0) and LH are defined, respectively, in Assumptions 2, 3, and 5, β refers 
to the respective constants of Assumptions 2 and 5, and θ is an inexactness tolerance 
chosen according to Condition 1.

Proof. The proof is very similar to that of Theorem 2. (i) This follows immediately 
from (22) with αk = 1 and using (28) coupled with (33). (ii) We first replace gk =
−Hkpk+(Hkpk + gk) in (25). As in the proof Theorem 2-(ii), from (31), we get ‖gk+1‖ ≤
LH ‖pk‖1+β

/(1 + β) +
√

(1 + θ)/2 ‖gk‖, which using (33) gives the result. �
Remark 6. Here, as in Remark 3, one can obtain local linear convergence rate that is 
problem-independent. For example, from Theorem 4-(ii), it follows that if 

√
(1 + θ)/2 <

c < 1 and the gradient is small enough, we get ‖gk+1‖ ≤ c ‖gk‖; see [58, Section 6] for a 
similar statement in the context of more general nonlinear equations. This implies that 
local convergence in the norm of the gradient is very fast even with a very crude solution 
of the sub-problem. We also note that if ν(x0) = β = 1, and θk ∈ O(‖gk‖2) − 1, then 
Theorem 4-(ii) implies a quadratic convergence rate.

Finally, we can obtain iteration complexity to find a solution satisfying ‖g(x)‖ ≤ ε

for a desired ε > 0.

Corollary 1 (Iteration complexity of Algorithm 2). Under the same assumptions as in 
Theorem 3, consider finding an iterate for which ‖gk‖ ≤ ε for a desired ε > 0. Then, we 
have the following two cases:

(i) With β ≥ 1 in Assumption 2 then k ∈ O (log(1/ε)).
(ii) With 0 < β < 1 in Assumption 2, then k ∈ O

(
ε(β−1)/β log(1/ε)

)
.

Proof. Recall that we always have ‖gk‖ ≤
∥∥g(k−1)

∥∥ ≤ . . . ≤ ‖g0‖. Dropping the depen-
dence of τ̂(x0) on x0, we have the following.

(i) For β ≥ 1, from (32), we have ‖gk‖2 ≤
(
1 − 2ρτ̂ ‖g0‖(1−β)/β

)k
‖g0‖2, which, in 

order to obtain ‖gk‖2 ≤ ε, implies that we must have

k ≥ log (ε/ ‖g0‖) / log
(
1 − 2ρτ̂ ‖g0‖(1−β)/β

)
.

Now, noting that − log(1 − 1/x) ∈ O(1/x), we obtain the result.
(ii) For β < 1, as long as ‖gk‖2 ≥ ε, from (32), we have

‖gk‖2 ≤
(
1 − 2ρτ̂ ‖gk‖(1−β)/β

)k
‖g0‖2 ≤

(
1 − 2ρτ̂ε(1−β)/β

)k
‖g0‖2

.

Now, we obtain the result as above. �
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Corollary 1 implies that (inexact) Newton-MR is guaranteed to converge for func-
tions, which traditionally have not been considered suitable candidates for Newton-type 
methods. For example, Algorithm 2 can still be applied for optimization of a twice contin-
uously differentiable objective for which we have β � 1 in Assumption 2. Such functions 
can be extremely non-smooth, and as a consequence, they have been labeled, rather 
inaccurately, as cases where the application of curvature might be useless, e.g., [4,5].

3.2.3. Convergence under generalized Polyak-Łojasiewicz inequality
The set of global optima of an invex function, f(x), is characterized by the zeros of 

the gradient, g(x). If, in addition, the distance to the optimal set, in terms of iterates 
and/or their respective function values, is also somehow related to g(x), then one can 
obtain rates at which the iterates and/or their objective values approach optimality. In 
this section, we consider an important sub-class of invex problems, which allows us to 
do that.

Definition 2 (Generalized Polyak-Łojasiewicz inequality). Let X ⊆ Rd be an open set. 
A differentiable function f on X is said to satisfy the generalized Polyak-Łojasiewicz 
(GPL) inequality on X if there exist 1 < η < ∞ and 0 < μ < ∞ such that

f(x) − inf
x∈X

f(x) ≤
(

1
μ
‖g(x)‖η

)1/(η−1)

, ∀x ∈ X . (34)

The class of functions satisfying (38) is denoted by FGPL
η,μ .

It is clear that FGPL
η,μ ⊂ F (cf. Definition 1). Most often in the literature, Polyak-

Łojasiewicz (PL) inequality is referred to as (34) with η = 2, e.g., [57], which excludes 
many functions. The generalized notion of Polyak-Łojasiewicz in (34) with any 1 <
η < ∞ encompasses many of such functions. For example, the weakly convex function 
f(x) = x4 clearly violates the typical PL (i.e., with η = 2), but it indeed satisfies (34)
with η = 4 and μ = 256. In fact, any polynomial function of the form f(x) =

∑p
i=1 aix

2i

with ai ≥ 0, i = 1, . . . , p satisfies (34).
But “how large is the class FGPL

η,μ in Definition 2”? We aim to shed light on this ques-
tion by considering other classes of functions that are, in some sense, equivalent to FGPL

η,μ . 
In doing so, we draw similarities from various relaxations of strong convexity. More 
specifically, to alleviate the restrictions imposed by making strong convexity assump-
tions, several authors have introduced relaxations under which desirable convergence 
guarantees of various algorithms are maintained; e.g., the quadratic growth condition [3], 
the restricted secant inequality [89], and the error bounds [65]. The relationships among 
these classes of functions have also been established; see [57,72,83,98,99]. We now give 
natural extensions of these conditions to invex functions and show that FGPL

η,μ is an 
equivalent class of functions.
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Let us define the set of optimal points of the problem (1) as

X � �
{
x� ∈ Rd | f(x�) ≤ f(x), ∀x ∈ Rd

}
. (35)

Further, assume that X � is non-empty, and denote the optimal value of (1) by f�. Recall 
that when f is invex, X � need not be a convex set, but it is clearly closed; see [69, p. 
14].

Definition 3 (Generalized functional growth property). A differentiable function f is said 
to satisfy the generalized functional growth (GFG) property if there exist 1 < η < ∞, 
0 < μ < ∞ and a vector-valued function φ : Rd ×Rd → Rd, such that

f(x) − f� ≥ μ min
y∈X�

‖φ(y,x)‖η , ∀x ∈ Rd. (36)

The class of functions satisfying (36) with the same φ is denoted by FGFG
φ,η,μ.

Definition 4 (Generalized restricted secant inequality). For a vector-valued function 
φ : Rd × Rd → Rd define Y�

φ(x) � {y� ∈ X � | ‖φ(y�,x)‖ ≤ ‖φ(y,x)‖ , ∀y ∈ X �}. A 
differentiable function f is said to satisfy the generalized restricted secant (GRS) in-
equality if there exist 1 < η < ∞, 0 < μ < ∞ and a mapping φ : Rd × Rd → Rd, such 
that

min
y∈Y�

φ(x)
〈−g(x),φ(y,x)〉 ≥ μ min

y∈X�
‖φ(y,x)‖η , ∀x ∈ Rd. (37)

The class of functions satisfying (37) with the same φ is denoted by FGRS
φ,η,μ.

It is easy to see that when f is convex and φ(y, x) = y−x, we have Y�
φ(x) = {[x]X�}, 

where [x]X� � arg miny∈X� ‖y − x‖ is the unique orthogonal projection of x onto the set 
of optimal solutions X � (which, in this case, is convex). Hence, the generalized condition
(37) coincides with, and hence is a generalization of, the usual definition of restricted 
secant inequality for convex functions with η = 2; see [57,83,98,99].

Definition 5 (Generalized error bound property). A differentiable function f is said to 
satisfy the generalized error bound (GEB) property if there exist 1 < η < ∞, 0 < μ < ∞
and a vector-valued function φ : Rd ×Rd → Rd, such that

‖g(x)‖ ≥ μ min
y∈X�

‖φ(y,x)‖η−1
, ∀x ∈ Rd. (38)

The class of functions satisfying (38) with the same φ is denoted by FGEB
φ,η,μ.

Lemma 6 establishes a loose notion of equivalence among the classes of functions 
mentioned above, as they relate to invexity. However, when restricted to a particular class 
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of invex functions for a given φ, Lemma 6 shows that FGPL
η,μ ∩Fφ can indeed be larger. In 

contrast, for when φ(y, x) = y−x, equivalence between these classes has been established 
in [57]. This is in particular so since, unlike [57], here we have made no assumptions on 
the smoothness of f such as Lipschitz-continuity of its gradient. This is a rather crucial 
distinction as for our main results in this paper, we make smoothness assumptions that 
are less strict that those typically found in the literature; see Assumption 2 in Section 3.1.

Lemma 6.

(i) For any φ, we have

FGFG
φ,η,μ ∩ Fφ ⊆ FGRS

φ,η,μ ∩ Fφ ⊆ FGEB
φ,η,μ ∩ Fφ ⊆ FGPL

η,μ ∩ Fφ.

(ii) There exists a φ̂, for which

FGPL
η,μ ≡ FGPL

η,μ ∩ Fφ̂ ⊆ FGFG
φ̂,η,μ

∩ Fφ̂.

(iii) These classes are equivalent in the sense that

⋃
φ

{
FGFG

φ,η,μ ∩ Fφ

}
≡
⋃
φ

{
FGRS

φ,η,μ ∩ Fφ

}
≡
⋃
φ

{
FGEB

φ,η,μ ∩ Fφ

}
≡ FGPL

η,μ .

Proof. (i) We start by showing that, for any f ∈ Fφ, (36) implies (37). Consider any 
x ∈ Rd and y� ∈ Y�

φ(x). By (36) and invexity as well as noticing that Y�
φ(x) ⊆ X � ⇒

f(y�) = f�, we have μ miny∈X� ‖φ(y,x)‖η ≤ f(x) − f(y�) ≤ − 〈φ(y�,x),g(x)〉. 
Since the last inequality holds for all y� ∈ Y�

φ(x), we can minimize the right-hand 
side over all Y�

φ(x) to get

μ min
y∈X�

‖φ(y,x)‖η ≤ min
y∈Y�

φ(x)
〈−φ(y,x),g(x)〉 ,

which is exactly (37). A simple application of Cauchy-Schwarz inequality on
(37) and noting that miny∈Y�

φ(x) ‖φ(y,x)‖ = miny∈X� ‖φ(y,x)‖, it follows that 
μ miny∈X� ‖φ(y,x)‖η ≤ miny∈X� ‖φ(y,x)‖ ‖g(x)‖. If x is such that
miny∈X� ‖φ(y,x)‖ = 0, then the inequality (38) trivially holds, otherwise divid-
ing both sides by miny∈X� ‖φ(y,x)‖ gives (38).

To get (34) from (38), note that by invexity, for any y ∈ X �, we have f(x) −f� ≤
‖φ(y,x)‖ ‖g(x)‖, hence f(x) − f� ≤ miny∈X� ‖φ(y,x)‖ ‖g(x)‖, which using (38)
gives (34).

(ii) We will show that (34) implies that there exists a φ̂ for which (36) holds. Indeed, 
for any invex function f , we can always define a corresponding φ̂ as
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φ̂(y,x) =

⎧⎪⎨⎪⎩
0, g(x) = 0(
(f(y) − f(x))/‖g(x)‖2

)
g(x), g(x) 
= 0

.

Now suppose f ∈ FGPL
η,μ . For any x ∈ X �, the inequality (36) trivially holds. Suppose 

x /∈ X �, which implies g(x) 
= 0. For any y ∈ X �, we have

∥∥∥φ̂(y,x)
∥∥∥η = |f(y) − f(x)|η

‖g(x)‖η = (f(x) − f�)η

‖g(x)‖η ≤ 1
μ

(f(x) − f�) ,

where the last inequality follows since by (34), we have (f(x) − f�)(1−η) ≥
μ/‖g(x)‖η, ∀x ∈ X .

(iii) This isThe is a simple implication of the first two parts. �
If f ∈ FGPL

η,μ , where FGPL
η,μ is the class of Generalized Polyak-Łojasiewicz (GPL) func-

tions as defined in Definition 2, we immediately have the following convergence guarantee 
of Algorithm 2 in terms of objective value f(xk). Similar results for Algorithm 1 can also 
easily be obtained.

Theorem 5 (Convergence of Algorithm 2 under GPL inequality (34)). Under the same 
assumptions as in Theorem 3, if f(x) satisfies GPL inequality (34), there are constants 
0 < C < ∞, 0 < ζ < 1 and ω > 0, such that for the iterates of Algorithm 2 we have the 
following.

(i) With β ≥ 1 in Assumption 2, we get R-linear convergence as

f(xk) − inf
x∈Rd

f(x) ≤ Cζk,

where C = C(x0, η, μ), and 0 < ζ = ζ(x0, β, η, ρ, ̂τ(x0)) < 1.
(ii) With 0 < β < 1 in Assumption 2, we get R-sublinear convergence as

f(xk) − inf
x∈Rd

f(x) ≤ C

(
1

k + 1

)ω

,

where C = C(x0, η, μ, ρ, β, ̂τ(x0)), and ω = ω(η, β) > 0.

Here, ρ is the line-search parameter of Algorithm 2, η and μ are as in Definition 2, and 
τ̂(x0) is as in Theorem 3.

Proof. (i) For notational simplicity, we drop the dependence of τ̂(x0) on x0. Consider 
β ≥ 1. From (32) and (34), we have

f(xk) − inf
d
f(x) ≤ 1

1/(η−1)

(
‖gk‖2

)η/(2(η−1))
x∈R μ
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≤ 1
μ1/(η−1)

((
1 − 2ρτ̂ ‖g0‖(1−β)/β

)k
‖g0‖2

)η/(2(η−1))

= ‖g0‖η/(η−1)

μ1/(η−1)︸ ︷︷ ︸
C

⎛⎜⎜⎝(1 − 2ρτ̂ ‖g0‖(1−β)/β
)η/(2(η−1))

︸ ︷︷ ︸
ζ

⎞⎟⎟⎠
k

,

where τ̂ is as in Theorem 3, and by (23) we also have that 0 < ζ < 1.
(ii) Now take 0 < β < 1. From (32), we have

‖gk+1‖2 ≤
(
1 − 2ρτ̂ ‖gk‖(1−β)/β

)
‖gk‖2 = ‖gk‖2 − 2ρτ̂ ‖gk‖(1+β)/β

,

which, implies ‖gk+1‖2 ≤ ‖g0‖2 − 2ρτ̂
∑k

j=0
∥∥gj
∥∥(1+β)/β . Rearranging the last in-

equality gives 2ρτ̂
∑k

j=0
∥∥gj
∥∥(1+β)/β ≤ ‖g0‖2 − ‖gk+1‖2 ≤ ‖g0‖2. From (8), we get 

(k + 1)2ρτ̂
∥∥gk
∥∥(1+β)/β ≤ ‖g0‖2, which gives

∥∥gk
∥∥ ≤ ((2ρτ̂)−1 ‖g0‖2

)β/(1+β)
(

1
k + 1

)β/(1+β)

.

Using (34), we get

f(xk) − inf
x∈Rd

f(x)

≤ 1
μ1/(η−1) ‖gk‖η/((η−1))

≤ 1
μ1/(η−1)

((
(2ρτ̂)−1 ‖g0‖2

)β/(1+β)
(

1
k + 1

)β/(1+β)
)η/((η−1))

= 1
μ1/(η−1)

(
(2ρτ̂)−1 ‖g0‖2

) βη
(η−1)(1+β)

︸ ︷︷ ︸
C

(
1

k + 1

)
ω︷ ︸︸ ︷
βη

(η − 1)(1 + β)
. �

The following Lemma shows that, under some assumptions, the norm of the gradient 
at each point can be estimated using the distance of the point to the optimality set X �.

Lemma 7. Under Assumptions 2 to 4, for any x0 ∈ Rd, there exists a constant 0 ≤
Lg(x0) < ∞, such that

‖g(x)‖ ≤ Lg(x0) min
x�∈X�

‖x − x�‖ , ∀x ∈ X0, (39)

where X � is as in (35).
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Proof. By Assumption 2, since X � ⊆ X0, we have ‖H(x)g(x)‖ = ‖H(x)g(x) −
H(x�)g(x�)‖ ≤ L(x0) ‖x − x�‖, ∀(x�, x) ∈ X �×Rd. Since the left-hand side of the above 
inequality is independent of x0, we get ‖H(x)g(x)‖ ≤ L ‖x − x�‖ , ∀(x�, x) ∈ X � ×Rd, 
where L � infx0∈Rd L(x0). Now, from Assumptions 3 and 4, it follows that for any 
(x, x�) ∈ X0 ×X �, we have

‖g(x)‖ ≤ 1
ν(x0)

∥∥∥[H(x)]† H(x)g(x)
∥∥∥ ≤ 1

ν(x0)γ(x0)
‖H(x)g(x)‖ ≤ L

ν(x0)γ(x0)
‖x − x�‖ .

The result follows by taking the minimum of the right-hand side over X �. �
Using Lemma 7, from Theorem 4-(ii), with any x� ∈ X �, we get

‖gk+1‖ ≤ LH [Lg(x0)]1+β

(1 + β)[γ(x0)]1+β
‖xk − x�‖1+β +

√
1 + θ

2 Lg(x0) ‖xk − x�‖ ,

where γ(x0), ν(x0), LH, θ, and Lg(x0) are the constants defined, respectively in (14),
(16), (24), (28) and (39). Now, suppose we have (38) with φ(y, x) = y−x (perhaps only 
locally). It follows that

min
x�∈X�

‖xk+1 − x�‖η−1 ≤ LH [Lg(x0)]1+β

(1 + β)[γ(x0)]1+βμ
‖xk − x�‖1+β

+
√

(1 + θ)/2Lg(x0)
μ

‖xk − x�‖ .

We can also obtain a similar inequality using Theorem 4-(i). We can gather the above 
in the following corollary.

Theorem 6. Consider Assumptions 1, 3 and 4. Suppose that we have (38) with φ(y, x) =
y−x. For the iterates of Algorithm 2 using update directions from (29) and with αk = 1, 
we have

min
x�∈X�

‖xk+1 − x�‖c0(η−1) ≤ c1 min
x�∈X�

‖xk − x�‖1+β + c2 min
x�∈X�

‖xk − x�‖c0 ,

where

(i) if Assumption 2 holds, then

c0 = 2, c1 = 2L(x0) [Lg(x0)]1+β

(1 + β)[γ(x0)]1+βμ2 , c2 =
θL2

g(x0)
μ2 ,

(ii) and if Assumption 5 holds and H(x) is continuous, then

c0 = 1, c1 = LH [Lg(x0)]1+β

1+β
, c2 =

Lg(x0)
√

(1 + θ)/2
.
(1 + β)[γ(x0)] μ μ
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Here, L(x0), γ(x0), LH and θ are defined, respectively, in Assumptions 2, 3 and 5 and 
Condition 1, X � is as in (35), Lg(x0) is as in Lemma 7, μ and η are as in Definition 5, 
and β refers to the respective constants of Assumptions 2 and 5.

Remark 7. Assuming (38) with φ(y, x) = y − x (locally), is weaker than requiring to 
have isolated (local) minimum. For example, suppose we have ν(x0) = 1 and η = 2. By 

setting θk ∈ O
(
minx�∈X� ‖xk − x�‖2β

)
− 1, from Theorem 6-(ii), we get super-linear 

convergence to the set of optimal solutions, X �. In fact, the rate is quadratic for β = 1
as a special case, which matches those from many prior works, e.g., [35,62,101]. Clearly, 
convergence in terms of minx�∈X� ‖xk − x�‖ relaxes the notion of isolated minimum, 
which is at times used for the local convergence analysis of Newton-CG. Hence, error 
bound conditions similar to that used in Theorem 6 have been extensively used in similar 
literature to establish convergence to non-isolated (local) minima [44,45,62,63,95,101,
102].

4. Numerical experiments

In this section, we evaluate the empirical performance of inexact Newton-MR (Algo-
rithm 2) as compared with several other Newton-type optimization methods on some 
machine learning problems. Empirical comparisons to a variety of first-order methods 
are left for future work.

Optimization methods In the following performance evaluations, we compare Newton-
MR with some widely used optimization methods as listed below; see [76] for the details 
of each of these algorithms.

- Newton-CG with Armijo line-search.
- L-BFGS using strong Wolfe conditions.
- Nonlinear-CG using strong Wolfe conditions. In all of experiments, among the many 

variants of nonlinear-CG, FR-PR variant [76, Chapter 5] performed better on almost 
all instances.

- Gauss-Newton with Armijo line-search.
- Trust-region with CG-Steihaug sub-problem solver as described in [32, Algorithms 

6.1.1] and [76, Algorithm 7.2].

The main hyper-parameters for these methods, used in our simulations, can be found 
in Table 1. In all of our experiments, we run each method until the norm of the gradient 
falls below 1E-10, maximum number of iterations are reached, or the algorithm fails 
to make progress. The latter case is detected when Newton-CG encounters a negative 
curvature and its CG inner iterations are terminated, or when, for any method, the 
maximum number of corresponding line-search has been reached and no step-size has 
been accepted. These scenarios are depicted by a cross “×” on all the plots.



F. Roosta et al. / EURO Journal on Computational Optimization 10 (2022) 100035 31
Table 1
Hyper-parameters used in optimization methods. The initial trial step-size for all methods, with the excep-
tion of nonlinear-CG is set to α = 1. For nonlinear-CG, we use the strategy described in [76, Section 3.5]. 
The initial trust-region size is also set to one.

CG/MINRES-
QLP/Steihaug 
inexactness 
tolerance

History size 
of L-BFGS

Armijo 
line-search 
parameter

Wolfe curvature 
condition 
parameter

Maximum 
line-search 
iterations

Trust-region 
parameters

0.01 20 10−4 0.9 (L-BFGS)
0.1 (Nonlinear-CG)

1,000 [32, (6.1.6)]

Table 2
Complexity measure per iteration for each of the algorithms. Ns and Nl denote, respectively, the total 
number of iterations for the corresponding inner solver and that resulting from performing the line search 
or the trust-region radius update.

Newton-MR L-BFGS Newton-CG Nonlinear-CG Gauss-Newton TR CG-Steihaug
2+2 × Ns+2×Nl 2+2×Nl 2+2×Ns+Nl 2+2×Nl 2+2×Ns+Nl 2+(2×Ns+1)×Nl

Remark 8. Although Newton-CG is not meant to be used on problems where Hessian 
can become singular or indefinite, we run plain Newton-CG on our examples without 
any modifications, e.g., we do not attempt to employ the encountered negative curvature 
as in [82,96]. As a result, we terminate its iterations if CG fails. This is a judicious choice 
to highlight a significant difference between Newton-MR and Newton-CG. Specifically, 
this serves to distinguish between cases where the trajectory of Newton-CG remains in 
regions that are locally strongly-convex and those where it enters areas with high degree 
of weak-convexity or non-convexity. For example, in Section 4.2, more often than not, 
Newton-CG fails at the very outset with x0, whereas Newton-MR makes continuous 
progress.

Performance evaluation measure In all of our experiments, we plot the objective value 
vs. the total number of oracle calls of function, gradient and Hessian-vector product. This 
is so since measuring “wall-clock” time can be greatly affected by individual implementa-
tion details. In contrast, counting the number of oracle calls, as an implementation and 
system independent unit of complexity, is most appropriate and fair. More specifically, 
after computing each function value, computing the corresponding gradient is equiva-
lent to one additional function evaluation. Our implementations are Hessian-free, i.e., we 
merely require Hessian-vector products instead of using the explicit Hessian. For this, 
each Hessian-vector product amounts to two additional function evaluations, as com-
pared with gradient evaluation. The number of such oracle calls per iteration for all the 
algorithms is given in Table 2.
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Table 3
Data sets used for example of Section 4.1. All data sets are publicly available from [27,38].

Name n p C d = (C − 1) × p Convexity of (40)
20 Newsgroups 10,142 53,975 20 1,025,525 Weak

cifar10 50,000 3,072 10 27,648 Strict

covetype, 435,759 54 7 324 Strict

gisette 6,000 5,000 2 5,000 Strict

mnist 60,000 784 10 7,065 Strict

UJIIndoorLoc 19,937 520 5 2,080 Strict

4.1. Softmax regression

Here, we consider the softmax cross-entropy minimization problem without regular-
ization, which is used in machine learning for multi-class classification applications. More 
specifically, we have

f(x) � L(x1,x2, . . . ,xC−1) =
n∑

i=1

(
log
(

1 +
C−1∑
c′=1

e〈ai,xc′ 〉

)
−

C−1∑
c=1

1(bi = c) 〈ai,xc〉
)
,

(40)

where {ai, bi}ni=1 with ai ∈ Rp, bi ∈ {0, 1, . . . , C} denote the training data, C is the 
total number of classes for each input data ai and x = (x1, x2, . . . , xC−1). Note that, 
in this case, we have d = (C − 1) × p. It can be shown that, depending on the data,
(40) is either strictly convex or merely weakly convex. In either case, however, by a 
similar analysis as that in Example 4, one can show that ν(x) = 1. Hence, it follows 
that g(xk) ∈ Range (H(xk)) and CG iterations within Newton-CG are well-defined. The 
datasets use for our experiments in this section are listed in Table 3 and the performance 
of each method is depicted in Fig. 1.

4.2. Gaussian mixture model

Here, we consider an example involving a mixture of Gaussian densities where the 
goal is to recover some mixture parameters such as the mean vectors and the mixture 
weights. Although, this problem is generally not invex, it has been shown in [67] that it 
indeed exhibits features that are close to being invex, e.g., small regions of saddle points 
and large regions containing global minimum. Nonetheless, the non-convexity of this 
problem results in a Hessian matrix that can become indefinite and/or singular across 
iterations.
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Fig. 1. Objective value, f(x) vs. number of oracle calls as in Table 2 for datasets of Table 3 on the model 
problem (40). As for this convex problem, Gauss-Newton is mathematically equivalent to Newton-CG, 
it is naturally excluded from comparisons. All algorithms are always initialized at x0 = 0. As it can 
be clearly seen, Newton-MR almost always performs very competitively, and in particular, it greatly 
outperforms Newton-CG.

For simplicity, we consider a mixture model with two Gaussian components as

f(x) � L(x0,x1,x2) = −
n∑

i=1
log
(
ω(x0)Φ (ai;x1,Σ1) + (1 − ω(x0))Φ (ai;x2,Σ2)

)
,

(41)

where Φ denotes the density of the p-dimensional standard normal distribution, ai ∈ Rp

are the data points, x1 ∈ Rd, x2 ∈ Rp, Σ1 ∈ Rp×p, and Σ2 ∈ Rp×p are the corresponding 
mean vectors and the covariance matrices of two the Gaussian distributions, x0 ∈ R, and 
ω(t) = 1/(1 + e−t) to ensure that the mixing weight lies within [0, 1]. Note that, here, 
x � [x0, xᵀ

1 , x
ᵀ
2 ]ᵀ ∈ R2p+1 and d = 2p + 1.

We run the experiments 500 times, and plot the performance profile [39,51] of each 
method; see Fig. 2. For each run, we generate 1, 000 random data points, generated 
from the mixture distribution (41) with p = 100, and ground truth parameters as 
x�

0 ∼ U1[0, 1], x�
1 ∼ Up[−1, 1], and x�

2 ∼ Up[3, 4], where Up[a, b] denotes the distribution 
of a p-dimensional random vector whose independent components are drawn uniformly 
over the interval [a, b]. Covariance matrices are constructed randomly, at each run, with 
controlled condition number, such that they are not axis-aligned. For this, we first ran-
domly generate two p × p matrices, W1, W2, whose elements are iid drawn standard 
normal distribution. We then find corresponding orthogonal basis, Q1, Q2, using QR 
factorizations. This is then followed by forming Σ−1

i = Qᵀ
i DQi where D is a diagonal 
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Fig. 2. Performance profile for 500 runs of various methods for solving (41) as detailed in Section 4.2. 
For a given λ in the x-axis, the corresponding value on the y-axis is the proportion of times that a given 
solver’s performance lies within a factor λ of the best possible performance over all runs. All algorithms 
are always initialized at random using a multivariate normal distribution with mean zero and identity 
covariance. As it can be seen, Newton-MR, greatly outperforms alternative second-order methods in this 
example.

matrix whose diagonal entries are chosen equidistantly from the interval [0, 100], i.e., the 
condition number of each Σi is 100.

The performance profiles of all the methods are gathered in Fig. 2. As it can be 
seen, Newton-MR greatly outperforms all alternative second-order methods in this ex-
ample. The trust-region method also shows a reasonable performance. The L-BFGS and 
Nonlinear-CG methods both have comparable performances. It is worthwhile to high-
light that Newton-CG fails to converge in many of the runs. This is because, for this 
non-convex problem, the Hessian matrix can become indefinite and, as a result, the CG 
iterations can fail before the underlying inexactness condition is met. Furthermore, the 
Gauss-Newton method performed extremely poorly, which can be an indication that the 
underlying Gauss-Newton matrix is perhaps a low quality approximation to the true 
Hessian in such a model.

4.3. Nonlinear least-squares

The examples of Sections 4.1 and 4.2 show that, when the problem is (approximately) 
invex, the inexact Newton-MR method, depicted in Algorithm 2, can be a highly effective 
optimization algorithm. We now study a potential drawback of using the plain Newton-
MR method for the optimization of the objectives that are highly non-invex. We set 
out to show that for such functions, Algorithms 1 and 2, by virtue of the monotonic 
reduction of the gradient norm, run the risk of converging to undesirable saddle points 
or local maxima. For this, following [93], we consider the simple, yet illustrative, non-
linear least squares problems arising from the task of binary classification with squared 
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loss.2 More specifically, given the data {ai, bi}ni=1 with ai ∈ Rd, bi ∈ {0, 1}, we consider 
the regularized objective

f(x) =
n∑

i=1
(bi − φ(〈ai,x〉))2 + ψ(x), (42)

where φ(z) = 1/(1 + e−z) is the sigmoid function and ψ(x) is some regularization term. 
To make the objective highly non-invex, we add a non-convex regularization in the form 
of ψ(x) =

∑d
i=1 x

2
i /(1 + x2

i ), where xi is the ith component of the vector x.
We compare the performance of the inexact variant of Newton-MR, Algorithm 2, the 

Gauss-Newton method, as well as the trust-region algorithm with CG-Steihaug solver. 
The Gauss-Newton method has traditionally been a method of choice for non-linear 
least-squares problems (of course without a non-convex regularization). The trust-region 
algorithm can take advantage of the negative curvature directions that arise as part of the 
Steihaug-CG iterations, and it is an effective method for most-non-convex problems. The 
approximate Hessian for the Gauss-Newton method is taken as Jᵀ

r (x) · Jr(x) +∇2ψ(x), 
where Jr(x) ∈ Rn×d is the Jacobian of the sigmoid mapping within the squared loss. 
Since this matrix is not necessarily positive semi-definite (due to non-convexity of ψ(x)), 
the CG inner iterations might fail for this problem in which case we terminate the Gauss-
Newton method. We initialize the algorithms using x0 = 0, x0 = 1, and one drawn from 
the multivariate normal distribution with mean zero and identity covariance. We evaluate 
the performance of the methods on three datasets from Table 3, namely 20 Newsgroups,
mnist and UJIIndoorLoc. For our binary classification setting, we have relabeled the 
odd and even classes, respectively, as 0 and 1. The results are depicted in Fig. 3.

It is clear that, when the optimization landscape is somewhat less rugged near the 
initialization, e.g., the origin on most of the datasets, Newton-MR (as well as Gauss-
Newton) can perform reasonably well. However, near more “hostile” regions with a high 
degree of non-convexity, Newton-MR fails to find a good solution and can converge 
to saddle points or local maxima. In such highly non-convex regions, the matrix used 
within the Gauss-Newton iterations can also become indefinite, leading to the underlying 
CG iterations to fail in which case the Gauss-Newton method is terminated (indicated 
by “×”). In contrast, by leveraging the negative curvature directions, the trust-region 
method can reliably converge to a local minima.

Experiments such as those depicted in Fig. 3 highlight the need for further refinement 
of the vanilla Newton-MR method studied in this paper to design more general purpose 
variants, that just like trust-region, can leverage the negative curvature directions that 
could arise as part of the inner solver. This way, one can extend Algorithms 1 and 2
far beyond invex problems for arbitrary non-convex objectives. We leave this important 
venture to future work.

2 Logistic loss, the “standard” loss used in this task, leads to a convex objective. We use squared loss to 
obtain a nonconvex objective.
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Fig. 3. Comparison of the Newton-MR, Gauss-Newton, and trust-region algorithms for a highly non-invex 
optimization problem, namely the problem (42) on three datasets from Table 3. We consider three initializa-
tion strategies: x0 = 0, x0 = 1, and one that is randomly drawn from the multivariate normal distribution 
with mean zero and identity covariance. Since this problem is highly non-invex, with unfortunate initializa-
tion, Newton-MR can converge to saddle points or even local maxima, whereas the trust-region algorithm, 
by leveraging the negative curvature direction arising as part of the CG-Steihaug iterations, can navigate 
its way out of these undesirable regions. The mark “×” indicates the Gauss-Newton iteration where the 
CG method fails due to the indefiniteness of the underlying approximate Hessian matrix.

5. Conclusions

Motivated to extend the simplicity of the iterations of Newton-CG to beyond strongly 
convex problems, we consider an alternative algorithm, called Newton-MR, which can 
be readily used for unconstrained optimization of invex objectives. The iterations of 
Newton-MR merely involve ordinary least-squares problems, which are (approximately) 
solved by minimum residual iterative methods, followed by Armijo-type line-search to 
determine the step-size. We show that under mild assumptions and weak inexactness 
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conditions for sub-problems, we can obtain a variety of local/global convergence results 
for Newton-MR.
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Appendix A. More on Assumption 4

This section contains some more examples and insights relating to Assumption 4.

A.1. Assumption 4 with ν < 1

Example 4 gives a function that satisfies Assumption 4 with ν = 1. We now provide 
a non-trivial example of a function that satisfies Assumption 4 with ν < 1. Consider the 
fractional programming problem of the form

min
(x1,x2)∈X

f(x1, x2) = ax2
1

b− x2
,

where X =
{
(x1, x2) | x1 ∈ R, x2 ∈ (−∞, b) ∪ (b, ∞)

}
. The Hessian matrix and the 

gradient of f can, respectively, be written as

g(x) =

⎛⎝ −2ax1
x2−b

ax2
1

(x2−b)2

⎞⎠ , H(x) =

⎛⎝ −2a
x2−b

2ax1
(x2−b)2

2ax1
(x2−b)2

−2ax2
1

(x2−b)3

⎞⎠ .

Hence, for a given x, the range and the null-space of H(x) are, respectively, given by

ux =
(

−1
x1

x2−b

)
, u⊥

x =
( x1

x2−b

1

)
.

Now, we get
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|〈ux,g(x)〉| =
∣∣∣∣ 2ax1

x2 − b
+ ax3

1
(x2 − b)3

∣∣∣∣ , ∣∣〈u⊥
x ,g(x)

〉∣∣ = ax2
1

(x2 − b)2 ,

and

| 〈ux,g(x)〉 |
| 〈u⊥

x ,g(x)〉 | =
∣∣∣∣2(x2 − b)

x1
+ x1

(x2 − b)

∣∣∣∣ ≥ 2
√

2, ∀x ∈ X ,

where the lower bound is obtained by considering the minimum of the function h(y) =
2/y + y for y = x1/(x2 − b). Hence, it follows that ν = 8/9. Clearly, f is unbounded 
below and, admittedly, this example is of little interest in optimization. Nonetheless, it 
serves as a non-trivial example of functions that satisfy Assumption 4.

A.2. Composition of functions and Assumption 4

We now consider Assumption 4 in the context of the composition of functions. More 
specifically, consider

f(x) = h(r(x)), (43)

where r : Rd → Rp and h : Rp → R are smooth functions. We have

g(x) � ∇f(x) = Jᵀ
r (x) · ∇h(r(x)),

H(x) � ∇2f(x) = Jᵀ
r (x) · ∇2h(r(x)) · Jr(x) + ∂Jr(x) · ∇h(r(x)),

where Jr(x) ∈ Rp×d and ∂Jr(x) ∈ Rd×d×p are, respectively, the Jacobian and the tensor 
of all second-order partial derivatives of r, and ∇h(r(x)) ∈ Rp, and ∇2h(r(x)) ∈ Rp×p

are the gradient and Hessian of h, respectively. Lemma 8 gives a sufficient condition for 
f to satisfy Assumption 4.

Lemma 8. Suppose Assumption 3 holds, ∇2h(r(x)) is full rank, and also rank(H(x)) ≥
rank(Jr(x)). If for any x0 ∈ Rd, there is some ν(x0) ∈ (0, 1], such that

‖∂Jr(x) · ∇h(r(x))‖ ≤ γ(x0)
√

1 − ν(x0)
2 , ∀x ∈ X0, (44)

then Assumption 4 holds with ν(x0). Here, γ(x0) is as in Assumption 3.

Proof. Let x0 ∈ Rd be given and take any x ∈ X0. Define B � A + E where

B = H(x), A = Jᵀ
r (x) · ∇2h(r(x)) · Jr(x), and E = ∂Jr(x) · ∇h(r(x)).

Let UA and UB be, respectively, arbitrary orthogonal bases for Range(A) and Range(B)
and denote U⊥

A and U⊥
B as their respective orthogonal complement.
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By assumption, we have rA = rank(A) ≤ rank(B) = rB. Let ÛA ∈ Rd×rB be UA
augmented by any rB − rA vectors from U⊥

A such that rank(ÛA) = rank(UB). By the 
matrix perturbation theory applied to B = A + E, [77, Theorem 19], we have

∥∥∥ÛAÛᵀ
A − UBUᵀ

B

∥∥∥ ≤ 2 ‖E‖
σrB(B) ≤ 2 ‖E‖

γ(x0)
≤
√

1 − ν(x0),

where σrB(B) is the smallest non-zero singular value of B. This, in turn, implies (see 
[50, Theorem 2.5.1])∥∥∥[U⊥

B
]ᵀ ÛA

∥∥∥2 =
∥∥∥ÛAÛᵀ

A − UBUᵀ
B

∥∥∥2
≤ 1 − ν(x0).

Now since ∇2h(r(x)) is full rank, then Range(A) = Range(Jᵀ
r (x)). Therefore g(x) =

UAUᵀ
Ag(x) and hence U⊥

A
[
U⊥

A
]ᵀ g(x) = 0, which implies g(x) = ÛAÛᵀ

Ag(x) and 

‖g(x)‖ =
∥∥∥Ûᵀ

Ag(x)
∥∥∥. Now we have

∥∥∥[U⊥
B
]ᵀ g(x)

∥∥∥2
=
∥∥∥[U⊥

B
]ᵀ ÛAÛᵀ

Ag(x)
∥∥∥2

≤
∥∥∥[U⊥

B
]ᵀ ÛA

∥∥∥2 ∥∥∥Ûᵀ
Ag(x)

∥∥∥2

≤
(
1 − ν(x0)

)
‖g(x)‖2 =

(
1 − ν(x0)

)(
‖Uᵀ

Bg(x)‖2 +
∥∥∥[U⊥

B
]ᵀ g(x)

∥∥∥2
)
.

Rearranging the terms above, we obtain

∥∥∥[U⊥
B
]ᵀ g(x)

∥∥∥2
≤ 1 − ν(x0)

ν(x0)
‖Uᵀ

Bg(x)‖2
,

which completes the proof. �
The requirement for ∇2h(r(x)) being full rank is satisfied in many applications, e.g., 

nonlinear least squares where h(z) = ‖z‖2
/2, statistical parameter estimations using 

negative log-likelihood where h(z) = − log(z), or multi-class classifications using cross-
entropy loss where h(z) = − 

∑p
i=1 yi log(zi) for some 

∑p
i=1 yi = 1 and yi ≥ 0. The 

requirement for rank(H(x)) ≥ rank(Jr(x)), however, might not hold for many problems. 
Nonetheless, Lemma 8 can give a qualitative guide to understanding the connection 
between Newton-MR and Gauss-Newton, when both are applied to f(x) = h(r(x)).

Connection to Gauss-Newton Suppose f in (43) has isolated local minima, e.g., if Jr(x�)
is full-rank at a local minimum x�. Define S(x) � ∂Jr(x) · ∇h(r(x)). It is well-known 
that the convergence of Gauss-Newton is greatly affected by the magnitude of ‖S(x�)‖; 
see [87, Section 7.2]. Indeed, when ‖S(x�)‖ is large, Gauss-Newton can perform poorly, 
whereas small values of ‖S(x�)‖ imply Gauss-Newton matrix is a good approximation 
to the full Hessian. In fact, local quadratic convergence of Gauss-Newton can only be 
guaranteed when ‖S(x�)‖ = 0; otherwise, the convergence can degrade significantly. For 
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example, if ‖S(x�)‖ is too large, the Gauss-Newton method may not even converge, while 
if ‖S(x�)‖ is small enough relative to 

∥∥Jᵀ
r (x�) · ∇2h(r(x�)) · Jr(x�)

∥∥, the convergence is 
linear.

Lemma 8 allows us to, at least very qualitatively and superficially, compare the per-
formance of Gauss-Newton with Newton-MR for the minimization of (43). Roughly 
speaking, Lemma 8 relates ‖S(x�)‖ to ν, which directly affects the performance of 
Newton-MR, e.g., see Theorem 1 where larger values of ν imply faster convergence 
for Newton-MR. More specifically, suppose ‖S(x�)‖ is small. Assume that S(x�) is 
smooth enough such that ‖S(x)‖ is also small for any x in some compact neighbor-
hood of x�, denoted by C. Let x0 be the point in this compact neighborhood such that 
‖g(x)‖ ≤ ‖g(x0)‖ , ∀x ∈ C. With X0 defined by this x0, consider (44). Since the left 
hand side is assumed small, ν(x0) can be taken large, which directly implies a better 
convergence rate for Newton-MR.

In this light, we can expect Newton-MR to perform well whenever Gauss-Newton 
exhibits good behaviors. Our empirical evaluations of Section 4.2 indeed support this, 
while hinting at a possibility that the converse might not necessarily be true. Nonetheless, 
to make a fair and more accurate theoretical comparison, one needs to analyze the Gauss-
Newton method under the assumptions of this paper (for example by drawing upon the 
ideas in [42] related to the minimum-norm solution). This endeavor is left for future 
work.
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