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Simulating seismic wavefields using generative artificial intelligence

Abstract
Simulating realistic seismic wavefields is crucial for a range 

of seismic tasks, including acquisition designing, imaging, and 
inversion. Conventional numerical seismic wave simulators are 
computationally expensive for large 3D models, and discrepancies 
between simulated and observed waveforms arise from wave 
equation selection and input physical parameters such as the 
subsurface elastic models and the source parameters. To address 
these challenges, we adopt a data-driven artificial intelligence 
approach and propose a conditional generative modeling (CGM) 
framework for seismic wave simulation. The novel CGM frame-
work learns complex 3D wave physics and subsurface heteroge-
neities from the observed data without relying on explicit physics 
constraints. As a result, trained CGM-based models act as 
stochastic wave-propagation operators encoded with a local 
subsurface model and a local moment tensor solution defined by 
training data sets. Given these models, we can simulate multi-
component seismic data for arbitrary acquisition settings within 
the area of the observation, using source and receiver geometries 
and source parameters as input conditional variables. In this 
study, we develop four models within the CGM framework — 
CGM-GM-1D/3D, CGM-Wave, and CGM-FAS — and 
demonstrate their performance using two seismic data sets: a 
small low-density data set of natural earthquake waveforms from 
the San Francisco Bay Area, a region with high seismic risks, 
and a large high-density data set from induced seismicity records 
of the Geysers geothermal field. The CGM framework reproduces 
the waveforms, the spectra, and the kinematic features of the 
real observations, demonstrating the ability to generate waveforms 
for arbitrary source locations, receiver locations, and source 
parameters. We address key challenges, including data density, 
acquisition geometry, scaling, and generation variability, and we 
outline future directions for advancing the CGM framework in 
seismic applications and beyond.

Introduction
Predicting seismic wavefields is a fundamental challenge for 

a range of seismic tasks in energy exploration and production, 
including seismic wavefield modeling, data acquisition design, 
imaging and inversion of subsurface reservoirs, and regularization 
and interpolation of source and receiver geometries. Seismic 
wavefields d at a receiver (sensor) xr generated from a source xs 
can be written as

Rie Nakata1,2,3, Nori Nakata1,3,4, Pu Ren1, Zhengfa Bi1, Maxime Lacour5, Benjamin Erichson1,3, and Michael W. Mahoney1,3,5

d(t,xs,xr,m) = S(t,xs) * R(t,xr) * G(t,xs,xr,m),             (1)

where * indicates convolution; t denotes the time; S describes source 
parameters such as source wavelet and mechanisms; R denotes 
receiver characteristics, coupling, and near-surface static effects; G 
is the Green’s function; and m is the subsurface model.

One popular approach to obtain d is to simulate the wavefields 
by solving the wave equations numerically, using realistic velocity 
models m, source and receiver locations xs, xr, and source wavelet 
S as inputs (the term R can be applied postsimulation). This 
approach, which we refer to as non-machine-learning (non-ML) 
simulation, may be accurate, but it differs from ground truth 
observations. This is due to errors in our underlying physics 
assumptions that determine G (e.g., using acoustic wave equations 
is the most common approach, but anisotropic viscoelastic behavior 
is more accurate for the solid earth), the simulation’s numerical 
discretization (e.g., from finite difference methods), and our 
representation of the subsurface m along estimates in source (e.g., 
wavelet estimates/assumption) and receiver (e.g., perfect coupling 
assumption, or no static effects) parameters of S and R. Additionally, 
even when physically reasonable, the computational cost of the 
large 3D simulation can be significant.

Machine learning (ML) and artificial intelligence (AI) have 
emerged as domains with well-developed data-driven methodolo-
gies that complement traditional numerical simulation. Many 
AI/ML approaches can be taxonomized into two streams: dis-
criminative models and generative models. Discriminative models 
focus on learning labels or targets; for instance, learning an operator 
f that maps time t to a target wavefield d, as

​​​ ˆ d ​  =  f ​(​​t​)​​​​.                                     (2)

For instance, neural operators (NOs) (Sethi et al., 2023; Yang 
et al., 2023; Zhu et al., 2023) and physics-informed neural net-
works (PINNs) (Song et al., 2021; Rasht-Behesht et al., 2022; 
Ren et al. 2024a) have been demonstrated for accelerating the 
simulation of seismic wave propagation. However, these models 
still suffer from many of the same limitations as non-ML simula-
tions. For example, PINNs rely on the physics assumptions, and 
current neural operators use non-ML simulated waveforms that 
contain subsurface model errors for training. Of course, we note 
that future neural operators may try to incorporate field data for 
training to mitigate the issue.
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In contrast, generative models p aim to learn to approximate 
the data distribution pdata(d) that has generated the observations 
d. Among other things, this enables the user to generate (new 
synthetic) waveforms:

​​​ ˆ d ​ ~ p​(​​d​)​​​​.                                      (3)

Generative models in AI/ML are interesting for modeling 
seismic waveforms because they aim to directly learn the physics 
and the underlying subsurface models from simulation/observation 
data to approximate the true data generating distribution. They 
have demonstrated great potential in capturing subtle waveform 
patterns, sophisticated physical laws, and inherent stochasticity 
that are often challenging to model with existing discriminative 
methods (Wang et al., 2021; Florez et al., 2022; Lyu et al., 2024; 
Ren et al., 2024a, 2024b; Shi et al., 2024). They can be taxono-
mized into unconditional generative models and conditional 
generative models (CGMs).

Unconditional generative models based on equation 3 provide 
no mechanism for guidance during the generation process. For 
example, generating waveforms from p(d) can lead to generally 
plausible results, but it cannot accurately represent specific data 
acquisition. On the other hand, conditioning with physical vari-
ables v, and considering

​​​ ˆ d ​~ p​(​​d ​|​​v​)​​,​​                                    (4)

addresses this limitation by allowing the model to generate wave-
fields based on additional input physical variables in equation 1, 
e.g., source-receiver geometries (xs,xr). Such CGMs have become 
a central technique in advancing ML across various fields, including 
computer vision (Raut and Singh, 2024), natural language processing 
(Dong et al., 2023), and scientific modeling (Wang et al., 2023).

In this paper, we demonstrate the capability of CGMs in 
seismic applications and propose a CGM framework for seismic 
wavefield simulation. By incorporating physical variables in equa-
tion 1 as v, the CGM framework can learn underlying physics 
and subsurface models from data, rather than giving them as an 
input, as in non-ML simulations, or as constraints, as in PINNs. 
In the following, we first describe how our CGM framework 
performs seismic waveform generation, using variational autoen-
coders (VAEs) as an example. We then demonstrate the powerful 
waveform generation capabilities of our CGM framework, discuss-
ing challenges in generative modeling. We conclude by exploring 
potential future perspectives.

Conditional generative modeling for seismic wave simulation
If we just use seismic waveforms to train, then (unconditional) 

generative AI models that perform ​​​̂  d​ ~ p​(​​d​)​​​​ generate time series 
that resemble seismic waveforms. The generated time series exhibit 
features like P- and S-wave arrival packets and later coda arrivals, 
but they are not linked to other variables (e.g., source/receiver 
locations) in equation 1, limiting their usefulness. Time series 
generated in this manner can be useful for augmenting data for 
training certain ML models designed for trace-by-trace tasks 
such as arrival time picking (Wang et al., 2021). However, the 

generated waveforms tend not to be useful for many other seismic 
applications that require multiple source-receiver pairs and exploit 
their properties (i.e., stacking to increase signal to noise or reflec-
tion moveout analysis to extract velocity information).

To make the generative AI model more useful, we can incor-
porate physical variables and terms in equation 1 as conditional 
variables v in equation 4. The choice of conditional parameters 
controls what the CGM framework can learn as well as its com-
plexity. When we generate jth component data dj and use the 
source-receiver coordinate xs and xr along with the source param-
eters S(xs) as conditional variables, equation 4 becomes

​​​​ ˆ d ​​ j ​​~p​(​​ ​d​ j​​​|​​ ​x​ s​​, ​x​ r​​, S​)​​​​.                             (5)

In this case, the CGM framework needs to (implicitly) learn from 
the data the rest of the terms in equation 1, such as G, m, and R. 
This means that during training, the CGM framework needs to 
perform three major seismic tasks: velocity model building to 
extract subsurface models, m; surface-consistent analysis for 
near-surface characterization, R(xr); and wave-equation solver 
development for modeling. Then, during inference, the CGM 
framework can be used in a similar manner as conventional non-
ML simulations, but it completes them much faster, without 
needing to specify the physics and the subsurface model. This 
illustrates the strong potential of the CGM framework in avoiding 
uncertainties in subsurface models and mitigating errors in physics. 
At the same time, it also indicates complex and nontrivial aspects 
of the learning setup. One way to simplify the problem is to use 
a source-receiver offset (distance) D instead of the source-receiver 
coordinates, in which case equation 5 becomes

​​​​ ˆ d ​​ j ​​~ p​(​​ ​d​ j ​​​|​​D, S​)​​​​,                                     (6)

and equation 1 becomes

dj(t,D,m1D) = S(t,xs) * R(t) * Gj(t,D,m1D).              (7)

In this simplification, the CGM framework needs to learn 1D 
wave physics and subsurface models along with averaged receiver 
characteristics. The training of generative models becomes easier, 
at the cost of accuracy in data representation, as we will see in the 
following section.

Conditional dynamic variational autoencoder model
A VAE model is designed to learn low-dimensional representa-

tions of complex data and generate their variations. The VAE extends 
the basic concept of an autoencoder, which is a model that compresses 
input data into a deterministic latent space and then reconstructs an 
approximation to the data. Different from traditional autoencoders, 
VAEs introduce a probabilistic framework, where the latent space 
represents a distribution of possible features rather than a single 
(deterministic) compressed value. Due to its simplicity and well-
established theoretical foundations, the Gaussian distribution, which 
can be characterized by its mean μ and standard deviation σ, is a 
common choice for this latent space. As illustrated in Figures 1a 
and 1b, the VAE framework comprises two key components: an 
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encoder and a decoder. The encoder first compresses the input data, 
and then a nonlinear neural network known as a multilayer perceptron 
(MLP) is used to extract the latent features and output the mean, 
μ, and standard deviation, σ. The decoder then reconstructs the input 
variable from the latent variable z sampled from the Gaussian latent 
space, and the output from the VAE is a probability distribution, 
instead of a fixed (deterministic) value. With this method, we can 
generate multiple waveforms per any source-receiver pair.

When modeling time series, temporal dependencies are 
explicitly incorporated into the probabilistic latent space by using 
a dynamic VAE architecture (Figure 1c). The latent space variable 
and statistical parameters are now time-dependent z1:τ, μ1:τ, and 
σ1:τ, where 1:τ indicates discrete time series from time 1 to τ. By 
regarding the time series as sequence data, the temporal evolution 
can be modeled by incorporating sequence-to-sequence learning 
approaches. In our case, a recurrent neural network (RNN) is 
used due to its lightweight architecture and its demonstrated 
suitability for time-series modeling (Orvieto et al., 2023). The 
variable ​​​ ~ z ​​ 0​​  ​(a latent variable at time 0 as initial condition) is 
sampled from the Gaussian distribution and then fed into the 
RNN to obtain the latent variable at a later time. During training, 
we can then obtain the prior distribution ​​​ ~ μ ​​ 0:τ ​​  ​and ​​​ ~ σ ​​ 0:τ​​​ used for 
generations. Finally, the conditional variables (e.g., xs,xr,S ) are 
incorporated through embedding by using MLP to extract their 
latent information, as shown in Figure 1d.

Training a VAE model involves optimizing both the recon-
struction loss and a Kullback-Leibler (KL) divergence that 

measures the difference between the learned and assumed distribu-
tions of the latent space. The KL divergence ensures that the latent 
space follows a smooth distribution (e.g., a Gaussian distribution). 
The total loss function to minimize during the training is

L = Lrec + α ∙ DKL,                                 (8)

where Lrec represents the reconstruction loss (e.g., the mean squared 
error [MSE] between the reconstructed and observed data), DKL 
denotes the KL divergence (that measures the difference between 
the distribution [ ​​​ ~ μ ​​ 1:τ​​  ​, ​​​ 

~ σ ​​ 1:τ​​​] for generation and the distribution 
[μ1:τ, σ1:τ] learned from the data), and α is a tuning coefficient. 
Note that the KL divergence works as a regularization term, as 
we will see later. This local gradient-based probabilistic optimiza-
tion is nontrivial, and it can be made efficient using the reparam-
eterization trick that allows gradients to propagate through the 
probabilistic latent space during training.

In our implementation, we first transform seismic waveforms 
from the time domain into the time-frequency domain using 
the short-time Fourier transform (STFT) (Figure 1a), where 
the waveform features are decomposed to amplitude and phase 
spectra. Then we use the dynamic VAE model to learn and 
generate the amplitude spectra per component. Subsequently, 
the logarithmic time-frequency amplitudes are normalized to 
a range of [0,1]. Additionally, the conditional variables are 
normalized independently within the [0,1] range to ensure 
consistency across all inputs. Now let us define the number of 

Figure 1. Overview of our CGM framework. Illustrations of (a) the entire process, (b) the core of the dynamic VAE model, which consists of an encoder that compresses the input data into 
latent features, z 1:T , and a decoder that reconstructs the output from these features, (c) how we use an RNN to model the sequential nature of time-series data, and (d) the embedding 
process of the conditional variables, v, using multiple layers of neural networks (green) and activation functions (red) to extract latent information.
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batch sizes as b and the frequency and time sequence lengths as 
Nf Nf and Nt Nt, respectively. The training inputs with a tensor 
shape of [b, Nt, Nf Nt, Nf ] are fed into the encoder part, and we 
obtain a latent feature with a size of [b, Nz Nz ], where Nz Nz  is 
the dimension of latent features. The output time-frequency 
amplitude spectra from the decoder have the same tensor shape 
as the inputs. We use the true phase information and the inverse 
short-time Fourier transform to reconstruct time-domain wave-
forms. Throughout the process, we separate training and test 
data based on traces, not based on sensor locations.

In the generative process, the 
inputs of random numbers with a size 
of [b, Nz Nz ] are fed into the decoder 
along with the conditional variables. 
As in the training process, the decoder 
outputs time-frequency amplitude 
spectra. Then we reconstruct the phase 
spectra using phase retrieval methods, 

and we generate time-domain waveforms.
We are developing multiple models to adopt various imple-

mentations of the CGM framework. Four are presented in this 
study (see Table 1 for detailed descriptions). To evaluate their 
performance, two data examples are used: one from the San 
Francisco Bay Area (SFBA) and the other from the Geysers 
geothermal field. These data sets differ significantly in their 
data characteristics (see Table 2) and thus provide a stress test 
for the CGM models. Two CGM-GM models (GM stands 
for ground motion) — the CGM-GM-1D and CGM-GM-3D 
— are built to generate time-domain waveforms from the 
natural earthquakes in the SFBA, and we evaluate the effects 
of the choice of the conditional variables. The CGM-Wave is 
then developed upon the CGM-GM to improve the perfor-
mance and to simulate induced-seismicity waveforms from the 
Geysers geothermal area, and we evaluate data scaling. Finally, 
the CGM-FAS is used to generate frequency-domain amplitude 
spectra from the SFBA data, and we evaluate generation 
variability and data overfit.

San Francisco Bay Area
Located within the San Andreas Fault system, the densely 

populated SFBA has a history of magnitude 7 or larger earth-
quakes, and their high seismic risks drive significant interests in 
predicting seismic waves from potential earthquakes. The large 
non-ML 3D simulations are computationally expensive; for 
example, simulating up to 15 Hz takes about 60 hours using 
approximately 5000 nodes equipped with four NVIDIA A100 
GPUs. Our VAE-based CGM framework thus can be an alterna-
tive approach for simulating broadband frequency motions.

Our data set consists of two horizontal component waveforms 
recorded by sensors from small-magnitude (M<4) earthquakes 
during the period from 1990 to 2022, as shown in Figure 2. We 
collected a total of 626,423 traces over the 100 × 100 km area, 
but we discard 98.5% of waveforms that exhibit a signal-to-noise 
ratio below 3. This results in 10,409 retained traces. This strict 
data selection is necessary to train the models effectively. Note 

Table 1. Descriptions of four models used in this study.

Model Model size Reconstruction loss Phase reconstruction Output Conditional variables

CGM-GM-1D 0.17 M Time-domain waveforms, 
time-frequency-domain amplitude spectra

Griffin-Lim method Time-domain waveforms Source location,
offset, magnitude

CGM-GM-3D 0.17 M Source location,
receiver locations,

source depth,
magnitude

CGM-Wave 0.17 M Time-domain envelope, 
frequency-domain amplitude spectra

CNN

CGM-FAS 0.68 M Frequency-domain amplitude spectra N/A Frequency-domain amplitude spectra

Table 2. Description of data sets before processing used in the study.

Data set # of earthquakes
(per square km)

# of sensors
(per square km)

# of samples
(per square km)

Area size

SFBA 626,423 
(63)

740 
(0.07)

626,423
(6)

100 x 100 km

Geysers 30,000
(130)

12,230
(53)

1,000,000
(4,000)

23 x 10 km

Figure 2. Map of the SFBA along with (a) the sensor distribution and (b) the earthquake 
source distribution.
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that sensor intervals are irregular and sparse for the 15 Hz data, 
which makes generative modeling further nontrivial.

To evaluate the influence of conditional variables on generating 
waveforms, we use two CGM-GM models using different con-
ditional variables. We refer to these as CGM-GM-1D and CGM-
GM-3D (Table 1). For the CGM-GM-1D, we use source-receiver 
offset D and source parameter S along with source locations and 
depths xs. For the CGM-GM-3D, we include source and receiver 
coordinates xs,xr (both geographical coordinates and depths) along 
with S. In both cases, S is represented by the earthquake magni-
tude, as the source wavelet is magnitude dependent. We do not 
incorporate moment tensor solutions, as many are known to be 
strike-slip faulting, and the estimates of these small earthquakes 
either are not available or tend to be unreliable. As we show next, 
the locally consistent moment tensor solutions are learned and 

implicitly incorporated into the CGM-GM models. The recon-
struction loss is computed using the L2 norm of the amplitude 
spectra in the time-frequency domain and the waveforms in the 
time domain. We apply the Griffin-Lim method (Griffin and 
Lim, 1984), a traditional phase reconstruction method, to recon-
struct phase spectra from amplitude spectra. Computational 
efficiency of our CGM-GM is evident over the physics-based 
simulations at the same frequency range. Training the CGM-
GM-3D takes approximately 2 hours using an A100 GPU, and 
then inference to generate waveforms takes 0.00178 s per trace.

To demonstrate the differences in the ability of the CGM-
GM-1D and the CGM-GM-3D to capture wave propagation 
physics, we compute amplitude spectra of waveforms generated 
over a uniform 100 × 100 spatial grid, representing arbitrary sensor 
locations. The amplitude map for the CGM-GM-1D is shown 

Figure 3. Effects of conditional variables shown for SFBA waveform generation. Spatial variations of the amplitude spectra at 10 Hz using (a) CGM-GM-1D and (b) CGM-GM-3D. The red 
star and blue triangles denote the earthquake source and receiver locations, respectively. The white arrow in (b) shows the area with large amplitudes. (c) Logarithmic residuals between 
ground truth (observed) and generated waveforms for all available data. Blue lines represent CGM-GM-1D (as in [a]) and red lines CGM-GM-3D (as in [b]). The solid lines and the shaded area 
denote the mean curves and the uncertainty region of mean +/- 1 standard deviation. (d) Observed (red) and generated (blue) waveforms for three different source-receiver pairs. In each 
pair, three realizations of generations are shown.
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in Figure 3a for a specific realization. For a 1D medium, we expect 
that geometrical spreading and attenuation causes amplitudes to 
decay as a function of the distance, resulting in a symmetric 
contour map with the source location at its center. Our result 
aligns with this expectation, showing a radial amplitude decay 
from the source location. The oscillations in the contours arise 
from the stochastic nature of generative modeling, where random 
sampling in the latent space introduces a perturbation in the 
spatial behavior of waveforms. This result confirms that the 
CGM-GM-1D captures the 1D earth subsurface averaged across 
the spatial domain and the 1D wave physics.

In contrast, the amplitude map from the CGM-GM-3D 
inference, shown in Figure 3b, reveals local features, providing a 
more nuanced representation of the spatial variability in the 
waveforms. For example, in the southern SFBA near San Jose 
(indicated by the white arrow in Figure 3b), the amplitude is large 
due to the wavefield amplification in the soft Bay Mud layer. These 
agreements between the generated map and the known geologic 

and geophysical information strongly support the validity of the 
spatial recovery achieved by the CGM-GM-3D.

In Figure 3c, we compare waveform residuals in the frequency 
domain for real earthquakes at real sensor locations by calculating 
logarithmic differences between amplitude spectra and averaging 
over all source-receiver pairs. By increasing the complexity of the 
conditional variables from the CGM-GM-1D to the CGM-
GM-3D, we can improve the waveform reconstruction, reducing 
the residuals.

The generated waveforms from the CGM-GM-3D shown in 
Figure 3d accurately capture waveform shapes, frequency contents, 
amplitudes, and arrival times. For instance, for the first earthquake 
(M=3.82), the CGM-GM-3D successfully replicates the moderate 
amplitude P-wave packet around 12 s, followed by the large 
amplitude S-wave and surface wave packets starting at 18 s. In 
Figure 4, we display a crossplot of P-wave arrival times from the 
observed and generated waveforms, confirming the accuracy of 
P-wave first arrival generation. We observe the same performance 
for the S-wave arrivals (not shown).

Geysers geothermal field
The Geysers geothermal field in Northern California is one 

of the world’s largest and most enduring sources of geothermal 
energy since the early 1960s. The extensive production has led to 
significant hydrothermal activity and a high rate of seismic events, 
with approximately 15,000 annual occurrences based on the United 
States Geological Survey catalog (see Figure 5a). These induced 
seismic activities, which concentrate along the Sulfur Creek fault 
zone and in areas of intense hydrothermal activity, exhibit a positive 
correlation with steam production and fluid injection processes, 
thus potentially posing a risk to geothermal operations and nearby 
infrastructure. The generative modeling approach is particularly 
appealing given the complex subsurface heterogeneities and dense 
source and receiver distributions in geothermal regions.

Our CGM-Wave is built to incorporate an ML-based phase-
spectra retrieval method and another reconstruction loss. The 
reconstruction loss of the CGM-Wave is constrained in both the 
time and frequency domains. Specifically, in the time domain, 

we compare observed and generated 
envelopes rather than waveforms, as 
done in the CGM-GM; and in the 
frequency domain, the frequency-
domain amplitude spectrum is com-
pared with the spectrum of the real data. 
We employ a convolutional neural 
network (CNN) to improve the phase 
spectrum retrieval process and to 
enhance the overall quality of the gener-
ated waveforms, as the Griffin-Lim 
algorithm often struggles with recon-
structing the phase from the amplitude 
spectrum when the quality of the gen-
eration of amplitudes is low.

The CGM-Wave is applied to a data 
set comprising more than 30,000 seis-
mic events recorded between 2020 and 

Figure 4. Crossplot of P-wave arrival time between observation (truth) and generation.

Figure 5. (a) Earthquake and station distribution in the Geysers geothermal field. Triangles represent the locations of seismic 
stations, while yellow circles indicate the spatial distribution of recorded earthquakes. (b) Comparison of real (black) and 
synthetic (blue) time-domain waveforms for seismic events excluded from the training data set. (c) Fourier amplitude spectra of 
observed (black) and synthetic (blue) waveforms.
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2023 within the 23 × 10 km area of the 
Geysers geothermal field (Figure 5a). 
The number of source-receiver pairs is 
nearly 1 million.

Figure 5b demonstrates the accu-
racy of the generated time-domain 
waveforms by comparing them to 
ground truth data that were not included 
in the training set. The close agreement 
between the synthetic and real wave-
forms shows that the CGM-Wave suc-
cessfully captures complex seismic 
patterns. Figure 5c highlights the align-
ment between the amplitude spectra of 
the observed and synthetic data, show-
ing that the model accurately reproduces 
the spectral characteristics of the seismic 
events. The generated shot gather of all 
available receivers associated with a 
seismic event demonstrates the high fidelity of the CGM-Wave 
for the entire Geysers field while reproducing the moveout with 
respect to the distances (Figure 6).

Challenges
Our work has shown the strong potential of the CGM 

approaches. The two data sets employed differ in terms of natural/
induced events, the spatial coverage, and the data density, and 
they are adequate to test the broad applicability of the CGM 
framework. However, we have identified several important chal-
lenges to be considered in order to successfully use these generative 
approaches more generally.

Phase reconstruction. The current use of the time-frequency 
domain is appropriate to capture the rich information inherent in 
seismic wavefields by decomposing temporal scales along frequency 
and by separating dynamic and kinematic aspects of the wavefields 
into amplitude and phase components, respectively. Our CGM 
framework is designed to reconstruct amplitude spectra through a 
VAE, while phase spectra, required to reconstruct time-domain 
signals by the inverse STFT, are derived from the amplitude spectra 
(either using the Griffin-Lim algorithm originally developed for 
audio data, as in CGM-GM, or by using a CNN as in CGM-Wave). 
We found that accurate phase reconstruction remains a challenging 
task, possibly because the phase varies more rapidly than the ampli-
tude. The phase estimation is highly sensitive to the STFT param-
eters and the quality of the generated amplitude spectra. This 
sensitivity often leads to inconsistencies in the reconstructed 
waveforms, which can degrade the quality of synthetic seismic data.

Data volume, sensor and source locations. The size and quality 
of the data significantly affect the performance of the generative 
models. When the data size is small compared to the area of 
coverage, as in the case of the current SFBA data set (0.6 million 
samples in total; six samples per square kilometer), careful data 
curation is crucial because lower-quality data degrade model 
accuracy and overall performance. In contrast, the larger and 
denser Geysers data set (1 million samples in total; 4000 samples 
per square kilometer) allows us to reduce the preprocessing efforts, 

as the CGM framework can automatically learn to differentiate 
signal and noise.

The irregular spatial distributions of both sensors and earth-
quakes create additional challenges. For example, most of the 
sensor intervals of the SFBA are beyond the Nyquist wavenum-
ber, and thus the waveforms are spatially aliased. Earthquakes 
are geographically localized along major faults, and wave propa-
gation path coverage is biased. We find that the extrapolation 
of waveforms is particularly difficult near the boundaries of the 
sensor network and that the performance degrades in regions 
with sparse sensor coverage. Despite this, both CGM-GM and 
CGM-Wave demonstrated strong capability in generating 
wavefields between sparse sensor locations. The recovered patterns 
are smooth and reasonable, and we anticipate further improve-
ment in the spatial resolution.

We analyze the scaling behavior of the CGM framework using 
the CGM-Wave and the Geysers data. We focus on the relationship 
between training data volume, computational cost, and waveform 
quality, and we consider three key metrics: MSE, mean absolute 
error (MAE), and correlation coefficient. These are used to compare 
observed and simulated time-domain waveforms. Note that we 
keep the model size consistent across evaluations.

Figure 6. A Geyser geothermal shot gather comparison between generated (red) and real waveforms (black), illustrating a 
high level of consistency across traces for a single seismic event. Note that the black lines are nearly invisible because of the 
similarity between the waveforms.

Figure 7. Scaling behavior of the CGM-Wave performance with increasing training data. MSE 
(red), MAE (blue), the correlation coefficient (green), and computational time (gray bars) 
are shown.
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As the training sample size increases, the performance of the 
CGM-Wave improves, shown by lower MSE and MAE values 
and a higher correlation coefficient in Figure 7. The MSE, MAE, 
and correlation coefficient curves show diminishing improvements 
after approximately 40,000 samples, suggesting that the CGM-
Wave reaches a plateau in learning. (Note that adding more data 
gradually improves the waveform quality; hence, we use 1 million 
samples in Figure 5.) This steep-to-mild learning curve is typical 
for small-scale generative models, where the model learns the 
general trend of data quickly and then hits a gradually diminishing 
returns regime. Figure 7 also illustrates that computational cost 
rises linearly, although performance gain with respect to the size 
follows a nonlinear trend.

This highlights the need for a balanced approach in scaling, 
ensuring that the improvements in the generated waveform quality 
are justified against the increased cost in data acquisition and 
increased computational cost. While larger data sets generally 
improve the performance of the generative AI, preparing such a 
data set can require large efforts or may be impractical (i.e., 
financial costs of acquisition). Efficient computer resource alloca-
tion is crucial, especially when working with very large data sets, 
as training times can become a limiting factor. The findings can 
guide future efforts in balancing data collection efforts and com-
putational resources to achieve optimal high-quality synthetic 
seismic waveform generation.

Data fit and generation variability. In traditional inversion/
optimization, a typical goal is to fit data as closely as possible, e.g., 
to reduce the data residuals close to zero. In generative modeling, 
this is not the case. Errors and incompleteness in acquisition, data 
preprocessing, and modeling must be accounted for through 
uncertainties (e.g., standard deviation of the generated data), and 
variations in the generated data are essential. We apply the CGM-
FAS (Fourier amplitude spectra) to the SFBA and show that 
reducing the residuals excessively limits our capabilities to generate 
varieties of waveforms. To do so, we use Fourier transform instead 
of the STFT, omit the RNN part, and construct data loss using 
amplitude spectra in the frequency domain. Additionally, we focus 
on wave propagation effects, rewriting equation 1 as

d(xs,xr,m) = S(xs) ∗ R(xr) ∗ (Go (D,m1D) + δG(xs,xr,m)),     (9)

where Go is the background Green’s function, and δG is the 
perturbation in Green’s function. We focus on generating δG, 
and we remove source and receiver effects along with Go prior to 
application of the CGM-FAS.

One of the key tuning parameters in equation 8 is α, which 
controls the balance between MSE and KL divergence. By 
increasing α from 3e–5 to 6e–4, we reduce MSE, as shown in 
Figure 8. However, this reduces the variability in the generated 
data, as seen in Figures 9a, where the range of 100 generated 
amplitude spectra narrows. Similar to wavefields, we anticipate 
spatially varying uncertainties, for example due to the variations 
in source and receiver coverages. However, a map view of the 
standard deviation of generated amplitude spectra in Figure 9b 
suggests that it varies spatially only at α = 3e–4, and that it is 
almost constant across the area for larger or smaller α values. 
Interestingly, the median amplitude map in Figure 9c exhibits 
negligible dependence on the values of α. These observations 
suggest that α = 3e–4 is the optimal value among these three, 
while the smallest MSE with α = 6e–4 may be a result of overfit-
ting. This result highlights the importance of inspecting genera-
tion variability to avoid overfitting and to achieve the best balance 
between accuracy and variability.

Perspectives
We have demonstrated that the CGM framework is capable 

of learning wave physics and underlying earth models by using 
key physical variables (e.g., source and receiver coordinates) as 
conditional variables. Once trained, the models — CGM-GM-
1D/3D, CGM-Wave, and CGM-FAS — can generate waveforms 
and/or amplitude spectra for the trained area for arbitrary acquisi-
tion settings (i.e., source and sensor locations and parameters), 
without needing subsurface elastic models. The use of the trained 
CGM models can be versatile, enabling rapid seismic modeling 
for assessing many different acquisition design patterns and testing 
various geologic scenarios for energy exploration. Their ability to 
simulate plausible waveforms between sensors increases the data 
density, which provides opportunities for applying high-end 
high-quality imaging and inversion techniques such as reverse 
time migration and full-waveform inversion for sparse acquisition 
data. In a broader context, the CGM framework can be considered 
as learning partial differential equations governing physics phe-
nomena. One immediate application area will be ground-
penetrating radar data, which consist of high-frequency electro-
magnetic waves that can be treated as acoustic waves. While some 
verification is needed, we anticipate extensions to other modalities, 
such as gravity and magnetic survey data.

We have identified several challenges in the current CGM 
framework application: phase retrieval; data volume/density and 
quality; sparse data acquisition; efficient and meaningful training 
strategies; and generation variability. We note that the models 
based on the CGM framework require retraining from scratch 
when changing the region of interest. While our CGM framework 
is designed to be easily portable, as shown in the SFBA and 
Geysers applications, training for new regions is not trivial, due 
to data preparation and parameter tuning. We now discuss future 
potential directions for addressing these challenges, starting with 

Figure 8. Effects of varying the parameter α on MSEs using CGM-FAS for SFBA data set for 
(blue) 3e–5, (orange) 3e–4, and (yellow) 6e–5.
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the potential improvements in the current VAE-based CGM 
framework and then envisioning broader concepts.

Phase retrieval and data acquisition challenges can be mitigated 
by enhancements to the VAE-based framework. The current 
CGM framework does not explicitly handle phase information, 
limiting its capacity to fully capture complex interactions between 
amplitude and phase in seismic wavefields. Integrating dedicated 
phase-learning mechanisms or directly building the conditional 
generative AI model in the time domain could improve perfor-
mance. Additionally, to better handle sparse sensor data, it may 
be necessary to incorporate explicit spatial correlations in seismic 
wavefields, e.g., using the Matérn covariance function (Rasmussen, 
2004). Moreover, the CGM framework can benefit from incor-
porating the correlations of waveforms between different times 
(i.e., P wave and S wave are not independent).

The CGM framework is not limited to VAE models, and alterna-
tive architectures may further improve the performance. We are 
currently testing generative adversarial networks (GANs) and dif-
fusion models. GANs have an “adversarial” or “competitive” com-
ponent to their training process. Due to this setup, they have shown 
potential for generating sharper high-frequency components than 
VAEs, although mode collapse and training instability remain a 
challenge. We are exploring hybrid VAE-GAN models that combine 
the strengths of both. Diffusion models, which transform noise into 
meaningful data by reversing a gradual noise-adding process, are 
another promising approach. These models have shown success in 
image and audio generation, and we are exploring their potential 
for simulating seismic wave behavior. Success with diffusion models 
will depend on having access to a diverse, high-fidelity seismic data 
set, making data design a crucial step in their development.

Figure 9. (a) Normalized log amplitude spectra comparisons between observation, generation, and mean of generation for different values of α. (b) Standard deviation and (c) median of 
generated amplitude spectra data for an earthquake event in SFBA: α = 3e–5, 3e–4, and 6e–4.
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To address the training costs when switching regions, transfer 
learning offers a powerful practical solution. By using a model 
pretrained on one region, we can hope to reduce the data require-
ments and improve the model robustness when applied to a new 
region (Subramanian et al., 2023). This approach could also 
improve the robustness and generalizability of the conditional 
generative AI models across geographic regions, making it an 
effective strategy for extending the applicability of generative AI 
to regions with limited data.

Looking ahead, expanding the transfer learning approach 
could lead to the development of “foundation models” for seismic 
waves or more broadly for spatiotemporal phenomena (Bommasani 
et al., 2021; Subramanian et al., 2023). Foundation models are 
large neural networks trained on a broad range of data sets across 
multiple scientific domains to capture unified patterns, which 
can then be fine-tuned for a variety of specific tasks. For seismic 
waves, this would involve training on vast amounts of seismic 
waveforms acquired or simulated both by public and private sectors 
from both active and passive experiments. Our CGM framework 
could serve as a backbone for such a model, enabling it to learn 
generalizable features of seismic wave propagation, facilitating 
more efficient and accurate waveform generation under different 
scenarios. Such a foundation model could extend beyond seismic 
data to other scientific tasks, making it a versatile tool for a range 
of spatiotemporal phenomena. 
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