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Abstract

The second eigenvalue of the Laplacian matrix and its associated eigenvector are fundamental fea-

tures of an undirected graph, and as such they have found widespread use in scientific computing,

machine learning, and data analysis. In many applications, however, graphs that arise have sev-

eral local regions of interest, and the second eigenvector will typically fail to provide information

fine-tuned to each local region. In this paper, we introduce a locally-biased analogue of the second

eigenvector, and we demonstrate its usefulness at highlighting local properties of data graphs in a

semi-supervised manner. To do so, we first view the second eigenvector as the solution to a con-

strained optimization problem, and we incorporate the local information as an additional constraint;

we then characterize the optimal solution to this new problem and show that it can be interpreted

as a generalization of a Personalized PageRank vector; and finally, as a consequence, we show that

the solution can be computed in nearly-linear time. In addition, we show that this locally-biased

vector can be used to compute an approximation to the best partition near an input seed set in

a manner analogous to the way in which the second eigenvector of the Laplacian can be used to

obtain an approximation to the best partition in the entire input graph. Such a primitive is useful

for identifying and refining clusters locally, as it allows us to focus on a local region of interest in

a semi-supervised manner. Finally, we provide a detailed empirical evaluation of our method by

showing how it can applied to finding locally-biased sparse cuts around an input vertex seed set in

social and information networks.

Keywords: spectral graph partitioning, local spectral algorithms, Laplacian matrix, semi-supervised

learning, personalized pagerank
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1. Introduction

Spectral methods are popular in machine learning, data analysis, and applied mathematics due to

their strong underlying theory and their good performance in a wide range of applications. In the

study of undirected graphs, in particular, spectral techniques play an important role, as many fun-

damental structural properties of a graph depend directly on spectral quantities associated with ma-

trices representing the graph. Two fundamental objects of study in this area are the second smallest

eigenvalue of the graph Laplacian and its associated eigenvector. These quantities determine many

features of the graph, including the behavior of random walks and the presence of sparse cuts. This

relationship between the graph structure and an easily-computable quantity has been exploited in

data clustering, community detection, image segmentation, parallel computing, and many other ap-

plications.

A potential drawback of using the second eigenvalue and its associated eigenvector is that they

are inherently global quantities, and thus they may not be sensitive to very local information. For

instance, a sparse cut in a graph may be poorly correlated with the second eigenvector (and even

with all the eigenvectors of the Laplacian) and thus invisible to a method based only on eigenvec-

tor analysis. Similarly, based on domain knowledge one might have information about a specific

target region in the graph, in which case one might be interested in finding clusters only near this

prespecified local region, for example, in a semi-supervised manner; but this local region might be

essentially invisible to a method that uses only global eigenvectors. For these and related reasons,

standard global spectral techniques can have substantial difficulties in semi-supervised settings,

where the goal is to learn more about a locally-biased target region of the graph.

In this paper, we provide a methodology to construct a locally-biased analogue of the second

eigenvalue and its associated eigenvector, and we demonstrate both theoretically and empirically

that this localized vector inherits many of the good properties of the global second eigenvector.

Our approach is inspired by viewing the second eigenvector as the optimum of a constrained global

quadratic optimization program. To model the localization step, we modify this program by adding a

natural locality constraint. This locality constraint requires that any feasible solution have sufficient

correlation with the target region, which we assume is given as input in the form of a set of nodes

or a distribution over vertices. The resulting optimization problem, which we name LocalSpectral

and which is displayed in Figure 1, is the main object of our work.

The main advantage of our formulation is that an optimal solution to LocalSpectral captures

many of the same structural properties as the global eigenvector, except in a locally-biased setting.

For example, as with the global optimization program, our locally-biased optimization program has

an intuitive geometric interpretation. Similarly, as with the global eigenvector, an optimal solution

to LocalSpectral is efficiently computable. To show this, we characterize the optimal solutions of

LocalSpectral and show that such a solution can be constructed in nearly-linear time by solving a

system of linear equations. In applications where the eigenvectors of the graph are pre-computed

and only a small number of them are needed to describe the data, the optimal solution to our program

can be obtained by performing a small number of inner product computations. Finally, the optimal

solution to LocalSpectral can be used to derive bounds on the mixing time of random walks that start

near the local target region as well as on the existence of sparse cuts near the locally-biased target

region. In particular, it lower bounds the conductance of cuts as a function of how well-correlated

they are with the seed vector. This will allow us to exploit the analogy between global eigenvectors
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and our localized analogue to design an algorithm for discovering sparse cuts near an input seed set

of vertices.

In order to illustrate the empirical behavior of our method, we will describe its performance on

the problem of finding locally-biased sparse cuts in real data graphs. Subsequent to the dissemina-

tion of the initial technical report version of this paper, our methodology was applied to the problem

of finding, given a small number of “ground truth” labels that correspond to known segments in an

image, the segments in which those labels reside (Maji, Vishnoi, and Malik, 2011). This computer

vision application will be discussed briefly. Then, we will describe in detail how our algorithm for

discovering sparse cuts near an input seed set of vertices may be applied to the problem of exploring

data graphs locally and to identifying locally-biased clusters and communities in a more difficult-to-

visualize social network application. In addition to illustrating the performance of the method in a

practical application related to the one that initially motivated this work (Leskovec, Lang, Dasgupta,

and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010), this social graph application will

illustrate how the various “knobs” of our method can be used in practice to explore the structure of

data graphs in a locally-biased manner.

Our method uses ideas from spectral graph theory; for a detailed introduction to this topic, see

Chung (1997). Recent theoretical work has focused on using spectral ideas to find good clusters

nearby an input seed set of nodes (Spielman and Teng, 2004; Andersen, Chung, and Lang, 2006;

Chung, 2007). These methods are based on running a number of local random walks around the

seed set and using the resulting distributions to extract information about clusters in the graph. This

line of work grew out of attempts to develop linear equation solvers that run in time nearly linear

in the number of edges in the graph (Spielman and Teng, 2004), and work subsequent to the initial

technical report version of this paper has provided implementations of these ideas (Koutis, Miller,

and Peng, 2010). The connections with our work described in this article remain to be explored.

Recent empirical work has used Personalized PageRank, a particular variant of a local random

walk, to characterize very finely the clustering and community structure in a wide range of very

large social and information networks (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In contrast with previous methods,

our local spectral method is the first to be derived in a direct way from an explicit optimization

problem inspired by the global spectral problem. Interestingly, our characterization also shows

that optimal solutions to LocalSpectral are generalizations of Personalized PageRank, providing an

additional insight to why local random walk methods work well in practice.

In the next section, we will describe relevant background and notation; and then, in Section 3,

we will present our formulation of a locally-biased spectral optimization program, the solution of

which will provide a locally-biased analogue of the second eigenvector of the graph Laplacian.

Then, in Section 4 we will describe how our method may be applied to identifying and refining

locally-biased partitions in a graph; and in Section 5 we will provide a detailed empirical evaluation

of our algorithm. Finally, in Section 6, we will conclude with a discussion of our results in a

broader context.

2. Background and Notation

Let G= (V,E,w) be a connected undirected graph with n= |V | vertices and m= |E| edges, in which

edge {i, j} has weight wi j. For a set of vertices S ⊆V in a graph, the volume of S is vol(S)
def
= ∑i∈S di,

in which case the volume of the graph G is vol(G)
def
= vol(V ) = 2m. In the following, AG ∈ R

V×V
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will denote the adjacency matrix of G, while DG ∈ R
V×V will denote the diagonal degree matrix of

G, that is, DG(i, i) = di =∑{i, j}∈E wi j, the weighted degree of vertex i. The Laplacian of G is defined

as LG
def
= DG −AG. (This is also called the combinatorial Laplacian, in which case the normalized

Laplacian of G is LG
def
= D

−1/2

G LGD
−1/2

G .)

The Laplacian is the symmetric matrix having quadratic form xT LGx = 1
2 ∑i j∈E wi j(xi − x j)

2,

for x ∈ R
V . This implies that LG is positive semidefinite and that the all-one vector 1 ∈ R

V is the

eigenvector corresponding to the smallest eigenvalue 0. For a symmetric matrix A, we will use

A � 0 to denote that it is positive semi-definite. Moreover, given two symmetric matrices A and

B, the expression A � B will mean A−B � 0. Further, for two n× n matrices A and B, we let

A◦B denote Tr (AT B). Finally, for a matrix A, let A+ denote its (uniquely defined) Moore-Penrose

pseudoinverse.

For two vectors x,y∈R
n, and the degree matrix DG for a graph G, we define the degree-weighted

inner product as xT DGy
def
= ∑n

i=1 xiyidi. Given a subset of vertices S ⊆ V , we denote by 1S the

indicator vector of S in R
V and by 1 the vector in R

V having all entries set equal to 1. We consider

the following definition of the complete graph Kn on the vertex set V : AKn

def
= 1

vol(G)DG11T DG. Note

that this is not the standard complete graph, but a weighted version of it, where the weights depend

on DG. With this scaling we have DKn
= DG. Hence, the Laplacian of the complete graph defined

in this manner becomes LKn
= DG − 1

vol(G)DG11T DG.

In this paper, the conductance φ(S) of a cut (S, S̄) is φ(S)
def
= vol(G) · |E(S,S̄)|

vol(S)·vol(S̄)
. A sparse cut,

also called a good-conductance partition, is one for which φ(S) is small. The conductance of the

graph G is then φ(G) = minS⊆V φ(S). Note that the conductance of a set S, or equivalently a cut

(S, S̄), is often defined as φ′(S) = |E(S, S̄)|/min{vol(S),vol(S̄)}. This notion is equivalent to that

φ(S), in that the value φ(G) thereby obtained for the conductance of the graph G differs by no more

than a factor of 2 times the constant vol(G), depending on which notion we use for the conductance

of a set.

3. The LocalSpectral Optimization Program

In this section, we introduce the local spectral optimization program LocalSpectral(G,s,κ) as a

strengthening of the usual global spectral program Spectral(G). To do so, we will augment

Spectral(G) with a locality constraint of the form (xT DGs)2 ≥ κ, for a seed vector s and a cor-

relation parameter κ. Both these programs are homogeneous quadratic programs, with optimization

variable the vector x ∈ R
V , and thus any solution vector x is essentially equivalent to −x for the

purpose of these optimizations. Hence, in the following we do not differentiate between x and −x,

and we assume a suitable direction is chosen in each instance.

3.1 Motivation for the Program

Recall that the second eigenvalue λ2(G) of the Laplacian LG can be viewed as the optimum of

the standard optimization problem Spectral(G) described in Figure 1. In matrix terminology, the

corresponding optimal solution v2 is a generalized eigenvector of LG with respect to DG. For our

purposes, however, it is best to consider the geometric meaning of this optimization formulation.

To do so, suppose we are operating in a vector space R
V , where the ith dimension is stretched by

a factor of di, so that the natural identity operator is DG and the inner product between two vectors

2342



A LOCAL SPECTRAL METHOD FOR GRAPHS

min xT LGx

s.t. xT DGx = 1

(xT DG1)2 = 0

x ∈ R
V

min xT LGx

s.t. xT DGx = 1

(xT DG1)2 = 0

(xT DGs)2 ≥ κ

x ∈ R
V

Figure 1: Global and local spectral optimization programs. Left: The usual spectral program

Spectral(G). Right: Our new locally-biased spectral program LocalSpectral(G,s,κ). In

both cases, the optimization variable is the vector x ∈ R
n.

x and y is given by ∑i∈V dixiyi = xT DGy. In this representation, Spectral(G) is seeking the vector

x ∈ R
V that is orthogonal to the all-one vector, lies on the unit sphere, and minimizes the Laplacian

quadratic form. Note that such an optimum v2 may lie anywhere on the unit sphere.

Our goal here is to modify Spectral(G) to incorporate a bias towards a target region which

we assume is given to us as an input vector s. We will assume (without loss of generality) that s

is properly normalized and orthogonalized so that sT DGs = 1 and sT DG1 = 0. While s can be a

general unit vector orthogonal to 1, it may be helpful to think of s as the indicator vector of one or

more vertices in V , corresponding to the target region of the graph. We obtain LocalSpectral(G,s,κ)
from Spectral(G) by requiring that a feasible solution also have a sufficiently large correlation with

the vector s. This is achieved by the addition of the constraint (xT DGs)2 ≥ κ, which ensures that

the projection of x onto the direction s is at least
√

κ in absolute value, where the parameter κ is

also an input parameter ranging between 0 and 1. Thus, we would like the solution to be well-

connected with or to lie near the seed vector s. In particular, as displayed pictorially in Figure 2,

x must lie within the spherical cap centered at s that contains all vectors at an angle of at most

arccos(
√

κ) from s. Thus, higher values of κ demand a higher correlation with s and, hence, a

stronger localization. Note that in the limit κ = 0, the spherical cap constituting the feasible region

of the program is guaranteed to include v2 and LocalSpectral(G,s,κ) is equivalent to Spectral(G).
In the rest of this paper, we refer to s as the seed vector and to κ as the correlation parameter for a

given LocalSpectral(G,s,κ) optimization problem. Moreover, we denote the objective value of the

program LocalSpectral(G,s,κ) by the number λ(G,s,κ).

3.2 Characterization of the Optimal Solutions of LocalSpectral

Our first theorem is a characterization of the optimal solutions of LocalSpectral. Although Local-

Spectral is a non-convex program (as, of course, is Spectral), the following theorem states that

solutions to it can be expressed as the solution to a system of linear equations which has a natu-

ral interpretation. The proof of this theorem (which may be found in Section 3.4) will involve a

relaxation of the non-convex program LocalSpectral to a convex semidefinite program (SDP), that

is, the variables in the optimization program will be distributions over vectors rather than the vec-

tors themselves. For the statement of this theorem, recall that A+ denotes the (uniquely defined)

Moore-Penrose pseudoinverse of the matrix A.
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! "

Figure 2: (Best seen in color.) Pictorial representation of the feasible regions of the optimization

programs Spectral(G) and LocalSpectral(G,s,κ) that are defined in Figure 1. See the text

for a discussion.

Theorem 1 (Solution Characterization) Let s∈R
V be a seed vector such that sT DG1= 0, sT DGs=

1, and sT DGv2 6= 0, where v2 is the second generalized eigenvector of LG with respect to DG. In addi-

tion, let 1 > κ ≥ 0 be a correlation parameter, and let x⋆ be an optimal solution to

LocalSpectral(G,s,κ). Then, there exists some γ ∈ (−∞,λ2(G)) and a c ∈ [0,∞] such that

x⋆ = c(LG − γDG)
+DGs. (1)

There are several parameters (such as s, κ, γ, and c) in the statement of Theorem 1, and under-

standing their relationship is important: s and κ are the parameters of the program; c is a normaliza-

tion factor that rescales the norm of the solution vector to be 1 (and that can be computed in linear

time, given the solution vector); and γ is implicitly defined by κ, G, and s. The correct setting of γ

ensures that (sT DGx⋆)2 = κ, that is, that x⋆ is found exactly on the boundary of the feasible region.

At this point, it is important to notice the behavior of x⋆ and γ as κ changes. As κ goes to 1, γ tends

to −∞ and x⋆ approaches s; conversely, as κ goes to 0, γ goes to λ2(G) and x⋆ tends towards v2, the

global eigenvector. We will discuss how to compute γ and x⋆, given a specific κ, in Section 3.3.

Finally, we should note that there is a close connection between the solution vector x⋆ and the

popular PageRank procedure. Recall that PageRank refers to a method to determine a global rank or

global notion of importance for a node in a graph such as the web that is based on the link structure

of the graph (Brin and Page, 1998; Langville and Meyer, 2004; Berkhin, 2005). There have been

several extensions to the basic PageRank concept, including Topic-Sensitive PageRank (Haveliwala,

2003) and Personalized PageRank (Jeh and Widom, 2003). In the same way that PageRank can be

viewed as a way to express the quality of a web page over the entire web, Personalized PageRank

expresses a link-based measure of page quality around user-selected pages. In particular, given a

vector s ∈ R
V and a teleportation constant α > 0, the Personalized PageRank vector can be written

as prα,s =
(

LG + 1−α
α DG

)−1
DGs (Andersen, Chung, and Lang, 2006). By setting γ = − 1−α

α , the

optimal solution to LocalSpectral is proved to be a generalization of Personalized PageRank. In par-

ticular, this means that for high values of the correlation parameter κ, for which the corresponding

γ in Theorem 1 is negative, the optimal solution to LocalSpectral takes the form of a Personalized

PageRank vector. On the other hand, when γ ≥ 0, the optimal solution to LocalSpectral provides a
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smooth way of transitioning from the Personalized PageRank vector to the global second eigenvec-

tor v2.

3.3 Computation of the Optimal Solutions of LocalSpectral

Here, we discuss how to compute efficiently an optimal solution for LocalSpectral(G,s,κ), for a

fixed choice of the parameters G, s, and κ. The following theorem is our main result.

Theorem 2 (Solution Computation) For any ε > 0, a solution to LocalSpectral(G,s,κ) of value

at most (1+ ε) ·λ(G,s,κ) can be computed in time Õ(m/
√

λ2(G) · log(1/ε)) using the Conjugate Gra-

dient Method (Golub and Loan, 1996). Alternatively, such a solution can be computed in time

Õ(m log(1/ε)) using the Spielman-Teng linear-equation solver (Spielman and Teng, 2004).

Proof By Theorem 1, we know that the optimal solution x⋆ must be a unit-scaled version of

y(γ) = (LG − γDG)
+DGs, for an appropriate choice of γ ∈ (−∞,λ2(G)). Notice that, given a fixed γ,

the task of computing y(γ) is equivalent to solving the system of linear equations (LG−γDG)y=DGs

for the unknown y. This operation can be performed, up to accuracy ε, in time Õ(m/
√

λ2(G) · log(1/ε))
using the Conjugate Gradient Method, or in time Õ(m log(1/ε)) using the Spielman-Teng linear-

equation solver. To find the correct setting of γ, it suffices to perform a binary search over the

possible values of γ in the interval (−vol(G),λ2(G)), until (sT DGx)2 is sufficiently close to κ.

We should note that, depending on the application, other methods of computing a solution to

LocalSpectral(G,s,κ) might be more appropriate. In particular, if an eigenvector decomposition of

LG has been pre-computed, as is the case in certain machine learning and data analysis applications,

then this computation can be modified as follows. Given an eigenvector decomposition of LG as

LG = ∑n
i=2 λiD

1/2

G uiu
T
i D

1/2

G , then y(γ) must take the form

y(γ) = (LG − γDG)
+DGs =

n

∑
i=2

1

λi − γ
(sT D

1/2

G ui)
2,

for the same choice of c and γ, as in Theorem 1. Hence, given the eigenvector decomposition, each

guess y(γ) of the binary search can be computed by expanding the above series, which requires

a linear number of inner product computations. While this may yield a worse running time than

Theorem 2 in the worst case, in the case that the graph is well-approximated by a small number k

of dominant eigenvectors, then the computation is reduced to only k straightforward inner product

computations.

3.4 Proof of Theorem 1

We start with an outline of the proof. Although the program LocalSpectral(G,s,κ) is not convex,

it can be relaxed to the convex semidefinite program SDPp(G,s,κ) of Figure 3. Then, one can

observe that strong duality holds for this SDP relaxation. Using strong duality and the related

complementary slackness conditions, one can argue that the primal SDPp(G,s,κ) has a rank one

unique optimal solution under the conditions of the theorem. This implies that the optimal solution

of SDPp(G,s,κ) is the same as the optimal solution of LocalSpectral(G,s,κ). Moreover, combin-

ing this fact with the complementary slackness condition obtained from the dual SDPd(G,s,κ) of

Figure 3, one can derive that the optimal rank one solution is of the form promised by Theorem 1.
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minimize LG ◦X

s.t. LKn
◦X = 1

(DGs)(DGs)T ◦X ≥ κ

X � 0

maximize α+κβ

s.t. LG � αLKn
+β(DGs)(DGs)T

β ≥ 0

α ∈ R

Figure 3: Left: Primal SDP relaxation of LocalSpectral(G,s,κ): SDPp(G,s,κ); for this primal, the

optimization variable is X ∈ R
V×V such that X is symmetric and positive semidefinite.

Right: Dual SDP relaxation of LocalSpectral(G,s,κ): SDPd(G,s,κ); for this dual, the

optimization variables are α,β ∈ R. Recall that LKn

def
= DG − 1

vol(G)DG11T DG.

Before proceeding with the details of the proof, we pause to make several points that should

help to clarify our approach.

• First, since it may seem to some readers to be unnecessarily complex to relax LocalSpectral

as an SDP, we emphasize that the motivation for relaxing it in this way is that we would

like to prove Theorem 1. To prove this theorem, we must understand the form of the op-

timal solutions to the non-convex program LocalSpectral. Thus, in order to overcome the

non-convexity, we relax LocalSpectral to SDPp(G,s,κ) (of Figure 3) by “lifting” the rank-1

condition implicit in LocalSpectral. Then, strong duality applies; and it implies a set of suffi-

cient optimality conditions. By combining these conditions, we will be able to establish that

an optimal solution X⋆ to SDPp(G,s,κ) has rank 1, that is, it has the form X⋆ = x⋆x⋆T for

some vector x⋆; and thus it yields an optimal solution to LocalSpectral, that is, the vector x⋆.

• Second, in general, the value of a relaxation like SDPp(G,s,κ) may be strictly less than that

of the original program (LocalSpectral, in this case). Our characterization and proof will

imply that the relaxation is tight, that is, that the optimum of SDPp(G,s,κ) equals that of

LocalSpectral. The reason is that one can find a rank-1 optimal solution to SDPp(G,s,κ),
which then yields an optimal solution of the same value for LocalSpectral. Note that this also

implies that strong duality holds for the non-convex LocalSpectral, although this observation

is not needed for our proof.

That is, although it may be possible to prove Theorem 1 in some other way that does not involve

SDPs, we chose this proof since it is simple and intuitive and correct; and we note that Appendix

B in the textbook of Boyd and Vandenberghe (2004) proves a similar statement by the same SDP-

based approach.

Returning to the details of the proof, we will proceed to prove the theorem by establishing a

sequence of claims. First, consider SDPp(G,s,κ) and its dual SDPd(G,s,κ) (as shown in Figure 3).

The following claim uses the fact that, given X = xxT for x ∈ R
V , and for any matrix A ∈ R

V×V ,

we have that A ◦ X = xT Ax. In particular, LG ◦ X = xT LGx, for any graph G, and (xT DGs)2 =
xT DGssT DGx = DGssT DG ◦X .

Claim 1 The primal SDPp(G,s,κ) is a relaxation of the vector program LocalSpectral(G,s,κ).

Proof Consider a vector x that is a feasible solution to LocalSpectral(G,s,κ), and note that X = xxT

is a feasible solution to SDPp(G,s,κ).
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Next, we establish the strong duality of SDPp(G,s,κ). (Note that the feasibility conditions and

complementary slackness conditions stated below may not suffice to establish the optimality, in the

absence of this claim; hence, without this claim, we could not prove the subsequent claims, which

are needed to prove the theorem.)

Claim 2 Strong duality holds between SDPp(G,s,κ) and SDPd(G,s,κ).

Proof Since SDPp(G,s,κ) is convex, it suffices to verify that Slater’s constraint qualification

condition (Boyd and Vandenberghe, 2004) is true for this primal SDP. Consider X = ssT . Then,

(DGs)(DGs)T ◦ ssT = (sT DGs)2 = 1 > κ.

Next, we use this result to establish the following two claims. In particular, strong duality allows

us to prove the following claim showing the KKT-conditions, that is, the feasibility conditions and

complementary slackness conditions stated below, suffice to establish optimality.

Claim 3 The following feasibility and complementary slackness conditions are sufficient for a

primal-dual pair X⋆,α⋆,β⋆ to be an optimal solution. The feasibility conditions are:

LKn
◦X⋆ = 1,

(DGs)(DGs)T ◦X⋆ ≥ κ,

LG −α⋆LKn
−β⋆(DGs)(DGs)T � 0, and (2)

β⋆ ≥ 0,

and the complementary slackness conditions are:

α⋆(LKn
◦X⋆−1) = 0,

β⋆((DGs)(DGs)T ◦X⋆−κ) = 0, and (3)

X⋆ ◦ (LG −α⋆LKn
−β⋆(DGs)(DGs)T ) = 0. (4)

Proof This follows from the convexity of SDPp(G,s,κ) and Slater’s condition (Boyd and Vanden-

berghe, 2004).

Claim 4 These feasibility and complementary slackness conditions, coupled with the assumptions

of the theorem, imply that X⋆ must be rank 1 and β⋆ > 0.

Proof Plugging in v2 in Equation (2), we obtain that vT
2 LGv2−α⋆−β⋆(vT

2 DGs)2 ≥ 0. But vT
2 LGv2 =

λ2(G) and β⋆ ≥ 0. Hence, λ2(G)≥α⋆. Suppose α⋆ = λ2(G). As sT DGv2 6= 0, it must be the case that

β⋆ = 0. Hence, by Equation (4), we must have X⋆ ◦L(G) = λ2(G), which implies that X⋆ = v2vT
2 ,

that is, the optimum for LocalSpectral is the global eigenvector v2. This corresponds to a choice of

γ = λ2(G) and c tending to infinity.

Otherwise, we may assume that α⋆ < λ2(G). Hence, since G is connected and α⋆ < λ2(G), LG−
α⋆LKn

has rank exactly n−1 and kernel parallel to the vector 1. From the complementary slackness

condition (4) we can deduce that the image of X⋆ is in the kernel of LG−α⋆LKn
−β⋆(DGs)(DGs)T . If
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β⋆ > 0, we have that β⋆(DGs)(DGs)T is a rank one matrix and, since sT DG1 = 0, it reduces the rank

of LG −α⋆LKn
by one precisely. If β⋆ = 0 then X⋆ must be 0 which is not possible if SDPp(G,s,κ)

is feasible. Hence, the rank of LG −α⋆LKn
− β⋆(DGs)(DGs)T must be exactly n− 2. As we may

assume that 1 is in the kernel of X⋆, X⋆ must be of rank one. This proves the claim.

Now we complete the proof of the theorem. From the claim it follows that, X⋆ = x⋆x⋆T where

x⋆ satisfies the equation (LG −α⋆LKn
− β⋆(DGs)(DGs)T )x⋆ = 0. From the second complementary

slackness condition, Equation (3), and the fact that β⋆ > 0, we obtain that (x⋆)T DGs =±
√

κ. Thus,

x⋆ =±β⋆
√

κ(LG −α⋆LKn
)+DGs, as required.

4. Application to Partitioning Graphs Locally

In this section, we describe the application of LocalSpectral to finding locally-biased partitions in a

graph, that is, to finding sparse cuts around an input seed vertex set in the graph. For simplicity, in

this part of the paper, we let the instance graph G be unweighted.

4.1 Background on Global Spectral Algorithms for Partitioning Graphs

We start with a brief review of global spectral graph partitioning. Recall that the basic global graph

partitioning problem is: given as input a graph G = (V,E), find a set of nodes S ⊆V to solve

φ(G) = min
S⊆V

φ(S).

Spectral methods approximate the solution to this intractable global problem by solving the relaxed

problem Spectral(G) presented in Figure 1. To understand this optimization problem, recall that

xT LGx counts the number of edges crossing the cut and that xT DGx = 1 encodes a variance con-

straint; thus, the goal of Spectral(G) is to minimize the number of edges crossing the cut subject to

a given variance. Recall that for T ⊆ V , we let 1T ∈ {0,1}V be a vector which is 1 for vertices in

T and 0 otherwise. Then for a cut (S, S̄), if we define the vector vS
def
=

√

vol(S)·vol(S̄)
vol(G) ·

(

1S

vol(S) −
1S̄

volS̄

)

,

it can be checked that vS satisfies the constraints of Spectral and has objective value φ(S). Thus,

λ2(G)≤ minS⊆V φ(S) = φ(G).
Hence, Spectral(G) is a relaxation of the minimum conductance problem. Moreover, this pro-

gram is a good relaxation in that a good cut can be recovered by considering a truncation, that is,

a sweep cut, of the vector v2 that is the optimal solution to Spectral(G). (That is, for example,

consider each of the n cuts defined by the vector v2, and return the cut with minimum conductance

value.) This is captured by the following celebrated result often referred to as Cheeger’s Inequality.

Theorem 3 (Cheeger’s Inequality) For a connected graph G, φ(G)≤ O(
√

λ2(G)).

Although there are many proofs known for this theorem (see, e.g., Chung, 1997), a particularly

interesting proof was found by Mihail (1989); this proof involves rounding any test vector (rather

than just the optimal vector), and it achieves the same guarantee as Cheeger’s Inequality.

Theorem 4 (Sweep Cut Rounding) Let x be a vector such that xT DG1 = 0. Then there is a t for

which the set of vertices S := SweepCutt(x)
def
= {i : xi ≥ t} satisfies xT LGx

xT DGx
≥ φ2(S)/8.

It is the form of Cheeger’s Inequality provided by Theorem 4 that we will use below.

2348



A LOCAL SPECTRAL METHOD FOR GRAPHS

4.2 Locally-Biased Spectral Graph Partitioning

Here, we will exploit the analogy between Spectral and LocalSpectral by applying the global ap-

proach just outlined to the following locally-biased graph partitioning problem: given as input a

graph G = (V,E), an input node u, and a positive integer k, find a set of nodes T ⊆V achieving

φ(u,k) = min
T⊆V :u∈T,vol(T )≤k

φ(T ).

That is, the problem is to find the best conductance set of nodes of volume no greater than k that

contains the input node v.

As a first step, we show that we can choose the seed set and correlation parameters s and κ such

that LocalSpectral(G,s,κ) is a relaxation for this locally-biased graph partitioning problem.

Lemma 5 For u ∈ V , LocalSpectral(G,v{u},1/k) is a relaxation of the problem of finding a mini-

mum conductance cut T in G which contains the vertex u and is of volume at most k. In particular,

λ(G,v{u},1/k)≤ φ(u,k).

Proof If we let x = vT in LocalSpectral(G,v{u},1/k), then vT
T LGvT = φ(T ), vT

T DG1 = 0, and

vT
T DGvT = 1. Moreover, we have that (vT

T DGv{u})
2 = du(2m−vol(T ))

vol(T )(2m−du)
≥ 1/k, which establishes the

lemma.

Next, we can apply Theorem 4 to the optimal solution for LocalSpectral(G,v{u},1/k) and obtain

a cut T whose conductance is quadratically close to the optimal value λ(G,v{u},1/k). By Lemma 5,

this implies that φ(T )≤ O(
√

φ(u,k)). This argument proves the following theorem.

Theorem 6 (Finding a Cut) Given an unweighted graph G = (V,E), a vertex u ∈V and a positive

integer k, we can find a cut in G of conductance at most O(
√

φ(u,k)) by computing a sweep cut of

the optimal vector for LocalSpectral(G,v{u},1/k). Moreover, this algorithm runs in nearly-linear

time in the size of the graph.

That is, this theorem states that we can perform a sweep cut over the vector that is the solution

to LocalSpectral(G,v{u},1/k) in order to obtain a locally-biased partition; and that this partition

comes with quality-of-approximation guarantees analogous to that provided for the global problem

Spectral(G) by Cheeger’s inequality.

Our final theorem shows that the optimal value of LocalSpectral also provides a lower bound

on the conductance of other cuts, as a function of how well-correlated they are with the input seed

vector. In particular, when the seed vector corresponds to a cut U , this result allows us to lower

bound the conductance of an arbitrary cut T , in terms of the correlation between U and T . The

proof of this theorem also uses in an essential manner the duality properties that were used in the

proof of Theorem 1.

Theorem 7 (Cut Improvement) Let G be a graph and s ∈ R
n be such that sT DG1 = 0, where DG

is the degree matrix of G. In addition, let κ ≥ 0 be a correlation parameter. Then, for all sets T ⊆V

such that κ′ def
= (sT DGvT )

2, we have that

φ(T )≥
{

λ(G,s,κ) if κ ≤ κ′

κ′/κ ·λ(G,s,κ) if κ′ ≤ κ.
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Proof It follows from Theorem 1 that λ(G,s,κ) is the same as the optimal value of SDPp(G,s,κ)
which, by strong duality, is the same as the optimal value of SDPd(G,s,κ). Let α⋆,β⋆ be the

optimal dual values to SDPd(G,s,κ). Then, from the dual feasibility constraint LG − α⋆LKn
−

β⋆(DGs)(DGs)T � 0, it follows that

sT
T LGsT −α⋆sT

T LKn
sT −β⋆(sT DGsT )

2 ≥ 0.

Notice that since sT
T DG1 = 0, it follows that sT

T LKn
sT = sT

T DGsT = 1. Further, since sT
T LGsT = φ(T ),

we obtain, if κ ≤ κ′, that

φ(T )≥ α⋆+β⋆(sT DGsT )
2 ≥ α⋆+β⋆κ = λ(G,s,κ).

If on the other hand, κ′ ≤ κ, then

φ(T )≥ α⋆+β⋆(sT DGsT )
2 ≥ α⋆+β⋆κ ≥ κ′/κ · (α⋆+β⋆κ) = κ′/κ ·λ(G,s,κ).

Note that strong duality was used here.

Thus, although the relaxation guarantees of Lemma 5 only hold when the seed set is a single

vertex, we can use Theorem 7 to consider the following problem: given a graph G and a cut (T, T̄ )
in the graph, find a cut of minimum conductance in G which is well-correlated with T or certify that

there is none. Although one can imagine many applications of this primitive, the main application

that motivated this work was to explore clusters nearby or around a given seed set of nodes in data

graphs. This will be illustrated in our empirical evaluation in Section 5.

4.3 Our Geometric Notion of Correlation Between Cuts

Here we pause to make explicit the geometric notion of correlation between cuts (or partitions, or

sets of nodes) that is used by LocalSpectral, and that has already been used in various guises in

previous sections. Given a cut (T, T̄ ) in a graph G = (V,E), a natural vector in R
V to associate

with it is its characteristic vector, in which case the correlation between a cut (T, T̄ ) and another

cut (U,Ū) can be captured by the inner product of the characteristic vectors of the two cuts. A

somewhat more refined vector to associate with a cut is the vector obtained after removing from

the characteristic vector its projection along the all-ones vector. In that case, again, a notion of

correlation is related to the inner product of two such vectors for two cuts. More precisely, given a

set of nodes T ⊆V , or equivalently a cut (T, T̄ ), one can define the unit vector sT as

sT (i) =

{
√

vol(T )vol(T̄ )/2m · 1/vol(T ) if i ∈ T

−
√

vol(T )vol(T̄ )/2m · 1/vol(T̄ ) if i ∈ T̄ .

That is, sT
def
=

√

vol(T )vol(T̄ )
2m

(

1T

vol(T ) −
1T̄

vol(T̄ )

)

, which is exactly the vector defined in Section 4.1. It

is easy to check that this is well defined: one can replace sT by sT̄ and the correlation remains the

same with any other set. Moreover, several observations are immediate. First, defined this way, it

immediately follows that sT
T DG1 = 0 and that sT

T DGsT = 1. Thus, sT ∈ SD for T ⊆ V , where we

denote by SD the set of vectors {x ∈ R
V : xT DG1 = 0}; and sT can be seen as an appropriately

normalized version of the vector consisting of the uniform distribution over T minus the uniform
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distribution over T̄ .1 Second, one can introduce the following measure of correlation between two

sets of nodes, or equivalently between two cuts, say a cut (T, T̄ ) and a cut (U,Ū):

K(T,U)
def
= (sT DGsU)

2.

The proofs of the following simple facts regarding K(T,U) are omitted: K(T,U)∈ [0,1]; K(T,U) =
1 if and only if T =U or T̄ =U ; K(T,U) = K(T̄ ,U); and K(T,U) = K(T,Ū). Third, although we

have described this notion of geometric correlation in terms of vectors of the form sT ∈ SD that

represent partitions (T, T̄ ), this correlation is clearly well-defined for other vectors s ∈ SD for which

there is not such a simple interpretation in terms of cuts. Indeed, in Section 3 we considered the

case that s was an arbitrary vector in SD, while in the first part of Section 4.2 we considered the case

that s was the seed set of a single node. In our empirical evaluation in Section 5, we will consider

both of these cases as well as the case that s encodes the correlation with cuts consisting of multiple

nodes.

5. Empirical Evaluation

In this section, we provide an empirical evaluation of LocalSpectral by illustrating its use at finding

and evaluating locally-biased low-conductance cuts, that is, sparse cuts or good clusters, around

an input seed set of nodes in a data graph. We start with a brief discussion of a very recent and

pictorially-compelling application of our method to a computer vision problem; and then we discuss

in detail how our method can be applied to identify clusters and communities in a more heteroge-

neous and more difficult-to-visualize social network application.

5.1 Semi-Supervised Image Segmentation

Subsequent to the initial dissemination of the technical report version of this paper, Maji, Vishnoi,

and Malik (2011) applied our methodology to the problem of finding locally-biased cuts in a com-

puter vision application. Recall that image segmentation is the problem of partitioning a digital

image into segments corresponding to significant objects and areas in the image. A standard ap-

proach consists in converting the image data into a similarity graph over the the pixels and applying

a graph partitioning algorithm to identify relevant segments. In particular, spectral methods have

been popular in this area since the work of Shi and Malik (2000), which used the second eigenvector

of the graph to approximate the so-called normalized cut (which, recall, is an objective measure for

image segmentation that is practically equivalent to conductance). However, a difficulty in applying

the normalized cut method is that in many cases global eigenvectors may fail to capture important

local segments of the image. The reason for this is that they aggressively optimize a global objective

function and thus they tend to combine multiple segments together; this is illustrated pictorially in

the first row of Figure 4.

This difficulty can be overcome in a semi-supervised scenario by using our LocalSpectral method.

Specifically, one often has a small number of “ground truth” labels that correspond to known seg-

ments, and one is interested in extracting and refining the segments in which those labels reside. In

this case, if one considers an input seed corresponding to a small number of pixels within a target

1. Notice also that sT = −sT̄ . Thus, since we only consider quadratic functions of sT , we can consider both sT and sT̄

to be representative vectors for the cut (T, T̄ ).
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object, then LocalSpectral can recover the corresponding segment with high precision. This is il-

lustrated in the second row of Figure 4. This computer vision application of our methodology was

motivated by a preliminary version of this paper, and it was described in detail and evaluated against

competing algorithms by Maji, Vishnoi, and Malik (2011). In particular, they show that LocalSpec-

tral achieves a performance superior to that of other semi-supervised segmentation algorithms (Yu

and Shi, 2002; Eriksson, Olsson, and Kahl, 2007); and they also show how LocalSpectral can be

incorporated in an unsupervised segmentation pipeline by using as input seed distributions obtained

by an object-detector algorithm (Bourdev, Maji, Brox, and Malik, 2010).

Figure 4: The first row shows the input image and the three smallest eigenvectors of the Laplacian

of the corresponding similarity graph computed using the intervening contour cue (Maire,

Arbelaez, Fowlkes, and Malik, 2008). Note that no sweep cut of these eigenvectors re-

veals the leopard. The second row shows the results of LocalSpectral with a setting of

γ = −10λ2(G) with the seed pixels highlighted by crosshairs. Note how one can to re-

cover the leopard by using a seed vector representing a set of only 4 pixels. In addition,

note how the first seed pixel allows us to capture the head of the animal, while the other

seeds help reveal other parts of its body.

5.2 Detecting Communities in Social Networks

Finding local clusters and meaningful locally-biased communities is also of interest in the analysis

of large social and information networks. A standard approach to finding clusters and communities

in many network analysis applications is to formalize the idea of a good community with an “edge

counting” metric such as conductance or modularity and then to use a spectral relaxation to optimize

it approximately (Newman, 2006b,a). For many very large social and information networks, how-

ever, there simply do not exist good large global clusters, but there do exist small meaningful local

clusters that may be thought of as being nearby prespecified seed sets of nodes (Leskovec, Lang,

Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In these cases, a local

version of the global spectral partitioning problem is of interest, as was shown by Leskovec, Lang,

and Mahoney (2010). Typical networks are very large and, due to their expander-like properties, are

not easily-visualizable (Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009). Thus, in order to

illustrate the empirical behavior of our LocalSpectral methodology in a “real” network application

2352



A LOCAL SPECTRAL METHOD FOR GRAPHS

related to the one that motivated this work (Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009;

Leskovec, Lang, and Mahoney, 2010), we examined a small “coauthorship network” of scientists.

This network was previously used by Newman (2006b) to study community structure in small social

and information networks.

Figure 5: The coauthorship network of Newman (2006b). This layout was obtained in the Pa-

jek (Batagelj and Mrvar, 2001) visualization software, using the Kamada-Kawai method

(Kamada and Kawai, 1989) on each component of a partition provided by LocalCut and

tiling the layouts at the end. Boxes show the two main global components of the network,

which are displayed separately in subsequent figures.

The corresponding graph G is illustrated in Figure 5 and consists of 379 nodes and 914 edges,

where each node represents an author and each unweighted edge represents a coauthorship rela-

tionship. The spectral gap λ2(G) = 0.0029; and a sweep cut of the eigenvector corresponding to

this second eigenvalue yields the globally-optimal spectral cut separating the graph into two well-

balanced partitions, corresponding to the left half and the right half of the network, as shown in

Figure 5. Our main empirical observations, described in detail in the remainder of this section, are

the following.

• First, we show how varying the teleportation parameter allows us to detect low-conductance

cuts of different volumes that are locally-biased around a prespecified seed vertex; and how

this information, aggregated over multiple choices of teleportation, can improve our under-

standing of the network structure in the neighborhood of the seed.

• Second, we demonstrate the more general usefulness of our definition of a generalized Per-

sonalized PageRank vector (where the γ parameter in Equation (1) can be γ ∈ (−∞,λ2(G)) by
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displaying specific instances in which that vector is more effective than the usual Personal-

ized PageRank (where only positive teleportation probabilities are allowed and thus where γ

must be negative). We do this by detecting a wider range of low-conductance cuts at a given

volume and by interpolating smoothly between very locally-biased solutions to LocalSpectral

and the global solution provided by the Spectral program.

• Third, we demonstrate how our method can find low-conductance cuts that are well-correlated

to more general input seed vectors by demonstrating an application to the detection of sparse

peripheral regions, for example, regions of the network that are well-correlated with low-

degree nodes. This suggests that our method may find applications in leveraging feature data,

which are often associated with the vertices of a data graph, to find interesting and meaningful

cuts.

We emphasize that the goal of this empirical evaluation is to illustrate how our proposed methodol-

ogy can be applied in real applications; and thus we work with a relatively easy-to-visualize example

of a small social graph. This will allow us to illustrate how the “knobs” of our proposed method

can be used in practice. In particular, the goal is not to illustrate that our method or heuristic vari-

ants of it or other spectral-based methods scale to much larger graphs—this latter fact is by now

well-established (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009;

Leskovec, Lang, and Mahoney, 2010).

5.2.1 ALGORITHM DESCRIPTION AND IMPLEMENTATION

We refer to our cut-finding algorithm, which will be used to guide our empirical study of finding

and evaluating cuts around an input seed set of nodes and which is a straightforward extension of

the algorithm referred to in Theorem 6, as LocalCut. In addition to the graph, the input parameters

for LocalCut are a seed vector s (e.g., corresponding to a single vertex v), a teleportation parameter

γ, and (optionally) a size factor c. Then, LocalCut performs the following steps.

• First, compute the vector x⋆ of Equation (1) with seed s and teleportation γ.

• Second, either perform a sweep of the vector x⋆, for example, consider each of the n cuts

defined by the vector and return the the minimum conductance cut found along the sweep; or

consider only sweep cuts along the vector x⋆ of volume at most c · kγ, where kγ = 1/κγ, that

contain the input vertex v, and return the minimum conductance cut among such cuts.

By Theorem 1, the vector computed in the first step of LocalCut, x⋆, is an optimal solution

to LocalSpectral(G,s,κγ) for some choice of κγ. (Indeed, by fixing the above parameters, the κ

parameter is fixed implicitly.) Then, by Theorem 6, when the vector x⋆ is rounded (to, for example,

{−1,+1}) by performing the sweep cut, provably-good approximations are guaranteed. In addition,

when the seed vector corresponds to a single vertex v, it follows from Lemma 5 that x⋆ yields a lower

bound to the conductance of cuts that contain v and have less than a certain volume kγ.

Although the full sweep-cut rounding does not give a specific guarantee on the volume of the

output cut, empirically we have found that it is often possible to find small low-conductance cuts

in the range dictated by kγ. Thus, in our empirical evaluation, we also consider volume-constrained

sweep cuts (which departs slightly from the theory but can be useful in practice). That is, we also

introduce a new input parameter, a size factor c > 0, that regulates the maximum volume of the

sweep cuts considered when s represents a single vertex. In this case, LocalCut does not consider
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all n cuts defined by the vector x⋆, but instead it considers only sweep cuts of volume at most c · kγ

that contain the vertex v. (Note that it is a simple consequence of our optimization characterization

that the optimal vector has sweep cuts of volume at most kγ containing v.) This new input parameter

turns out to be extremely useful in exploring cuts at different sizes, as it neglects sweep cuts of low

conductance at large volume and allows us to pick out more local cuts around the seed vertex.

In our first two sets of experiments, summarized in Sections 5.2.2 and 5.2.3, we used single-

vertex seed vectors, and we analyzed the effects of varying the parameters γ and c, as a function

of the location of the seed vertex in the input graph. In the last set of experiments, presented in

Section 5.2.4, we considered more general seed vectors, including both seed vectors that correspond

to multiple nodes, that is, to cuts or partitions in the graph, as well as seed vectors that do not

have an obvious interpretation in terms of input cuts. We implemented our code in a combination

of MATLAB and C++, solving linear systems using the Stabilized Biconjugate Gradient Method

(van der Vorst, 1992) provided in MATLAB 2006b. On this particular coauthorship network, and

on a Dell PowerEdge 1950 machine with 2.33 GHz and 16GB of RAM, the algorithm ran in less

than a few seconds.

5.2.2 VARYING THE TELEPORTATION PARAMETER

Here, we evaluate the effect of varying the teleportation parameter γ ∈ (−∞,λ2(G)), where recall

λ2(G) = 0.0029. Since it is known that large social and information networks are quite heteroge-

neous and exhibit a very strong “nested core-periphery” structure (Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010), we perform this evaluation by con-

sidering the behavior of LocalCut when applied to three types of seed nodes, examples of which

are the highlighted vertices in Figure 5. These three nodes were chosen to represent three different

types of nodes seen in larger networks: a periphery-like node, which belongs to a lower-degree

and less expander-like part of the graph, and which tends to be surrounded by lower-conductance

cuts of small volume; a core-like node, which belongs to a denser and higher-conductance or more

expander-like part of the graph; and an intermediate node, which belongs to a regime between the

core-like and the periphery-like regions.

For each of the three representative seed nodes, we executed 1000 runs of LocalCut with c = 2

and γ varying by 0.001 increments. Figure 6 displays, for each of these three seeds, a plot of the

conductance as a function of volume of the cuts found by each run of LocalCut. We refer to this

type of plot as a local profile plot since it is a specialization of the network community profile plot

(Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010) to

cuts around the specified seed vertex. In addition, Figure 6 also plots several other quantities of

interest: first, the volume and conductance of the theoretical lower bound yielded by each run;

second, the volume and conductance of the cuts defined by the shortest-path balls (in squares and

numbered according to the length of the path) around each seed (which should and do provide

a sanity-check upper bound); third, next to each of the plots, we present a color-coded/grayscale

image of representative cuts detected by LocalCut; and fourth, for each of the cuts illustrated on the

left, a color-coded/grayscale triangle and the numerical value of −γ is shown on the right.

Several points about the behavior of the LocalCut algorithm as a function of the location of the

input seed node and that are illustrated in Figure 6 are worth emphasizing.

• First, for the core-like node, whose profile plot is shown in Figure 6(a), the volume of the

output cuts grows relatively smoothly as γ is increased (i.e., as −γ is decreased). For small
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(a) Selected cuts and profile plot for the core-like node.
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(b) Selected cuts and profiles plot for the intermediate node.
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(c) Selected cuts and profile plot for the periphery-like node.

Figure 6: Selected cuts and local profile plots for varying γ. The cuts on the left are displayed by

assigning to each vertex a color corresponding to the smallest selected cut in which the

vertex was included. Smaller cuts are darker, larger cuts are lighter; and the seed vertex

is shown slightly larger. Each profile plot on the right shows results from 1000 runs of

LocalCut, with c = 2 and γ decreasing in 0.001 increments starting at 0.0028. For each

color-coded/grayscale triangle, corresponding to a cut on the left, −γ is also listed.
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γ, for example, γ = −0.0463 or γ = −0.0207, the output cuts are forced to be small and

hence display high conductance, as the region around the node is somewhat expander-like.

By decreasing the teleportation, the conductance progressively decreases, as the rounding

starts to hit nodes in peripheral regions, whose inclusion only improves conductance (since

it increases the cut volume without adding many additional cut edges). In this case, this

phenomena ends at γ =−0.0013, when a cut of conductance value close to that of the global

optimum is found. (After that, larger and slightly better conductance cuts can still be found,

but, as discussed below, they require γ > 0.)

• Second, a similar interpretation applies to the profile plot of the intermediate node, as shown

in Figure 6(b). Here, however, the global component of the network containing the seed has

smaller volume, around 300, and a very low conductance (again, requiring γ > 0). Thus, the

profile plot jumps from this cut to the much larger eigenvector sweep cut, as will be discussed

below.

• Third, a more extreme case is that of the periphery-like node, whose profile plot is displayed

in Figure 6(c). In this case, an initial increase in γ does not yield larger cuts. This vertex

is contained in a small-volume cut of low conductance, and thus diffusion-based methods

get “stuck” on the small side of the cut. The only cuts of lower conductance in the net-

work are those separating the global components, which can only be accessed when γ > 0.

Hence, the teleportation must be greatly decreased before the algorithm starts outputting cuts

at larger volumes. (As an aside, this behavior is also often seen with so-called “whiskers”

in much larger social and information networks (Leskovec, Lang, Dasgupta, and Mahoney,

2008, 2009; Leskovec, Lang, and Mahoney, 2010).)

In addition, several general points that are illustrated in Figure 6 are worth emphasizing about

the behavior of our algorithm.

• First, LocalCut found low-conductance cuts of different volumes around each seed vertex,

outperforming the shortest-path algorithm (as it should) by a factor of roughly 4 in most

cases. However, the results of LocalCut still lie away from the lower bound, which is also a

factor of roughly 4 smaller at most volumes.

• Second, consider the range of the teleportation parameter necessary for the LocalCut algo-

rithm to discover the well-balanced globally-optimal spectral partition. In all three cases, it

was necessary to make γ positive (i.e., −γ negative) to detect the well-balanced global spec-

tral cut. Importantly, however, the quantitative details depend strongly on whether the seed is

core-like, intermediate, or periphery-like. That is, by formally allowing “negative teleporta-

tion” probabilities, which correspond to γ > 0, the use of generalized Personalized PageRank

vectors as an exploratory tool is much stronger than the usual Personalized PageRank (An-

dersen, Chung, and Lang, 2006; Andersen and Lang, 2006), in that it permits one to find a

larger class of clusters, up to and including the global partition found by the solution to the

global Spectral program. Relatedly, it provides a smooth interpolation between Personalized

PageRank and the second eigenvector of the graph. Indeed, for γ = 0.0028 ≈ λ2(G), LocalCut

outputs the same cut as the eigenvector sweep cut for all three seeds.

• Third, recall that, given a teleportation parameter γ, the rounding step selects the cut of

smallest conductance along the sweep cut of the solution vector. (Alternatively, if volume-
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constrained sweeps are considered, then it selects the cut of smallest conductance among

sweep cuts of volume at most c · kγ, where kγ is the lower bound obtained from the optimiza-

tion program.) In either case, increasing γ can lead LocalCut to pick out larger cuts, but it does

not guarantee this will happen. In particular, due to the local topology of the graph, in many

instances there may not be a way of slightly increasing the volume of a cut while slightly

decreasing its conductance. In those cases, LocalCut may output the same small sweep cut for

a range of teleportation parameters until a much larger, much lower-conductance cut is then

found. The presence such horizontal and vertical jumps in the local profile plot conveys use-

ful information about the structure of the network in the neighborhood of the seed at different

size scales, illustrating that the practice follows the theory quite well.

5.2.3 VARYING THE OUTPUT-SIZE PARAMETER

Here, we evaluate the effect of varying the size factor c, for a fixed choice of teleportation parameter

γ. (In the previous section, c was fixed at c = 2 and γ was varied.) We have observed that varying

c, like varying γ, tends to have the effect of producing low-conductance cuts of different volumes

around the seed vertex. Moreover, it is possible to obtain low-conductance large-volume cuts, even

at lower values of the teleportation parameter, by increasing c to a sufficiently large value. This

is illustrated in Figure 7, which shows the result of varying c with the core-like node as the seed

and −γ = 0.02. Figure 6(a) illustrated that when c = 2, this setting only yielded a cut of volume

close to 100 (see the red/darker triangle with −γ = 0.0207); but the yellow/lighter crosses in Fig-

ure 7 illustrate that by allowing larger values of c, better conductance cuts of larger volume can

be obtained.
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Figure 7: Selected cuts and local profile plots for varying c with the core-like node as the seed.

The cuts are displayed by assigning to each vertex a color corresponding to the small-

est selected cut in which the vertex was included. Smaller cuts are darker, larger are

lighter. The seed vertex is shown larger. The profile plot shows results from 1000 runs of

LocalCut, with varying c and −γ ∈ {0,0.01,0.02} .

While many of these cuts tend to have conductance slightly worse than the best found by varying

the teleportation parameter, the observation that cuts of a wide range of volumes can be obtained

with a single value of γ leaves open the possibility that there exists a single choice of teleportation
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parameter γ that produces good low-conductance cuts at all volumes simply by varying c. (This

would allow us to only solve a single optimization problem and still find cuts of different volumes.)

To address (and rule out) this possibility, we selected three choices of the teleportation parameter for

each of the three seed nodes, and then we let c vary. The resulting output cuts for the core-like node

as the seed are plotted in Figure 7. (The plots for the other seeds are similar and are not displayed.)

Clearly, no single teleportation setting dominates the others: in particular, at volume 200 the lowest-

conductance cut was produced with −γ = 0.02; at volume 400 it was produced with −γ = 0.01; and

at volume 600 with it was produced with γ = 0. The highest choice of γ = 0 performed marginally

better overall, recording lowest conductance cuts at both small and large volumes. That being said,

the results of all three settings roughly track each other, and cuts of a wide range of volumes were

able to be obtained by varying the size parameter c.

These and other empirical results suggest that the best results are achieved when we vary both

the teleportation parameter and the size factor. In addition, the use of multiple teleportation choices

have the side-effect advantage of yielding multiple lower bounds at different volumes.

5.2.4 MULTIPLE SEEDS AND CORRELATION

Here, we evaluate the behavior of LocalCut on more general seed vectors. We consider two examples—

for the first example, there is an interpretation as a cut or partition consisting of multiple nodes;

while the second example does not have any immediate interpretation in terms of cuts or partitions.

P aj ek

(a) Seed set of four seed nodes.

P aj ek

(b) A more general seed vector.

Figure 8: Multiple seeds and correlation. 8(a) shows selected cuts for varying γ with the seed vector

corresponding to a subset of 4 vertices lying in the periphery-like region of the network.

8(b) shows selected cuts for varying γ with the seed vertex equal to a normalized version

of the degree vector. In both cases, the cuts are displayed by assigning to each vertex a

color corresponding to the smallest selected cut in which the vertex was included. Smaller

cuts are darker, larger are lighter.

In our first example, we consider a seed vector representing a subset of four nodes, located

in different peripheral branches of the left half of the global partition of the the network: see the

four slightly larger (and darker) vertices in Figure 8(a). This is of interest since, depending on the

size-scale at which one is interested, such sets of nodes can be thought of as either “nearby” or “far

apart.” For example, when viewing the entire graph of 379 nodes, these four nodes are all close, in
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that they are all on the left side of the optimal global spectral partition; but when considering smaller

clusters such as well-connected sets of 10 or 15 nodes, these four nodes are much farther apart. In

Figure 8(a), we display a selection of the cuts found by varying the teleportation, with c = 2. The

smaller cuts tend to contain the branches in which each seed node is found, while larger cuts start

to incorporate nearby branches. Not shown in the color-coding/grayscale is that the optimal global

spectral partition is eventually recovered. Identifying peripheral areas that are well-separated from

the rest of the graph is a useful primitive in studying the structure of social networks (Leskovec,

Lang, Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010); and thus, this

shows how LocalCut may be used in this context, when some periphery-like seed nodes of the graph

are known.

In our second example, we consider a seed vector that represents a feature vector on the vertices

but that does not have an interpretation in terms of cuts. In particular, we consider a seed vector that

is a normalized version of the degree distribution vector. Since nodes that are periphery-like tend

to have lower degree than those that are core-like (Leskovec, Lang, Dasgupta, and Mahoney, 2008,

2009; Leskovec, Lang, and Mahoney, 2010), this choice of seed vector biases LocalCut towards cuts

that are well-correlated with periphery-like and low-degree vertices. A selection of the cuts found

on this seed vector when varying the teleportation with c = 2 is displayed in Figure 8(b). These cuts

partition the network naturally into three well-separated regions: a sparser periphery-like region

in darker colors, a lighter-colored intermediate region, and a white dense core-like region, where

higher-degree vertices tend to lie. Clearly, this approach could be applied more generally to find

low-conductance cuts that are well-correlated with a known feature of the node vector.

6. Discussion

In this final section, we provide a brief discussion of our results in a broader context.

6.1 Relationship to Local Graph Partitioning

Recent theoretical work has focused on using spectral ideas to find good clusters nearby an input

seed set of nodes (Spielman and Teng, 2004; Andersen, Chung, and Lang, 2006; Chung, 2007).

In particular, local graph partitioning—roughly, the problem of finding a low-conductance cut in a

graph in time depending only on the volume of the output cut—was introduced by Spielman and

Teng (2004). They used random walk based methods; and they used this as a subroutine to give a

nearly linear-time algorithm for outputting balanced cuts that match the Cheeger Inequality up to

polylog factors. In our language, a local graph partitioning algorithm would start a random walk at

a seed node, truncating the walk after a suitably chosen number of steps, and outputting the nodes

visited by the walk. This result was improved by Andersen, Chung, and Lang (2006) by performing

a truncated Personalized PageRank computation. These and subsequent papers building on them

were motivated by local graph partitioning (Chung, 2007), but they do not address the problem of

discovering cuts near general seed vectors, as do we, or of generalizing the second eigenvector of

the Laplacian. Moreover, these approaches are more operationally-defined, while ours is axiomatic

and optimization-based. For more details on these issues as well as the relationship between these

issues and implementing regularization implicitly via approximate computation, see Mahoney and

Orecchia (2011) and Mahoney (2012).
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6.2 Relationship to Empirical Work on Community Structure

Recent empirical work has used Personalized PageRank, a particular variant of a local random

walk, to characterize very finely the clustering and community structure in a wide range of very

large social and information networks (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In particular, Andersen and Lang

used local spectral methods to identify communities in certain informatics graphs using an input

set of nodes as a seed set (Andersen and Lang, 2006). Subsequently, Leskovec, Lang, Dasgupta,

and Mahoney used related methods to characterize the small-scale and large-scale clustering and

community structure in a wide range of large social and information networks (Leskovec, Lang,

Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). Our optimization pro-

gram and empirical results suggest that this line of work can be extended to ask in a theoretically

principled manner much more refined questions about graph structure near prespecified seed vec-

tors.

6.3 Relationship to Cut-improvement Algorithms

Many recently-popular algorithms for finding minimum-conductance cuts, such as those in Khan-

dekar, Rao, and Vazirani (2006) and in Orecchia, Schulman, Vazirani, and Vishnoi (2008), use

as a crucial building block a primitive that takes as input a cut (T, T̄ ) and attempts to find a

lower-conductance cut that is well correlated with (T, T̄ ). This primitive is referred to as a cut-

improvement algorithm (Lang and Rao, 2004; Andersen and Lang, 2008), as its original purpose was

limited to post-processing cuts output by other algorithms. Recently, cut-improvement algorithms

have also been used to find low conductance cuts in specific regions of large graphs (Leskovec,

Lang, and Mahoney, 2010). Given a notion of correlation between cuts, cut-improvement algo-

rithms typically produce approximation guarantees of the following form: for any cut (C,C̄) that

is ε-correlated with the input cut, the cut output by the algorithm has conductance upper-bounded

by a function of the conductance of (C,C̄) and ε. This line of work has typically used flow-based

techniques. For example, Gallo, Grigoriadis, and Tarjan (1989) were the first to show that one can

find a subset of an input set T ⊆V with minimum conductance in polynomial time. Similarly, Lang

and Rao (2004) implement a closely related algorithm and demonstrate its effectiveness at refining

cuts output by other methods. Finally, Andersen and Lang (2008) give a more general algorithm

that uses a small number of single-commodity maximum-flows to find low-conductance cuts not

only inside the input subset T , but among all cuts which are well-correlated with (T, T̄ ). Viewed

from this perspective, our work may be seen as a spectral analogue of these flow-based techniques,

since Theorem 7 provides lower bounds on the conductance of other cuts as a function of how

well-correlated they are with the seed vector.

6.4 Alternate Interpretation of Our Main Optimization Program

There are a few interesting ways to view our local optimization problem of Figure 1 which would

like to point out here. Recall that LocalSpectral may be interpreted as augmenting the standard

spectral optimization program with a constraint that the output cut be well-correlated with the in-

put seed set. To understand this program from the perspective of the dual, recall that the dual of
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LocalSpectral is given by the following.

maximize α+βκ

s.t. LG � αLKn
+βΩT

β ≥ 0,

where ΩT = DGsT sT
T DG. Alternatively, by subtracting the second constraint of LocalSpectral from

the first constraint, it follows that

xT
(

LKn
−LKn

sT sT
T LKn

)

x ≤ 1−κ.

It can be shown that

LKn
−LKn

sT sT
T LKn

=
LKT

vol(T̄ )
+

LKT̄

vol(T )
,

where LKT
is the DG-weighted complete graph on the vertex set T . Thus, LocalSpectral is clearly

equivalent to

minimize xT LGx

s.t. xT LKn
x = 1

xT

(

LKT

vol(T̄ )
+

LKT̄

vol(T )

)

x ≤ 1−κ.

The dual of this program is given by the following.

maximize α−β(1−κ)

s.t. LG � αLKn
−β

(

LKT

vol(T̄ )
+

LKT̄

vol(T )

)

β ≥ 0.

From the perspective of this dual, this can be viewed as “embedding” a combination of a complete

graph Kn and a weighted combination of complete graphs on the sets T and T̄ , that is, KT and KT̄ .

Depending on the value of β, the latter terms clearly discourage cuts that substantially cut into T or

T̄ , thus encouraging partitions that are well-correlated with the input cut (T, T̄ ).

6.5 Bounding the Size of the Output Cut

Readers familiar with the spectral method may recall that given a graph with a small balanced cut,

it is not possible, in general, to guarantee that the sweep cut procedure of Theorem 4 applied to the

optimal of Spectral outputs a balanced cut. One may have to iterate several times before one gets

a balanced cut. Our setting, building up on the spectral method, also suffers from this; we cannot

hope, in general, to bound the size of the output cut (which is a sweep cut) in terms of the correlation

parameter κ. This was the reason for considering volume-constrained sweep cuts in our empirical

evaluation.
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