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ABSTRACT

Given an m x n matrix A and an integer k£ less than the rank of A, the best — with respect
to the Frobenius norm — rank k£ approximation to A is A, which is obtained by truncating
the Singular Value Decomposition (SVD) of A. While Ay is routinely used in data analysis,
it is difficult to interpret and understand it in terms of the original data, namely the rows
and columns of A which come from the application domain.

In this paper, we address the problem of obtaining low-rank approximations that are
directly expressible in terms of the original rows and columns of A. Our main results are
as follows. We present a randomized algorithm to determine a set C' of columns, whose size
is polynomial in k,log(1/d),1/e, such that the matrix A’ expressly written in terms of C
satisfies

JA - Al < (L+€) 1A - Al

with probability at least 1 — 6. This is the first polynomial time algorithm for low-rank
matrix approximation that gives relative error guarantees; all previously known methods
including the seminal work of Frieze, Kannan and Vempala [14] yield approximations with a
large additive term of € ||A]|; and are improved by our result. We further extend this result
to obtain a randomized algorithm to determine a set C' of columns and a set R of rows, both
polynomial in k,log(1/6),1/¢ in size, such that the matrix A’ expressly written in terms of
C and R satisfies
JA- Al < (L+2) A - Al

with probability at least 1 — 4. This is again the first polynomial time algorithm of this form
with relative error guarantees; previously, even existence of such C' and R were not known.

All our algorithms employ random sampling, but rather than sampling rows and columns
of A as in prior work, we carefully use information from the top few singular vectors of A. This
technique was recently introduced in [13] for the /5 regression problem, and is significantly
extended here. Our algorithms are quite simple, taking time of the order of the time needed
to compute the SVD of A, and will likely be useful in practical applications.



1 Introduction

1.1 Overview

In many applications, the data are represented by a real m X n matrix A. Such a matrix
may arise if the data consists of n objects, each of which is described by m features. Exam-
ples of objects include documents, genomes, stocks, hyperspectral images, and web groups,
while examples of the corresponding features are terms, environmental conditions, temporal
resolution, frequency resolution, and individual users. In each of these application areas,
practitioners spend vast amounts of time analyzing the data in order to understand, inter-
pret, and ultimately use this data. Often the central task in this analysis is to develop a
compressed representation of A that may be easier to analyze and interpret. By far, the
most common compressed representation is a low-rank approximation to the data matrix.
The rank p of a matrix A € R™*" (WLOG m < n) is the maximum number of linearly-
independent rows (or columns). Clearly, p < m. A low-rank approximation of A is any
matrix B of rank k < p that approximates A in some norm. The “best” such approximation
is obtained using Singular Value Decomposition (SVD). The SVD of A is given by A =
USVT, where U € R™*? ¥ € R°*?, and V € R"**. The traditional method for low-rank
approximation of A is to truncate the SVD to some k& < p. That is, define the rank-k matrix
A = UpZi VI where Uy € R™F is the first k columns of U, 3; € RF** is the top left k x k
portion of ¥ (kth principal submatrix of ), and V;, € R*** is the first k£ columns of V. It is
a classical result that Ay is the best rank k£ approximation for A in any unitarily invariant

norm; throughout this paper, we will work with the Frobenius norm (|[A|[r = /3, ; AZ)
which is one such norm. The SVD and hence the best rank-k£ approximation of a general
matrix A can be computed in O(n?m) time [16]. Henceforth, we generically use SV D(A) to
denote the time to compute the SVD of A.

This SVD-based low-rank approximation A is routinely used by data analysts. However,
there is a fundamental difficulty with it: the new “dimensions” (the so-called eigencolumns
and eigenrows) of Ay are linear combinations of the original dimensions. As such, they are
difficult to interpret in terms of the original columns and rows. For example, the vector [0.3
age + 0.7 height] being one of the significant independent “feature” or “factor” of a dataset
of people’s features is not informative. This problem is fundamental to all applications of
SVD. In addition, alternatives including weighted, structured, generalized SVD low-rank
approximations suffer from the same problem. From an analyst’s point of view, it would be
highly preferable to have a low-rank approximation that is nearly as good as that provided
by the SVD but that is expressed in terms of a small number of actual columns and actual
rows of a matrix, rather than linear combinations of those columns and rows. In addition, in
some applications, there are technical reasons why SVD based low-rank approximation is not
desirable. For example, if the input data matrix is sparse, as is common with term-document
matrices, then the orthogonalization provided by the SVD may destroy sparseness [22, 23, 3].

In this paper, we address the problem directly and focus on choosing columns and rows
for dimensionality reduction of matrices via low-rank approximation. In the next subsection,
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we describe the two parts to our main result.

1.2 Problems and Our Main Results

Column-based k-rank approximation. Let A be an m X n matrix, and let C = C(A)
be an m X ¢ matrix whose columns consist of a small number ¢ = ¢(k) of columns of the
matrix A, for a given k. A column-based low-rank approximation to A is a matrix A’ = CX,
i.e., a matrix approximation that is explicitly written in terms of some columns of A. Note
that, in general, Ay will not satisfy this condition. Notice that if ¢ = k£ then a lower bound
for ||A— A'||r is ||A — Ai||r. Rather than attempting to choose the “best” set of k columns,
we will consider the problem of using ¢ > k columns, ¢ small, so that ||[A — A’||r is close
to this lower bound. A can be written explicitly as C' and X for a total size of O(mc + cn)
saving over A’s size of O(nm). Our first result is as follows.

Theorem 1 Lete € (0,1]. Given any mxn matriz A and any positive integer k < rank(A),
let A be the best rank k approximation to A. There exists a randomized algorithm that runs
in O(SV D(A)) time and selects c = O(k*In(3/6) /%) columns of A such that, with probability
at least 1 —§:

[A=CX[lp < (1+e)[|A— Akllp,

where C' is the m X ¢ matriz whose columns are the selected columns of A, and X is the
associated ¢ x n matriz CT A, where CT is the Moore-Penrose generalized inverse. *

This result improves two lines of research in theoretical computer science. First, the
seminal work of Frieze, Kannan and Vempala from [14, 15], in our parlance, can be thought
of as sampling columns from a matrix A to form a matrix C such that |[|[A — CX||p <
||A — Ag||r + €||A||r. Here the approximation is damped by a rather large additive term
that depends on the Frobenius norm of the entire matrix A; hence, relative error approxi-
mation such as our result above is a significant improvement, and has been sought by the
community for the past few years. A series of papers have followed [14] in the past 6 years
including [1, 9, 10, 11]. All of them yield additive error approximations only. These previous
results were motivated by massive data applications and sought pass-efficient algorithms,
typically algorithms that made a single pass over the data. There has been recent progress
in decreasing the magnitude of the additive error: [21, 7] and [12] show that by performing
the random sampling in several “passes” over the matrix the additional additive error drops
exponentially with the number of passes. Still, these results do not provide a relative error
approximation such as the one we provide.

The second line of research that is relevant is the recent work by Deshpande, Rademacher,
Vempala and Wang [21, 7] that can be interpreted as showing the ezistence of a roughly k2
sized set of columns C with the relative error approximation in our theorem above. Their
existence proof is obtained by a novel volume-sampling approach which relies on estimating

!The Moore-Penrose generalized inverse, or pseudoinverse, of A may be expressed in terms of the SVD as
At = V27107 [20].
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the volume of the simplex formed by each of the k-sized subsets of the columns. It is not
clear how their methods can be modified to obtain an effective algorithm beyond enumerating
all the exponential sets of a given size. Our result provides the first-known relative error
column-based low-rank approximation in polynomial time. “Feature selection” is a broad
area that addresses the choice of columns explicitly for dimension reduction, but the metrics
there are typically optimization-based [6] or machine-learning based [5]. These formulations
tend to have set-cover like solutions and are incomparable with the linear-algebraic structure
such as the low-rank criteria we consider here that is the standard among data analysts.

Column-Row k-rank approximation Let A be an m X n matrix, let C = C(A) be an
m x ¢ matrix whose columns consist of a small number ¢ = ¢(k) of columns of the matrix
A, and let R = R(A) be an r x n matrix whose rows consist of a small number r = r(k) of
rows of the original matrix A, for a given k. A column-row based k-rank approximation to A
is a matrix of the form A’ = CUR, for a matrix U of appropriate dimensions, i.e., a matrix
approximation that is explicitly written in terms of a small number of columns and rows of
A. The combined size of C, U and R is O(mc+ rn + cr) that is, as before, an improvement
over A’s size of O(nm). As before, ¢, < n, m, p, and we want to choose C' and R and define
a matrix U such that ||A — CUR||F is as close as possible to ||A — Ag||r. Our second result
is as follows:

Theorem 2 Let € € (0,1]. Given any m x n matriz A and any positive integer k < p, let
Ay, be the best rank k approrimation to A. There exists a randomized algorithm that runs
in O(SVD(A)) time and constructs an m X ¢ matriz C consisting of ¢ = O (k*1n(6/6)/¢€?)
columns of A, an v x n matriz R consisting of r = O (k*In*(6/8)/€®) rows of A, and a cx 1
matriz U such that, with probability at least 1 — §: ||A— CUR||z < (1+¢€)||A — Aill5-

The line of research initiated by Frieze, Kannan and Vempala [14] has lead in successive
papers to additive error approximations for matrix decompositions of the form A ~ CUR,
but no relative error approximations. See [8] and also [11] for additive error approximations.
This is the first known algorithm that achieves the relative error approximation. Indeed,
unlike in the column-based low-rank approximation case, it was not even known if such C
and R exist!

Our result also has technical applications. For example, the choice of columns and
rows we present may be thought of as forming a “core set” [2] for approximate matrix
computations which will have other applications. Also, the effective algorithm we provide for
relative error approximation may also help improve algorithms for projective clustering. For
example, in [7], the authors use an exhaustive enumeration algorithm for relative error matrix
approximation to projective clustering, which can be replaced by our faster, polynomial time
algorithm in certain cases.

Finally, we should note that in linear algebra community, there are several heuristics [22,
23, 3, 18, 17] to get C, U, R like ours for low-rank approximation, but none that is comparable
in algorithms or in its proven guarantees.
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1.3 Technical Overview of Our Analysis

Our goal is to obtain low-rank matrix approximation A’ that is expressed in terms of the
columns and/or rows of A and that are almost as good in a relative-error sense as Ay,
the optimal approximation given by the SVD. We will choose C' by sampling and rescaling
columns. More precisely, C = AScD¢, where S¢ is a column sampling matrix and D¢ is a
diagonal rescaling matrix; similarly, R = DrSLA where S} is a row sampling matrix and
Dy, is a diagonal rescaling matrix. We will set W to be the intersection between the chosen
columns and rows, i.e., W = DpSEAScDc. Then the column-based approximation will
comprise A’ = CX where X = CT A, and will satisfy our Theorem 1. Likewise, A’ = CW TR
will be the column-row approximation with U = W™ and satisfy Theorem 2. The crux will
be the random sampling method we will use and the proofs of the results above.

Random Sampling Method. Our algorithm relies on randomly sampling rows and
columns. All previous work on low-rank matrix approximations beginning with the sem-
inal [14] rely on random sampling too, and they typically sample based on row/column
norms. Instead, we will sample, somewhat unusually, based on the singular vectors of A.
The precise form of sampling is somewhat complicated and is shown in the proofs. However,
it is similar to the sampling method we developed recently to solve the [l regression prob-
lem [13]. In order to construct sampling probabilities satisfying the conditions in [13] and
the ones we need here which may be thought of as generalizations of the conditions in [13],
it suffices to perform O(SVD(A)) computations, and faster procedure is not known. In the
£, regression problem, this is not interesting as an algorithm since O(SV D(A)) time suffices
to solve the entire problem. In the present paper, however, sampling in O(SVD(A)) time
will translate into a substantial improvement because there was no previously polynomial
time algorithm for column-based rank approximation with relative error, and even existence
result was not known for the column-row low-rank approximation.

Outline of Proofs. Given a matrix A and a set of its columns C', those columns clearly
form a basis for the column space of C. If we want to get the best fit for all of the columns
of A in terms of that basis, we want to solve the C X = A for the matrix X. More precisely,
we would like to solve the optimization problem:
Z= min [4-CX]p. 1)
It is well-known that the matrix X = C*A is the “smallest” matrix among those that solve
this problem. In this case, we are approximating the matrix A as A’ = CX = CCTA =
PcA where Po = CC* and by keeping only the columns C, we are incurring an error of
|A— CCTA| . Two questions arise: the first is how to choose the columns C so that
|A — CCTA|| is within relative error € of ||A — Agl||; the second is how to choose rows R
such that ||[A — CWTR||, is within relative error € of |A — CCTA||L.
For the first, we will show that, given a matrix A, we can choose a set of columns
C such that CCtA captures almost as much of A as does A, in a relative error sense.
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We can also view it from an optimization perspective above, in which case we are given
a matrix A and we are relaxing it by inserting a projection matrix P4, at the appropri-
ate spot and we are choosing the column sampling matrix to get the right results. More
precisely, let us make the following approximation: X = CtA ~ (PA,CC)Jr P4, A. This ma-
trix X is clearly suboptimal with respect to solving (1) since X = CTA is optimal, i.e.,
|A—CCHA|l, < ||A- (P4,0)" PAkAHF, but we can show that by choosing C properly,
i.e., by choosing S¢ and D¢ (the column sampling and rescaling matrices) properly, we have
that ||[A—CCTA|, < (1+¢€) [|[A— Allp-

For the second, we will show that, given a matrix A and a set of its columns C' chosen as
above, we can choose a set of its rows R such that CW ™R captures almost as much of A as
does PcA in a relative error sense. This is a technical extension of our earlier /o-regression
result [13] and is obtained by generalizing the ¢, regression problem with a matrix of right
hand side vectors (rather than just the one vector in the ¢; regression problem). We can also
view it from the optimization perspective, in which case we are given A and C and we are
relaxing the exact solution by inserting a row-sampling matrix at the appropriate spot. More
precisely, let us make the following approximation: X = CtA ~ (DR,S}YE;C)Jr DrS%A, and
note that (DRS£0)+ DrSEA = WTR. This matrix X is clearly suboptimal with respect to
solving (1) since X = C* A is optimal, i.e., ||[A — CCtA|, < ||A—CW*R||,,, but we can
show that by choosing Dy and S (the row sampling and rescaling matrices) properly we
have that ||[A —CWT'R||, < (1+¢€) ||[A—CCTA|,.

In the proof of both of these steps, the main technical challenge is to sample in a man-
ner that captures entirely a certain subspace of interest. This is required since we will be
performing operations such as pseudoinversion that are not well-behaved to missing a di-
mension, no matter how insignificant its singular vlaue is. This is different than sampling
to capture coarse statistics upto additive ¢||F||r, and it necessitates the use of more com-
plex probabilities and more sophisticated analysis. Our algorithms however are quite simple,
and easy to implement since the main part is SVD computation which is a tried-and-tested
routine.

2 Preliminaries

Let [n] denote the set {1,2,...,n}. For any matrix A € R™*", let A;),7 € [m] denote
the i-th row of A as a row vector, and let AY j € [n] denote the j-th column of A as
a column vector. For any orthogonal matrix U € R™ let U+ € R™ (™9 denote an
orthogonal matrix whose columns are an orthogonal basis spanning the subspace of R” that
is orthogonal to the subspace spanned by the columns of U. For more details on linear
algebra, see [19, 16, 4]. A result on approximating the product of two matrices by random
sampling will be used in an essential manner in this paper; it is described in detail in [9].
See Appendix A for a description relevant to this paper.
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The Column-Based Low-Rank Approximation

We consider selecting columns for relative-error column-based low-rank matrix approxima-

tion.

3.1

The Algorithm for Column Selection

We describe a randomized algorithm that satisfies Theorem 1.

1.

3.2

The algorithm computes the SVD of A

> 0 VI
A=U2VT=U[k H k}. 2
A~AVY A A OT Ep—k ij:k ()

In the above p < m denotes the rank of A, Uy € R™*?, ¥, is a p x p diagonal
matrix, and V4 € R**?. Also, 0 denotes a k X (p — k) matrix of zeros, ¥ denotes
the k x k diagonal matrix containing the top £ singular values of A, ¥, ; denotes the
(p — k) x (p — k) matrix containing the bottom p — k singular values of A, Vj denotes
the n x k matrix whose columns are the top k right singular vectors of A, and V,_;
denotes the n x (p — k) matrix whose columns are the bottom p — k right singular
vectors of A.

. The algorithm computes p;, for all i € [n]:

2

173|001/ Emv?)? [0k /)|y )]
bi = 2+ n 7 \(U) + ()2 (3)
2?21 (V;C)(j) ijl (Ep_k‘/;l—k) ‘(V’“)(j) 2221 (Ep—k‘/;;qik) !

Notice that ;¢ pi = 1.

The algorithm picks ¢ columns of A in ¢ i.i.d. trials with replacement with respect to
the probabilities p; and returns the m x ¢ matrix C' containing the sampled columns.
Equivalently, a sampling matrix S is constructed using Algorithm 1 with inputs the
p; of eqn. (3) and c. (Algorithm 1 also constructs a rescaling matrix D which is not

necessary for the construction of C' but is crucial for proving Theorem 1.) X can now
be computed as CTA in O(SVD(A)) time easily.

Proof of Theorem 1

We seek to bound the Frobenius norm of A — CC*A = A — AS (AS)" A. Toward that end,
we introduce the diagonal rescaling matrix D in the above expression. Notice that scaling
the columns of a matrix (equivalently, post-multiplying the matrix by a diagonal matrix)
does not change the subspace spanned by the columns of the matrix. This simple observation
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holds for any possible rescaling; our careful choice for the rescaling matrix D will allow us
to repeatedly apply Theorem 4 to bound the approximation error. Formally,

|A—ccta|s = ||A-(AS)(AS) AL = ||A— (ASD) (ASD)* A||;
= | UazaVE = (UaTAVISD) (UsTaVESD) " UsTaVE Hi
= |54 - (zavisD) (UazavisD)* UAzAHjm = [£4 = (avEsD) (BavisD) x4

In the above we used the unitary invariance of the Frobenius norm and (U A AVATSD)+ =
(2aVFSD)" UY. We now exploit the careful “disentangling” of the “top” singular subspace
of A from the “bottom” one in eqn. (2). Thus,

(4)

(5)

F

2 » »
HEA—(ZAVATSD) (zAVATSszAHF - H[ : } — (24V7SD) (zw}sp)*[ O’“]

F

- H[Ef_k]—(mv}sz}) (EAVATSD)*[EO ]

p—k

We bound the above two terms. Since I — ($4V{SD) (S4V] SD)jL is a projector matrix
and may be dropped without increasing a unitarily invariant norm, and so the bound on

eqn. (5) follows:
2
| < |1+ ]
F Yipk

We next bound the right-hand side term in eqn. (4). We seek an upper bound of the form
e||A— Ak||§, namely an upper bound that does not depend at all on any of the top k singular
values of A. The observation that allows us to get such a bound is:

2
= [[A= Az (6)
F

(1= (cais) avisn) ) [ o)

2 2

- (M)

F

= min
X EReXk

H [ Eok } — (2aVISD) (24VISD)" { EO’“ }

[ EO’“ } — (SaViSD) X

F

This follows from standard least squares, since (X4V1SD) (£4V{ SD)+ [ z(:)k ] is the exact

Yk

projection of the matrix [ } on the subspace spanned by the columns of ¥,VISD.

We consider a suboptimal — but very convenient for our purposes — choice for X, namely
X = (ZVISD) " %), € R**. From eqn. (7)

2

H [ 2 } — (2aVISD) (2aVISD)" { > ]

2
)
0 ol < H[ ¢ ] — (ZaVISD) (2,VTSD) " 5,

P 0

F

(8)
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We want to emphasize that our suboptimal choice of X leads to a right hand side in the
above equation that is easier to manipulate and bound. Indeed, our arguments do not seem
to provide any bound for the left hand side of eqn. (8) directly.

Let the rank of the kxc matrix V;T SD be k, and let its SVD be VI SD = UVkTSDEVkTSDVVTTSD,
k

where Uyrgp € RS, Syrg;, € R¥F and Virg, € R, Clearly k < k. The following
lemma argues that, given our choice for the p;, the rank of V,I'SD is equal to k and, even
more, all the singular values of V,I'SD are close to 1.

Lemma 1 Lete € (0,1]. Using the sampling probabilities of eqn. (3), if c > 576k*In(3/6) /€2,
then with probability at least 1—6/3: k = k i.e., rank(V;' SD) = rank(Vy), HEVkTSD S -

T <
vIsD
€/V?2, and (Ekv,f SD) = (v,j SD)+E,:1.

9 =

The proof of this lemma is adaptation of earlier work in [13] and is omitted. We manipulate
2

the right hand side of eqn. (8) using eqn. (2) and lemma 1. H [ z(:)k } — (24VFSD) (2ViFSD) " 5y

F
equals

2

S BECEA AR

0 0 S, | | V4 .
NI B oM ) ram*|
= [ o ] [EkapT_k SD (V,/SD) i

2
2

= || — = VTSD (VEsD)| + Hzp_kva,kSD (vZsD)*

=I; »

— |%, 4VE,SD (V,fSD)*Hi. (10)

(9)

F

The first term of eqn. (9) is essentially the most important point of the proof. The p;’s are
carefully constructed to guarantee that the & x ¢ matrix VZ'SD has full rank and thus its
columns — which are k-dimensional vectors — span R*. As a result, the projection of ¥ on
the subspace spanned by the columns of V;'SD is equal to Xj. Notice that ) does not
appear in eqn. (10); at this point in the proof, we have removed any dependency of the error
term on the top k singular values. We combine eqns. (4), (5), (6), (8), and (10) to get

[A—coral, < |lA— A, + HZP_,CV/)T_,CSD (V,fSD)*HF. (11)
(Note that we extracted the square root of both sides to get the above result.) We further
manipulate the second term in the right hand side of eqn. (11) by replacing the pseudoinverse
of V;'SD by the transpose of the same matrix and introducing a small additional error. The
following lemma, combined with lemma 1, motivates this manipulation by providing a small
bound for the additional error.
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Lemma 2 H(VkTSD)Jr — (V,CTSD)TH2 = HE\_/,:TSD — EVkTSDHz

The proof of this lemma is adaptation of earlier work in [13] and is omitted. Using this
lemma, the triangle inequality, and for any two matrices A and B, ||AB|, < ||B||, |A]|z

we have |[¥, VT ,SD (VISD)"|

< |[Bevitisp (D) + [Bsviisp ((sD) - (sn)")|,
< SV uSDDS Vil + |[Siksn — Surso|, (S0 4V eSD - (12)

To bound eqn. (12) we will apply lemma 3. In words, the lemma states that we can accurately
approximate the Frobenius norm of an arbitrary matrix () by looking at a carefully sampled
and appropriately rescaled subset of its columns. The lemma’s proof is via a martingale
argument. It is straightforward, but technical, and is omitted here.

Lemma 3 Let € € (0,1]. For any @ € R™ ™, construct the sampling matriz S and the
rescaling matriz D using Algorithm 1 with inputs QQ, ¢ and sampling probabilities p; s.t.

@)
diepPi = 1 and p; > %, for some B € (0,1]. If ¢ > 161n(3/6)/ (B%€*), then with
i€[n] 2

probability at least 1 — §/3:
1QSD|| < (14 ve) Q-

Lemma 4 Let € € (0,1]. If ¢ > 144k1n(3/6)/€* then, with probability at least 1 — §/3:
Hzp—kVprkSDHF <A+ Ve llA— Akllp-

To prove this lemma simply apply lemma 3 with @) = E,,,,CVPTJc and notice that our choice
of the p; (eqn. (3)) satisfies the constraint of the lemma with 5 = 1/3. (Also, we use
”ZP*kVprkHF = ||A — Ag||».) Finally, lemma 5 bounds the first term in eqn. (12).

Lemma 5 Let € € (0,1]. If ¢ > 144k1n(3/0)/€* then, with probability at least 1 — §/3:

S bV WSDDSTV = 5, VI Vil < ellA— Allp. (13)
0
= F

Proof. We apply Theorem 4 for approximating the product of two matrices to the matrices
Ep,k‘/;)T_k and Vj, noticing that the chosen p; satisfy the constraint of equation (20) with
B = 1/3. The lemma follows by our choice of ¢ and HEp_kVpT_kHF = |A = Akllp, [[Villp =
VEk. n

Let ¢ > 576k?1n(3/8)/€* and notice that with this choice of ¢, lemma 1, lemma 4, and
lemma 5 hold simultaneously with probability at least 1 —3(6/3) = 1 — . We condition the
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following derivations on the event that all three lemmas hold. First, from eqn. (12) using
lemmas 1, 4, and 5 we get

+ _
|20 #VESD(VESDY'|| < (1S5 VI SDDS™|, + [Sikep — Surso|, 50+ 4SD

HF VISD

€
< (e+ \ﬁmﬁ)) 1A = Agllp < 2.5¢ A — Ayl

(Notice that e < 1.) Combining with eqn. (11) we get ||[A — CCtA||, < (1 +2.5¢) ||A — Al
which concludes the proof of Theorem 1 by letting ¢ = ¢/2.5 and adjusting ¢ accordingly.

4 The Column-Row-Based Low-Rank Approximation

In this section, we consider selecting rows for relative-error column-row-based low-rank ma-
trix approximation. As a preliminary step, we present and analyze an algorithm for choosing
a good set of rows, i.e. a good matrix R, assuming that a set of columns, i.e., a matrix C
has been given.

4.1 Algorithm for Selecting Rows, given columns C

Consider the following idea for approximating a matrix A € R™*". Assume that we are
given any set of ¢ columns of A, forming a matrix C' € R™*¢. Consider the columns of C' as
a set of “basis vectors” that are, in general, neither orthogonal nor normal. We will express
all the columns of A as linear combinations of the columns of C. If m and n are large and
¢ = O(1), then this is an overconstrained least-squares fit problem. Thus, for all columns
AW j € [n], we can solve

min

zjERe

AU — O, (14)

in order to find a c-vector of coefficients x; and get the optimal least-squares fit for A0
Equivalently, we seek to solve

1A = CXoptll p = min |4 - CX]|p (15)
in order to express A as A ~ CX,,. Notice that X,,; € R**" is a matrix whose columns
are the coefficient vectors z;,j € [n] that minimize equation (14); also, ||[A — CXop|lp =
|A—CC* Al

We will now modify the above approach to get a CUR decomposition for the matrix
A, given C. Toward that end, we will use a generalization of the ideas in [13]. Instead of
solving the generalized least squares problem of eqn. (15) we will solve a sampled version of
the problem, constructed as follows.

1. We compute the SVD of C, C' = UsXcV, where Ug € R™*P, S € RP*P Vg € RE¥#,
and p is the rank of C.
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2. We compute p; for all i € [m]:
2

7

a0, |(Crrma) | | (vevea)

2
n
2= , i1

b = 2 4

ey |, |(veve”a)

(Uc) n Lyt
2 () ZFI (UCUC A)(j)

(16)

2

(Notice that ;e pi = 1.)

3. We create the sampling matrix S and the rescaling matrix D by running Algorithm 1
with inputs a positive integer 7 < m (to be specified in Theorem 3) and the p; of eqn.
(16).

4. We return as output the matrices R = STA € R™*" and U = (DSTC')+ D € Rexr,

The time required to compute the SVD of C is O(c?*m); computing the probabilities p;
of eqn. (16) takes an additional O(e¢mn) time. Overall, the running time of the algorithm is
O(mn) since ¢, r are constants independent of m, n.

We now provide some intuition on the construction of U and R. Consider the following
“sampled and rescaled” version of eqn. (15):

HDSTA — DSTCX oy

= i |DS"A - DS"CX]|,. (17)

X eRexn

We will essentially demonstrate that solving the “sampled and rescaled” problem and substi-
tuting its solution back to the original problem provides a simple CU R decomposition with a

DSTA—-DSTCR || = |DSTA- DSTC (DSTC)" DSTA|

and thus we let X, = (DSTC)+DSTA. We will use X,,; as an approximation to X,
(which achieves the optimal value for the full problem of eqn. (14)) and bound the error

provable error bound. First, notice that

HA O X

_ B T ~\ T T _ .
=1 C(DS™C)"DS"A|| = ||A—CUR|. (18)

U R F

Let W = STC be the r x ¢ matrix that corresponds to rows of C that are in R — equivalently,
W contains the common elements of C' and R. C' consists of a few columns of A, R consists
of a few rows of the matrix A, W consists of the elements of A that are both in C' and R,
and D is an r x r diagonal rescaling matrix. In general, (DW)*D # WT.

The following theorem is our main quality-of-approximation theorem for computing a
CUR decomposition to A given C. Its proof is a generalization of [13] and is deferred to the
full version of the paper.

Theorem 3 Let € € (0,1]. Given a m X n matriz A and an m x ¢ matriz C consisting of c
columns of A, there exists a randomized algorithm that runs in O(mn) time and constructs

an T X n matriz R consisting of 1 = 1440¢®In(3/6)/e* rows of A and a ¢ x v matriz U such
that, with probability at least 1 — §: ||A — CUR||, < (1+¢€)||[A— CCHA|,.
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4.2 Proof of Theorem 2

We now combine the results of Theorems 1 and 3 in order to obtain a relative-error approx-
imation for a matrix that is explicitly described in terms of a small number of columns and
rows of the matrix. Equivalently, we run the algorithm of Section 3 to construct a matrix
C consisting of ¢ columns of A such that ||[A — CCTA| < (1+¢€)||A — Akllz, and then we
run the algorithm of Section 4.1 to construct matrices U and R, given the computed C. If

1440k2 In(3/4) 1440%k%1n3(3/9)
28 09 14407k In7(5/9)
€

we let ¢ = and r = = then, with probability at least 1 — 20,

A= CUR||, < (1+€)* [[A = Aglly < (1+3€) [[A — Al - (19)

The proof of Theorem 2 follows by letting ' = 6/2, ¢ = ¢/3, and adjusting ¢ and r accord-
ingly.

5 Concluding Remarks

To the best of our knowledge, this is the first result addressing the problems of selection
of columns and rows to get a low-rank matrix approximation expressed in terms of those
columns and rows in polynomial time. We conclude with several open problems.

e To what extent do the results of the present paper generalize to other matrix norms.

e What hardness results can be established for the optimal choice of columns and/or
rOWS.

e Does there exist a deterministic any factor approximation algorithm to any of these
problems.
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A Review of Matrix Multiplication

The following is a result on approximating the product of two matrices by random sampling
will be used in an essential manner in this paper; it is described in detail in [9]. For simplicity
of presentation we have slightly modified the statement of the theorem for the purposes of
this paper; see Theorem 2.1 of [13] for details.

Data :p; >0,i€ [n] s.t. Zie[n] = 1, positive integer ¢ < n.
Result : sampling matrix S, rescaling matrix D.
S = Opnxe;
D = 0cx¢;
fort=1,...,cdo
Pick i; € [n], where Pr(i; = i) = p;

Sitt = 17
Dy =1//cpi,;
end

Algorithm 1: Creating the sampling matrix S and the rescaling matrix D.
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Theorem 4 Given A € R™", B € R**?, ¢ € Z" such that c < n, and sampling probabilities
{pi};_, such that Zie[n] p; =1 and

n‘A(i) ‘2' ‘B(i) ‘2 (20)
Zj:l |A(J)‘2 ‘B(j)‘Z

pi > [

(for some B € (0,1]) construct the sampling matriz S and the rescaling matriz D using
Algorithm 1. Assume that 6 € (0,1/3). Then, with probability at least 1 — §:

4y/In(1/6
|AB — ASDDS" B, < % 1Al WIBlle-



