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Abstract

The ℓp regression problem takes as input a matrix A ∈
R

n×d, a vector b ∈ R
n, and a number p ∈ [1,∞), and it

returns as output a number Z and a vector xopt ∈ R
d

such that Z = minx∈Rd ‖Ax − b‖p = ‖Axopt − b‖p. In
this paper, we construct coresets and obtain an ef-
ficient two-stage sampling-based approximation algo-
rithm for the very overconstrained (n ≫ d) version
of this classical problem, for all p ∈ [1,∞). The first
stage of our algorithm non-uniformly samples r̂1 =
O(36pdmax{p/2+1,p}+1) rows of A and the corresponding
elements of b, and then it solves the ℓp regression prob-
lem on the sample; we prove this is an 8-approximation.
The second stage of our algorithm uses the output of
the first stage to resample r̂1/ǫ2 constraints, and then
it solves the ℓp regression problem on the new sample;
we prove this is a (1 + ǫ)-approximation. Our algo-
rithm unifies, improves upon, and extends the exist-
ing algorithms for special cases of ℓp regression, namely
p = 1, 2 [10, 13]. In course of proving our result,
we develop two concepts—well-conditioned bases and
subspace-preserving sampling—that are of independent
interest.

1 Introduction

An important question in algorithmic problem solving
is whether there exists a small subset of the input such
that if computations are performed only on this subset,
then the solution to the given problem can be approx-
imated well. Such a subset is often known as a coreset
for the problem. The concept of coresets has been ex-
tensively used in solving many problems in optimization
and computational geometry; e.g., see the excellent sur-
vey by Agarwal, Har-Peled, and Varadarajan [2].

In this paper, we construct coresets and obtain ef-
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ficient sampling algorithms for the classical ℓp regres-
sion problem, for all p ∈ [1,∞). Recall the ℓp regression
problem:

Problem 1.1. (ℓp regression problem) Let ‖·‖p

denote the p-norm of a vector. Given as input a matrix
A ∈ R

n×m, a target vector b ∈ R
n, and a real number

p ∈ [1,∞), find a vector xopt and a number Z such
that

(1.1) Z = min
x∈Rm

‖Ax − b‖p = ‖Axopt − b‖p .

In this paper, we will use the following ℓp regression
coreset concept:

Definition 1.1. (ℓp regression coreset) Let 0 <
ǫ < 1. A coreset for Problem 1.1 is a set of indices
I such that the solution x̂opt to minx∈Rm

∥∥Âx − b̂
∥∥

p
,

where Â is composed of those rows of A whose indices
are in I and b̂ consists of the corresponding elements of
b, satisfies

‖Ax̂opt − b‖p ≤ (1 + ǫ)min
x

‖Ax − b‖p .

If n ≫ m, i.e., if there are many more constraints than
variables, then (1.1) is an overconstrained ℓp regression
problem. In this case, there does not in general exist
a vector x such that Ax = b; thus Z > 0. Overcon-
strained regression problems are fundamental in statis-
tical data analysis and have numerous applications in
applied mathematics, data mining, and machine learn-
ing [16, 9]. Even though convex programming methods
can be used to solve the overconstrained regression prob-
lem in time O((mn)c), for c > 1, this is prohibitive if
n is large.1 This raises the natural question of develop-
ing more efficient algorithms that run in time O(mcn),
for c > 1, while possibly relaxing the solution to Equa-
tion (1.1). In particular: Can we get a κ-approximation
to the ℓp regression problem, i.e., a vector x̂ such that
‖Ax̂ − b‖p ≤ κZ, where κ > 1? Note that a coreset of

1For the special case of p = 2, vector space methods can
solve the regression problem in time O(m2n), and if p = 1 linear
programming methods can be used.



small size would strongly satisfy our requirements and
result in an efficiently computed solution that’s almost
as good as the optimal. Thus, the question becomes:
Do coresets exist for the ℓp regression problem, and if
so can we compute them efficiently?

Our main result is an efficient two-stage sampling-
based approximation algorithm that constructs a core-
set and thus achieves a (1 + ǫ)-approximation for the ℓp

regression problem. The first-stage of the algorithm is
sufficient to obtain a (fixed) constant factor approxima-
tion. The second-stage of the algorithm carefully uses
the output of the first-stage to construct a coreset and
achieve arbitrary constant factor approximation.

1.1 Our contributions

1.1.1 Summary of results For simplicity of pre-
sentation, we summarize the results for the case of
m = d = rank(A). Let k = max{p/2 + 1, p} and
let φ(r, d) be the time required to solve an ℓp regres-
sion problem with r constraints and d variables. In
the first stage of the algorithm, we compute a set of
sampling probabilities p1, . . . , pn in time O(nd5 log n),
sample r̂1 = O(36pdk+1) rows of A and the correspond-
ing elements of b according to the pi’s, and solve an
ℓp regression problem on the (much smaller) sample;
we prove this is an 8-approximation algorithm with a
running time of O

(
nd5 log n + φ(r̂1, d)

)
. In the sec-

ond stage of the algorithm, we use the residual from
the first stage to compute a new set of sampling prob-
abilities q1, . . . , qn, sample additional r̂2 = O(r̂1/ǫ2)
rows of A and the corresponding elements of b accord-
ing to the qi’s, and solve an ℓp regression problem on
the (much smaller) sample; we prove this is a (1 + ǫ)-
approximation algorithm with a total running time of
O

(
nd5 log n + φ(r̂2, d)

)
(Section 4). We also show how

to extend our basic algorithm to commonly encountered
and more general settings of constrained, generalized,
and weighted ℓp regression problems (Section 5).

We note that the lp regression problem for p = 1, 2
has been studied before. For p = 1, Clarkson [10] uses a
subgradient based algorithm to preprocess A and b and
then samples the rows of the modified problem; these
elegant techniques however depend crucially on the lin-
ear structure of the l1 regression problem2. Further-
more, this algorithm does not yield coresets. For p = 2,
Drineas, Mahoney, and Muthukrishnan [13] construct
coresets by exploiting the singular value decomposition,
a property peculiar to the l2 space. Thus in order to
efficiently compute coresets for the ℓp regression prob-

2Two ingredients of [10] use the linear structure: the subgra-
dient based preprocessing itself, and the counting argument for
the concentration bound.

lem for all p ∈ [1,∞), we need tools that capture the
geometry of lp norms. In this paper we develop the fol-
lowing two tools that may be of independent interest
(Section 3).

(1) Well-conditioned bases. Informally speaking, if
U is a well-conditioned basis, then for all z ∈ R

d, ‖z‖p

should be close to ‖Uz‖p. We will formalize this by

requiring that for all z ∈ R
d, ‖z‖q multiplicatively ap-

proximates ‖Uz‖p by a factor that can depend on d but
is independent of n (where p and q are conjugate; i.e.,
q = p/(p− 1)). We show that these bases exist and can
be constructed in time O(nd5 log n). In fact, our notion
of a well-conditioned basis can be interpreted as a com-
putational analog of the Auerbach and Lewis bases stud-
ied in functional analysis [24]. They are also related to
the barycentric spanners recently introduced by Awer-
buch and R. Kleinberg [5] (Section 3.1). J. Kleinberg
and Sandler [17] defined the notion of an ℓ1-independent
basis, and our well-conditioned basis can be used to ob-
tain an exponentially better “condition number” than
their construction. Further, Clarkson [10] defined the
notion of an “ℓ1-conditioned matrix,” and he prepro-
cessed the input matrix to an ℓ1 regression problem so
that it satisfies conditions similar to those satisfied by
our bases.

(2) Subspace-preserving sampling. We show that
sampling rows of A according to information in the
rows of a well-conditioned basis of A minimizes the
sampling variance and consequently, the rank of A is not
lost by sampling. This is critical for our relative-error
approximation guarantees. The notion of subspace-
preserving sampling was used in [13] for p = 2, but we
abstract and generalize this concept for all p ∈ [1,∞).

We note that for p = 2, our sampling complexity
matches that of [13], which is O(d2/ǫ2); and for p =
1, it improves that of [10] from O(d3.5(log d)/ǫ2) to
O(d2.5/ǫ2).

1.1.2 Overview of our methods Given an input
matrix A, we first construct a well-conditioned basis
for A and use that to obtain bounds on a slightly non-
standard notion of a p-norm condition number of a
matrix. The use of this particular condition number
is crucial since the variance in the subspace preserving
sampling can be upper bounded in terms of it. An ε-
net argument then shows that the first stage sampling
gives us a 8-approximation. The next twist is to use
the output of the first stage as a feedback to fine-tune
the sampling probabilities. This is done so that the
“positional information” of b with respect to A is also
preserved in addition to the subspace. A more careful
use of a different ε-net shows that the second stage
sampling achieves a (1 + ǫ)-approximation.



1.2 Related work As mentioned earlier, in course
of providing a sampling-based approximation algorithm
for ℓ1 regression, Clarkson [10] shows that coresets
exist and can be computed efficiently for a controlled
ℓ1 regression problem. Clarkson first preprocesses the
input matrix A to make it well-conditioned with respect
to the ℓ1 norm then applies a subgradient-descent-based
approximation algorithm to guarantee that the ℓ1 norm
of the target vector is conveniently bounded. Coresets
of size O(d3.5 log d/ǫ2) are thereupon exhibited for this
modified regression problem. For the ℓ2 case, Drineas,
Mahoney and Muthukrishnan [13] designed sampling
strategies to preserve the subspace information of A
and proved the existence of a coreset of rows of size
O(d2/ǫ2)—for the original ℓ2 regression problem; this
leads to a (1+ ǫ)-approximation algorithm. While their
algorithm used O(nd2) time to construct the coreset and
solve the ℓ2 regression problem—which is sufficient time
to solve the regression problem—in a subsequent work,
Sarlós [18] improved the running time for solving the
regression problem to Õ(nd) by using random sketches
based on the Fast Johnson–Lindenstrauss transform of
Ailon and Chazelle [3].

More generally, embedding d-dimensional subspaces

of Lp into ℓ
f(d)
p using coordinate restrictions has been

extensively studied [19, 7, 21, 22, 20]. Using well-
conditioned bases, one can provide a constructive ana-
log of Schechtman’s existential L1 embedding result [19]
(see also [7]), that any d-dimensional subspace of L1[0, 1]
can be embedded in ℓr

1 with distortion (1 + ǫ) with
r = O(d2/ǫ2), albeit with an extra factor of

√
d in the

sampling complexity. Coresets have been analyzed by
the computation geometry community as a tool for ef-
ficiently approximating various extent measures [1, 2];
see also [15, 6, 14] for applications of coresets in combi-
natorial optimization. An important difference is that
most of the coreset constructions are exponential in the
dimension, and thus applicable only to low-dimensional
problems, whereas our coresets are polynomial in the di-
mension, and thus applicable to high-dimensional prob-
lems.

2 Preliminaries

Given a vector x ∈ R
m, its p-norm is ‖x‖p =∑m

i=1(|xi|p)1/p, and the dual norm of ‖·‖p is denoted

‖·‖q, where 1/p + 1/q = 1. Given a matrix A ∈ R
n×m,

its generalized p-norm is

|||A|||p = (
n∑

i=1

m∑

j=1

|Aij |p)1/p.

This is a submultiplicative matrix norm that generalizes
the Frobenius norm from p = 2 to all p ∈ [1,∞),

but it is not a vector-induced matrix norm. The j-th
column of A is denoted A⋆j , and the i-th row is denoted
Ai⋆. In this notation, |||A|||p = (

∑
j ‖A⋆j‖p

p)
1/p =

(
∑

i ‖Ai⋆‖p
p)

1/p. For x, x′, x′′ ∈ R
m, it can be shown

using Hölder’s inequality that

‖x − x′‖p
p ≤ 2p−1

(
‖x − x′′‖p

p + ‖x′′ − x′‖p
p

)
.

Two crucial ingredients in our proofs are ε-nets and
tail-inequalities. A subset N (D) of a set D is called an
ε-net in D for some ε > 0 if for every x ∈ D, there is
a y ∈ N (D) with ‖x − y‖ ≤ ε. In order to construct
an ε-net for D it is enough to choose N (D) to be the
maximal set of points that are pairwise ε apart. It is
well known that the unit ball of a d-dimensional space
has an ε-net of size at most (3/ε)d [7].

Throughout this paper, we will use the following
sampling matrix formalism to represent our sampling
operations. Given a set of n probabilities, pi ∈ (0, 1],
for i = 1, . . . , n, let S be an n × n diagonal sampling

matrix such that Sii is set to 1/p
1/p
i with probability

pi and to zero otherwise. Clearly, premultiplying A
or b by S determines whether the i-th row of A and
the corresponding element of b will be included in the
sample, and the expected number of rows/elements
selected is r′ =

∑n
i=1 pi. (In what follows, we will

abuse notation slightly by ignoring zeroed out rows and
regarding S as an r′ × n matrix and thus SA as an
r′ × m matrix.) Thus, e.g., sampling constraints from
Equation (1.1) and solving the induced subproblem may
be represented as solving

(2.2) Ẑ = min
x̂∈Rm

‖SAx̂ − Sb‖p .

A vector x̂ is said to be a κ-approximation to the ℓp

regression problem of Equation (1.1), for κ ≥ 1, if
‖Ax̂ − b‖p ≤ κZ.

Finally, several proofs are omitted from this ex-
tended abstract; all the missing proofs may be found
in the technical report version of this paper [11].

3 Main technical ingredients

In this section, we describe two concepts that will be
used in the proof of our main result but that are of
independent interest. The first is the concept of a
basis that is well-conditioned for a p-norm in a manner
analogous to that in which an orthogonal matrix is well-
conditioned for the Euclidean norm. The second is
the idea of using information in that basis to construct
subspace-preserving sampling probabilities.

3.1 Well-conditioned bases We introduce the fol-
lowing notion of a “well-conditioned” basis.



Definition 3.1. (Well-conditioned basis) Let A
be an n × m matrix of rank d, let p ∈ [1,∞), and let q
be its dual. Then an n×d matrix U is an (α, β, p)-well-
conditioned basis for the column space of A if

- |||U |||p ≤ α, and

- for all z ∈ R
d, ‖z‖q ≤ β ‖Uz‖p.

We will say that U is a p-well-conditioned basis for the
column space of A if α and β are dO(1), independent of
m and n.

Recall that any orthonormal basis U for span(A) satis-
fies both |||U |||2 = ‖U‖F =

√
d and also ‖z‖2 = ‖Uz‖2

for all z ∈ R
d, and thus is a (

√
d, 1, 2)-well-conditioned

basis. Thus, Definition 3.1 generalizes to an arbitrary
p-norm, for p ∈ [1,∞), the notion that an orthogonal
matrix is well-conditioned with respect to the 2-norm.
Note also that duality is incorporated into Definition 3.1
since it relates the p-norm of the vector z ∈ R

d to the
q-norm of the vector Uz ∈ R

n, where p and q are dual.3

The existence and efficient construction of these
bases is given by the following.

Theorem 3.1. Let A be an n × m matrix of rank d,
let p ∈ [1,∞), and let q be its dual norm. Then
there exists an (α, β, p)-well-conditioned basis U for the
column space of A such that:

- if p < 2, then α = d
1

p
+ 1

2 and β = 1,

- if p = 2, then α = d
1

2 and β = 1, and

- if p > 2, then α = d
1

p
+ 1

2 and β = d
1

q
− 1

2 .

Moreover, U can be computed in O(nmd + nd5 log n)
time (or in just O(nmd) time if p = 2).

Proof. Let A = QR, where Q is any n × d matrix that
is an orthonormal basis for span(A) and R is a d × m
matrix. If p = 2, then Q is the desired basis U ; from the
discussion following Definition 3.1, α =

√
d and β = 1,

and computing it requires O(nmd) time. Otherwise,
fix Q and p and define the norm, ‖z‖Q,p , ‖Qz‖p.
A quick check shows that ‖·‖Q,p is indeed a norm.
(‖z‖Q,p = 0 if and only if z = 0 since Q has full column
rank; ‖γz‖Q,p = ‖γQz‖p = |γ| ‖Qz‖p = |γ| ‖z‖Q,p;
and ‖z + z′‖Q,p = ‖Q(z + z′)‖p ≤ ‖Qz‖p + ‖Qz′‖p =
‖z‖Q,p + ‖z′‖Q,p.)

3For p = 2, Drineas, Mahoney, and Muthukrishnan used this
basis, i.e., an orthonormal matrix, to construct probabilities to
sample the original matrix. For p = 1, Clarkson used a procedure
similar to the one we describe in the proof of Theorem 3.1 to
preprocess A such that the 1-norm of z is a d

√
d factor away from

the 1-norm of Az.

Consider the set C = {z ∈ R
d : ‖z‖Q,p ≤ 1}, which

is the unit ball of the norm ‖·‖Q,p. In addition, define

the d×d matrix F such that Elj = {z ∈ R
d : zT Fz ≤ 1}

is the Löwner–John ellipsoid of C. Since C is symmetric
about the origin, (1/

√
d)Elj ⊆ C ⊆ Elj; thus, for all

z ∈ R
d,

(3.3) ‖z‖lj ≤ ‖z‖Q,p ≤
√

d ‖z‖lj ,

where ‖z‖2
lj = zT Fz (see, e.g. [8, pp. 413–4]). Since

the matrix F is symmetric positive definite, we can
express it as F = GT G, where G is full rank and upper
triangular. Since Q is an orthogonal basis for span(A)
and G is a d × d matrix of full rank, it follows that
U = QG−1 is an n × d matrix that spans the column
space of A. We claim that U , QG−1 is the desired
p-well-conditioned basis.

To establish this claim, let z′ = Gz. Thus, ‖z‖2
lj =

zT Fz = zT GT Gz = (Gz)T Gz = z′
T
z′ = ‖z′‖2

2.
Furthermore, since G is invertible, z = G−1z′, and thus
‖z‖Q,p = ‖Qz‖p =

∥∥QG−1z′
∥∥

p
. By combining these

expression with (3.3), it follows that for all z′ ∈ R
d,

(3.4) ‖z′‖2 ≤ ‖Uz′‖p ≤
√

d ‖z′‖2 .

Since |||U |||pp =
∑

j ‖U⋆j‖p
p =

∑
j ‖Uej‖p

p ≤
∑

j d
p

2 ‖ej‖p
2 = d

p

2
+1, where the inequality follows from

the upper bound in (3.4), it follows that α = d
1

p
+ 1

2 . If
p < 2, then q > 2 and ‖z‖q ≤ ‖z‖2 for all z ∈ R

d; by
combining this with (3.4), it follows that β = 1. On the

other hand, if p > 2, then q < 2 and ‖z‖q ≤ d
1

q
− 1

2 ‖z‖2;

by combining this with (3.4), it follows that β = d
1

q
− 1

2 .
In order to construct U , we need to compute Q and

G and then invert G. Our matrix A can be decom-
posed into QR using the compact QR decomposition in
O(nmd) time. The matrix F describing the Löwner–
John ellipsoid of the unit ball of ‖·‖Q,p can be com-

puted in O(nd5 log n) time. Finally, computing G from
F takes O(d3) time, and inverting G takes O(d3) time.

3.1.1 Connection to barycentric spanners A
point set K = {K1, . . . , Kd} ⊆ D ⊆ R

d is a barycentric
spanner for the set D if every z ∈ D may be expressed
as a linear combination of elements of K using coeffi-
cients in [−C, C], for C = 1. When C > 1, K is called a
C-approximate barycentric spanner. Barycentric span-
ners were introduced by Awerbuch and R. Kleinberg
in [5]. They showed that if a set is compact, then it
has a barycentric spanner. Our proof shows that if A
is an n × d matrix, then τ−1 = R−1G−1 ∈ R

d×d is a√
d-approximate barycentric spanner for D = {z ∈ R

d :
‖Az‖p ≤ 1}. To see this, first note that each τ−1

⋆j be-

longs to D since ‖Aτ−1
⋆j ‖p = ‖Uej‖p ≤ ‖ej‖2 = 1, where



the inequality is obtained from Equation (3.4). More-
over, since τ−1 spans R

d, we can write any z ∈ D as
z = τ−1ν. Hence,

‖ν‖∞√
d

≤ ‖ν‖2√
d

≤ ‖Uν‖p =
∥∥Aτ−1ν

∥∥
p

= ‖Az‖p ≤ 1 ,

where the second inequality is also obtained from Equa-
tion (3.4). This shows that our basis has the added
property that every element z ∈ D can be expressed as
a linear combination of elements (or columns) of τ−1

using coefficients whose ℓ2 norm is bounded by
√

d.

3.1.2 Connection to Auerbach bases An Auer-
bach basis U = {U⋆j}d

j=1 for a d-dimensional normed
space A is a basis such that ‖U⋆j‖p = 1 for all j and

such that whenever y =
∑

j νjU⋆j is in the unit ball of
A then |νj | ≤ 1. The existence of such a basis for ev-
ery finite dimensional normed space was first proved by
Herman Auerbach [4] (see also [12, 23]). It can eas-
ily be shown that an Auerbach basis is an (α, β, p)-
well-conditioned basis, with α = d and β = 1 for
all p. Further, suppose U is an Auerbach basis for
span(A), where A is an n × d matrix of rank d. Writ-
ing A = Uτ , it follows that τ−1 is an exact barycentric
spanner for D = {z ∈ R

d : ‖Az‖p ≤ 1}. Specifically,

each τ−1
⋆j ∈ D since ‖Aτ−1

⋆j ‖p = ‖U⋆j‖p = 1. Now write

z ∈ D as z = τ−1ν. Since the vector y = Az = Uν
is in the unit ball of span(A), we have |νj | ≤ 1 for all
1 ≤ j ≤ d. Therefore, computing a barycentric spanner
for the compact set D—which is the pre-image of the
unit ball of span(A)—is equivalent (up to polynomial
factors) to computing an Auerbach basis for span(A).

3.2 Subspace-preserving sampling In the previ-
ous subsection (and in the notation of the proof of The-
orem 3.1), we saw that given p ∈ [1,∞), any n × m
matrix A of rank d can be decomposed as

A = QR = QG−1GR = Uτ ,

where U = QG−1 is a p-well-conditioned basis for
span(A) and τ = GR. The significance of a p-well-
conditioned basis is that we are able to minimize the
variance in our sampling process by randomly sampling
rows of the matrix A and elements of the vector b
according to a probability distribution that depends on
norms of the rows of the matrix U . This will allow us
to preserve the subspace structure of span(A) and thus
to achieve relative-error approximation guarantees.

More precisely, given p ∈ [1,∞) and any n × m
matrix A of rank d decomposed as A = Uτ , where U is
an (α, β, p)-well-conditioned basis for span(A), consider
any set of sampling probabilities pi for i = 1, . . . , n, that

satisfy:

pi ≥ min

{
1,

‖Ui⋆‖p
p

|||U |||pp
r

}
,(3.5)

where r = r(α, β, p, d, ǫ) to be determined below. Let
us randomly sample the ith row of A with probability
pi, for all i = 1, . . . , n. Recall that we can construct a

diagonal sampling matrix S, where each Sii = 1/p
1/p
i

with probability pi and 0 otherwise, in which case we
can represent the sampling operation as SA.

The following theorem is our main result regarding
this subspace-preserving sampling procedure.

Theorem 3.2. Let A be an n×m matrix of rank d, and
let p ∈ [1,∞). Let U be an (α, β, p)-well-conditioned
basis for span(A), and let us randomly sample rows of
A according to the procedure described above using the
probability distribution given by Equation (3.5), where

r ≥ 32p(αβ)p(d ln(
12

ǫ
) + ln(

2

δ
))/(p2ǫ2).

Then, with probability 1 − δ, the following holds for all
x ∈ R

m:

| ‖SAx‖p − ‖Ax‖p | ≤ ǫ ‖Ax‖p .

Several things should be noted about this result.
First, it implies that rank(SA) = rank(A), since other-
wise we could choose a vector x ∈ null(SA) and violate
the theorem. In this sense, this theorem generalizes the
subspace-preservation result of Lemma 4.1 of [13] to all
p ∈ [1,∞). Second, regarding sampling complexity: if
p < 2 the sampling complexity is O(d

p

2
+2), if p = 2 it

is O(d2), and if p > 2 it is O(dd
1

p
+ 1

2 d
1

q
− 1

2 )p = O(dp+1).
Finally, note that this theorem is analogous to the main
result of Schechtman [19], which uses the notion of Auer-
bach bases.

4 The sampling algorithm

In this section, we present our main sampling algorithm
for the ℓp-regression problem; we present a quality-of-
approximation theorem; and we outline a proof of this
threorem. Recall that omitted parts of the proof may
be found in the technical report [11].

4.1 Statement of our main algorithm and the-

orem Our main sampling algorithm for approximating
the solution to the ℓp regression problem is presented
in Figure 1.4 The algorithm takes as input an n × m
matrix A of rank d, a vector b ∈ R

n, and a number

4It has been brought to our attention by an anonymous
reviewer that one of the main results of this section can be



Input: An n × m matrix A of rank d, a vector
b ∈ R

n, and p ∈ [1,∞).

Let 0 < ǫ < 1/7, and define k = max{p/2 + 1, p}.

- Find a p-well-conditioned basis U ∈ R
n×d for

span(A) (as in the proof of Theorem 3.1) .

- Stage 1: Define pi = min
{

1,
‖Ui⋆‖

p
p

|||U|||pp
r1

}
where

r1 = 82 · 36pdk (d ln(8 · 36) + ln(200)).

- Generate (implicitly) S where

Sii = 1/p
1/p
i with probability pi and 0

otherwise.

- Let x̂c be the solution to
min

x∈Rm
‖S(Ax − b)‖p.

- Stage 2: Let ρ̂ = Ax̂c − b, and unless

ρ̂ = 0 define qi = min
{
1, max

{
pi,

|ρ̂i|
p

‖ρ̂‖p
p
r2

}}

with r2 = 36pdk

ǫ2

(
d ln(36

ǫ ) + ln(200)
)
.

- Generate (implicitly, a new) T where

Tii = 1/q
1/p
i with probability qi and 0

otherwise.

- Let x̂opt be the solution to
min

x∈Rm
‖T (Ax − b)‖p.

Output: x̂opt (or x̂c if only the first stage is run).

Figure 1: Sampling algorithm for ℓp regression.

p ∈ [1,∞). It is a two-stage algorithm that returns as
output a vector x̂opt ∈ R

m (or a vector x̂c ∈ R
m if

only the first stage is run). In either case, the output
is the solution to the induced ℓp regression subproblem
constructed on the randomly sampled constraints.

The algorithm first computes a p-well-conditioned
basis U for span(A), as described in the proof of
Theorem 3.1. Then, in the first stage, the algorithm
uses information from the norms of the rows of U to
sample constraints from the input ℓp regression problem.
In particular, roughly O(dp+1) rows of A, and the
corresponding elements of b, are randomly sampled

obtained with a simpler analysis. In particular, one can show
that one can obtain a relative error (as opposed to a constant
factor) approximation in one stage, if the sampling probabilities
are constructed from subspace information in the augmented
matrix [Ab] (as opposed to using just subspace information from
the matrix A), i.e., by using information in both the data matrix
A and the target vector b.

according to the probability distribution given by

pi = min

{
1,

‖Ui⋆‖p
p

|||U |||pp
r1

}
,(4.6)

where r1 = 82 · 36pdk (d ln(8 · 36) + ln(200)) ,

implicitly represented by a diagonal sampling matrix

S, where each Sii = 1/p
1/p
i . For the remainder of the

paper, we will use S to denote the sampling matrix for
the first-stage sampling probabilities. The algorithm
then solves, using any ℓp solver of one’s choice, the
smaller subproblem. If the solution to the induced
subproblem is denoted x̂c, then, as we will see in
Theorem 4.1, this is an 8-approximation to the original
problem.5

In the second stage, the algorithm uses information
from the residual of the 8-approximation computed
in the first stage to refine the sampling probabilities.
Define the residual ρ̂ = Ax̂c − b (and note that ‖ρ̂‖p ≤
8Z). Then, roughly O(dp+1/ǫ2) rows of A, and the
corresponding elements of b, are randomly sampled
according to the probability distribution

qi = min

{
1, max

{
pi,

|ρ̂i|p
‖ρ̂‖p

p
r2

}}
,(4.7)

where r2 =
36pdk

ǫ2

(
d ln(

36

ǫ
) + ln(200)

)
.

As before, this can be represented as a diagonal sam-

pling matrix T , where each Tii = 1/q
1/p
i with prob-

ability qi and 0 otherwise. For the remainder of the
paper, we will use T to denote the sampling matrix for
the second-stage sampling probabilities. Again, the al-
gorithm solves, using any ℓp solver of one’s choice, the
smaller subproblem. If the solution to the induced sub-
problem at the second stage is denoted x̂opt, then, as we
will see in Theorem 4.1, this is a (1 + ǫ)-approximation
to the original problem.6

The following is our main theorem for the ℓp regres-
sion algorithm presented in Figure 1.

5For p = 2, Drineas, Mahoney, and Muthhukrishnan show
that this first stage actually leads to a (1+ ǫ)-approximation. For
p = 1, Clarkson develops a subgradient-based algorithm and runs
it, after preprocessing the input, on all the input constraints to
obtain a constant-factor approximation in a stage analogous to
our first stage. Here, however, we solve an ℓp regression problem
on a small subset of the constraints to obtain the constant-factor
approximation. Moreover, our procedure works for all p ∈ [1,∞).

6The subspace-based sampling probabilities (4.6) are similar to
those used by Drineas, Mahoney, and Muthukrishnan [13], while
the residual-based sampling probabilities (4.7) are similar to those
used by Clarkson [10].



Theorem 4.1. Let A be an n × m matrix of rank
d, let b ∈ R

n, and let p ∈ [1,∞). Recall that
r1 = 82 · 36pdk (d ln(8 · 36) + ln(200)) and r2 =
36pdk

ǫ2

(
d ln(36

ǫ ) + ln(200)
)
. Then,

• Constant-factor approximation. If only the
first stage of the algorithm in Figure 1 is run, then
with probability at least 0.6, the solution x̂c to the
sampled problem based on the pi’s of Equation (3.5)
is an 8-approximation to the ℓp regression problem;

• Relative-error approximation. If both stages
of the algorithm are run, then with probability at
least 0.5, the solution x̂opt to the sampled problem
based on the qi’s of Equation (4.7) is a (1 + ǫ)-
approximation to the ℓp regression problem;

• Running time. The ith stage of the algorithm
runs in time O(nmd + nd5 log n + φ(20iri, m)),
where φ(s, t) is the time taken to solve the regres-
sion problem minx∈Rt ‖A′x − b′‖p, where A′ ∈ R

s×t

is of rank d and b′ ∈ R
s.

Note that since the algorithm of Figure 1 constructs the
(α, β, p)-well-conditioned basis U using the procedure
in the proof of Theorem 3.1, our sampling complexity
depends on α and β. In particular, it will be O(d(αβ)p).
Thus, if p < 2 our sampling complexity is O(d ·d p

2
+1) =

O(d
p

2
+2); if p > 2 it is O(d(d

1

p
+ 1

2 d
1

q
− 1

2 )p) = O(dp+1);
and (although not explicitly stated, our proof will make
it clear that) if p = 2 it is O(d2). Note also that we
have stated the claims of the theorem as holding with
constant probability, but they can be shown to hold with
probability at least 1−δ by using standard amplification
techniques.

4.2 Proof for first-stage sampling – constant-

factor approximation To prove the claims of Theo-
rem 4.1 having to do with the output of the algorithm
after the first stage of sampling, we begin with two lem-
mas. First note that, because of our choice of r1, we
can use the subspace preserving Theorem 3.2 with only
a constant distortion, i.e., for all x, we have

7

8
‖Ax‖p ≤ ‖SAx‖p ≤ 9

8
‖Ax‖p

with probability at least 0.99. The first lemma be-
low now states that the optimal solution to the origi-
nal problem provides a small (constant-factor) residual
when evaluated in the sampled problem.

Lemma 4.1. ‖S(Axopt − b)‖ ≤ 3Z, with probability at
least 1 − 1/3p.

The next lemma states that if the solution to the
sampled problem provides a constant-factor approxima-
tion (when evaluated in the sampled problem), then
when this solution is evaluated in the original regres-
sion problem we get a (slightly weaker) constant-factor
approximation.

Lemma 4.2. If ‖S(Ax̂c − b)‖ ≤ 3Z, then ‖Ax̂c − b‖ ≤
8Z.

Clearly, ‖S(Ax̂c − b)‖ ≤ ‖S(Axopt − b)‖ (since x̂c

is an optimum for the sampled ℓp regression problem).
Combining this with Lemmas 4.1 and 4.2, it follows that
the solution x̂c to the the sampled problem based on the
pi’s of Equation (3.5) satisfies ‖Ax̂c − b‖ ≤ 8Z, i.e., x̂c

is an 8-approximation to the original Z.
To conclude the proof of the claims for the first stage

of sampling, note that by our choice of r1, Theorem 3.2
fails to hold for our first stage sampling with probability
no greater than 1/100. In addition, Lemma 4.1 fails
to hold with probability no grater than 1/3p, which is
no greater than 1/3 for all p ∈ [1,∞). Finally, let r̂1

be a random variable representing the number of rows
actually chosen by our sampling schema, and note that
E[r̂1] ≤ r1. By Markov’s inequality, it follows that r̂1 >
20r1 with probability less than 1/20. Thus, the first
stage of our algorithm fails to give an 8-approximation
in the specified running time with a probability bounded
by 1/3 + 1/20 + 1/100 < 2/5.

4.3 Proof for second-stage sampling – relative-

error approximation The proof of the claims of
Theorem 4.1 having to do with the output of the
algorithm after the second stage of sampling will parallel
that for the first stage, but it will have several technical
complexities that arise since the first triangle inequality
approximation in the proof of Lemma 4.2 is too coarse
for relative-error approximation. By our choice of r2

again, we have a finer result for subspace preservation.
Thus, with probability 0.99, the following holds for all x

(1 − ǫ) ‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ǫ) ‖Ax‖p

As before, we start with a lemma that states that the
optimal solution to the original problem provides a small
(now a relative-error) residual when evaluated in the
sampled problem. This is the analog of Lemma 4.1. An
important difference is that the second stage sampling
probabilities significantly enhance the probability of
success.

Lemma 4.3. ‖T (Axopt − b)‖ ≤ (1+ ǫ)Z, with probabil-
ity at least 0.99.

Next we show that if the solution to the sampled
problem provides a relative-error approximation (when



evaluated in the sampled problem), then when this
solution is evaluated in the original regression problem
we get a (slightly weaker) relative-error approximation.
We first establish two technical lemmas.

The following lemma says that for all optimal
solutions x̂opt to the second-stage sampled problem,
Ax̂opt is not too far from Ax̂c, where x̂c is the optimal
solution from the first stage, in a p-norm sense. Hence,
the lemma will allow us to restrict our calculations in
Lemmas 4.5 and 4.6 to the ball of radius 12Z centered
at Ax̂c.

Lemma 4.4. ‖Ax̂opt − Ax̂c‖ ≤ 12Z.

Thus, if we define the affine ball of radius 12Z that
is centered at Ax̂c and that lies in span(A),
(4.8)
B = {y ∈ R

n : y = Ax, x ∈ R
m, ‖Ax̂c − y‖ ≤ 12Z} ,

then Lemma 4.4 states that Ax̂opt ∈ B, for all optimal
solutions x̂opt to the sampled problem. Let us consider
an ε-net, call it Bε, with ε = ǫZ, for this ball B.
Using standard arguments, the size of the ε-net is(

3·12Z
ǫZ

)d
=

(
36
ǫ

)d
. The next lemma states that for all

points in the ε-net, if that point provides a relative-
error approximation (when evaluated in the sampled
problem), then when this point is evaluated in the
original regression problem we get a (slightly weaker)
relative-error approximation.

Lemma 4.5. For all points Axε in the ε-net, Bε, if
‖T (Axε − b)‖ ≤ (1+3ǫ)Z, then ‖Axε − b‖ ≤ (1+6ǫ)Z,
with probability 0.99.

Finally, the next lemma states that if the solution to
the sampled problem (in the second stage of sampling)
provides a relative-error approximation (when evaluated
in the sampled problem), then when this solution is
evaluated in the original regression problem we get a
(slightly weaker) relative-error approximation. This
is the analog of Lemma 4.2, and its proof will use
Lemma 4.5.

Lemma 4.6. If ‖T (Ax̂opt − b)‖ ≤ (1 + ǫ)Z, then
‖Ax̂opt − b‖ ≤ (1 + 7ǫ)Z.

Clearly, ‖T (Ax̂opt − b)‖ ≤ ‖T (Axopt − b)‖, since
x̂opt is an optimum for the sampled ℓp regression
problem. Combining this with Lemmas 4.3 and 4.6,
it follows that the solution x̂opt to the the sampled
problem based on the qi’s of Equation (4.7) satisfies
‖Ax̂opt − b‖ ≤ (1 + ǫ)Z, i.e., x̂opt is a (1 + ǫ)-
approximation to the original Z.

To conclude the proof of the claims for the second
stage of sampling, recall that the first stage failed with

probability no greater than 2/5. Note also that by our
choice of r2, Theorem 3.2 fails to hold for our second
stage sampling with probability no greater than 1/100.
In addition, Lemma 4.3 and Lemma 4.5 each fails to
hold with probability no greater than 1/100. Finally,
let r̂2 be a random variable representing the number
of rows actually chosen by our sampling schema in the
second stage, and note that E[r̂2] ≤ 2r2. By Markov’s
inequality, it follows that r̂2 > 40r2 with probability
less than 1/20. Thus, the second stage of our algorithm
fails with probability less than 1/20 + 1/100 + 1/100 +
1/100 < 1/10. By combining both stages, our algorithm
fails to give a (1 + ǫ)-approximation in the specified
running time with a probability bounded from above
by 2/5 + 1/10 = 1/2.

5 Extensions

In this section we outline several immediate extensions
of our main algorithmic result.

5.1 Constrained ℓp regression Our sampling
strategies are transparent to constraints placed on x.
In particular, suppose we constrain the output of our
algorithm to lie within a convex set C ⊆ R

m. If there
is an algorithm to solve the constrained ℓp regression
problem minz∈C ‖A′x − b′‖, where A′ ∈ R

s×m is of
rank d and b′ ∈ R

s, in time φ(s, m), then by mod-
ifying our main algorithm in a straightforward man-
ner, we can obtain an algorithm that gives a (1 + ǫ)-
approximation to the constrained ℓp regression problem
in time O(nmd + nd5 log n + φ(40r2, m)).

5.2 Generalized ℓp regression Our sampling
strategies extend to the case of generalized ℓp regres-
sion: given as input a matrix A ∈ R

n×m of rank d, a
target matrix B ∈ R

n×p, and a real number p ∈ [1,∞),
find a matrix X ∈ R

m×p such that |||AX −B|||p is min-
imized. To do so, we generalize our sampling strate-
gies in a straightforward manner. The probabilities pi

for the first stage of sampling are the same as before.
Then, if X̂c is the solution to the first-stage sampled
problem, we can define the n × p matrix ρ̂ = AX̂c − B,
and define the second stage sampling probabilities to
be qi = min

(
1, max{pi, r2‖ρ̂i⋆‖p

p/|||ρ̂|||pp}
)
. Then, we

can show that the X̂opt computed from the second-
stage sampled problem satisfies |||AX̂opt − B|||p ≤ (1 +
ǫ)minX∈Rm×p |||AX−B|||p, with probability at least 1/2.

5.3 Weighted ℓp regression Our sampling strate-
gies also generalize to the case of ℓp regression involv-
ing weighted p-norms: if w1, . . . , wm are a set of non-
negative weights then the weighted p-norm of a vector



x ∈ R
m may be defined as ‖x‖p,w = (

∑m
i=1 wi|xi|p)1/p

,
and the weighted analog of the matrix p-norm |||·|||p
may be defined as |||U |||p,w =

(∑d
j=1 ‖U⋆j‖p,w

)1/p

. Our

sampling schema proceeds as before. First, we com-
pute a “well-conditioned” basis U for span(A) with re-
spect to this weighted p-norm. The sampling prob-
abilities pi for the first stage of the algorithm are

then pi = min
(
1, r1wi ‖Ui⋆‖p

p /|||U |||pp,w

)
, and the sam-

pling probabilities qi for the second stage are qi =
min

(
1, max{pi, r2wi|ρ̂i|p/‖ρ̂‖p

p,w}
)
, where ρ̂ is the resid-

ual from the first stage.

5.4 General sampling probabilities More gener-
ally, consider any sampling probabilities of the form:

pi ≥ min
{
1, max

{
‖Ui⋆‖

p
p

|||U|||pp
,
|(ρopt)i

|p

Zp

}
r
}

, where ρopt =

Axopt − b and r ≥ 36pdk

ǫ2

(
d ln(36

ǫ ) + ln(200)
)

and where
we adopt the convention that 0

0 = 0. Then, by an analy-
sis similar to that presented for our two stage algorithm,
we can show that, by picking O(36pdp+1/ǫ2) rows of A
and the corresponding elements of b (in a single stage of
sampling) according to these probabilities, the solution
x̂opt to the sampled ℓp regression problem is a (1 + ǫ)-
approximation to the original problem, with probabil-
ity at least 1/2. (Note that these sampling probabili-
ties, if an equality is used in this expression, depend on
the entries of the vector ρopt = Axopt − b; in partic-
ular, they require the solution of the original problem.
This is reminiscent of the results of [13]. Our main two-
stage algorithm shows that by solving a problem in the
first stage based on coarse probabilities, we can refine
our probabilities to approximate these probabilities and
thus obtain an (1+ǫ)-approximation to the ℓp regression
problem more efficiently.)
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