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Abstract

Recent work in the analysis of randomized approximation algorithms for N P-hard opti-
mization problems has involved approximating the solution to a problem by the solution of
a related sub-problem of constant size, where the sub-problem is constructed by sampling
elements of the original problem uniformly at random. In light of interest in problems with a
heterogeneous structure, for which uniform sampling might be expected to yield sub-optimal
results, we investigate the use of nonuniform sampling probabilities. We develop and analyze
an algorithm which uses a novel sampling method to obtain improved bounds for approxi-
mating the Max-Cut of a graph. In particular, we show that by judicious choice of sampling
probabilities one can obtain error bounds that are superior to the ones obtained by uniform
sampling, both for unweighted and weighted versions of Max-Cut. Of at least as much in-
terest as the results we derive are the techniques we use. The first technique is a method to
compute a compressed approximate decomposition of a matrix as the product of three smaller
matrices, each of which has several appealing properties. The second technique is a method
to approximate the feasibility or infeasibility of a large linear program by checking the fea-
sibility or infeasibility of a nonuniformly randomly chosen sub-program of the original linear
program. We expect that these and related techniques will prove fruitful for the future devel-
opment of randomized approximation algorithms for problems whose input instances contain
heterogeneities.
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1 Introduction

1.1 Background

We are interested in developing improved methods to compute approximate solutions to certain
N P-hard optimization problems that arise in applications of graph theory and that have signifi-
cant heterogeneities and/or nonuniformities. The methods we present here are a first step in that
direction; they make use of random sampling according to certain judiciously chosen nonuniform
probability distributions and they depend heavily on our recent work on designing and analyzing
fast Monte Carlo algorithms for performing useful computations on large matrices [13, 14, 15].

As an application of these methods we design and analyze an algorithm to compute an approx-
imation for the Max-Cut problem. In a Max-Cut problem, also known as a maximum weight cut
problem, the input consists of the n x n adjacency matrix A of an undirected graph G = (V, E)
with n vertices, and the objective of the problem is to find a cut, i.e., a partition of the vertices
into two subsets Vi and V3, such that the number of edges of F that have one endpoint in V; and
one endpoint in V5 is maximized. In its weighted version, the input consists of an n x n weighted
adjacency matrix A, and the objective is to find a cut such that the sum of the weights of the
edges of E that have one endpoint in V; and one endpoint in V5 is maximized. The Max-Cut
problem has applications in such diverse fields as statistical physics and circuit layout design [7],
and it has been extensively studied theoretically [26, 19].

The Max-Cut problem is known to be N P-hard, both for general graphs and when restricted
to dense graphs [3], where a graph on n vertices is dense if it contains Q(n?) edges. Thus, much
effort has gone into designing and analyzing approximation algorithms for the Max-Cut problem.
It is known that there exists a 0.878-approximation algorithm [19]. It is also known from the PCP
results of Arora et al [4] that (unless P = N P) there exists a constant «, bounded away from 1
such that there does not exist a polynomial time a-approximation algorithm; in particular, this
means that there does not exist a polynomial time approximation scheme (PTAS) for the general
Max-Cut problem. A PTAS is an algorithm that for every fixed € > 0 achieves an approximation
ratio of 1 — € in time which is poly(n); such a scheme is a fully polynomial time approximation
scheme (FPTAS) if the running time is poly(n, 1/¢).

Work originating with [3] has focused on designing PTASs for a large class of N P-hard
optimization problems, such as the Max-Cut problem, when the problem instances are dense
3,8, 16,20,17, 1, 2]. [3] and [8], using quite different methods, designed approximation algorithms
for Max-Cut (and other problems) that achieve an additive error of en? (where € > 0, € € (1) is
an error parameter) in a time poly(n) (and exponential in 1/€); this implies relative error for dense
instances of these problems. In [20] it was shown that a constant-sized (with respect to n) sample
of a graph is sufficient to determine whether a graph has a cut close to a certain value. This work
investigated dense instances of N P-hard problems from the viewpoint of query complexity and
property testing and yielded an O(1/€%) time algorithm to approximate, among other problems,
dense instances of Max-Cut. [16] and [17] examined the regularity properties of dense graphs and
developed a new method to approximate matrices; this led to a PTAS for dense instances of all
Max-2-CSP, and more generally for dense instances of all Max-CSP, problems. [1, 2] extended
this and developed a PTAS for dense instances of all Max-CSP problems in which the sample
complexity was poly(1/e) and independent of n; when applied to the Max-Cut problem this led
to an O (bi—i/f> time approximation algorithm.

In all these cases, these approximation algorithms involve sampling elements of the input
uniformly at random in order to construct a sub-problem which is then used to compute an
approximation to the original problem with additive error at most en? [3, 8, 16, 20, 17, 1, 2];
this then translates into a relative error bound for dense graphs. These methods are not useful



for nondense graphs since with such an error bound a trivial approximate solution would always
suffice. This uniform sampling does have the advantage that it can be carried out “blindly” since
the “coins” can be tossed before seeing the data; then, given either random access or one pass,
i.e., one sequential read, through the data, samples from the data may be drawn and then used
to compute. Such uniform sampling is appropriate for problems that have nice uniformity or
regularity properties [16].

In many applications of graph theory problems, however, significant heterogeneities are present
[25]. For instance, the graph may have a power-law structure, or a large part of the graph may
be very sparse and a small subset of vertices (sometimes, but not always a o(n)-sized subset) may
have most of the edges (1 —o0(1) of the edges) incident to them. Similarly, in a weighted graph, the
total weight of edges incident to most vertices may be small, while among the remaining vertices
the total weight of incident edges may be quite large. Neither the adjacency matrix nor the
adjacency list representation of a graph used in property testing captures well this phenomenon
[20].

With the additional flexibility of several passes over the data, we may use one pass to assess
the “importance” of a piece (or set of pieces) of data and determine the probability with which
it (or they) should be sampled, and a second pass to actually draw the sample. Such importance
sampling has a long history [24]. In recent work, we have shown that by sampling columns and/or
rows of a matrix according to a judiciously-chosen and data-dependent nonuniform probability
distribution, we may obtain better (relative to uniform sampling) bounds for approximation
algorithms for a variety of common matrix operations [13, 14, 15]; see also [10, 11, 12]. The power
of using information to construct nonuniform sampling probabilities has also been demonstrated in
recent work examining so-called oblivious versus so-called adaptive sampling [5, 6]. For instance,
it was demonstrated that in certain cases approximation algorithms (for matrix problems such
as those discussed in [13, 14, 15]) which use oblivious uniform sampling cannot achieve the error
bounds that are achieved by adaptively constructing nonuniform sampling probabilities [5, 6].

1.2 Summary of Main Result

In this paper we apply these methods [13, 14, 15] to develop an approximation algorithm for
both unweighted and weighted versions of the Max-Cut problem. We do so by using nonuniform
sampling probabilities in the construction of the sub-problem to be solved. For unweighted
graphs, we show that at the cost of substantial additional sampling, these methods lead to an
additive error improvement over previous results [20, 2]; for weighted graphs, these methods
lead to substantial improvements when the average edge weight is much less than the maximum
edge weight. We view our new results as a proof of principle and expect that further work will
lead to substantial additional improvement when these methods are applied to problems with a
heterogeneous and/or nonuniform structure.

Let A be the n x n weighted adjacency matrix of a graph G = (V, E), let € be a constant
independent of n, and recall that ||A||§; =i A%j. A main result of this paper, which is presented
in a more precise form in Theorem 4, is that there exists an algorithm that, upon being input A,
returns an approximation Z to the Max-Cut of A such that with high probability

|Z — MAX-CUT [4]| < en || A . (1)

The algorithm makes three passes, i.e., three sequential reads, through the matrix A and then
needs constant additional space and constant additional time (constant, that is, with respect to
n) in order to compute the approximation. The algorithm uses a judiciously-chosen and data-
dependent nonuniform probability distribution in order to obtain bounds of the form (1); these
probabilities are computed in the first two passes through the matrix.



For a complete graph || A[|% = n(n — 1) since A;j = 1 for every i # j. For general unweighted
graphs \/2|E| = ||A||p < n, where |E| the cardinality of the edge set. Thus, in general, the
additive error bound (1) becomes en+/2 |E|, which is an improvement over the previous results of
en? [20, 2]. In addition, from this bound we obtain a PTAS for graphs with |E| = Q(n?). Unfor-
tunately, this does not translate into a PTAS for any class of sub-dense graphs. Demonstrating
that such a PTAS exists would be significant application of our methodology and is the object
of current work; it has been shown recently by other methods that there does exist a PTAS for
Max-Cut and other Max-2-CSP problems restricted to slightly subdense, i.e., Q(n?/logn) edges,
graphs [9]. Since we are primarily interested in presenting a methodology to deal with hetero-
geneities and nonuniformities that arise in applications of graph theory problems, we make no
effort to optimize constants or polynomial factors. In particular, although we have a PTAS, both
the sampling complexity and the running time of the algorithm are exponential in 1/€, which
is substantially larger than previous results [20, 2]; we expect that this may be substantially
improved.

Our results are of particular interest for weighted graphs. Note that for weighted problems,
the en? error bound of previous work for unweighted graphs extends easily to en?W,,4., where
Winaz is the maximum edge weight. For these problems, [|A| /n may be thought of as the
average weight over all the edges; one may then view our error bounds as replacing W,,,; in the
€n>Winae error bound by ||A]|» /n. If only a few of the weights are much higher than this average
value, the bound of en [|A||» given in (1) is much better than the bound of en?W .

1.3 Summary of Intermediate Results

In order to prove Theorem 4 we make use two intermediate results that are of independent interest.
The first intermediate result has been presented in much more generality previously [15] and is thus
only summarized in Section 2. It involves a new compressed approximate decomposition of a large
matrix A € R™*" as the product of three smaller matrices A’ = CUR, where C is an m X ¢ matrix
consisting of ¢ randomly picked columns of A, R is an r X n matrix consisting of r randomly picked
rows of A and U is a ¢ x r matrix computed from C' and R. The sampling probabilities are crucial
features of the algorithm; if they are chosen carefully then by sampling s = O(1/€®) columns

and rows of A we have from Theorem 1 that with high probability HA -C (]'RH2 < e€|lA|lp. The

approximation can be constructed after making three passes through the whole matrix A and the
matrix U can be constructed using additional RAM space and time that is constant.

The second intermediate result relates the feasibility or infeasibility of a given Linear Program
(LP) on n variables to the feasibility or infeasibility of an induced sub-LP involving only the
variables in @), where ) is a (small) randomly picked subset of the n variables. In particular, if
P e R and b € R", we consider a set of constraints of the form Pz < b, 0 < z; < ¢;, where
2 € R". In Theorem 2 and Theorem 3 we show that (i) if the n-variable LP is feasible, then the
LP induced on @ is approximately feasible in the sense that a slight relaxation of it is feasible and
(ii) if the n-variable LP is infeasible, then the LP induced on @ is approximately infeasible in the
sense that a slight tightening of it is infeasible. A similar result using uniform sampling appeared
in [2] for the case when z; € [0, 1]. The current result uses nonuniform sampling probabilities, is
tighter, and applies to general bounds on the variables; the proof of this lemma is a non-trivial
extension of the previous result of [2] and makes critical use of previous work on approximating
the product of matrices by nonuniformly sampling a small number of columns and rows of the
matrices [13].



1.4 Outline of the Paper

In Section 2 we provide a review of relevant linear algebra and of our first intermediate result
which is the approximate CUR decomposition results from [15] that will be needed for the proofs
of our results. In Section 3 we then present our second intermediate result that deals with
approximating the feasibility of a LP by considering random sub-programs of the LP. Then, in
Section 4 we present and analyze an algorithm to approximate the Max-Cut of a matrix; in
particular, we prove Theorem 4 which establishes (1). Finally, in Section 5 we provide a brief
conclusion.

2 Review of Relevant Background

This section contains a review of linear algebra that will be useful throughout the paper; for
more detail, see [21, 22, 30] and references therein. This section also contains a review of the
compressed approximate CUR decomposition of a matrix. The CUR result is presented in much
more generality in [15] and depends critically on related work on computing an approximation
to the Singular Value Decomposition (SVD) of a matrix and on computing an approximation to
the product of two matrices; see [13, 14, 15] for more details. All of the results of [13, 14, 15],
and thus of the present paper, may be formulated within the framework of the Pass-Efficient
computational model in which the three scarce computational resources are number of passes
over the data and the additional RAM space and additional time required by the algorithm; see
[13]. This model of data-streaming computation may be viewed in terms of sublinear models of
computation; see [13, 23] and [18, 14].

2.1 Review of Linear Algebra

For a vector z € R" we let z;, i« = 1,...,n, denote the i-th element of z and we let |z| =
(>, |:1:Z-|2)1/2. For a matrix A € R™™ we let AU, j =1,...,n, denote the j-th column of A
as a column vector and A;), ¢ = 1,...,m, denote the i-th row of A as a row vector. We denote

matrix norms by |A||¢, using subscripts to distinguish between various norms. Of particular

interest will be the Frobenius norm, the square of which is ||A||% =" Z?Zl A?j, and the

spectral norm, which is defined by || Ally, = sup,egn, 420 %. These norms are related to each

other as: ||A|l, < |Allp < v7||All,. If the SVD of Ais A = USVT = Y7_ oulv!” | where p is
the rank of A, then for k < p define Ay = Zle otvt’ .

2.2 Review of Approximating a Matrix as the Product CUR

In [15] we presented and analyzed two algorithms to compute compressed approximate decom-
positions of a matrix A € R™*™. The second approximation (computed with the CONSTANT-
TmMECUR algorithm of [15]) is of the form A’ = CUR, where C is an m x ¢ matrix consisting
of ¢ randomly picked (and suitably rescaled) columns of A, R is an r X n matrix consisting of r
randomly picked (and suitably rescaled) rows of A; the algorithm constructs the w x ¢ matrix W
consisting of w randomly picked (and suitably rescaled) rows of C, and from the SVD of WTW
constructs the ¢ x r matrix U. The CUR approximation may be defined after making three passes
through the data matrix A, and U can be constructed using additional RAM space and time that
is O(1). In the following theorem we let ¢ = w = r = s for simplicity. Note also that ~y is a
parameter and k is the rank of the approximation; see [15] for a full discussion and definition of
notation.



Theorem 1 Suppose A € R™"*" qnd let C, U, and R be constructed from the CONSTANTTIME-
CUR algorithm by sampling s columns of A (and then sampling s rows of C') and s rows of A. Let
0,6 > 0. If a spectral norm bound is desired, and hence the CONSTANTTIMECUR. algorithm of
[15] is run with v = O(e) and s = (1/68), then under appropriate assumptions on the sampling
probabilities we have that with probability at least 1 — & each of the following holds:
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Thus, if we choose k = 1/€* (and s = Q (1/€%)) then (5) becomes that with probability at least
1-46
|A-cur| <elial,. (6)

From (5) it is clear that the CUR decomposition may be thought about as a low rank approxi-
mation to the matrix A; see [15] for a discussion of this issue and a comparison of this low rank
approximation with that of the Singular Value Decomposition.

3 Sampling Sub-programs of a Linear Program

In this section, we examine relating the feasibility or infeasibility of a Linear Program to the
feasibility or infeasibility of a randomly sampled version of that LP. In particular, we state and
prove Theorems 2 and 3; these two theorems provide results that are complementary, as we discuss
at the end of this section.

Theorem 2 Let P be a r X n matriz and b be a r X 1 vector. Let P denote the i-th column of
P and consider the following Linear Program:

Pz = ZP(i)xi <b 0<z <c. (7)

=1

Suppose q is a positive integer and Q) is a random subset of {1,2,...n} with |Q| = q formed by
picking elements of {1,2,...n} in q i.i.d. trials, where, in each trial, the probability of picking
the i-th element is

pi=Prliy=i =" (8)

where N = 37" | ¢ ‘P(i)‘. Let 1, denote the v x 1 all-ones vector and n = 1+ /8log(1/6). If
the Linear Program (7) is feasible then, with probability at least 1 —§

1 . -
S L pis <ot ™ 0<m<a,icq (9)
= api Vi

is feasible as well. If the Linear Program (7) is infeasible then, with probability at least 1 —§

1, "
Z_P(%igb—ﬂh 0<z<¢,i€Q (10)
=5 i Vi

is infeasible as well.



Proof: We first show that the vector ;o q;) PWz; in (9) and (10) is with high probability close
to the vector 37| P(z; in (7); then we prove (9) and finally we prove (10).

Construct P and & as follows. Randomly pick in i.i.d. trials ¢ columns of P and the corre-
sponding ¢ “rows” of x (here “rows” of z are elements of x), where the probability of picking the
i-th column-row pair is p;. Let P be the r x ¢ matrix with columns equal to the columns that were
picked divided by /gp;, and Z be the g x 1 vector whose elements are those elements of z that

were picked divided by /gp;. Thus if {i;}{ , is the sequence of elements of {1,--- n} chosen

then P(t) = \/#_%P(it) and 7; = \/#_itwit. Furthermore, Pi = >, qz}zt Dy, = Z i€Q q

We first claim that Pz is well approximated by Pi, i.e., that

n
P i (%)
Pr—Pz|| < — ¢ |P >1-0. 11
H F \/a z:zl ¢ - ( )
To establish the claim, first note that
- 11 12 . 1/2 1 X )

E [HPm—Pi ] < (=3 =[P | < =S¢ |P9], (12)

E 15 Pi 133

where the first inequality follows from reasoning similar to that of the analysis of the BASICM A-
TRIXMULTIPLICATION algorithm of [13] and the second inequality follows from the form of the
probabilities of (8) and since x; < ¢;. Next, define the event & to be

p@

n
- Ui
HP(II—P(IIH > — G
FoVe Z;
and event & to be

fro-s] > e 73]}« VTR S
=1

and note that Pr[€;] < Pr[€] due to (12). Thus, to prove the claim it suffices to prove that
Pr[&] < 4. To that end, note that P and 7 and thus Pz are formed by randomly selectlng c
elements {i;}_, from {1,...,n}, independently and with replacement; thus, Pi = Pz (i1, ... , i.).

Consider the function .
F it ... i) = pr - P:z«HF

We will show that changing one i; at a time does not change F' too much; this will enable us to
apply a martingale inequality. To this end, consider changing one of the 4; to zt while keeping the
other 7,’s the same. Then, construct the corresponding P’ and i'. Note that P’ differs from P in
only a single column, z’ differs from Z in only a single row. Thus,

~ ~ P(lt) . P(th)x,
HPi -PE| = T _ . (13)
F api, i, ||,
2163
< gmax s (14)
q ¢ Pe ||

n
= 2] pW (15)

121




(15) follows from the particular form of the probabilities used and since z; < ¢;. Define A =
% S, ¢ |PD|. Therefore, we see that

+A

pr _ P@H < pr _ Py
F F

and that :
pr _pPF

< pr—%H +A
F F
Thus F satisfies
|F (ity ooy niq) = F (i1, i, .o dg) | S A

Define v = /2qlog(1/d)A and consider the associated Doob martingale. By the Hoeffding-
Azuma inequality,
Pr[£5] < exp (—7%/2¢A?) = 4.

This completes the proof of the claim.
In order to prove (9), note that (11) implies that with probability at least 1 — § there exists
some vector v such that P# = Pz 4 v and such that |v| < \7/7_ >Xr ‘P ‘ (9) follows since

Pz < b by assumption and since v < % (X e ‘P(i) D 1, componentwise. Next, we prove (10).
Using linear programming duality, the hypothesis of the theorem implies that there exists a
non-negative r X 1 vector u such that the following LP is infeasible

n
ZUTP(i)xiguTb 0<x;<¢, 1=1,2,...n
i=1
Choosing z* such that z} = ¢; if (ul P); < 0 and z} = 0 if (u’ P); > 0, this implies that

n

Zci(uP); > ulb (16)

=1

Since uTPx—uTﬁfc‘ < lullp HP:E—]%E‘ . and |ullp = [Jull, = (i, v )1/2 < S ui| =
> i, u; we can use (11) to see that with probability at least 1 — 4§

" Py — " Pi| < (Z uz> —Z ci

i=1

PO,

Thus, with probability at least 1 — 4,

n

uIP T N
Pz >u P:JU—(ZUZ>— ¢ |P
\/_2:1

Define event &3 to be the event that
Ci n
-(u Tp); u; | —=
2 - (Sw) Xl

By applying (17) to the z* defined above and using (16) it follows that Pr[£3] > 1 — . Under
&3, we claim that the following Linear Program is infeasible:

S L plg, <p- L (Z

1€Q qapi \/a i=1

Q

p®

)i 0<z; <c, VieQ (18)



This is because, if the above Linear Program had a feasible solution z, then (since u is a non-
negative vector) 2 would also satisfy

1 " n
Z_( TP)isz' < ub — (Zm) %lzzlcz

icQ qpi im1

p®

contradicting £3. The theorem then follows.
o
We next present Theorem 3, which is quite similar to Theorem 2, except that we construct
the sample @ according to the probability distribution (20).

Theorem 3 Let P be a r X n matriz and b be a r x 1 vector. Let P denote the i-th column of
P and consider the following Linear Program:

n
Pz = ZP(i)xi <b 0<z <cgc. (19)

=1

Suppose q is a positive integer and Q is a random subset of {1,2,...n} with |Q| = q formed by

picking elements of {1,2,...n} in q i.i.d. trials, where, in each trial, the probability of picking

the i-th element is

iy = ] P [?

pi =Prly =1 = 5
1P|/

(20)

Let 1, denote the r x 1 all-ones vector. If the Linear Program (19) is feasible then, with probability

at least 1 — ) )
— POz <b+ ——|z| |P|| 1 0<z;<ci,i€Q 21
ieZqui i 5\/§||H e 1y i <6 (21)

is feasible as well. If the Linear Program (19) is infeasible then, with probability at least 1 — §

1 1 -
— POz, <b— ——|z| |P||»1 0<z;<ci,i€Q 22
%qpi i < 5\/§||H I Lr <z < (22)

is infeasible as well.

Proof: We follow reasoning similar to that used in the proof of Theorem 2. We first claim that
Pz is well approximated by PZ = Zz‘eQ #P(i)mi, i.e., that

- 1
_PE| < — >1-06.
Pr [pr PmHF <571 ||P||F] >1-4 (23)

To establish the claim, first note that

B [re-ra],] < ;
F q

and then apply Markov’s inequality. (21) then follows immediately since there exists a vector v
such that with high probability Pz = Pz + v, where |v| < ﬁ |z| || P|| 7 (22) follows by using

1

— |p®
bi

M:

) 1/2 .
Ixz'|2> < N = 1Pl (24)

=1

LP duality in a manner similar to the proof of Theorem 2.
o



Figure 1: Diagram illustrating feasible sub-programs (9) and (21).

(Px);
bi l
|7'
b; — 0b t | t
(P#);

Figure 2: Diagram illustrating infeasible sub-programs (10) and (22).

Note that establishing (23) in Theorem 3 (respectively, (11) in Theorem 2) uses ideas that
are very similar to those used in [13] for approximating the product of two matrices. Once we are
given (23) (respectively, (11)) then the proof of (21) (respectively, (9)) is immediate; we simply
show that if the original LP has a solution then the sampled LP also has a solution since PZ is
sufficiently close to Px. On the other hand, proving (22) (respectively, (10)) is more difficult;
we must show that the non-existence of a solution of the original LP implies the same for the
randomly sampled version of the LP. Fortunately, by LP duality theory the non-existence of a
solution in the LP implies the existence of a certain solution in a related LP.

In order to illustrate the action of Theorems 2 and 3, consider Figures 1 and 2.  Figure 1
illustrates that when LP, e.g., (19), is feasible each of the (Px); is less than the corresponding

b;. Let 0b = % for Theorem 2 and let §b = 5_\1/6 |z| | P|| for Theorem 3. Recall that with high

probability (P#); is not much more than (Pz);; thus, if the right hand side of the constraint
is increased by that small amount, i.e., b; is replaced by b; + db then we will still have that
(Pi); < b; + 0b. Similarly, Figure 2 illustrates that when LP (7) is infeasible at least one of the
(Pz); is greater than the corresponding b;. Recall also that with high probability (P#); is not
much less than (Pz);; thus, if the right hand side of the constraint is decreased by that small
amount, 1.e., b; is replaced by b; — §b then we will still have that (P:i)l > b; — b and the constraint
will still not be satisfied.

A special case of these results occurs when ¢; = 1 for all ¢, since in that case the Cauchy-
Schwartz inequality implies 37 ; |P®¥| < \/n||P||;». The induced LPs (21) and (22) in Theorem
3 may then be replaced by

1 . 1 -
Z—P(%igbi—,/ﬁHPllFlr 0<zi<ci,i€Q. (25)
ico qpi o\ g



Similarly, the induced LPs (9) and (10) in Theorem 2 may then be replaced by

qu xz<bin\f||P||F 0<z:<1,i€Q. (26)

1€Q

For both Theorem 2 and Theorem 3 detailed information is available only for the matrix
P; the only information available for x is a general bound on its elements. Thus, it is not
possible to construct sampling probabilities which are optimal in the sense of [13]; nevertheless, the
bounds we have obtained are sufficient for certain applications. Note that these two theorems are
complementary in the following sense. Using the SELECT algorithm of [13] we see that computing
the probabilities (8) of Theorem 2 requires O(m +n) space while computing the probabilities (20)
of Theorem 3 requires O(1) space [13]. On the other hand, with (8) we can obtain the results
we want with probability at least 1 — ¢ with a sampling complexity of ¢ = O(n?) = O(log 1/6)
while with (20) we require ¢ = O(1/62) samples. In our Max-Cut application, since we want
a sampling complexity and running time that are constant, independent of n, we will use the
probabilities (20) and Theorem 3; that this will require ¢ = O(1/§2) samples will translate into
substantially worse sampling complexity as a function of 1/e. It is an open problem whether, for
an LP problem, one can construct sampling probabilities in O(1) space while needing a sampling
complexity of only ¢ = O(log1/J).

4 An Approximation Algorithm for Max-Cut

In this section we present and analyze a new approximation algorithm for the Max-Cut problem.
Recall that the Max-Cut of a graph G with weighted adjacency matrix A is:

MAX-CUT [G] = MAX-CUT [4] = max T A(1, — ), (27)
zeq0,1}™

where 1, is the all-ones n x 1 vector and z is the characteristic vector of the cut, i.e., it is a 0-1
vector whose i-th entry denotes whether vertex ¢ is on the left or right side of the cut. In Section
4.1 we introduce and describe the APPROXIMATEMAXCUT algorithm, in Section 4.2 we provide a
discussion of sampling and running time issues, and in Section 4.3 we present Theorem 4, which
establishes the correctness of the algorithm. Then, in Section 4.4 we present the intuition behind
the proof of Theorem 4 and in Section 4.5 we present the proof of Theorem 4.

4.1 The Algorithm

Consider the APPROXIMATEMAXCUT algorithm which is presented in Figure 3 and which takes
as input an n X n matrix A, which is the weighted adjacency matrix of a weighted undirected
graph G on n vertices, and computes an approximation Zr;pg to MAX-CUT [A]. In order to
compute Zr,pg, the APPROXIMATEMAXCUT algorithm uses the CONSTANTTIMECUR algorithm
of [15] to compute a constant-sized description of three matrices, C, U, and R, whose product
CUR ~ A. In addition, from the (not explicitly constructed) matrices C and R two constant-sized
matrices, denoted C' and R, consisting of ¢ rows of C' and the corresponding ¢ columns of R, each
appropriately rescaled, are constructed. These matrices are used in the construction of the linear
programs LPg(u,v); the algorithm then checks whether a constant number of these LPs (each
on a constant number ¢ of variables) are feasible and returns the maximum of an easily-computed
function of the feasible vectors as the approximation Zypg of MAX-CUT [A4].

In order to prove Theorem 4, which establishes the correctness of the algorithm, we will require
four levels of approximation and we will have to show that each level does not introduce too much
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APPROXIMATEMAXCUT Algorithm

Input: A € R™*", the weighted adjacency matrix of a graph G = (V, E), and €, an error
parameter.

Output: Z;pg, an approximation to MAX-CUT [A].

e Let s = ©(1/€%) be the number of columns/rows of A that are sampled for the CUR
approximation, let ¢ = poly(1/e€) exp(poly(1/€)) be the dimension of the randomly sampled
Linear Program, and let () be the set of indices of the sampled variables.

e Compute (using the CONSTANTTIMECUR algorithm of [15]) and store the s x s matrix U.
e Compute and store the matrices C' and R.

e Construct all possible vector pairs (u,v) € [—v/n||Allp,v7n|Al|z]? in increments of
(e/4s)y/n||Al|z. Let QA be the set of all such pairs.

e For every pair (u,v) € Qa check whether the Linear Program LPg(u,v)
u— Vil Alp T < >ico 7w Cliy®i <u+ vl Alp L
0= £V lAlp Ty € BRI, = Ticq b B <o+ £yvalAlp 1,
z; €10,1], 1 €Q
is feasible, and select (u,v) such that u"Uv is maximized among all feasible pairs.

e Return Zyppg = alUv.

Figure 3: The APPROXIMATEMAXCUT Algorithm
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error. At the first level of approximation we will use the CONSTANTTIMECUR algorithm of [15]
in order to compute a constant-sized description of C, U, and R; this will enable us to reduce ap-

proximating MAX-CUT [4] to MAX-CUT [C ﬁ'R} At the second level of approximation we

will reduce approximating MAX-CUT [C f]R] to checking the feasibility of a large but constant

number of Integer Programs (IPs) IP(u,v) (of the form IP (37)) and returning the maximum of
an easily-computed function of them. At the third level of approximation we will consider the
LP relaxation of these IPs and construct a large but constant number of LPs LP(u,v) (of the
form LP (43)). Finally, at the fourth level of approximation we will sample from each of these
LPs and construct the constant-sized randomly-sampled LP¢g(u,v) (of the form LP (47)). By
combining these results, we will see that approximating MAX-CUT [A] can be reduced via four
approximation steps to testing the feasibility of LPg(u,v) for every (u,v) € Qa, where Q4 is a
large but constant-sized set that is defined below. Note that sampling and thus failure probabili-
ties enter only at the first and fourth level of approximation, i.e., they enter when approximating

MAX-CUT [A] by MAX-CUT [CﬁR} since with some (small) probability CUR may fail to

provide a good approximation to A, and they enter when approximating LP(u, v) by LPg(u,v)
since with some (small) probability the sampled version of the LP may fail to be close to the
original LP.

4.2 Analysis of the Implementation and Running Time

In the APPROXIMATEM AXCUT algorithm, three passes over the matrix are performed. In the first
pass, the row and column probabilities with which to sample from A in order to construct C' and
R are chosen in constant additional space and time. In the second pass, probabilities are chosen
with which to sample rows of C' in order to construct a matrix from which the approximate SVD
may be performed and thus from which U may be computed; this requires constant additional
space and time, as discussed in [15]. In addition, in the second pass probabilities are chosen with
which to sample rows of C' and the corresponding columns of R in order to construct a matrix
for the sampled version of the linear program; since we use probabilities (20) this also requires
constant additional space and time, as discussed in [13]. Then, in the third pass, the relevant
quantities are extracted and the computations are performed to compute the C' UR decomposition.
In addition, in the third pass, rows of C' and the corresponding columns of R are chosen and from
them C and R and thus the sampled LP (47) are constructed; in particular, RI, c R (and thus
the right hand side of the LP written as (44)) can be computed in constant additional space and
time. Note that the sampling for the sampled LP is independent of and thus does not conflict
with the sampling for CUR. Overall, our algorithm keeps the s x s matrix U, an O(s)-lengthed
description of C' and R and the ¢ x s matrix C' and the s X ¢ matrix R. Since s = O(1/€®) and
g = poly(1/e€) exp (poly(1/e€)) the total additional space and time is poly(1/e) exp (poly(1/e)).

4.3 The Main Theorem

Theorem 4 is our main theorem; note that the 3/4 is arbitrary and can be boosted to any number
less than 1 using standard methods.

Theorem 4 Let A be the nxn weighted adjacency matriz of a graph G = (V, E), let € be fized, and
let Zrpg be the approzimation to the MAX-CUT [A] returned by the APPROXIMATEMAXCUT
algorithm. Then, with probability at least 3/4

|Z1pg ~ MAX-CUT [4]| < en || Al
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The algorithm makes three passes, i.e., three sequential reads, through the matriz A and then uses
constant (with respect to n) additional space and constant additional time. The algorithm chooses
a random sample of A according to a nonuniform probability distribution.

4.4 Intuition behind the Proof of Theorem 4

In order to prove Theorem 4, we will require four levels of approximation, and we will have to
show that each level does not introduce too much error. We note that the algorithm and its
analysis use ideas similar to those used in [17, 2] for the case of uniform sampling.

In the first level of approximation we will use the CONSTANTTIMECUR algorithm of [15]
and sample s = ©(1/€e3) rows and columns of the matrix A in order to compute a constant-
sized description of C, U, and R. As discussed in [15] the description consists of the explicit
matrix U and labels indicating which s columns of A and which s rows of A are used in the
construction of C' and R, respectively. From Theorem 1 we see that under appropriate assump-
tions on the sampling probabilities (which we will satisfy) CUR is close to A in the sense that

‘ A— C’(]'RH2 < €||A]| p with high probability. A good approximation to MAX-CUT [4] is pro-
vided by MAX-CUT [Cﬁ'R], which is the Max-Cut of the graph whose weighted adjacency

matrix is CUR. This is shown in Lemma 1. Thus, it suffices to approximate well

MAX-CUT [CUR] = max +TCUR(1, — ).
zeq0,1}™

We will see that that with high probability |CTz| < v/ ||A]|,» and ‘R(fn - x)‘ < i llAllp.

Thus, both CT'z and R(1, — ) lie in [—v/7 |All 7, vVl Al g5 Let Q@ = [—v/n||All g /7 || Al )%
and consider the set of vectors (u,v) € . Suppose we pick the vector pair (%,7) that satisfies
the following two conditions:

1. (feasibility) There exists a vector z € {0,1}" such that the pair (u,v) satisfies

-

cTz=a and R(1, —z) =,

2. (maximization) (,7) maximizes the value u’ Uv over all such possible pairs.

For such a (u,v) the vector z defines a Max-Cut of the graph with weighted adjacency matrix
CUR and thus 4’ U = MAX-CUT |CUR].

We will then perform a second level of approximation and discretize the set of candidate vector
pairs. Let Qa denote the discretized set of vector pairs, where the discretization A is defined
below. Consider the set of vectors (u,v) € Qa and suppose we pick the vector pair (u,v) that
satisfies the following two conditions:

1’. (approximate feasibility) There exists a vector z € {0, 1}" such that the pair (u,v) satis-
fies
a— Svn|AllpT, ok
s

_ € -
v —= ;\/ﬁ HA“F 1

IN N
(VAN
N
+ o+
[V I IV e )
S8
S
S
=ty Jg-‘l
[
=
[N

R(1, — &)

IN
S

8§
i.e., there exists a vector Z € {0,1}" such that the pair (u,7) satisfies

CTz~a and R(1, — )~ 0,
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2’. (maximization) (@,7) maximizes the value u” Uv over all such possible pairs.

In this case, we are checking whether every vector pair (u,v) € Qa in the discretized set is
approximately feasible in the sense that a nearby vector pair (u,v) € 2 satisfies the feasibility
condition exactly. This test of approximate feasibility is formalized as the integer program IP
(37). If we choose the discretization in each dimension as A = ;51/n || A||, then every vector pair
(u,v) € 2 is near a vector pair (u,v) € Qa. Thus, (subject to a small failure probability) we will
not “miss” any feasible vector pairs, i.e., for every exactly feasible (u,v) € € there exists some
approximately feasible (u,v) € Qa. Equally importantly, with this discretization, we only have
to check a large but constant number of candidate vector pairs. Taking the maximum of v’ Uv

over the feasible vector pairs (u,v) € Qa will lead to an approximation of MAX-CUT [C’(NIR].

This is formalized in Lemma 3. At this point we have reduced the problem of approximating
MAX-CUT [A4] to that of checking the feasibility of a large but constant number of IPs (of the
form (37)) and returning the maximum of an easily computed function of them.

Next, we reduce this to the problem of checking the feasibility of a large but constant number
of constant-sized LPs on a constant number ¢ of variables (of the form (47)) and returning the
maximum of an easily computed function of them. We do this in two steps. First, we will
perform a third level of approximation and consider the LP relaxation of the IP. Since this LP
has a very special structure, i.e., even though the LP lies in an n-dimensional space the number
of the constraints is a constant independent of n, there exists a feasible solution for the LP that
has at most a constant number of non-integral elements. We will exploit this and will consider
an LP (see LP (43)) which is a slight tightening of the LP relaxation of the IP; in Lemma 4 we
will prove that if the IP is infeasible then the LP is infeasible as well. Then, we will perform a
fourth level of approximation and construct a constant-sized randomly-sampled LP on a constant
number ¢ of variables, such that the infeasibility of the LP on n variables implies, with probability
at least 1 — 0%, the infeasibility of the LP on ¢ variables; see LP (47) and Lemma 5. This last
level of approximation involves sampling and thus a failure probability. Since there are a constant
number (8—5)28 of values of (u,v) € Qa to check, by choosing * to be a sufficiently small constant
independent of n, the probability that any one of the large but constant number of sampling
events involved in the construction of the constant-sized LPs will fail can be bounded above by
1/8. From Lemmas 6 and 7, Theorem 4 will then follow.

4.5 Proof of Theorem 4

We will prove that |Z;pg — MAX-CUT [A]| < O(e)n ||A||p, where Z1pg is the output of the
APPROXIMATEMAXCUT algorithm and is also defined in (49); by suitable choice of constants
it will then follow that |Z;pg — MAX-CUT [A]| < en | A|p, establishing Theorem 4. The
first step of our proof is to compute the CUR approximation to A. Lemma 1 guarantees that

MAX-CUT [Cﬁ'R] and MAX-CUT [A] are close.

Lemma 1 With probability at least 7/8

LMAX{KHﬂcﬁﬂ-JMAX4HHWM‘SHWAM¢2

Proof: By submultiplicitivity we have that

2T(A = COR)(1, - 2)| < Jo]

n—xWA—OﬁﬂL.
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In addition, for every z € {0,1}" we have that that |z|

1, - x‘ < n/2. Since CUR is constructed

with the CONSTANTTIMECUR algorithm of [15], ‘A - 0(7RH2 < ¢]|All p holds with probability

at least 7/8. In the remainder of the proof, let us condition on this event holding. Thus, for all
z €{0,1}",

27 (A= COR)(T, - 2)| < en Al /2 (28)

Let 1 be a vector that maximizes MAX-CUT [C’f]R] and let zo be a vector that maximizes
MAX-CUT [4], i.e., z1 and z9 are such that

T A(1, —2) = MAX-CUT [4] (29)
«TCUR(, — 1) = MAX-CUT CUR}. (30)

—

Clearly then

IA

eT AT, —21) MAX-CUT [4] (31)
TOUR(, — 22) < MAX-CUT [CUR} . (32)

Since (28) holds for every z € {0,1}" it follows from (28), (29), and (32) that

MAX-CUT [A] - MAX-CUT [C(?R} < enl|lAllp /2. (33)
Similarly, it follows from (28), (30), and (31) that

MAX-CUT [CUR} — MAX-CUT [4] < en || Al /2. (34)

The lemma follows by combining (33) and (34).
o
The next step of the proof is to show that Z;p is close to MAX-CUT [CUR], where Z7p is

defined in (39). To this end, we first note the following lemma.

Lemma 2 After accounting for the failure probability of Lemma 1, both of the following hold:
CTx| < VnlAllp (35)
R, -2)| < ValAlg. (36)

Proof: Note that |CTz| < ||C||p ||, that by Theorem 1 [|C||z = [|Allf, and also that |z| < /n

since z € {0,1}". Similarly for ‘R(fn - :1:)‘

o
Let u,v be s dimensional vectors such that u,v € [—v/n [|A|p, /7 [|Allp]°, where s = O(1/€®) is
the number of rows/columns that determines the size of the matrices in the CU R decomposition,
and define

u— SV Alp L < 'z <u+ Sy l|lAlp T,
IP(u,v) = v—<Vn|Allp1s < BRI, —2) <v+</n|AllpT, (37)
z € {0,1}"
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The vectors v and v will be used to approximate possible values for C”'z and R(fn — ), respec-

tively. Recall that
= [=vulAlp, Vol Al

and that Q4 is the discretized set of vector pairs, where the discretization is A = Sv/n||A]| in
each of the 2s directions. Let

Frp = {(u,v) € Qa : IP(u,v) is feasible} (38)

denote the set of all pairs (u,v) such that the IP(u,v) is feasible and let (u,v) be the pair that
maximizes u! Uv over all pairs (u,v) € Frp, and let

Zrp= max ulUv. (39)
(uv)EFTIP

By the fineness of the discretization, Frp is not empty. (Note that with the error permitted in
IP (37) it would suffice to discretize  with the coarser discretization £/n||A||;; in particular,
doing so would suffice (up to failure probability which can be made small) to check whether there
existed any (u,v) € 2 for which x was exactly feasible. We opt for the finer discretization since,
although it is wasteful in terms of constant factors at this point in the discussion, we will need the
finer discretization later and in the interests of simplicity we prefer to work with a single grid.)

The following lemma shows that Z;p is an approximation to MAX-CUT [C’(NIR].

Lemma 3 ~
Zip — MAX-CUT [CUR] ‘ < O(e)n || Al .

Proof: Let 1 be such that «TCUR(I, — 1) = MAX-CUT [CUR} and let (u1,v;) be the

corresponding (u,v) pair. It follows that

ACOR, ~m) ~ o OR(, — )| < [oTC~of| 0] 18I, [T - =
€ (1/€)
< (Sevaan) (F42) nateva o
F
< Ol Allp- (41)

(40) follows from Theorem 1 and since

s 1/2
€
o7 0 —uf| < v lAl (Z) =~V || Allp V5,
=1

and (41) follows since s = O(1/€®). Similarly,

‘UITUR(LL — 1) — u{ﬁvl‘ < ‘ul ‘ HUH ‘R —z1) — vl‘
< (valaly) (F5r2) (Zzvalale)
< O(e)n||Allp - (42)

By summing (41) and (42) the lemma follows.
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By combining Lemmas 1 and 3, we have reduced the problem of approximating MAX-CUT [A]
to the problem of finding the pair (&, ?) that maximizes uZUv over all pairs (u,v) € Frp and
then returning Zrp. Thus, to prove Theorem 4, it suffices to prove that Zjpg, which is returned
by the APPROXIMATEMAXCUT algorithm and which is defined in (49), is with high probability
an approximation to Z;p to within additive error O(e)n ||Al| 5.

To this end, let us consider a single (u, v) pair. We relax the IP (37) by removing the integrality
constraints and we also slightly tighten the other constraints by 5-+/n || Al . Note that we do not
need a finer discretization since the original discretization was overly fine for the IPs (37). Define

u— 5:v/n || Al p I, < > i1 Ci) i <u+ 5vnl|lAdly 1,
LP(u,0) =< v—£vn|AlpI, < SF RO1—2) <v+ £vnllA|p1 (43)
x; € [0, 1].

The particular tightening chosen above guarantees that if IP(u,v) is infeasible then LP(u,v) is
infeasible, as is proven in Lemma 4. Let us first write LP (43) in the form (19):

cr ut EVAIAlT,

— £ —

-c —ut gvallAlpT
R —v+ 50 ||Allp 15 + R1,

where P € R¥*" and b € R*. Note that the following lemma does not involve randomization
and thus always holds.

Lemma 4 IfIP(u,v) is infeasible, then LP(u,v) is infeasible.

Proof: Assume that LP(u,v) has a feasible solution. Then, since there are at most 4s constraints
n (44), there exists a feasible solution LP(u,v) with at most 4s fractional values. By rounding
these fractional values up to 1, the constraints of (44) may be violated, but not by more than
4s max; j{|Ci;|,|Rij|} < 4s||Al|p. Since asymptotically s*> < ey/n/8, if the constraints of LP
(44) are relaxed by (€/2s)y/n||A||p, then the new constraints are satisfied by the integral-valued
solution. Thus, IP(u,v) has a feasible solution, and the lemma follows.

o
Since each LP(u,v) of the form (43) or (44) is an LP over n variables, we next perform random
sampling and construct a g-variable LP which is a sub-program of the LP(u,v). In order to
sample from this LP, we randomly sample ¢ columns of P; we do this by choosing ¢ elements
from {1,2,...n} in i.i.d. trials, where the probability of picking i is

|Cay, RO
s — _ (15)
>i=1 |Ciys RO|

where ‘C’(i),R(i)‘Q = Z;ZI(C’% + RJQZ) Since z is such that 0 < z; < 1 for every i, these

probabilities are of the form (20) for the P matrix given by (44). Let @ denote the subset of
{1,2,...n} that is picked. Let P be the corresponding sampled (and appropriately rescaled)
matrix, and let C' and R be the corresponding sampled and rescaled versions of C' and R (formed
from the sampled ¢ rows of C' and the corresponding ¢ columns of R). Since ||P||% = 4| A|%, if
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we tighten the constraints by = \/_f n||A|| z, where 6* is a failure probability in Lemma 5 below,
then the constraints from the sampled version of the LP take the form:

€ 2 o 1 € 2 —

= (g VAP L S SgiCan  <ut (5 - g valdlsd
€ = € .
—(25 5*f)f||AuF <RIy Yieq gy B Sv+(g— )ﬁnAnpls

or equivalently,

VAN

/\

2
0*\/q

o ut (5 — 3 *2 V|| Allp I,
3 _p v+ (£ 7 ) VrllA 1, - R1,
Pi = CI?T i< 285 14l . (46)
Y —u+ 2_5_5*—\/5)\/7||A“F 5
R ) . .
~v+ (5 - 525) valAle 1, + R,

With this tightening, the infeasibility of LP (44) implies, with high probability, the infeasibility
of the sampled LP, as is proven in Lemma 5. Since §* and ¢ are at our disposal, let us choose
them such that 1/0*q = €/4s; then we may define

— £VnAll 1, < >ico 7 Cliyi <u+ £ ||Allp1
LPo(u,v) = v—£vVnlAllp1s < Rlp -3 - BP7 <o+ SvallAlp 1 (47)
€0,1, i€Q

to be the sampled version of the LP (43). The following lemma is an immediate consequence of
Theorem 3 when LP (43) is written in the form (44).

Lemma 5 If LP(u,v) is infeasible, then with probability at least 1 — §* LPg(u,v) is infeasible.

Proof: Apply Theorem 3, noting that the sampling probabilities (45) are of the form (20).
o
Thus, by combining Lemmas 4 and 5 we see that, for every (u,v) pair, subject to a failure
probability which is less than §*, the feasibility of LP (47) implies the feasibility of IP (37).
Let us now consider again all (u,v) pairs. Let

Frpg = {(u,v) € Qa : LPg(u,v) is feasible} (48)

denote the set of all pairs (u,v) such that the LP¢(u,v) is feasible, let (u,v) be the pair that
maximizes u? Uv over all pairs (u,v) € Frpg, and let

Z1po = To 49
e (u,vgré%mu ° o

be the value returned by the APPROXIMATEMAXCUT algorithm. Thus, to prove Theorem 4, it
suffices to prove that Zrpq is a good approximation to Z;p; we do this in Lemmas 6 and 7.
To this end, note that |Qa| = (8s/€)**. Since s = /e® for some constant &, let us choose

. 1 /€ 2 /€8
r-5(e) (50)
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and then let us choose

K K 2k /€8
qz%(g—g) — poly(1/e) exp (poly(1/¢)) (51)

Lemma 6 With probability at least 7/8, Zrpg < Zip.

Proof: By combining Lemmas 4 and 5 we see that the for every (u,v) € Qa the feasibility of
LP(u,v) implies, with probability at least 1 —0* the feasibility of IP(u, v). The probability that
there exists a (u,v) € Qa for which the implication fails to hold is bounded above by Zﬁ?' 5",
which by the choice of  in (50) is at most 1/8. Thus, with probability at least 7/8, Frpg C Frp;
in this case, the maximization in (39) is over a larger set than the maximization in (49), and the
lemma follows.

o

Lemma 7 After accounting for the failure probability of Lemma 6 and Lemma 1,

Zip — O(e)n||Allp < Zrpg.

Proof: Let (@,7) be a pair that achieves the maximum of uZUv over all (u,v) € Fip; ie.,
a"Uv = Zrp. Although (@, %) may not be in Frp@, note that by the error permitted in IP (37)
and by the choice of the discretization A, there exists a (u,v) € Frpg that is close to (u,v).
More precisely, subject to the failure probability of Lemma 6, there exists a (u,v) € Frpg such
that ©« = u 4+ « and v = v + B for some vectors «, € R®, where every element of « and § is
no greater than $y/n ||Al|5. In this case, |a| < ﬁ\/ﬁHAHF and [8] < ﬁ\/ﬁHAHF Recall that

|71

, < O(1/e)/||A||p, subject to the failure probability of Lemma 1. In addition, note that

_ € >
@l < 0Tz + SVl Alp T,

< (14 %) valaly.

and similarly that

- € -
9] < |R(L - 2) + SVl Allp L,

< (1422 valaly.

Thus, since ulUv = (@ + o )U (5 + ), we have that

‘UTU’U — @' Uw

IN

‘aTﬁﬂ‘+‘aTU@
O(e)n [|Al| -

+ ‘aﬁﬁ‘

N

Thus,
Zip=4"Ub <u"Uv+ O(e)n || Al < Zrpg + O(e)n || Al 5,
where the second inequality is since (u,v) € Frpg. The lemma follows.

Theorem 4 follows by combining Lemmas 6 and 7 with Lemmas 1 and 3.
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5 Conclusion

We have been interested in developing improved methods to compute approximate solutions to
certain IV P-hard optimization problems that arise in applications of graph theory and that have
significant heterogeneities and /or nonuniformities. We should note that our results do not assume
that the matrix A has positive elements; we note also that, although it is less relevant to the Max-
Cut problem, our CUR decomposition and our LP lemmas do not assume that the matrix A is
symmetric; thus, e.g., they would apply to problems involving directed and weighted directed
graphs.

It is worth considering how the LP results of Theorem 2 and Theorem 3 relate to the BA-
SICM ATRIXMULTIPLICATION algorithm to approximate the product of two matrices that is pre-
sented and analyzed in [13]. When this algorithm is given as input two matrices, A € R™*"
and B € R"*P, a probability distribution {p;};" ,, and a number ¢ < n, it returns as output a
matrix C'R which is an approximation to AB, where C' € R™*¢ is a matrix whose columns are ¢
randomly chosen columns of A (suitably rescaled) and R € R®*P is a matrix whose rows are the
¢ corresponding rows of B (also suitably rescaled). The sampling probabilities

_ AW B
k-1 [A®)| By,

Pk

are the optimal probabilities in the sense of minimizing E [||AB - CR||%} These probabilities

use information from the two matrices A and B in a very particular form. If these probabilities
are used to construct an approximation CR to AB with the BASICMATRIXMULTIPLICATION
algorithm of [13] then

IAB — CR|» < O(1/Ve) [ Allp | Bllg

holds both in expectation and with high probability. In [13] we also analyze the BASICMATRIX-
MULTIPLICATION algorithm when the probabilities used are not nearly optimal; in these cases,
similar results may be obtained under additional assumptions.

An important aspect of Theorem 2 and Theorem 3 is that detailed information about only
one of the two matrices is available; the only information available about the other matrix is a
general bound on its elements. Thus, neither the probabilities (8) nor the probabilities (20) are
optimal in the sense of [13]; nevertheless, they are still sufficient to obtain useful bounds for the
applications in which we are interested. Note that in both cases if some of the bounds z; < ¢;
are tight and the remainder are poor then the final results are correspondingly poor.

It is also worth considering how our Linear Programming results relate to previous work on
perturbed LPs, e.g., [27, 28, 29]. Renegar was interested in developing a complexity theory in
which problem instance data is allowed to consist of real, and not simply rational, data; custom-
ary measures of size were replaced with condition measures [27, 28]. If one considers the linear
program with constraints Pz < b, z > 0, then in order to decide whether an instance D = (P, b)
is a consistent system of constraints, the condition measure of instance D with respect to the
feasibility decision problem is defined such that its inverse is the minimal relative perturbation
of the data vector D to obtain a system from D whose answer for the decision problem is differ-
ent than the answer for D. Spielman and Teng were interested in studying the performance of
algorithms under small random perturbation of their inputs in order to, e.g., explain why certain
algorithms with inconclusive or negative theoretical results perform quite well in practice [29].
They considered linear programs of the form: max 27z s.t. Pz < b, and they studied the per-
formance of the algorithm under slight random perturbations on the inputs. In particular, they
replace the previous LP with one of the form: max 2”7z s.t. (P+ 0G)x < b, where G is a matrix
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of independently chosen Gaussian random variables of mean 0 and variance 1 and where o is a
polynomially small variance parameter.

Our perturbed LP results are somewhat different in that we only consider perturbations of
the left hand side of Pz < b of a particular form and we then construct a right hand side, i.e.,
b+ 6b1,, where 0b € R, such that the new LP has a feasibility status that is relatable to that of
the original LP. This is different than but related to the intuition that if the LP is “very feasible”
or “very infeasible” (in the sense that all of the inequalities are easily satisfied or that there exists
an inequality that is far from being satisfied) then a slight perturbation of the data matrix (P, b)
should not change the feasibility status of the LP.

Several directions present themselves for future work. The first and most obvious is to improve
upon the present results by improving the sampling complexity with respect to 1/e. A more
ambitious improvement would be developing a PTAS for certain classes of subdense graphs.
Another extension would be to construct nonuniformly an induced sub-problem, from which the
solution to the original problem could be approximated; this would be more in line with the results
of [1, 2]. A final extension involves generalizing this work to all Max-2-CSP and more generally to
all Max-r-CSP problems. Extending our results to all problems in Max-r-CSP, r > 2, necessitates
the design of an efficient C U R-type approximation for multi-dimensional arrays which will require
an SVD-type decomposition of tensors. The significant challenges involved in the design of a
multi-dimensional version of our algorithm are worth considering since such an algorithm might
be useful in applications where multi-dimensional data are involved.
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