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Abstract

Physical modeling is critical for many modern sci-
ence and engineering applications. From a data
science or machine learning perspective, where
more domain-agnostic, data-driven models are
pervasive, physical knowledge — often expressed
as differential equations — is valuable in that it is
complementary to data, and it can potentially help
overcome issues such as data sparsity, noise, and
inaccuracy. In this work, we propose a simple, yet
powerful and general framework — AutoIP, for
Automatically Incorporating Physics — that can
integrate all kinds of differential equations into
Gaussian Processes (GPs) to enhance prediction
accuracy and uncertainty quantification. These
equations can be linear or nonlinear, spatial, tem-
poral, or spatio-temporal, complete or incomplete
with unknown source terms, and so on. Based on
kernel differentiation, we construct a GP prior to
sample the values of the target function, equation-
related derivatives, and latent source functions,
which are all jointly from a multivariate Gaus-
sian distribution. The sampled values are fed to
two likelihoods: one to fit the observations, and
the other to conform to the equation. We use
the whitening method to evade the strong depen-
dency between the sampled function values and
kernel parameters, and we develop a stochastic
variational learning algorithm. AutoIP shows im-
provement upon vanilla GPs in both simulation
and several real-world applications, even using
rough, incomplete equations.
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1 Introduction

Physical modeling is omnipresent and critical to many mod-
ern science and engineering applications, including weather
and climate forecasting, bridge design, etc. To model a phys-
ical system, one usually writes down a set of ordinary dif-
ferential equations (ODEs) or partial differential equations
(PDEs) that characterize the system behavior according to
physical laws. One then identifies boundary and/or initial
conditions and solves the equations, typically via numerical
methods, to obtain the solution function on the domain of
interest. The solution is then used in the subsequent steps,
such as system evolution and design optimization.

Machine learning (ML) and data science use a different
paradigm. Methods from these areas estimate or reconstruct
target functions from observed data, rather than by solving
physical equations. To learn target functions, ML methods
typically optimize a data-dependent loss. Nonetheless, one
would hope that the knowledge reflected in physical models,
especially in ODEs and PDEs, is valuable to ML, in that this
knowledge characterizes the local behaviors or properties
of the target function, which then extrapolate to the entire
domain of interest. Hence, as a complementary information
source, physics knowledge can potentially help overcome
data sparsity, noise, and inaccuracy in measurements of
physical systems. These problems are ubiquitous in practice.

One example of an effort along these lines is provided by so-
called physics-informed neural networks (PINNs) (Raissi
et al., 2019), which use neural networks (NNs) to try to
solve physical differential equations. PINNs simultaneously
fit the boundary/initial conditions and minimize a residual
term to conform to the equation. That is, from an optimiza-
tion perspective (Boyd and Vandenberghe, 2004; Nocedal
and Wright, 2006), PINNs do not solve a constrained opti-
mization problem, where physical knowledge is included as
a constraint. Instead, they adopt a penalty method approach
(as opposed to an augmented Lagrangian method), solving a
(related but non-equivalent) soft-constrained problem. Also,
PINNs demand that the form of the equation be fully speci-
fied. From the data science perspective, this might restrict
their capability to leverage physics knowledge in a broader
sense. That is, the knowledge within incomplete equations,
e.g., those including latent sources (functions), cannot be
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incorporated. In addition, the differentiation operators on
the NN itself (in the residual) make the effective loss func-
tion quite complicated (Krishnapriyan et al., 2021), bringing
challenges in optimization/training, robustness, and uncer-
tainty quantification (Edwards, 2022).

In this work, we consider incorporating physics knowledge
into Gaussian processes (GPs). GPs are a nonparametric
Bayesian modeling approach, which is not only flexible
enough to learn complex functions from data, but also is
convenient to quantify the uncertainty (due to their closed-
form posterior distribution). In most cases, GPs perform
well with simple kernels, e.g., Square Exponential (SE),
without the need for complex architecture design and hyper-
parameter tuning; and, in many cases, methods from ran-
domized numerical linear algebra (RandNLA) (Mahoney,
2011; Drineas and Mahoney, 2016; Derezinski and Ma-
honey, 2021) can be used to speed up traditional algorithms
for GP training and computation. To this end, we pro-
pose AutoIP, a framework for Automatically Incorporating
Physics. AutoIP can incorporate all kinds of differential
equations into GPs to enhance their prediction accuracy
and uncertainty estimates. These equations can be linear or
nonlinear, spatial, temporal, or spatio-temporal, complete
or incomplete, including unknown source terms and coef-
ficients, and so on. In this way, we can boost GPs with
various sorts of physics knowledge.

In more detail, AutoIP first samples a set of collocation
points in the domain to support the equation. It then uses
kernel differentiation to construct a GP prior. This prior
jointly samples from a multi-variate Gaussian distribution
the values of the target function at the training inputs and
the values of all the equation-related derivatives and latent
sources at the collocation points. In this way, AutoIP cou-
ples the target function and its derivatives in a probabilistic
framework, without the need for conducting differential op-
erations on a nonlinear surrogate (like with NNs). Next,
AutoIP feeds these samples to two likelihoods. One is to fit
the training data. The other is a virtual Gaussian likelihood
that encourages conformity to the equation. Since any dif-
ferential equation is a combination of derivatives and source
functions (if needed), it is straightforward to combine their
sampled values correspondingly in the virtual likelihood.
In doing so, we can flexibly incorporate any equation. For
effective and efficient inference, AutoIP uses the whitening
method to parameterize the latent random variables with a
standard Gaussian noise, thereby evading their strong de-
pendency on the kernel parameters. AutoIP then jointly
estimates the kernel parameters and the posterior of the
noise with a stochastic variational learning algorithm. We
find an interesting insight that the approximate posterior
process is still a GP but with a new kernel, which maintains
the kernel differentiation property.

We illustrate our AutoIP framework in several benchmark
physical systems, including nonlinear pendulums and the
Allen-Cahn equation. We tested it with both complete and
incomplete equations. For the latter, we hid a part of the
ground-truth equation and view it as a latent source. In both
cases, our approach largely improves upon the standard GP
(i.e., without physics knowledge incorporated) in prediction
accuracy and uncertainty estimate when doing extrapolation.
Next, on two real-world benchmark datasets, Swiss Jura and
CMU motion datasets, we examined our approach when
integrating a sensible physics model that includes latent
sources. Here, the ground-truth governing equations are
unknown. AutoIP shows better prediction accuracy and
predictive log-likelihood, as compared with GP and latent
force models, a classical approach that can integrate physics
knowledge when Green’s functions are available.

2 Gaussian Process Regression
Gaussian processes (GPs) are stochastic priors in function
space. Due to their nonparametric nature, GPs can self-
adapt to the complexity of the target function according to
data, e.g., from simple multilinear to highly nonlinear, not
restricted to a specific parametric form. Suppose we aim
to learn a function f : Rd → R. When we place a GP
prior over f(·), it means that f is sampled as a realization
of a Gaussian process governed by some covariance func-
tion κ(·, ·), f ∼ GP (m(·), κ(·, ·)) where m is the mean
function, often set as the constant zero. The covariance
function captures the stochastic correlation between the
function values in terms of their inputs, and it is often cho-
sen as a kernel function. For example, a popular choice
is the Square Exponential (SE) kernel with Automatic
Relevance Determination (ARD), cov (f(x), f(x′)) =
κ(x,x′) = exp

(
− 1

2 (x− x′)⊤diag( 1s )(x− x′)
)
, where s

are the length-scales (kernel parameters). The finite pro-
jection of the GP is a collection of the values of f(·) at an
arbitrary finite set of inputs. This follows a multivariate
Gaussian distribution, where the covariance matrix is the
kernel matrix on the input set.

Consider a training dataset D = (X,y), where X =
[x1, · · · ,xN ]⊤, y = [y1, · · · , yN ]⊤, each xn is an input,
and yn is a noisy observation of f(xn). Then the function
values at the training inputs, f = [f(x1), · · · , f(xN )]⊤,
follow a multivariate Gaussian distribution, p(f |X) =
N (f |0,K) where each [K]i,j = κ(xi,xj). Given f , we
can use a noisy model to sample the observation y. A
Gaussian noise model is the commonly used one, p(y|f) =
N (y|f , β−1I) where β is the inverse noise variance. We
can then marginalize out f to obtain the marginal likelihood
of y, i.e., evidence,

p(y|X) = N (y|0,K+ β−1I). (1)

To learn the model, one often maximizes the evidence to
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estimate the kernel parameters and the inverse noise vari-
ance β. Given a new input x∗, according to the GP prior,
[f(x∗);y] also follows a multivariate Gaussian distribution.
Hence, the posterior (or predictive) distribution of f(x∗) is
a conditional Gaussian,

p
(
f(x∗)|x∗,X,y

)
= N

(
f(x∗)|µ∗, v∗

)
, (2)

where µ∗ = k⊤
∗ (K+β−1I)−1y, v∗ = κ(x∗,x∗)−κ⊤

∗ (K+
β−1I)−1k∗ and k∗ = [κ(x∗,x1), · · · , κ(x∗,xN )]⊤. Due
to the closed-form posterior, GP models are convenient for
quantifying and reasoning about under uncertainty.

3 Our AutoIP Framework
Model. To boost GPs with physics knowledge, we pro-
pose AutoIP— a framework for Automatically Incorporat-
ing Physics from all kinds of differential equations. Without
loss of generality, we use a nonlinear, incomplete PDE in
the Allen-Cahn family to illustrate the idea (Allen and Cahn,
1972). This PDE takes the form

∂tu− ν · ∂2
xu+ γ · u(u2 − 1) + g(x, t) = 0, (3)

where the target function u(x, t) is a spatial-temporal
function, g(x, t) is an unknown source term, and ν and
γ are coefficients. Note that u(u2 − 1) is a nonlinear
term. Suppose we are given N training examples, D =
{(z1, y1), . . . , (zN , yn)}, where each zn = (xn, tn). We
want our learned function not only to fit the observations but
also to conform to (3), i.e., to the known physics. To this end,
we sample a set of M collocation points Ẑ = {ẑ1, . . . , ẑM}
in the domain of interest (e.g., [0, 2π]× [0, 1]), and we aug-
ment the GP model to encourage the L.H.S of the equation
(3) evaluated at Ẑ to be close to zero.

Specifically, we first construct a GP prior over u, g and the
equation-related derivatives, i.e., ∂tu and ∂2

xu. Naturally, we
can sample u ∼ GP (0, κu(·, ·)) and g ∼ GP (0, κg(·, ·)).
The key observation is that once u is drawn, all of its deriva-
tives are determined — we do not need to draw them from
separate GPs. The covariance and cross-covariance among
u and its derivatives can be obtained from κu via kernel
differentiation (Williams and Rasmussen, 2006),

cov (u(z1), u(z2)) = κu(z1, z2),

cov (∂tu(z1), ∂tu(z2)) =
∂2κu(z1, z2)

∂t1∂t2
,

cov
(
∂2
xu(z1), ∂

2
xu(z2)

)
=

∂4κu(z1, z2)

∂x2
1∂x

2
2

,

cov
(
∂tu(z1), ∂

2
xu(z2)

)
=

∂3κu(z1, z2)

∂t1∂x2
2

,

cov (∂tu(z1), u(z2)) =
∂κu(z1, z2)

∂t1
,

cov
(
∂2
xu(z1), u(z2)

)
=

∂2κu(z1, z2)

∂x2
1

, (4)

where z1 = (x1, t1) and z2 = (x2, t2) are two arbitrary
inputs (we abuse notation a bit here for convenience —
the points z1 and z2 are different from the training in-
puts Z = {z1, . . . , zN}.) In general, we can obtain the
covariance of two arbitrary derivatives (of the same func-
tion) by taking the partial derivatives of the original kernel
with respect to the corresponding inputs (using the same
order). Since the commonly used kernels, e.g., the SE
kernel, are quite simple, we can obtain their derivatives
analytically and directly apply the result for computation.
We denote the values of the target function at the train-
ing inputs by u = (u(z1), . . . , u(zN ))

⊤, the values of
u and u’s derivatives at the collocation points by û =

(u(ẑ1), . . . , u(ẑM ))
⊤, ût = (∂tu(ẑ1), . . . , ∂tu(ẑM ))

⊤

and ûxx =
(
∂2
xu(ẑ1), . . . , ∂

2
xu(ẑM )

)⊤
, and the values of

the latent source term at the collocation points by g =

(g(ẑ1), . . . , g(ẑN ))
⊤. Then, we can leverage the covariance

functions in (4) and κg to construct a joint Gaussian prior
over f = [u; û; ût; ûxx;g],

p(f) = N (f |0,Σ). (5)

The covariance matrix Σ is block-diagonal, including a
dense block for [u; û; ût; ûxx] computed from (4) and an-
other dense block for g computed via κg . Note that we can
further model the covariance between u and g if we have
more prior knowledge. Here, we consider the general case
that assumes they are sampled from two independent GPs.

Next, we feed the sampled f to two data likelihoods. One is
to fit the actual observations from a Gaussian noise model,

p(y|f) = N (y|u, β−1I). (6)

The other is a virtual Gaussian likelihood that integrates the
physics knowledge into the differential equation (3), as

p(0|f)=N (0|ût − νûxx + γû ◦ (û ◦ û− 1)+g, vI), (7)

where v is the variance and ◦ is element-wise product. As
we can see, the mean of the Gaussian in (7) is the evaluation
of the L.H.S of (3) at the collocation points. The variance v
indicates how it is close to zero. The smaller v is, the more
consistent the sampled functions are with the differential
equation. In practice, we can either tune v or learn v to
enforce the conformity to a certain degree. Finally, the joint
probability of our model is given by

p(f ,y,0) = N (f |0,Σ)N (y|u, β−1I)

· N (0|ût − νûxx + γû ◦ (û ◦ û− 1) + g, vI). (8)

As we can see, by leveraging the kernel differentiation, our
model constructs a GP prior to sample jointly the target
function and all the basic components of the differential
equation, i.e., all kinds of derivatives and latent source terms
(if needed). We naturally couple them into a probabilistic
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framework, without the need for taking explicit differen-
tiation over some (complex) function surrogates. Then,
through the virtual Gaussian likelihood (7), we can combine
these components following arbitrary differential equation
(in the mean) to encode the physics knowledge. If there are
unknown coefficients, e.g., ν and γ in (3), we can estimate
them jointly during model inference. While simple, our
augmented GP is flexible enough to incorporate a variety of
differential equations to benefit learning and prediction.

Algorithm. In general, the exact posterior of the latent
random variables f is intractable to compute or marginalize
out (as in standard GP regression), because the virtual likeli-
hood (7) couples the components of f to reflect the equation,
which can be nonlinear and nontrivial. Hence, we develop a
general variational inference algorithm to estimate jointly
the posterior of f and kernel parameters, inverse noise vari-
ance β, v, etc. However, we found that a straightforward
implementation to optimize the variational posterior q(f)
often gets stuck at an inferior estimate. This might be due
to the strong coupling of f and the kernel parameters in
the prior (5). To address this issue, we use the whitening
method (Murray and Adams, 2010) in MCMC sampling.
That is, we parameterize f with a Gaussian noise,

f = Aη (9)

where η ∼ N (0, I), and A is the Cholesky decomposition
of the covariance matrix Σ, i.e., Σ = AA⊤. Therefore, the
joint probability of the model can be rewritten as

p(Joint) = N (η|0, I)p(y|Lη)p(0|Lη). (10)

See (6) and (7) for p(y|Lη) and p(0|Lη), respectively. We
then introduce a Gaussian variational posterior for the noise,
q(η) = N (η|µ,LL⊤), where L is a lower-triangular ma-
trix to ensure the positive definiteness of the covariance
matrix. Since the prior of η is the standard normal distribu-
tion, it does not depend on the kernel parameters any more.
We then construct a variational evidence lower bound,

L = −KL (q(η)∥N (η|0, I))
+ Eq [log p(y|Lη)] + Eq [log(p(0|Lη))] , (11)

where KL(·∥·) is the Kullback-Leibler divergence. We max-
imize L to estimate q(η) and the other parameters. We use
the reparameterization trick (Kingma and Welling, 2013)
to conduct stochastic optimization. Once we obtain q(η),
from (9) we can immediately obtain the variational posterior
of f , q(f) = N (f |Aµ,ALL⊤A⊤), according to which we
can compute the predictive distribution of the function val-
ues at new inputs. We do not consider the computational
challenge when the number of training examples (N ) and/or
collocation points (M ) is big. However, one can extend our
algorithm to a variety of sparse GP frameworks, e.g., (Hens-

man et al., 2013), and/or use methods from RandNLA (Ma-
honey, 2011; Drineas and Mahoney, 2016; Derezinski and
Mahoney, 2021) in order to handle large data.

Remarks. With the Gaussian variational approximation,
the posterior process is still a GP and maintains the link
between the function and its derivatives in terms of ker-
nel differentiation. But the kernel has changed. This
can be seen from the predictive distribution of an arbi-
trary finite set of the function and its derivative values, say
h = (u(z1), u(z2), ∂xu(z2), . . .), which is,

p(h|D)=

∫
p(h|f)p(f |D)df ≈

∫
p(h|f)N (f |mf ,Vf )df

=N (h|mh, cov(h,h)−cov(h, f) ·B · cov(f ,h)) , (12)

where D is the data (including y and the virtual observation
0), cov(·) is obtained from the kernel κu and its differentia-
tion (see (4)), and mf and Vf are the estimated posterior
mean and covariance of f , mh = cov(h, f)Σ−1mf , and
B = Σ−1 −Σ−1VfΣ

−1.

The result (12) defines a GP for u(·) with a new ker-
nel: cov(u(z1), u(z2)) = ρ(z1, z2), where z1 and z2 are
two arbitrary inputs, ρ(z1, z2) = κu(z1, z2) − κ̃(z1,Z) ·
B · κ̃(z2,Z), Z = {Z, Ẑ} are the corresponding inputs
of f , and κ̃(z,Z) = cov(u(z), f), which applies κu or
its partial derivatives over z and each input in Z; see
(4). To verify if the link between u and its derivatives
is still there, we examine the derivatives of the new ker-
nel k(z1, z2) w.r.t its inputs z1 and z2. Since B and Z
are both constant to the inputs of ρ, the differentiation
is only applied to κu and κ̃ on z1 and/or z2. For exam-
ple, ∂ρ(z1, z2)/∂x2 = ∂κu(z1, z2)/∂x2 − κ̃(z1,Z) · B ·
∂κ̃(Z, z2)/∂x2 = cov (u(z1), ∂xu(z2)) − cov(u(z1), f) ·
B · cov(f , ∂xu(z2)) (note z2 = (x2, t2)). Hence, the ker-
nel differentiation gives the same covariance (between the
function and its derivatives) as in the predictive distribution
(12), i.e., ∂ρ(z1, z2)/∂x2 = cov(u(z1), ∂xu(z2)). That
means the kernel links are still maintained in the poste-
rior/predictive process (i.e., conditioned on the data and
differential equation).

4 Related Work
Physics-informed machine learning has become a rapidly
growing area (Karniadakis et al., 2021; Edwards, 2022).
Consider, for example, Raissi et al. (2019) and and subse-
quent work such as Mao et al. (2020); Zhang et al. (2020);
Chen et al. (2020); Penwarden et al. (2021); Lou et al.
(2021). The core idea is to use an NN to represent the
solution function. The training objective includes a loss
term to fit the boundary/initial condition and a residual term
to fit the differential equation. The residual term is com-
puted by applying the differential operators on the NN and
then evaluating at a set of collocation points. The closer
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the residual is to zero, the more the NN surrogate fits the
equation. While PINNs have been successfully used to
solve many forward and inverse problems, the differential
operators in the residual term have also brought challenges
in optimization (Krishnapriyan et al., 2021; Wang et al.,
2022a; Edwards, 2022). This suggests the need for more re-
fined optimization methods (such as augmented Lagrangian
methods or sequential quadratic programming methods) to
provide a more principled basis with which to combine
domain-driven and data-driven models.

GPs have also been used for modeling or learning from
physical systems. Early works (Graepel, 2003; Raissi et al.,
2017) leveraged kernel differential methods to solve linear
equations with observable sources: Lu = g, where L is a
linear operator, u is the solution, and g is the source term.
Graepel (2003) assume the data consists of noisy obser-
vation of g. Given the covariance (kernel) function of u,
the covariance of g is obtained via kernel differentiation
with operator L. Hence the kernel parameters and noise
variance can be estimated from maximizing the marginal
likelihood (1). It is also straightforward to calculate the
predictive distribution of u given the observation of g via
cross-covariance between u and g. Raissi et al. (2017) as-
sumed both u and g have noisy observations, and hence a
joint GP prior over u and g is constructed via kernel differ-
entiation. Recent work (Wang et al., 2022b) instead used a
similar formulation to PINNs to conduct deep kernel learn-
ing, i.e., applying differential operators on the posterior
function samples. While it is quite effective with deep ker-
nels, this method does not perform well when reducing the
deep kernels to commonly used shallow kernels.

Recently, Chen et al. (2021) used kernel differentiation to
solve linear and nonlinear PDEs. This work minimizes the
RKHS norm of the solution with constraints and/or regular-
izations that the equation is satisfied on a set of collocation
points. From a high-level view, our method uses a similar
strategy to integrate physics, i.e., applying kernel differen-
tiation, and learning from data fitting plus regularization
on collocation points (i.e., the data likelihood and virtual
likelihood). However, both the modeling and inference are
different. Our model is a nonparametric Bayesian model
that creates a joint distribution over the solution function,
its derivative functions, the noisy data and virtual observa-
tions, while Chen et al. (2021) used kernel ridge regression
(square loss plus RKHS norm), a typical frequentist based
kernel learning framework (Kanagawa et al., 2018). One
might hope that that a Bayesian model is more amenable
for reasoning under uncertainty. Second, our variational
inference estimates the posterior distribution of the solution
function values and its derivatives, rather than providing
a point estimation (Chen et al., 2020). We also find an in-
teresting insight that the posterior process (with Gaussian
variational approximations) is still a GP and maintains the

kernel differentiation property.

Another related work involves latent force models
(LFMs) (Alvarez et al., 2009), which aim to integrate incom-
plete equations with unknown latent forces for GP learning.
Based on the kernel of latent forces, the LFM convolves
with the Green’s function to derive the kernel of the target
function, thereby encoding the physics into the induced ker-
nel. However, LFMs are restricted to linear equations with
available Green’s functions. To overcome this issue, Alvarez
et al. (2013) linearized the nonlinear terms in the equation.
Hartikainen et al. (2012); Ward et al. (2020) focused on
ODEs, using a linear time-invariant (LTI) stochastic differ-
ential equation (SDE) to represent the temporal GP prior
over the latent forces, and converting the original ODE to
an SDE. While successful, these methods do not apply to
PDEs and time-spatial source functions.

5 Empirical Results
In this section, we evaluate AutoIP on two illustrative and
two more realistic problems. The illustrative problems in-
clude a nonlinear pendulum system and a diffusion-reaction
system, where the exact equations and the ground-truth so-
lutions are known. Here, we can inspect the performance
when AutoIP incorporates the full equation and when Au-
toIP uses only a part of the equation. The realistic problems
are the prediction tasks of metal pollution and joint motion
trajectories, for which the underlying governing equations
are unknown. Here, we examined if AutoIP can improve the
prediction accuracy by integrating a sensible physics model
(not necessarily the ground-truth equation).

5.1 Nonlinear Pendulum

First, we evaluated AutoIP on a nonlinear pendulum system.
Consider that a pendulum starts from an initial angle and
velocity, and swings back and forth under the influence of
gravity. We are interested in how the angle θ varies with
time t. The equation is given by

d2θ

dt2
+ sin(θ) = 0, (13)

where sin(θ) is a nonlinear term, and we choose units so
that the ratio between the magnitude of gravity field and the
length of the string is one.

We set the initial angle to 3
4π and the initial velocity to

zero. The change of θ exhibits apparent periodicity. See
Fig. 1 and 2 first row (the black curves). We randomly
collected 50 training examples from t ∈ [0, 7.3] that cov-
ers around 3

4 period. Then we randomly sampled 800 test
examples from t ∈ [0, 28.8] which covers around three peri-
ods. We implemented both AutoIP and standard GPR with
Pytorch (Paszke et al., 2019), and we performed stochastic
optimization with ADAM (Kingma and Ba, 2014). We used
learning rate 10−2 and ran both methods with 10K epochs.
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To overcome the perturbation of accuracy caused by the
stochastic training, we examined the prediction accuracy
after each epoch and used the best accuracy for comparison.
We used the SE-ARD kernel for both AutoIP and GPR, with
the same initialization. For AutoIP, we let κg and κu share
the same kernel parameters. We examined our method with
two settings: AutoIP-C, running with the complete equation
(13); and AutoIP-I, running with an incomplete differen-
tial equation, in which the nonlinear term is replaced by an
unknown source term g(t),

d2θ

dt2
+ g(t) = 0. (14)

In both settings, we randomly sampled 20 collocation points
across the whole domain [0, 28.8] to integrate the equation.
To obtain the ground-truth and to generate the training and
test data, we used the scipy library to solve the initial
value problem. We considered two training settings: (1)
using exact training examples from the solution; and (2)
using noisy training examples, where we added independent
Gaussian noises sampled from N (0, 0.1I) to the solution
outputs to form the training set.

In addition, we examined the case where the governing
equation includes a damping term,

d2θ

dt2
+ sin(θ) + b

dθ

dt
= 0, (15)

where b > 0 is a constant and was set to 0.2. The damping
can be due to a type of energy loss, such as friction. We
used the typical assumption that the friction is proportional
to the velocity. We randomly sampled 16 examples from
t ∈ [0, 6] for training and 800 examples across t ∈ [0, 24.3]
for testing. Again, we ran our methods in two ways. One
is to integrate the complete equation (15), i.e., AutoIP-C;
the other is to integrate an incomplete equation in the form
of (14), i.e., AutoIP-I. In the latter case, the latent source
g thereby subsumes both the nonlinear and damping terms.
The number of collocation points was set to 20. While
AutoIP-C leverages the complete equation, we do not as-
sume the coefficient b of the damping term is known. In-
stead, we view it as an unknown equation parameter, and
we jointly estimate it during the inference. We optimized b
in the log domain to ensure its positiveness. Identical to the
no-damping case, we adopted two training settings: exact
examples; and noisy examples (with additive Gaussian noise
generated from N (0, 0.1I)).

For each case (damping/no-damping, exact/noisy training),
we repeated the experiment five times, and we examined the
average Root Mean-Square-Error (RMSE), average Mean-
Negative-Log-Likelihood (MNLL), and their standard devi-
ation. See Table 1. In all the cases, our method outperforms
the standard GPR by a large margin. Even with an incom-
plete equation (including some unknown latent source), our

No damping RMSE MNLL

GPR 1.354± 0.005 1.97± 0.015
AutoIP-I 0.585± 0.017 1.02± 0.013
AutoIP-C 0.416± 0.050 0.892± 0.032

With damping

GPR 0.262± 0.0003 0.744± 0.008
AutoIP-I 0.212± 0.014 0.678± 0.02
AutoIP-C 0.096± 0.0035 0.155± 0.01

(a) Exact training data

No damping RMSE MNLL

GPR 1.44± 0.017 2.242± 0.055
AutoIP-I 0.691± 0.030 1.206± 0.024
AutoIP-C 0.488± 0.036 1.061± 0.028

With damping

GPR 0.381± 0.018 1.07± 0.029
AutoIP-I 0.268± 0.013 0.937± 0.011
AutoIP-C 0.133± 0.010 0.428± 0.017

(b) Noisy training data

Table 1: Prediction accuracy in nonlinear pendulum systems
with/without training noise and with/without the damping term, in
terms of root-mean-square-error (RMSE) and mean-negative-log-
likelihood (MNLL). AutoIP-I and AutoIP-C refer to our method
using incomplete and complete equations, respectively. The results
were averaged over five runs.

method (AutoIP-I) still achieves a big improvement upon
GPR, showing the advantage of effectively using physics
knowledge. When integrating with the complete equation,
our approach obtains even much better prediction accu-
racy (AutoIP-C). This is reasonable, because more precise
and refined physics knowledge is leveraged. We have also
compared with physics-informed neural networks. See the
results and discussion in the Appendix.

Next, we showcase the predictive mean and standard devia-
tion of each method of one experiment, in Fig. 1 and 2, in
contrast to the ground-truth. In all cases, GPR performs
well in the training region. However, when moving away
from the training region, the prediction of GPR quickly con-
verges to the prior mean (zero), leaving a large predictive
variance (uncertainty). See Fig. 1a and Fig. 2a. By contrast,
with the effective use of differential equations, AutoIP can
predict the target function quite accurately at places very
far way from the training region, exhibiting much better
extrapolation performance. It is surprising that even with an
unknown source g (see (14)), with the key nonlinear term
sin(θ) and damping term θ′ missing, AutoIP can still cap-
ture the variation of the target function quite well over a
long range. See Fig. 1b and Fig. 2b. When integrating with
the complete equation, AutoIP predicts the function values
even closer to the ground-truth (see Fig. 1c and 2c). These
together have shown the advantage of AutoIP in effectively
leveraging different equations.
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Figure 1: Prediction in a nonlinear pendulum system with exact training examples. First row shows results without damping. Second row
shows results with damping. Dashed lines are predictive mean ± standard deviation. Vertical line is the boundary of the training region.

Finally, we examined the estimated b in (15) by our method.
For both noisy and exact training data, the estimation is
quite good. For example, the estimated value by AutoIP-
C in Fig. 1c and 2c is 0.2302 and 0.2352, respectively,
giving 85% and 82.4% relative accuracy. Note that we only
used 16 training examples and 20 collocation points. The
average estimation from the five experiments for exact and
noisy training data is 0.228 ± 0.002 and 0.232 ± 0.004,
respectively.

5.2 Diffusion-Reaction System

We evaluated AutoIP on a diffusion-reaction system ex-
amined previously (Raissi et al., 2019). This system is
governed by an Allen-Cahn equation along with periodic
boundary conditions,

∂u

∂t
− 0.0001

∂2u

∂x2
+ 5u3 − 5u = 0, (16)

where x ∈ [−1, 1], t ∈ [0, 1], u(0, x) = x2 cos(πx),
u(t,−1) = u(t, 1) and ux(t,−1) = ux(t, 1).1 We ran-
domly sampled 256 training examples from t ∈ [0, 0.28],
and collected 100 collocation points from the whole input
domain. Again, we tested our method using the complete
equation (16), denoted by AutoIP-C, and the incomplete
equation in the form of

∂u

∂t
− 0.0001

∂2u

∂x2
+ g(x, t) = 0, (17)

1We used the solution data released in https://github.
com/maziarraissi/PINNs.

where g is an unknown source term (AutoIP-I). We ran
GPR and our method for 200K epochs with the learning
rate 10−3 (a larger learning rate will hurt the performance).
The ground-truth solution is given by Fig. 3a. We show
the prediction of GPR, our method with the incomplete
equation (AutoIP-I), and our method with the complete
equation (AutoIP-C) in Fig. 3b, 3c and 3d, respectively.
As we can see, AutoIP is better able to capture the two
reaction patterns, which look like two yellow flames. GPR,
however, predicts a quite uniform reaction strength, losing
its time variation. The overall RMSE confirms that AutoIP
achieves a much better prediction accuracy. In Fig. 3e-g,
we show the predictive variance of each method across the
domain. Both AutoIP-I and AutoIP-P reduce the predictive
uncertainty at places distant from the training region; see the
red and yellow part on the right. The reduction from AutoIP
with complete equation is even more significant (AutoIP-C),
especially at the upper-half of the right end.

5.3 Motion Capture

We evaluated AutoIP on the prediction of the joint trajecto-
ries in motion capture. We used the CMU motion capture
database.2 We used the trajectories of subject 35 during
walking and jogging, which lasted for 2,644 seconds. We
considered joint 1 and joint 50. From each joint, we ran-
domly sampled 100 examples from the first half of the tra-
jectory for training, and we randomly collected another 800
examples across the whole trajectory for testing. Since the
ground-truth differential equation that can characterize the
motions is actually unknown, we used an incomplete one

2http://mocap.cs.cmu.edu/

https://github.com/maziarraissi/PINNs
https://github.com/maziarraissi/PINNs
http://mocap.cs.cmu.edu/
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Figure 2: Prediction in a nonlinear pendulum system with noisy training examples. First and second row show the results without
damping and with damping, respectively. Dashed lines are predictive mean ± standard deviation. Vertical green line is the boundary of
the training region.

with a latent source term (Alvarez et al., 2009; 2013),

∂u

∂t
+ b · u(t)− c = g(t), (18)

where b, c > 0 are unknown coefficients and g(t) is the
latent source. In our method, we jointly estimate b and
c in the log domain. To examine how the location of the
collocation points will influence the performance of our
method, we tested three settings: (1) AutoIP-T that uses
the training inputs as the collocation points; (2) AutoIP-H
that employs 200 random collocation points in the training
region only, i.e., half of the time span; and (3) AutoIP-
W that employs 200 random collocation points across the
whole time span of the trajectory. In addition to GPR, we
also compared with latent force models (LFMs) proposed
in Alvarez et al. (2009; 2013). LFMs use the kernel for
the latent source g and the Green’s function of the equation
to perform convolution so as to derive an induced kernel
for u, which includes b and c as the kernel parameters. We
also used ADAM to train LFMs. We ran every method for
3K epochs with learning rate 10−2, and we compared their
best prediction accuracy (after each epoch). We repeated
the experiments for five times, and calculated the average
RMSE and NMLL, as listed in Table 2. As we can see,
AutoIP always outperforms the competing methods. Since
LFM on Joint 50 cannot give a reasonable test log likelihood
(NMLL), we marked it as N/A, although its predictive mean
is quite normal.3 We can see that AutoIP-T and AutoIP-H
are comparable in most cases. Since their collocations points

3We tried a variety of learning rates and initializations, but
it either ended up with a non-positive definite covariance matrix
(and crashed) or with very small test log likelihoods (10 times

Method Joint 1 Joint 50
GPR 1.727± 0.026 0.257± 0.007
LFM 1.671± 0.016 0.257± 0.006

AutoIP-T 1.511± 0.007 0.224± 0.006
AutoIP-H 1.489± 0.03 0.225± 0.005
AutoIP-W 1.103± 0.027 0.215± 0.009

(a) RMSE

Method Joint 1 Joint 50
GPR 1.368± 0.020 3.431± 0.242
LFM 1.721± 0.020 N/A

AutoIP-T 1.138± 0.024 2.615± 0.149
AutoIP-H 1.208± 0.081 2.664± 0.154
AutoIP-W 1.121± 0.084 2.495± 0.111

(b) NMLL

Table 2: Prediction accuracy on motion capture datasets.

are both from the time span of the first half trajectory, this
shows that the randomness of the collocation points seem
not have a major influence on the predictive performance.
By contrast, AutoIP-W achieves much better prediction
accuracy than AutoIP-T and AutoIP-H. This implies that
a wider range of the collocation points (not the number)
is more critical to improve the performance, especially in
extrapolation.

5.4 Metal Pollution in Swiss Jura

We evaluated AutoIP on an application to predict the meta
concentration with the Swiss Jura dataset.4 The dataset

smaller than the competing methods), indicating a failure of learn-
ing. These might be due to some numerical issue in optimization
with the induced kernel.

4https://rdrr.io/cran/gstat/man/jura.html

https://rdrr.io/cran/gstat/man/jura.html
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(a) Ground-truth (b) GPR: RMSE = 0.2528 (c) AutoIP-I: RMSE = 0.1869 (d) AutoIP-C: RMSE = 0.1865
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Figure 3: Prediction in a diffusion reaction system. The horizontal axis is t while vertical axis is x. The first row consists of the
ground-truth solution (where the blue circles indicate the training points used by all the methods), and the prediction made by GPR,
AutoIP-I and AutoIP-C. The second row comprises of the predictive variance of each method across the domain.

GPR LFM AutoIP
Task 1 0.299± 0.009 0.384± 0.010 0.284± 0.011
Task 2 0.304± 0.012 0.381± 0.011 0.284± 0.008
Task 3 0.232± 0.009 0.358± 0.005 0.224± 0.006
Task 4 0.261± 0.005 0.296± 0.005 0.247± 0.004

(a) RMSE

GPR LFM AutoIP
Task 1 1.16± 0.064 1.36± 0.058 1.10± 0.069
Task 2 1.274± 0.093 1.471± 0.157 1.219± 0.129
Task 3 0.979± 0.058 1.31± 0.044 0.849± 0.067
Task 4 1.383± 0.098 1.496± 0.097 1.303± 0.091

(b) NMLL

Table 3: Prediction accuracy on Jura datasets.

includes measurements of seven metals (Zn, Ni, Cr, etc.) at
300 locations in a region of 14.5 km2. The concentration
is normally modeled by a diffusion equation, ∂u

∂t = α ·
∆u, where ∆ is the Laplace operator, ∆u = ∂2u

∂x2
1
+ ∂2u

∂x2
2

.
However, the dataset does not include the time information
when these concentrations were measured. We followed
prior work (Alvarez et al., 2009) to assume a latent time
point ts and estimate the solution at ts, namely h(x1, x2) =
u(x1, x2, ts). Thereby, the equation can be rearranged as,

∆h = g(x1, x2)

where g(x1, x2) =
1
α

∂u(x1,x2,t)
∂t |t=ts is viewed as a latent

source term. Note that LFM views u(x1, x2, 0) as the latent
source, yet uses a convolution operation to derive an induced
kernel for h in terms of locations, where ts is considered as

a kernel parameter jointly learned from data. We tested four
tasks, namely predicting: (1) Zn with the location and Cd,
Ni concentration; (2) Zn with the location and Co, Ni, Cr
concentration; (3) Ni with the location and Cr concentration;
and (4) Cr with the location and Co concentration. For
each task, we randomly sampled 50 example for training
and another 200 examples for testing. The experiments
were repeated for five times, and we computed the average
RMSE, average NMLL and their standard deviation. For our
method, we used the training inputs as the collocation points.
The results are reported in Table 3. AutoIP consistently
outperforms the competing approaches, again confirming
the advantage of our method.

6 Conclusion
AutoIP is a framework for Automatically Incorporating
Physics into GPs. This approach samples the target func-
tions and their derivatives in a probabilistic space and uses
their relationships via a virtual likelihood defined by the
differential equation. In the future, we will use RandNLA
to extend our approach in large-scale applications.
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Appendix

We provide additional results for comparing with physics-informed neural networks (PINNs). Since PINNs only incorporate
complete differential equations and are not Bayesian methods, we examined PINNs in the nonlinear pendulum system (Sec.
5.1) and the diffusion-reaction system (Sec. 5.2) with the complete equations given, and report the average RMSE and
standard deviation.

A Nonlinear Pendulum

We tested PINNs with the same four settings in Sec. 5.1, namely, the equation with/without a damping term ((13) and (15)),
combined with exact/noisy training data. We used the same training and test datasets for each run. For the NN architecture,
we used tanh activation and two hidden layers. We varied the layer width from {5, 10, 50, 100}. For a fair comparison,
we tested the PINN with the same number of collocation points as used by AutoIP, i.e., 20 points. We also ran the PINN
with 10K random collocation points. For training, we first ran 1,000 ADAM epochs with learning rate 10−3 and then ran
L-BFGS with 50K maximum iterations and 50K maximum function evaluations. This is a popular practice of training
PINNs 5. The implementation is based on the code of Raissi et al. (2019)6. The average RMSE for five runs and standard
deviation are reported in Table 4. As we can see, AutoIP-C largely outperforms the PINN in all the cases except when
the equation includes a damping term and the training data does not include any noise. In that case, the PINN with 50 or
100 neurons per layer, and using 10K collocation points can solve the equation very accurately. However, when using the
same few number of collocation points (20), the PINN with different architectures is consistently much worse than AutoIP,
even when AutoIP only incorporates incomplete equations (i.e., AutoIP-I). These results show that the performance of the
PINN can be sensitive to the architecture design, the number of collocation points, and data quality, while AutoIP is quite
promising and robust to different types of data, equations, and can work well with only a small number of collocation points.

Method No damping/Exact training No damping/Noisy training Damping/Exact training Damping/Noisy training

PINN-5 (20) 1.955± 0.214 1.895± 0.261 0.310± 0.019 0.310± 0.050
PINN-10 (20) 2.122± 0.179 1.824± 0.231 0.290± 0.018 0.342± 0.020
PINN-50 (20) 2.238± 0.541 1.927± 0.250 0.297± 0.044 0.361± 0.017
PINN-100 (20) 2.042± 0.273 2.407± 0.353 0.320± 0.074 0.384± 0.066
PINN-5 (10K) 1.479± 0.115 1.783± 0.297 0.110± 0.015 0.248± 0.037
PINN-10 (10k) 1.852± 0.320 1.548± 0.141 0.049± 0.023 0.194± 0.044
PINN-50 (10k) 1.367± 0.575 1.658± 0.074 0.00007± 0.00001 0.157± 0.051
PINN-100 (10k) 1.862± 0.584 1.993± 0.357 0.00007± 0.00002 0.186± 0.045
AutoIP-I 0.585± 0.017 0.691± 0.030 0.212± 0.014 0.268± 0.013
AutoIP-C 0.416± 0.050 0.488± 0.036 0.096± 0.004 0.133± 0.010

Table 4: Root Mean Square Error (RMSE). The results were averaged over five runs. “-{5, 10, 50, 100}” mean 5, 10, 50, and 100 neurons
per layer; “(20)” means using 20 random collocation points while “(10K)” means 10K collocation points. Both AutoIP-I and AutoIP-C
used 20 collocation points.

GPR AutoIP-I AutoIP-C PINN (100) PINN (10K)

0.2528 0.1869 0.1865 0.4388 0.0169

Table 5: RMSE in the diffusion-reaction system. “(100)” means using 100 random collocation points while “(10K)” means 10K
collocation points. Both AutoIP-I and AutoIP-C used 100 collocation points.

B Diffusion-Reaction System

We used the same training and test datasets in Sec. 5.2. We followed (Raissi et al., 2019) to use four hidden layers with 200
neurons per layer, and tanh activation, to solve the Allen-Cahn equation. We tested the PINN with the same set of 100
collocation points as used by AutoIP, and 10K random collocation points sampled from the same domain. The training was
done by first running 1,000 ADAM epochs with learning rate 10−3 and then L-BFGS with 50K maximum iterations and

5https://github.com/lululxvi/deepxde
6https://github.com/maziarraissi/PINNs

https://github.com/lululxvi/deepxde
https://github.com/maziarraissi/PINNs
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50K maximum function evaluations. The RMSE is given in Table 5. We can see that, with the same 100 collocation points,
PINN is much worse than AutoIP. But with 100 times more collocation points, the PINN’s performance is greatly improved.
The results confirm the advantage of AutoIP when using a small number of of collocation points.
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