Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

SIAM REVIEW © 2023 Society for Industrial and Applied Mathematics
Vol. 65, No. 1, pp. 59-143

Flow-Based Algorithms for Improving
Clusters: A Unifying Framework,
Software, and Performance*

Kimon Fountoulakis'
Meng Liut

David F Gleich?
Michael W. Mahoney?

Abstract. Clustering points in a vector space or nodes in a graph is a ubiquitous primitive in statistical
data analysis, and it is commonly used for exploratory data analysis. In practice, it is often
of interest to “refine” or “improve” a given cluster that has been obtained by some other
method. In this survey, we focus on principled algorithms for this cluster improvement
problem. Many such cluster improvement algorithms are flow-based methods, by which
we mean that operationally they require the solution of a sequence of maximum flow
problems on a (typically implicitly) modified data graph. These cluster improvement
algorithms are powerful, both in theory and in practice, but they have not been widely
adopted for problems such as community detection, local graph clustering, semisupervised
learning, etc. Possible reasons for this are the steep learning curve for these algorithms, the
lack of efficient and easy-to-use software, and the lack of detailed numerical experiments
on real-world data that demonstrate their usefulness. Our objective here is to address
these issues. To do so, we guide the reader through the whole process of understanding
how to implement and apply these powerful algorithms. We present a unifying fractional
programming optimization framework that permits us to distill, in a simple way, the crucial
components of all these algorithms. This also makes apparent similarities and differences
among related methods. Viewing these cluster improvement algorithms via a fractional
programming framework suggests directions for future algorithm development. Finally, we
develop efficient implementations of these algorithms in our LocalGraphClustering Python
package, and we perform extensive numerical experiments to demonstrate the performance
of these methods on social networks and image-based data graphs.

Key words. improving clusters, flow-based methods, local graph clustering
MSC codes. 60J20, 91D30, 91C20, 62H30, 90C35

DOI. 10.1137/20M1333055

*Received by the editors April 22, 2020; accepted for publication (in revised form) January 4,
2022; published electronically February 9, 2023.

https://doi.org/10.1137/20M1333055

Funding: The work of the first author was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and by Cette recherche a été financée par le Conseil de
recherches en sciences naturelles et en génie du Canada (CRSNG) through grants RGPIN-2019-
04067 and DGECR-2019-00147. The work of the second and third authors was partially supported
by NSF grants 1IS-1546488 and CCF-1909528, the NSF Center for Science of Information STC
through grant CCF-0939370, DOE grant DE-SC0014543, NASA, and the Sloan Foundation. The
work of the fourth author was partially supported by ARO, DARPA, NSF via the CSol STC, ONR,
Cray, and Intel.

tSchool of Computer Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada
(kfountou@uwaterloo.ca).

tDepartment of Computer Science, Purdue University, West Lafayette, IN 47907 USA (liul740@
purdue.edu, dgleich@purdue.edu).

81CSI and Department of Statistics, University of California at Berkeley, Berkeley, CA, USA

(mmahoney@stat.berkeley.edu).
59

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1333055
mailto:kfountou@uwaterloo.ca
mailto:liu1740@purdue.edu
mailto:liu1740@purdue.edu
mailto:dgleich@purdue.edu
mailto:mmahoney@stat.berkeley.edu

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

60

K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Contents

Part l. Introduction and Overview of Main Results 61

I Introduction 61
1.1 Cluster Improvement: Compared with Graph Clustering 63
1.2 Cluster Improvement: Compared with Seeded Graph Diffusion 65
1.3 Cluster Improvement: Compared with Image Segmentation 65
1.4 Overview and Summary e 67
1.5 Reproducible Software: The LocalGraphClustering Package 67
1.6 Outline 69

2 Notation, Definitions, and Terminology 70
2.1 Graph Notation 70
2.2 Matrices and Vectors for Graphs 70
2.3 Vector Norms L 71
2.4 Graph Cuts and Volumes Using Set and Matrix Notation 71
2.5 Relative Volumeo 72
2.6 Cluster Quality Metrics 72
2.7 Strongly and Weakly Local Graph Algorithms 74

3 Main Theoretical Results: Flow-Based Cluster Improvement and Frac-
tional Programming Framework 74
3.1 Cluster Improvement Objectives and Their Properties 75
3.2 The Basic Fractional Programming Problem 7
3.3 Fractional Programming for Cluster Improvement 78
3.4 Dinkelbach’s Algorithm for Fractional Programming 79
3.5 A Faster Version of Dinkelbach’s Algorithm via Root-Finding 82
3.6 The Algorithmic Components of Cluster Improvement 83
3.7 Beyond Conductance and Degree-Weighted Nodes 84

4 Cluster Improvement, Flow-Based, and Other Related Methods 85
4.1 Graph and Mesh Partitioning in Scientific Computing 86
4.2 The Nature of Clusters in Sparse Relational Data and Complex Systems 86
4.3 Local Graph Clustering, Community Detection, and Metadata Inference 87
4.4 Conductance Optimization 88
4.5 Network Flow—Based Computing 88
4.6 Recent Progress on Network Flow Algorithms 89
4.7 Continuous and Infinite-Dimensional Network Flow and Cuts 89
4.8 Graph Cuts and Max-Flow-Based Image Segmentation 90

Part Il. Technical Details behind the Main Theoretical Results 90

5 Minimum Cut and Maximum Flow Problems 90
5.1 MinCut e 91
5.2 Network Flow and MaxFlow 92
5.3 From MaxFlow to MinCut 94
5.4 MaxFlow Solvers for Weighted and Unweighted Graphs 95

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS

6 The MQI Problem and Algorithm

6.1
6.2
6.3

Solving the MQI Subproblem Using MaxFlow Algorithms
Iteration Complexity L L
A Faster Version of the MQI Algorithm

The Flowlmprove Problem and Algorithm

7.1
7.2
7.3
7.4
7.5

The FlowImprove Subproblem
Iteration Complexity oo
A Faster Version of the Flowlmprove Algorithm
Nonlocality in FlowImprove
Relationship with PageRank

The LocalFlowlmprove (and SimpleLocal) Problem and Algorithm

8.1
8.2
8.3
8.4

Strongly Local Constructions of the Augmented Graph
Blocking Flow
The SimpleLocal Subsolver
More Sophisticated Subproblem Solvers

Part lll. Empirical Performance and Conclusion

9

Empirical Evaluation

9.1
9.2
9.3
9.4
9.5

Flow-Based Cluster Improvement Algorithms Reduce Conductance . .
Finding Nearby Targets by Growing and Shrinking
Using Flow-Based Algorithms for Semisupervised Learning
Improving Thousands of Clusters on Large-Scale Data
Using Flow-Based Methods for Local Coordinates

10 Discussion and Conclusion

Part IV. Replicability Appendices and References

Appendix A. Replicability Details for Figures and Tables

Appendix B. Converting Images to Graphs

Acknowledgments

References

returning meaningful groups of that data as output.

Part l. Introduction and Overview of Main Results.

61

95
96
99
99

100
101
103
103
104
105

113
114
119
123
124
126

128

131
131
135
135

136

I. Introduction. Clustering is the process of taking a set of data as input and

The literature on clustering

is tremendously and notoriously extensive (von Luxburg, Williamson, and Guyon,
2012; Ben-David, 2018); see also comments by Hand in the discussion of Friedman
and Meulman (2004). It can seem that nearly every conceivable perspective on the
clustering problem—from statistical to algorithmic, from optimization-based to infor-
mation theoretic, from applications to formulations to implementations—that could
be explored, has been explored. Applications of clustering are far too numerous to

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

62 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

discuss meaningfully, and they are often of greatest practical interest for “soft” down-
stream objectives such as those common in exploratory data analysis. Yet, despite
comprehensive research into the problem, useful and surprising new results on cluster-
ing are still discovered on a regular basis (Kleinberg, 2002; Ackerman and Ben-David,
2008; Awasthi et al., 2015; Abbe, 2018).

Graph clustering is a special instance of the general clustering problem where the
input is a graph, in this case, a set of nodes and edges, and the output is a mean-
ingful grouping of the graph’s nodes. The ubiquity of sparse relational data from
internet-based applications to biology, from complex engineered systems to neuro-
science, as well as new problems inspired by these domains (Newman, 2010; Easley
and Jo, 2010; Brandes and Erlebach, 2005) (and within STAM Review during the past
decade (Estrada and Higham, 2010; Red et al., 2011; Grindrod and Higham, 2013;
Liberti et al., 2014; Bienstock, Chertkov, and Harnett, 2014; Jia et al., 2015; Bertozzi
and Flenner, 2016; Estrada and Hatano, 2016; Rombach et al., 2017; Fosdick et al.,
2018; Fennell and Gleeson, 2019; Shi, Altafini, and Baras, 2019; Ehrhardt and Wolfe,
2019)), has precipitated a recent surge of graph clustering research (Newman, 2006;
Leskovec et al., 2009; Eckles, Karrer, and Ugander, 2017). For instance, in graph and
network models of complex systems, the community detection or module detection
problem is a specific instance of the graph clustering problem in which one seeks to
identify clusters that exhibit relationships distinctly different from other parts of the
network. Consequently, there are now a large number of tools and techniques that
generate clusters from graph data.

The tools and techniques we study in this survey arise from a different and com-
plementary perspective. As such, they are designed to solve a different and comple-
mentary problem. The clustering problem itself is somewhat ill-defined, but one often
applies it in practice while performing exploratory data analysis. That is, one uses a
clustering algorithm to “play with” and “explore” the data, tweaking the clustering to
see what insights about the data are revealed. Motivated by this, and the well-known
fact that the output of even the best clustering algorithm is typically imperfectly
suited to the downstream task of interest (for example, Carrasco et al. (2003) men-
tions “neither [...] seems to yield really good [...] clusterings of our dataset, so we
have resorted to hand-built combinations”), we are interested in tools and techniques
that seek to improve or refine a given cluster—or more generally a representative set
of vertices—in a fashion that is computationally efficient, that yields a result with
strong optimality guarantees, and that is useful in practice.

Somewhat more formally, here is the cluster improvement problem: Given a graph
G = (V,E) and a subset of vertices R that serve as a reference cluster (or seed set),
find a nearby set S that results in an improved cluster. That is,

when given as input a graph G = (V, F) and a set R C V,
a cluster improvement algorithm returns a set S C V,
where S is in some sense “better” than R.

A very important point here is that both G and R are regarded as input to the cluster
improvement problem. This is different from more traditional graph clustering, which
typically takes only G as input, and it is a source of potential confusion. See Figure 1,
which we explain in depth in section 1.1, for an illustration.

How to choose the set R, which is part of the input to a cluster improvement
algorithm, is an important practical problem (akin to how to construct the input
graph in more traditional graph clustering). It depends on the application of interest,
and we will see several examples of it.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 63

In the settings we will investigate in this survey, we will be (mainly) interested
in graph conductance (which we will define formally in section 2.6) as the cluster
quality metric. Thus, the optimization goal will be to produce a set S with smaller
(i.e., better) conductance than R. Generally speaking, a set of small conductance in
a graph is a hint at a bottleneck revealing an underlying cluster. While we focus on
conductance, the techniques we review are more general and powerful. For example,
these ideas, algorithms, and approaches can be adapted to other graph clustering
objectives such as ratio cut (Lang and Rao, 2004), normalized cut (Hochbaum, 2013),
and other closely related “edge counting” objective functions and scenarios (Veldt,
Klymko, and Gleich, 2019; Veldt, Wirth, and Gleich, 2019). We return to the utility
of conductance as an objective function to improve clusters, even those output from
related objectives and algorithms, via an example in section 1.1.

We define the precise improvement problems via optimization in subsequent sec-
tions. For now, we treat them as black-box algorithms and just explain how they
might be used. These introductory examples use one of two algorithms, MQI (Lang
and Rao, 2004) and LocalFlowImprove (Orecchia and Zhu, 2014), which we will study
in depth. Both of these cluster improvement algorithms execute an intricate sequence
of maximum flow (max-flow) or minimum cut (min-cut) computations on graphs de-
rived from G and R. A technical difference between the two algorithms with important
practical consequences is as follows:

MQI always returns a set S of exactly optimal conductance
contained within the reference cluster R; whereas
LocalFlowImprove finds an improved cluster S with
conductance at least as good as that found by MQI,
by both omitting vertices of R and adding vertices outside R.

In addition to these two algorithms, we will also discuss the FlowImprove (Andersen
and Lang, 2008) method in depth.

I.1. Cluster Improvement: Compared with Graph Clustering. To start, con-
sider Figure 1, in which we consider a synthetic graph model called a stochastic block
model. In our instance of the stochastic block model, we plant 5 clusters of 20 ver-
tices. Edges between vertices in the same cluster occur at random with probability 0.3.
Edges between vertices in different clusters occur at random with probability 0.0157.
A popular algorithm for graph clustering is the Louvain method (Blondel et al., 2008).
On this problem input instance, running the Lou-
vain method often produces a clustering with a ASIDE 1. For this particular ez-
small number of errors (Aside 1). By using the el GvEe o Won o) e

. ting a completely accurate answer
LocalFlowImprove algorithm on each cluster re- et Gt s e e
turned by Louvain, we can directly refine the vain method or tweaking parame-

clusters output by the Louvain method (i.e., we ters. Our point is simply that we
can easily improve existing cluster-

can choose our input set R to be the output of ; - ; .
. K ing pipelines with flow-based im-
some other method). This example involves run- e)

ning the improvement algorithm once for each

cluster returned by the Louvain method. Doing so results in a perfectly accurate
clustering for this instance. That said, the Louvain method is designed to partition
the dataset and insists on a cluster for each node, whereas improving each cluster
may result in some vertices being unassigned to a cluster or assigned to multiple
clusters. Although this does not occur in this instance on the block model, it ought
to be expected in general. There are a variety of ways to address this difference in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

64 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Graph clustering

(a) Input is a graph; this one has 5 planted (b) Output is a cluster for each node; we
clusters. highlight mistakes for the 5 groups.

Cluster improvement

(c¢) Input is a graph and a seed set of nodes. (d) Output is an improved set of nodes.

Fig. | Graph clustering (known as community detection in some areas) is a problem where the
input is a graph and the output is a labeling or partition indicator for each node, indicating
the group/cluster to which each node belongs. This is illustrated in (a) and (b). Cluster
improvement is different. In cluster improvement problems, the input is both a graph and a
set of nodes, and the output is a set of nodes that is improved in some sense. As an example,
in (c), we show the input as the same graph from (a) along with one of the groups from (b)
that has a few mistakes. The result of cluster improvement in (d) has no mistakes. See the
replication details in the appendiz.

output given the domain specific usage. For instance, to reobtain a partition, one can
create clusters of unassigned vertices and pick a single assignment out of the multiple
assignments based on problem or application specific criteria.

For this example, we’d like to highlight the difference in objective functions be-
tween the modularity measure optimized by the Louvain algorithm and the conduc-
tance measure optimized by LocalFlowImprove. Despite differences in these objec-
tives (modularity compared with conductance), many clustering objective functions
are related in their design to balance boundary and size tradeoffs (i.e., isoperimetry).
Consequently, exactly or optimally improving a related objective is likely to result in
benefits for nearby measures. Moreover, conductance and modularity are indeed close

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 65

cousins, as is established either by how they make cut and volume tradeoffs (Gleich
and Mahoney, 2016) or by relationships with Markov stability (Delvenne, Yaliraki,
and Barahona, 2010). Thus, it is not surprising that LocalFlowImprove is able to
assist Louvain, despite the difference in objectives. (Let us also note that flow-based
algorithms can be designed around a variety of more general objective functions as
well; see section 3.7.) Thus, this example mixes aspects that commonly arise in real-
world uses: (i) the end goal (find the hidden structures), (ii) an objective function
formulation of a related goal (optimize modularity), and (iii) an algorithmic proce-
dure for that task (Louvain method). Given the output from (iii), the improvement
algorithms produce an ezactly optimal solution to a nearby problem that (in this case)
captures exactly the true end goal (i).

1.2. Cluster Improvement: Compared with Seeded Graph Diffusion. An-
other common scenario in applied work with graphs is what we will call a target
identification problem. In this setting, there is a large graph and we are given only
one vertex, or a very small number of vertices, from a hidden target set. See Fig-
ure 2(a) for an illustration. Seeded graph diffusions are a common technique for this
class of problems. In a seeded graph diffusion, the input is a seed node s and the
output is a set of nearby graph vertices related to s (Zhu, Ghahramani, and Lafferty,
2003; Faloutsos, McCurley, and Tomkins, 2004; Zhou et al., 2004; Tong, Faloutsos,
and Pan, 2006; Kloumann and Kleinberg, 2014). Arguably, the most well-known and
widely applied of these seeded graph methods is seeded PageRank (Andersen, Chung,
and Lang, 2006; Gleich, 2015). In essence, seeded PageRank problems identify re-
lated vertices as places where a random walk in the graph is likely to visit when it is
frequently restarted at s.

Cluster improvement algorithms are different than, but closely related to, seeded
graph diffusion problems. This relationship is both formal and applied. It is related in
a formal (and obvious) sense because seeded PageRank and its relatives correspond
to an optimization problem that will also provably identify sets of small conduc-
tance (Andersen, Chung, and Lang, 2006). It is related in an applied sense for the
following (important, but initially less obvious) reason: the improvement methods we
describe are excellent choices to refine clusters produced by seeded PageRank and re-
lated Laplacian-based spectral graph methods (Lang, 2005; Fountoulakis et al., 2019c;
Veldt, Gleich, and Mahoney, 2016). The basic reason for this is that spectral methods
often exhibit a “leak” nearby a boundary. For instance, if a node at the boundary of
an idealized target cluster is visited with a nontrivial probability from a random walk,
then neighbors will also be visited with nontrivial probability. In particular, this means
that such spectral methods tend to output clusters with larger conductance, more false
positives (in terms of the target set), and sometimes fewer true positives as well.

An illustration of this leaking out of a spectral method is given in Figure 2. Here,
we are using the algorithms to study a graph with a planted target cluster of 72
vertices in the center of a much larger 3000 node graph. If we run a seeded PageRank
algorithm from a node near the boundary of the target, then the result set expands
too far beyond the target cluster (Figure 2(b)). If we then run the MQI cluster
improvement method on the output of seeded PageRank, then we accurately identify
the target cluster alone (Figure 2(c)). Likewise, if we simply expand the seed node
into a slightly larger set by adding all of the seed’s neighbors, and we then perform a
single run of the LocalFlowImprove method, then we will accurately identify this set.

1.3. Cluster Improvement: Compared with Image Segmentation. Our final
introductory example is given in Figure 3, and it illustrates these improvement al-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

66 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

G A VSR 27 KR \A Y
?-g%, 7 . —seed |
0 b |
o / seed Q
! '*':\ target
' /‘%‘ 7target

4N\

X Sl o |

(a) Our target and a seed node (orange) (b) The seeded PageRank result (red)

2 -«*\-;\ 2 ? --«‘\ 23

K”\
T‘

(¢) MQI-based improvement (red) of the seeded (d) LocalFlowImprove result (red) on a one-step
PageRank result set (inset orange nodes) neighborhood of the seed (inset orange nodes)

Fig. 2 Cluster improvement with MQI (Lang and Rao, 2004) and LocalFlowImprove (Orecchia and
Zhu, 2014) on a large graph. We show a piece of a larger graph with a target cluster in the
middle of (a) and an expanded view of the target and seed in the inset of (a). If we run a
seeded PageRank-based method to search for a cluster near the seed, then the result leaks out
into the rest of the graph and fails to capture the boundary of the cluster, as shown in (b).
If, using the seeded PageRank result as the reference set R (shown in orange in the inset of
(c)), we run MQI, then we accurately identify the target in (c) in red. Likewise, if, using
the one-step nmeighborhood of the seed as R (shown in orange in the inset of (d)), we run
LocalFlowImprove, then we also accurately identify the target (d) in red. See Appendiz A
for details.

gorithms in the context of image segmentation. Here, an input image is translated
into a weighted graph through a standard technique. The goal of that technique is to
ensure that similar regions of the image appear as clusters in the resulting graph; this
standard process is described formally in Appendix B. On this graph representing an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 67

image, the target set identification problem from section 1.2 yields an effective image
segmentation procedure, albeit with a much larger set of seed nodes.

We focus on the face of the astronaut Eileen
Marie Collins (a retired NASA astronaut and ASIDE 2. These image segmenta-
United States Air Force colonel) (Wikipedia, ot Gomlen @ el to dalv

. properties of the algorithms that

2021) as our target set. Figure 3(a) shows a su- are difficult to visualize on natural
perset of the face. When given as the input set graphs. They are not intended to
to the MQI cluster improvement method (which, represent state-of-the-art segmen-
recall, always returns a subset of the input), the U0t A e:
result closely tracks the face, as is shown in Fig-
ure 3(b). Note that there are still a small number of false positives around the
face—see the region left of the neck below the ear—but the number of false positives
decreases dramatically with respect to the input. Similarly, when given a subset of
the face, we can use LocalFlowImprove (which, recall, can expand or contract the
input seed set) to find most of it. We present in Figure 3(c) the input cluster to
LocalFlowImprove, which is clearly a subset of the face; the output cluster for Lo-
calFlowImprove is shown in Figure 3(d), which again closely tracks the face with a
few false negatives around the mouth.

1.4. Overview and Summary. One challenge with the flow-based cluster im-
provement literature is that (so far) it has lacked the simplicity of related spec-
tral methods and seeded graph diffusion methods like PageRank (Gleich, 2015; Zhu,
Ghahramani, and Lafferty, 2003; Faloutsos, McCurley, and Tomkins, 2004; Zhou et al.,
2004; Tong, Faloutsos, and Pan, 2006; Kloumann and Kleinberg, 2014). These spec-
tral methods are often easy to explain in terms of random walks, Markov chains,
linear systems, and intuitive notions of diffusion. Instead, the flow-based literature
involves complex and seemingly arbitrary graph constructions that are then used, al-
most like magic (at least to researchers and downstream scientists not deeply familiar
with flow-based algorithms), to show impressive theoretical results. Our goal here is
to pull back the curtain on these constructions and provide a unified framework based
on a class of optimization methods known as fractional programming.

The connection between flow-based local graph clustering and fractional program-
ming is not new; e.g., Lang and Rao (2004) cite one relevant paper (Gallo, Grigoriadis,
and Tarjan, 1989). Both Lang and Rao (2004) and Andersen and Lang (2008) men-
tion binary search for finding optimal ratios akin to root-finding. Hochbaum (2010)
was the first to develop a general framework of root-finding algorithms for global
flow-based fractional programming problems. However, specialization of these re-
sults to the Flowlmprove problem requires special treatment which is not discussed
in Hochbaum (2010). That said, our purpose in using these connections is that they
make the methods simpler to understand. Thus, we will make the connection ex-
tremely clear, and we will demonstrate that our fractional programming optimization
perspective unifies all existing flow-based cluster improvement methods. Indeed, it is
our hope that this perspective will be used to develop new theoretically principled and
practically useful methodologies.

1.5. Reproducible Software: The LocalGraphClustering Package. In addi-
tion to this detailed and unified explanation of the flow-based improvement methods,
we have implemented these algorithms in a software package with a user-friendly
Python interface. The software is called LocalGraphClustering (Fountoulakis et al.,
2019b) (with which, in addition to implementing flow improvement methods that we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

68 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

(¢) Input to LocalFlowImprove (d) Output of LocalFlowImprove

Fig. 3 Illustration of cluster improvement with MQI (Lang and Rao, 2004) and LocalFlowIm-
prove (Orecchia and Zhu, 2014) on an image. In Figure 3(a), we show the input set of
nodes to MQI. The set of nodes consists of the pixels inside the yellow square. Note that
MQI looks for good clusters within the input square, and the target cluster is the face of Eileen
Marie Collins (a retired NASA astronaut and United States Air Force colonel) (Wikipedia,
2021). In Figure 3(b), we show the output, which demonstrates that MQI-based cluster im-
provement decreases the number of false positives. In Figure 3(c), we show the input set of
nodes to LocalFlowImprove. The set of nodes consists of the pizels inside the yellow square.
Note that LocalFlowImprove looks for good clusters around the region of the input square
and the target cluster is the face of the FEileen Marie Collins. In Figure 3(d), we show the
output, which demonstrates that LocalFlowImprove-based cluster improvement increases the
number of true positives. See Appendix A for details.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 69

review here, we implement spectral diffusion methods for clustering, methods for mul-
tilabel classification, network community profiles, and network drawing methods). As
an example of the use of this package, running seeded PageRank followed by MQI for
the results shown in Figure 2 is as simple as the following code:

import localgraphclustering as lgc # load the package

G = lgc.GraphLocal ("geograph-example.edges") # load the graph

seed = 305 # set the seed and compute
R,cond = lgc.spectral_clustering(G, [seed] ,method=’11reg’) # seeded PageRank

S,cond = lgc.flow_clustering(G,R,method=’mqi’) # improve with MQI

This software also enables us to explore a number of interesting applications of flow-
based cluster improvement algorithms that demonstrate uses beyond simply improv-
ing the conductance of sets. The implementation of the methods scales to graphs with
billions of edges when used appropriately. In this survey, we explore graphs with up
to 117 million edges (section 9.4).

This package is useful in general. For reproducibility we also provide code that
reproduces all the experiments that are presented in this survey.

1.6. Outline. There are three major parts to our survey, and these are designed
to be relatively modular to enable one to read parts separately (e.g., to focus on the
theoretical results or the empirical results).

In the first part, we introduce the fundamental concepts and techniques, both
informally as in this introduction and formally through our notation and fractional
programming sections (sections 2 and 3). In particular, we introduce graph cluster
metrics such as conductance in section 2.6. We also introduce fundamental ideas
related to local graph computations in section 2.7, which discusses the distinction
between strongly and weakly local graph algorithms. These ideas are then used to
explain the precise objective functions and settings for flow-based cluster improvement
algorithms in section 3. This part continues with an overview of how these methods
fit into the broader literature of graph-based algorithms (section 4), and it includes a
brief discussion of other scenarios where maz-flow and min-cut algorithms are used as
a fundamental computational primitive (section 4.5), as well as infinite-dimensional
analogues to these ideas (section 4.7). We also include a number of ideas that show
how the methods generalize beyond using conductance.

In the second part, we provide the technical core of the survey. We begin our
description of the details of the methods with a review of concepts from maximum
flow and minimum cuts (section 5). In particular, this section has a careful deriva-
tion of these problems as duals in terms of linear programs. The next three sections,
sections 6 to 8, cover the three algorithms that we use in the experiments: MQI,
FlowImprove, and LocalFlowlmprove. For each algorithm, we provide a thorough
discussion on how to define each step of the algorithm. On a high level, these al-
gorithms require at each iteration the solution of a max-flow problem. However, in
order to actually implement these methods one requires the construction of a locally
modified version of the given graphs.

In the final part, we provide an extensive empirical evaluation and demonstration
of these algorithms (section 9). This is done in the context of a number of datasets
where it is possible to illustrate clearly and easily the benefits of these techniques.
Examples in this evaluation include images, as we saw in the introduction, as well as
road networks, social networks, and nearest neighbor graphs that represent relation-
ships among galaxies. This section also includes experiments on graphs with up to
117 million edges. We also describe strategies to generate local network visualizations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

70 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

from these local graph clustering methods that highlight characteristic differences in
how the flow-based methods treat networks.

In addition, we provide an appendix with full reproducibility details for all of the
figures and tables (Appendices A and B). These include references to specific Python
notebooks for replication of the experiments.

2. Notation, Definitions, and Terminology. We begin by reviewing specific
mathematical assumptions, notation, and terminology that we will use in what fol-
lows. To start, we use the following standard notation:

Z denotes the set of integer numbers,

R denotes the set of real-valued numbers,

Ry denotes the set of real-valued nonnegative numbers,

R™ denotes the set of real-valued vectors of length n,

R™*™ denotes the set of real-valued n x n matrices,

R7 denotes the set of real-valued nonnegative vectors of length n, and

+
R}*™ denotes the set of real nonnegative n x n matrices.

2.1. Graph Notation. Given a graph G = (V, E), we let V denote the set of
nodes and E denote the set of edges. We assume an undirected, weighted graph
throughout, although some of the constructions and concepts involved in a flow com-
putation are often best characterized through directed graphs. (See also Aside 3.) For
an unweighted graph, everything we do will be equivalent to assigning an edge weight
of 1 to all edges. We also assume that the given graphs have no self-loops.

The cardinality of the set V is denoted by
n, i.e., there are n nodes, and we assume that ASIDE 3. Our techniques would
the nodes are arbitrarily ordered from 1 to n. :_Ite"d t‘;_ ‘”;y y Cl““;""fh {uzc
Therefore, we can write V := {1,2,...,n}. We jon o GUTecier graphs At ae

’ fines a hypergraph using techniques
use v; to denote node 7, and when it is clear, we from Benson, Gleich, and Leskovec

will use 4 to denote that node. We assume that (2016) based on motif enumeration.
the edges F in the graph are arbitrarily ordered. LA ST G Uoed U

R K K . to hypergraphs, see Veldt, Ben-
The cardinality of the set E is denoted by m, i.e., son, and Kleinberg (2020; 2022) for
there are m edges. We will use e;; to denote an some examples.

edge. Also, if a node j is a neighbor of node i,
we denote this relationship by j ~ i.

A path is a sequence of edges which connect a sequence of distinct vertices. A
connected component is a subset of nodes such that there exists a path between any
pair of nodes in that subset.

We frequently work with subsets of vertices. Let S C V, for example. Then S
denotes the complement of subset S C V, formally, S = {v € V | v ¢ S}. The
notation 95 represents the node-boundary of the set S; formally, it denotes the set of
nodes that are in S and are connected with an edge to at least one node in S. In set

notation, we have 95 = {v, where v € S and there exists (u,v) € E with u € S}.

2.2. Matrices and Vectors for Graphs. Here, we define matrices that can be
used to define models and objective functions on graph data. They can also provide
a compact way to understand and describe algorithms that operate on graphs.

The adjacency matriz A € {0,1}"*™ (or € R}*™ if the graph is weighted) provides
perhaps the most simple representation of a graph using a matrix. In A, row 1
corresponds to node 7 in the graph, and element A;; is nonzero if and only if nodes
i and j are connected with an edge in the given graph. The value of A;; is the edge
weight for a weighted graph, or simply 1 for an unweighted graph. Since we are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 71

working with undirected graphs, the adjacency matrix is symmetric, i.e., A;; = Ay,
where A;; is the element at the ith row and jth column of matrix A.

The diagonal weighted degree matric D € Z3*" (or € R}*™ if the graph is
weighted) is a matrix that stores the degree information for every node. The ele-
ment D;; is the sum of weights of the edges of node i, i.e., D;; := ZjeV:jNi A;j; and
off-diagonal elements, i.e., D;; for ¢ # j, equal zero.

The degree vector is defined as d = diag(D), where diag(-) takes as input a vector
or a matrix and returns, respectively, a diagonal matrix with the vector in the diagonal
or a vector with diagonal elements of a matrix.

The edge-by-node incidence matriz B € {0,—1,1}™*™ (where, recall, n is the
number of nodes, and m is the number of edges) is often used to measure differences
among nodes. Each row of this matrix represents an edge, and each column represents
a node. For example, row k in B represents the kth edge in the graph (arbitrarily
ordered) that corresponds (say) to nodes i and j in the graph. Row k in B then has
exactly two nonzero elements, —1 for the source of the edge and 1 for the target of the
edge, at the i and j positions, respectively. If the graph is undirected, then we can
arbitrarily choose which node is the source and which node is the target on an edge,
without loss of generality. Note that because we assume no self-loops, the incidence
matrix contains the full information about the edges of the graph.

The diagonal edge-weight or edge-capacity matriz C' € fom is a diagonal matrix
where each diagonal element corresponds to the weight of an edge in the graph. This
matrix is the identity for an unweighted graph. For example, the kth diagonal element
corresponds to the weight of the kth edge in the graph.

The Laplacian matriz L € Z™*™ (or € R™*™ if the graph is weighted) is defined
as L = D — A or, equivalently, L = BTCB.

Vectors of all-ones and all-zeros, denoted 1, and 0,, respectively, are column
vectors of length n. If the dimensions of each vector are clear from the context, then
we omit the subscript. The indicator vector 1; is a column vector that is equal to 1
at the ith index and zero elsewhere. If the indicator is used with a node, then the
length of the vector 1; is n. For an edge, its length is m.

If S is a subset of nodes or a subset of indices and A is any matrix, e.g., the
adjacency matrix, then Ag is a submatrix of A that corresponds to the rows and
columns with indices in S. Likewise, 1g is a column vector with ones in entries for S.
These indicator vectors have length n.

2.3. Vector Norms. We denote the vector 1-norm by ||z|; = Y, |z;| and the
2-norm by |||z = \/D_;(xs)?. We will use these norms to measure differences among
nodes that are represented in a vector z, i.e., every node corresponds to an element
in vector z. For example, ||Bz||; = Ze,;jeE |z; — ;] is the sum of differences among
node representations in x. In the case of weighted graphs, this can be generalized
to ||Bzllon = e, ep Ceiylwi — @51 = 3., e p Aijlwi — x| For the 2-norm, we have

||B$||QC,2 = ZeijEE C’Gij (l’l - xj)Q = Ze,-jEE Al](xl - xj)2'

2.4. Graph Cuts and Volumes Using Set and Matrix Notation. Much of our
discussion will move fluidly between set-based descriptions and matrix-based descrip-
tions. Here, we give a simple example of how this works in terms of a graph cut and
volume of a set.

Graph Cut. We say that a pair of complement sets (S, 59), where S C V, is a global
graph partition of a given graph with node set V. Given a partition (.9, 5), the cut of
the partition is the sum of weights of edges between S and S, which can be denoted

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

72 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

by either
(2.1) cut (S, S) = Z Aij or cut(S) = Z Ajj.
i€S,jeS i€S,jeS

Instead of using set notation to denote a partition of the graph, i.e., (S,5), we can
use indicator vector notation z = 1g € {0,1}" to denote a partition. In this case, the
cut of the partition is

(2.2) cut(S,8) = > Ayjlvi —
i,J

Note that both expressions are symmetric in terms of S and S.
Graph Volume. The volume of a set of nodes S is equal to the sum of the degrees
of all nodes in S, i.e.,

(2.3) vol(S) = " d;.

icS
We will use the notation vol(G) to denote the volume of the graph, which is equal
to vol(V'). Using this definition and our matrix definitions above, we have that the
volume of a subset of nodes is vol(S) = 1Ld.

2.5. Relative Volume. FlowImprove and LocalFlowImprove formulations are sim-
pler to explain by introducing the idea of relative volume. The relative volume of S
with respect to R and k is

(2.4) rvol(S; R, k) = vol(S N R) — kvol(S N R).

The relative volume is a very useful concept that we will use to define the objective
functions of the local flow-based problems MQI, FlowImprove, and LocalFlowImprove.
The purpose of the relative volume is to measure the volume of the intersection of S
with the input seed set nodes R, while penalizing the volume of the intersection of
S with the complement R. This is important when we define the objective functions
of MQI, FlowImprove, and LocalFlowImprove, since we want to penalize sets S that
have little intersection with R and high intersection with R. This makes sense, since
in local flow-based improvement methods the goal is often to improve the input set
R: thus we want the output S of a method to be “related” to R more than to R.

2.6. Cluster Quality Metrics. Here, we discuss scores that we use to evaluate
the quality of a cluster. For all of these measures, smaller values correspond to better
clusters, i.e., they correspond to a cluster of higher quality.

Conductance. The conductance function is defined as the ratio between the number
of edges that connect the two sides of the partition (9, S) and the minimum “volume”
of S and S:

o(8) = — cut(S) -

min(vol(S), vol(5))
A set of minimal conductance is a fundamental bottleneck in a graph. For example,
small conductance in a set is often interpreted as an information bottleneck revealing
community or module structure, or (relatedly) as a bottleneck to the mixing of random
walks on the graph. Note that conductance values are always between 0 and 1, and
they can be interpreted as probabilities. (Formally, this is the probability that a
random walk moves between S and S in a single prescribed step after the walk has
fully mixed.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 73

Normalized Cuts. The normalized cut function is a related notion that provides a
score that is often used in image segmentation problems (Shi and Malik, 2000), where
a graph is constructed from a given image and the objective is to partition the graph
into two or more segments. In the case of a bipartition problem, the normalized cut
score reduces to

The normalized cut and conductance scores are related, in that ¢(S) < ncut(S) <
2¢(S). There is a related concept, called ncut’ (Sharon et al., 2006; Hochbaum, 2010)
that just measures the cut to volume ratio for a single set ncut’(S) = cut(S)/vol(S).
Observe that this is equal to ¢(S) for any set with less than half of the volume.

Expansion. The expansion function or expansion score is defined as the ratio be-
tween the number of edges that connect the two sides of the partition (S, S) and the
minimum “size” of S and S:

<o cut(S)
P05 = n(IsT, 18]

Compared to the conductance score, which uses
the volume (related to number of edges) of the — ASIDE 4. Our definition of expan-
sets S and S in the denominator, the expansion o @) (Ve 48 soioBines @R o
. =) the definition for sparsity. The lit-

score counts the number of nodes in S or S. This RS 5 fouh Gl GomshER G
has the property that the expansion score is less these terms.
affected by high degree nodes. Similarly to con-
ductance, smaller expansion scores correspond to better clusters. However, these
values are not necessarily between 0 and 1.

Sparsity. The sparsity measure of a set is a topic that arises often in theoretical
computer science. It is closely related to expansion, but measures the fraction of edges
that exist in the cut compared to the total possible number:

_cut(S)
Y= TanET

This value is always between 0 and 1. Also, ¢(S) < n(S) < 2¢4(S) because ni)(S) =
cut(S) cut(S)
ERSE

Ratio Cut. The ratio cut function provides a score that is often used in data cluster-
ing problems, where a graph is constructed by measuring similarities among the data
and the objective is to partition the data into multiple clusters (Hagen and Kahng,
1992). In the case of the bipartition problem, the ratio cut score reduces to

. Hence, sparsity is a scaled measure akin to normalized cut.

cut(S)
reut(S) S
Observe that the ratio cut and expansion scores are related, in the sense that the latter
is equal to the former if the input set of nodes S has cardinality less than or equal
to n/2. The ratio cut was popularized due to its importance in image segmentation
problems (Felzenszwalb and Huttenlocher, 2004). Usually, this ratio is minimized by
performing a spectral relaxation (von Luxburg, 2007).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

74 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

2.7. Strongly and Weakly Local Graph Algorithms. Local graph algorithms
and locally biased graph algorithms are the “right” setting in which to discuss cluster
improvement algorithms on large-scale data graphs. For the purposes of this survey,
there are two key types of (related but quite distinct) local graph algorithms:

e Strongly local graph algorithms. These algorithms take as input a graph
G and a reference cluster of vertices R, and they have a runtime and resource
usage that only depend on the size of the reference cluster R (or the output
S, but not the size of the entire graph G).
e Weakly local graph algorithms. These algorithms take as input a graph
G and a reference cluster of vertices R, and they return an answer whose size
will depend on R, but whose runtime and resource usage may depend on the
size of the entire graph G (as well as the size of R).
That is, in both cases, one wants to find a good or better cluster near R, and in both
cases one outputs a small cluster S that is near R, but in one case the runtime of the
algorithm is independent of the size of the graph GG, while in the other case the runtime
depends on the size of G. For more about local and locally biased graph algorithms, we
recommend Gleich and Mahoney (2016), Fountoulakis, Gleich, and Mahoney (2017),
and also Mahoney, Orecchia, and Vishnoi (2012) and Lawlor, Budavéri, and Mahoney
(2016b,a) for overviews.

It is easy to quantify the size of the output S as being small, but, in general,
the locality of an algorithm, i.e., how many nodes/edges are touched at intermediate
steps, may depend on how the graph is represented. We typically assume something
akin to an adjacency list representation that enables

e constant time access to a list of neighbors; and

e constant or nearly constant (e.g., O(log|V]) time access to an arbitrary edge.
Moreover, the cost of building this structure is not counted in the runtime of the
algorithm, e.g., since it may be a one-time cost when the graph is stored. Note that,
in addition to a reference cluster R, these algorithms could also take information
about vertices in a reference set, such as a vector of values.

The importance of these characterizations and this discussion is as follows:

for strongly local graph algorithms
the runtime is independent of the size of the graph.

In particular, this means that the algorithm does not even touch all of the nodes of
the graph G. This makes a strongly local graph algorithm an extremely useful tool
for studying large data graphs. For instance, in Figure 2, none of the algorithms used
information from more than about 500 vertices of the total 3000 vertices of the graph,
and this result wouldn’t have changed at all if the entire graph was 3 million vertices
(or more, as in Shun et al. (2016)).

To contrast with strongly local graph algorithms, most graph and mesh parti-
tioning tools—and even the improved and refined variations—are global in nature.
In other words, the methods take as input a graph, and the output of the methods
is a global partitioning of the entire graph. In particular, this means that the meth-
ods have runtime which depends on the size of the whole graph. This makes it very
challenging to apply these methods to even moderately large graphs.

3. Main Theoretical Results: Flow-Based Cluster Improvement and Frac-
tional Programming Framework. In this section, we will introduce and discuss the
fractional programming problem and its relevance to flow-based cluster improvement.
The motivation is that work on cluster improvement algorithms has thus far proceeded
largely on a case-by-case basis, but as we will describe, fractional programming is a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 75

class of optimization problems that provides a way to generalize and unify existing
cluster improvement algorithms.

3.1. Cluster Improvement Objectives and Their Properties. For the problem
of conductance-based cluster improvement, the three methods we consider exactly
optimize the following objective functions:

minimize cut(S)
MQI: scv vol(S)
subject to S C R,
minimize cut(5)
imiz =
FlowImprove: scv rvol(S; R, vol(R)/ vol(R))
subject to 1rvol(S;...) >0,
minimize cut(S)
z _
LocalFlowImprove(9) : scv rvol(S; R, vol(R)/ vol(R) + 0)

620 subject to rvol(S;...) > 0.

The constraint rvol(S;...) > 0 simply means that we only consider sets where the
denominator is positive (we omit repeating all the parameters from the denominator
for simplicity). Because we are minimizing over discrete sets, there is not a closure
problem with the resulting strict inequality (rvol(S,...) > 0), so these are all well-
posed.

Recall that rvol(S; R, k) = vol(S N R) — kvol(S N R). This definition implies
that sets S such that rvol(S; R, vol(R)/vol(R)) < 0 cannot be optimal solutions for
FlowImprove, and that even fewer sets can be optimal for LocalFlowImprove. On the
other hand, note that LocalFlowImprove(d) interpolates between FlowImprove (6 = 0)
and MQI (§ = oo) because when § is sufficiently large, then the term vol(S N R) that
arises in rvol must be 0 in order for the set S to be feasible for the nonnegative rvol
constraint. In fact, if § > vol(R)(1—1/vol(R)), then positive denominators alone will
require S C R.

To better understand the connections among these three objectives, we begin by
stating a simple property of them. The following theorem states that conductance
gets smaller, i.e., better, as we move from MQI to LocalFlowImprove to FlowImprove.

THEOREM 3.1. Let G be an undirected, connected graph with nonnegative weights.
Let R C V satisfy vol(R) < vol(R), where R is the complement of R. Let Syq1, Sri,
and Sprr be the optimal solutions of the MQI, FlowImprove, and LocalFlowImprove(d)
objectives, respectively. If the solutions of FlowImprove and LocalFlowImprove satisfy
vol(Spr) < vol(Sgy) and vol(Spr;) < vol(Sprr) (that is, the solution set is on the
small side of the cut), then, for any 6 > 0 in LocalFlowImprove, we have that

&(Srr) < ¢(Sprr) < d(Smor)-

Proof. The first result, that ¢(Sur1) < ¢#(Smqr), is a simple and useful exer-
cise we repeat from Veldt, Gleich, and Mahoney (2016, Theorem 4). Note that if
S C R, then ¢(S) = % for any x. Now, note that for all rvol terms in the
LocalFlowImprove(d) objective with § > 0, we have x > vol(R)/vol(R). Moreover,
solutions are constrained to only consider sets where rvol is positive. Thus, for the

value of k used in LocalFlowImprove, and also any positive x, we have

cut(SLFI) < Cut(SLFI) cut(SLFI)
VOI(SLFI) - VO](SLFI) — KZVOI(SLFI n R) - I‘VOI(SLFI; R, I'i) ’

&(Surr) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

76 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Table | Characteristics of the MQI, FlowImprove, and LocalFlowImprove methods.

Method Strongly local Explores Easy to Section
beyond R implement

MQI v v Section 6

FlowImprove v v Section 7

LocalFlowImprove v v Section 8

Next, note that for the chosen setting of x, we have that rvol(S; R, k) > 0 for all
S C R. Thus, we have

o cut(S) .
< — = = :
¢(Svrr) < miimm vol(S: R,) mimum #(S) = ¢(Smaqr)

This shows that both LocalFlowImprove and FlowImprove give better conductance
sets than MQI.
For the second inequality, we use an alternative characterization of LocalFlowIm-

prove as discussed in Orecchia and Zhu (2014). LocalFlowImprove(d) is equivalent to
solving the following optimization problem for some constant C":

minimize __cut(S) -
Scv rvol(S;R,vol(R)/vol(R))
subject to Vovl(()ls(g?) > C,rvol(S;...) > 0.

FlowImprove solves the same problem without the constraint involving C'. Then we

have
cut(Srr) < cut(SLrr)

rvol(Spr; R, vol(R)/vol(R)) ~— rvol(Sprr; R, vol(R)/vol(R))’

cut(Srr) < rvol(SFI;R,Vol(R)/vol(RJ)
cut(Sprr) — rvol(Sprr; R, vol(R)/vol(R))

If ¢(SF]) > ¢(SLFI)7 we have

cut(Srr) - vol(Srr)
cut(Sppr) = vol(Sprr)’

Thus, -
rvol(SFr; R, vol(R)/vol(R)) < cut(Srr) - vol(SFr)
I‘VOI(SLFI;R, VOI(R)/VOI(R)) - Cut(SLF[VOI(SLF]).
(S

N R) = vol(S) — vol(SN R),

If we now substitute the definition of rvol and vol

(14 vol(R)/vol(R)) - vol(Spr N R) — vol(R) /vol(R) - vol(Srr) . vol(Srr)
(14 vol(R)/vol(R)) - vol(SLrr N R) — vol(R)/vol(R) - vol(Sprr) ~ vol(Strr)’
VOI(SF[N R) S VOI(SLF] N R)

vol(Srr) vol(SLrr)

This means that Sg; also satisfies the additional constraint in the optimization prob-
lem of LocalFlowImprove. But Sg; has smaller objective value, which is a con-
tradiction to the fact that Spr; is the optimal solution of the LocalFlowImprove
optimization problem. 0

> C.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 77

Theorem 3.1 suggests that one should always use FlowImprove to minimize the
conductance around a reference set R, but there are other aspects to implementation
that should be taken into account. The three most important, summarized in Table
1, are described here.

e Locality of algorithm. For strongly local algorithms, the output is a small
cluster around the reference set R and the runtime depends only on the size
of the output and is independent of the size of the graph. Only the former
is true for weakly local algorithms. As we will show in the coming sections,
both MQI and LocalFlowImprove are strongly local. This enables both of
them to be run quickly on very large graphs, assuming R is not too large and
4 is not too small.

e Exploration properties of algorithm. Some methods “shrink” the input,
in the sense that the output is a subset of the input, while other methods do
not have this restriction, i.e., they can (depending on the input graph and seed
set) possibly shrink or expand the input. This classification is particularly
useful when we view the methods as a way to explore the graph around a
given set of seed nodes. For example, MQI only explores the region induced
by R, and so it is not suitable for various tasks that involve finding new nodes.

e Ease of implementation. A final important property of methods concerns
how easy they are to implement. MQI and FlowImprove are easy to imple-
ment because they rely on standard primitives like simple MaxFlow computa-
tions. This means that one can black-box max-flow computations by calling
existing efficient software packages. For LocalFlowImprove, however, finding
a strongly local algorithm requires a more delicate algorithm. Therefore, we
consider it to be a more difficult algorithm to implement.

As a simple and quick justification of the locality property of the solution (which
is distinct from an algorithmic approach to achieving it), note the following simple-to-
establish relationship between § and the size of the output set for LocalFlowImprove.
This was originally used in Veldt, Klymko, and Gleich (2019) as a small subset of
a proof.

LEMMA 3.2. Let G be an undirected, connected graph with nonnegative weights.

Let S* be an optimal solution of the LocalFlowImprove objective with vol(R) < vol(R).
* vol(R)
Then VO](S) < (1 + m) VO](R)

Proof. For simplicity, let o = vol(R)/ vol(R)+d. Then, because the denominator
in any solution must be positive, we have 0 < vol(S* N R) — o vol(S* N R). Note that
vol(S* N R) = vol(S*) — vol(S* N R), so 0 < (1 + o) vol(RN S*) — o vol(S*). Thus,
vol(S*) < (14 1/0)vol(R). The result follows by substituting the definition of o. 0O

As we will show, all of the algorithms for these objectives fit into a standard
fractional programming framework, which provides a useful setting in which to reason
about the opportunities and tradeoffs. An even more general setting for such problems
is that of quotient cut problems, which we discuss in section 3.7. While they are often
described in this literature on a case-by-case basis, quotient cut problems are all
instances of the more general fractional programming class of problems.

3.2. The Basic Fractional Programming Problem. A fractional program is a
ratio of two objective functions: N(z) for the numerator and D(zx) for the denomina-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

78 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

tor. It is often defined with respect to a subset S of R"™,

minimmize N(x)/D(x)

(3.1) |
subject to x € S,

where D(z) > 0 for all x € S. Fractional programming is an important branch
of nonlinear optimization (Frenk and Schaible, 2009). The key idea in fractional
programming is to relate (3.1) to the function

f(6) = minimize N(x) — §D(x) subject to z € S,

which captures the minimum value of the objective function for this minimization
problem as a function of §. Below, we use “argmin” as the expression for an input
or argument that minimizes the problem. Note that f(§) < 0 if there exists z such
that N(z)/D(z) < §. Moreover, if N(z) and D(x) are linear functions and S is a set
described by linear constraints, then f(J) can be easily computed by solving a linear
program, for instance.

We now specialize this general framework for cluster improvement. Note that we
will continue to use § as the ratio between the numerator and denominator rather
than as the LocalFlowImprove parameter until section 9.

3.3. Fractional Programming for Cluster
Improvement. When we consider the objective ASIDE 5. Most commonly, frac-
functions from section 3.1, note that we can tiogml pmgg;nmmt‘;l is ddeﬁ”,ed f}”
translate them into problems closely related to ersfizeoiue usg Zefﬁ-lfase?inéiﬁ;zin;
the fractional programming problem (3.1). Let ’
(@ C V represent a subset of vertices. For MQI, this is R itself and for the others, it is
just V. Now let g(S C Q) — R represent the denominator terms for the MQI, Flow-
Improve, or LocalFlowImprove objectives from section 3.1. Then, from a fractional
programming perspective on the problems, we are interested in solving

cut(S) S) >0
minimize @4(5) :{ 9(8) » 9(5) ’

o0 otherwise,

(3.2)
subject to S C Q.

Let us assume that there is at least one feasible set S C @ where g(S) > 0. This

is satisfied for all the examples above when S = R. Also note that if @ = V and

if g(V)) > 0, the entire node set V' is immediately a solution. For FlowImprove and

LocalFlowImprove, though, ¢g(V) < 0, and so V is never a solution and, in fact, the

value of k in Flowlmprove is chosen exactly so that g(V') = 0.

As discussed above, we will use a sequence of related parametric problems to find
the optimal solution. Thus, we introduce the parametric function

z(8,6) = cut(S) — dg(S),
where the parameter § € R. We also define the function

(3.3) 2(8) := minismize 2(S,6), where S C Q, g(S) > 0.

Computing the value of 2(9) is a key component that we will discuss in section 3.6
and also sections 6 to 8. Given this, we can consider solving the equation

(3.4) 2(8) =0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 79

which is a simple root-finding problem because Z(§) is monotonically increasing as
0 — 0 and also 2(0) > 0 and 2(¢4(R)) < 0 (for our objectives). Note that 2(0) = 0 if
cut(S) = 0 for some set S C @ with g(S) > 0, which can happen for a disconnected
graph.

We now provide a theorem that establishes the relationship between the root-
finding problem (3.4) and the basic fractional programming problem (3.2). This
theorem establishes that in solving problem (3.4), we solve problem (3.2) as well. A
similar theorem can be found in Dinkelbach (1967).

THEOREM 3.3. Let G be an undirected, connected graph with nonnegative weights.
A set of nodes S* is a solution of problem (3.2) iff

t(S*
P (C“ (*)> =0
9(5%)
Proof. For the first part of the proof, let us assume that S* is a solution of problem
(3.2). This implies that ¢g(S*) > 0. We have that

. C;Eéi;) < 6y(S5) VS CQ.g(S) > 0.
Hence,
cut(S*) — 6*g(5*) =0
and

cut(S) —6*g(S) >0 VS CQ,g(S) > 0.

Using the above we have that {min z(S,d*) | S C @, g(S) > 0} is bounded below by
zero, and this bound is achieved by S*. Therefore, 2(6*) =0, z(5*,0*) = 0.
For the second part of the proof, assume that Z(6*) = 0 such that
cut(S*)
9(5*)

for some optimal S* of the minimization problem in Z. Then

(3.5) 5 =

(3.6) cut(S*) — §*g(S*) = 0 < cut(S,5) — 6*g(S) VS C Q,g(S) > 0.

From the second inequality, we have that ¢4(S) > 6* for all S C @, ¢(S) > 0. This
means that the optimal solution of problem (3.2) is bounded below by ¢*. From the
first equation above, we find that this bound is achieved by S*. Therefore, S* solves
problem (3.2). |

3.4. Dinkelbach’s Algorithm for Fractional Programming. Based on Theo-
rem 3.3, the root of problem (3.4) will be the optimal value of the general cluster
improvement problem (3.2). To find the root of problem (3.4), we will use a modified
version of Dinkelbach’s algorithm (Dinkelbach, 1967).

Dinkelbach’s Algorithm. Dinkelbach’s algorithm is given in Algorithm 3.1. Note that
we had to modify the original algorithm slightly since we do not assume that ¢g(S) > 0
for all S C Q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

80 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Algorithm 3.1 Dinkelbach’s Algorithm.

1: Initialize k :=1, S1 := R, and 01 := ¢4(S1).
2: while we have not exited via the else clause do
3: Compute 2(dx) by solving Si41 := argming z(S, ;) subject to S C Q

4: if ¢g(Sky1) < 0k {recall ¢4(S) = oo if g(S) < 0} then
5: Okt1 1= dg(Skt1)

6: else

7 0 is optimal, return previous solution Sk.

8: k:=k+1

Convergence of Dinkelbach’s Algorithm. We now provide a theorem that establishes
that the subproblem at step 3 of Algorithm 3.1 does not output infeasible solutions,
such as an S that satisfies g(S) < 0. Based on this, we can establish that the objective
function of problem (3.2) is decreased at each iteration of Algorithm 3.1.

THEOREM 3.4 (convergence). Let G be an undirected, connected graph with non-
negative weights. Let §* be the optimal value of problem (3.2). The subproblem in
step 3 of Algorithm 3.1 cannot have solutions that satisfy g(S) <0 for 6 > §*. Such
solutions are in the solution set of the subproblem if and only if § < §*. Moreover,
the sequence 0y, which is set to be equal to ¢4(Sk), decreases monotonically at each
iteration. The algorithm returns a solution where g(Sy) > 0.

Proof. For the first part of the theorem, let § > 0, S € {argmin z(S,4)}, and let

us assume for the sake of contradiction that g(S) < 0. Then
2(5,8) > 2(8,6) > 0 VS C Q.
Hence,
$g(5) =0 ¥S € {SCQ]g(S5) >0}

however, this can only be true if § < §*. Otherwise, for § > §* we have a contradiction,
and this implies that g(S) > 0. Therefore, a solution S € {argmin z(S,48)} satisfies
g(S) > 0, unless § < 5*.

For the second part of the theorem, let k£ be such that d; > §*. Then, we have that
2(Sk+1,0k) < 0, since 2(Skt1, k) < 2(Sk, 0x) = 0 (where we obtain 0 by the definition
of ¢y, and Sy). Because z(Sk+1,d;) < 0, we have that ¢, (Sk+1) = k11 < 0k = Pg(Sk)-
Note that because g(Sg+1) > 0 for any d; > §*, then we must have g1 > §*.

Note that because of the algorithm, d; can never be less than §*. Thus, the
remaining case is to detect that §; = §*. Suppose this is the case and also g(Sk+1) > 0;
then 011 = 0 = 6%, and based on Theorem 3.3 the algorithm terminates with an
optimal solution because either Syi1 or Sy is a solution. If §; = ¢* and g(Sk+1) <0,
then the algorithm terminates (because ¢4(Sk+1) = 00). Thus, S, must have been
optimal (if not, then g(Sk4+1) must be larger than 0) and so the algorithm outputs an
optimal solution. 0

Iteration Complexity of Dinkelbach’s Algorithm. The iteration complexity of a method
allows us to deduce a bound on the number of iterations necessary. We now provide
an iteration complexity result for Algorithm 3.1. This involves two other results. We
begin with Lemma 3.5, which describes several interesting properties of Algorithm 3.1
that have an important practical implication. Specifically, it shows that g(Sk+1) <

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 8l

9(Sk), which has important practical implications since it shows that Algorithm 3.1
is searching for subsets S that have a smaller value of the function g. Lemma 3.5 will
then allow us to prove an iteration complexity result of Algorithm 3.1 in Theorem 3.6.
A similar result can be found in Gallo, Grigoriadis, and Tarjan (1989, Lemma 4.3),
but we repeat it in Lemma 3.5 for completeness. In Lemma 3.5, we also show that
the numerator of the objective function in problem (3.2) decreases monotonically.

LEMMA 3.5. If Algorithm 3.1 proceeds to iteration k + 1, then it satisfies both
9(Sk+1) < 9(Sk) and cut(Sgy1) < cut(Sk).

Proof. Consider iterations k£ and k — 1 and assume that d; > 6*. Then, from
Theorem 3.4, in iteration k — 1, we have that z(Sk,dk—1) < 2(Sg—1,0k—1) = 0. In
iteration k, we have that

Z(Sk+1,(5k) = cut(Sk_H) — 5kg(Sk+1) < 0.

By adding and subtracting dx_1g(Sk+1) to and from the latter, we get

2(Sk+1,0) = cut(Sk41) = 6k-19(Sk+1) + Ok—19(Sk+1) — 0kg(Sk+1) < 0.

Note that the first two terms on the right side of the equality are the minimization
problem, for that gave the solution Sx. Hence, we can lower-bound cut(Sgy1) —
0k—19(Sk+1) via Sk to get

cut(Sk) — 5;6719(5]@) + 5;@,19(5;6“) — §kg(5k+1) < Z(Sk+1, 5k) < 0.

Because z(Sk,dr) = 0, we find that cut(Sy) = 0rg(Sk). Thus, using this in the
inequality above, we get

0k9(Sk) — 6r—19(Sk) + 0k—19(Sk+1) — 0k9(Sk+1) < 2(Sk+1,0k) <0,

which is equivalent to

(9(Sk) — 9(Sk+1)) (0 — 6p—1) < 0.

However, because the algorithm monotonically decreases 0y in each iteration, we have
that dx_1 — dx < 0, and therefore we must have that

9(Sk) > g(Sk+1)-

This means that the denominator of the objective function in problem (3.2) decreases
monotonically. Additionally, from Theorem 3.4 we have that the objective function
decreases monotonically. These two imply that the numerator of the objective func-
tion, i.e., cut(S, S), decreases monotonically. |

Given this result, we can establish the following theorem, which provides an
iteration complexity for Algorithm 3.1. This basic result can be improved, as we
describe next in section 3.5.

THEOREM 3.6 (iteration complexity for Dinkelbach’s algorithm). Consider using
Dinkelbach’s algorithm (Algorithm 3.1) for solving MQI, FlowImprove, or LocalFlow-
Improve on an undirected, connected graph with nonnegative integer weights when
starting with the set R. Then the algorithm needs at most cut(R) < vol(R) iterations
to converge to a solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

82 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Proof. For all of the above programs, R is a feasible set and thus we can initialize
our algorithms with R. From Lemma 3.5, we have that cut(S) decreases monotonically
at each iteration. Since we assume that the graph is integer-weighted, then cut(S) is
integer-valued and so cut(R) gives an upper bound on the number of iterations. Note
that cut(R) < vol(R) for any set and so the algorithms need at most cut(R) < vol(R)
iterations to converge to a solution S*.]

Remark 3.7. A weakness of the previous result is that it does not give a complex-
ity result for graphs with noninteger weights. For weighted graphs with noninteger
weights, if the weights come from an ordered field where the minimum relative spacing
between elements is p, such as would exist for rational-valued weights or floating-point
weights, then the above argument gives cut(R)/u iterations. This is essentially tight
as the following construction gives two sets whose cut and volume differ only by p.

SQ Sl

3 1
05 oS
_®°

2—p

Here, S and S copy are duplicates of the same subgraph, so their cut 9 is identical.
Assume S is small enough that we do not need to take into consideration the min

. _ cut(S1) _ cut(S2)—p
term in conductance. Then note that ¢(S;) = Wl(5) = vol(3) -
there is no obvious way to detect this scenario as we have a set of well-spaced distinct
edge weights (1, 2 — u, 3,4 — p, 5 — p). (Assume all other edges in the graph have

weight 1.)

Furthermore,

For this reason, we do not consider the iteration complexity of algorithms for graphs
with noninteger weights and we would recommend the algorithm in the next section
for finding an approximate answer.

3.5. A Faster Version of Dinkelbach’s Algorithm via Root-Finding. Algorithm
3.1 requires at most vol(Q) iterations to converge to an exact solution for nonnegative
integer-weighted graphs. If we are not interested in exact solutions, then we can im-
prove the iteration complexity of Algorithm 3.1 by performing a binary search on 4.
This is possible because it is easy to find bounds on the optimal range of §. We have
zero as a simple lower bound and, for the MQI, FlowImprove, and LocalFlowImprove
objectives, ¢(R) < 1 is an easy-to-compute upper bound on the optimal §. Algo-
rithm 3.2 presents a modified version of Dinkelbach’s algorithm that accomplishes
this. In particular, the subproblem in step 4 in Algorithm 3.2 is the same as the
subproblem in step 3 of the original Algorithm 3.1.

At steps 5 to 8 of Algorithm 3.2, we make the decision to update dyax and dpin
based on the optimal value of the subproblem. We further store the best solution so
far in Spax. In step 10, we test whether another solve with .« produces a solution
with a better objective than Sy,ax. This test allows us to certify that Syax is optimal
if the subsequent objective is not lower.

In order to have a convergent algorithm, we have to guarantee that this decision
results in a well-defined binary search. In the following theorem, we address this issue.

THEOREM 3.8 (convergence of Algorithm 3.2 and iteration complexity). Let G be
an undirected, connected graph with nonnegative weights. The binary search procedure
in Algorithm 3.2 is well-defined, in the sense that the binary search interval includes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 83

Algorithm 3.2 Fast Dinkelbach’s Algorithm for Problem (3.2).

1: Initialize k := 1, dmin := 0, Omax > p := {max ¢4(S) | S C Q}, and € € (0, 1]
2: while d,ax — Omin > €0min do
3: 5k = (5max + 5Illil’l)/2

4: Compute Z(Jx) by solving Si4+1 := argming z(S,dx) subject to S C Q@
5. if g(Sk4+1) > 0 {then d; > 6*} then

6: Omax := 0g(Sk+1) and set Smax 1= Sk11 {note ¢g(Sk+1) < oi}

7. else

8: Omin i= 5k

9: k=k+1

10: Return argmingc g 2(S,0max) O Smax based on minimum ¢,

the optimal solution, and the condition in step 5 tells us if the optimal solution is above
or below 0. Moreover, the sequence 0 of Algorithm 3.2 converges to an approximate
solution |6* — x| /0" < € in O(log(dmax/c)) iterations, where 6* = ¢4(S*) and S* is
an optimal solution to problem (3.2).

Proof. Let p := {max¢,(S) | S C @} and dmax > p. Let S* be an optimal
solution of problem (3.2). From Theorem 3.3, we see that for (S*,4*) we have that
z(S*,6*) = 0, which gives ¢4(S*) = 6*. Therefore, §* € [0, 0max|. We will use this
interval as our search space for the binary search. Moreover, if g(Sg+1) > 0, then we
get from Theorem 3.4 that & > §*. Therefore, we can use J; to update .« in step 6.
In fact, because we have a specific set, we know that ¢4(Sk+1) < i and so we can use
a slightly tighter update. However, if g(Sk+1) < 0, then we see from Theorem 3.4 that
O < 0%, and we can use Jy to define dp,i, in step 8. If the initial dax is greater than p,
then it is easy to see that Algorithm 3.2 converges to an optimal solution of problem
(3.2) in at most log(dmax/€) iterations, where e > 0 is an accuracy parameter. |

Note that Theorem 3.8 is an improvement over Theorem 3.6. The former requires
O(log(dmax/€)) iterations in the worst case, while the latter states that Dinkelbach’s
algorithm requires vol(Q) (number of edges) iterations. Similar results about binary
search have been discussed in Lang and Rao (2004); Andersen and Lang (2008);
Hochbaum (2010). Among other details, what is missing from these references is an
exact quantification of the value of € necessary for an exact solution, which we provide
in subsequent sections.

3.6. The Algorithmic Components of Cluster Improvement. We have now
shown how to solve cluster improvement problems in the form of problem (3.2) via
either Dinkelbach’s algorithm or the bisection-based root-finding variation. The last
component of the algorithmic framework is a solver for the subproblem (3.3) in the
appropriate step (3 or 4) of each algorithm. Solving these subproblems is where the
MinCut- and MaxFlow-based algorithms arise as they allow us to test 2(§) < 0. In
sections 6 to 8 we work through how appropriate MinCut and MaxFlow problems can
be derived constructively.

At this point, we summarize the major results and give an overview of the runtimes
of the methods we will establish in these sections. In particular, in Table 2, we
provide pointers to algorithms and convergence theorems for each method, and we
also provide a short summary of runtimes for each method where we make it clear
that the subproblem solve time is a dominant term.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

84 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Table 2 Specifics of MQI, FlowImprove, and LocalFlowImprove as special cases of Dinkelbach’s
Algorithm 3.1 and its binary search version Algorithm 3.2. In the table, R is the input seed
set of nodes. The column “Subproblem” refers to the specialized subsolver that is used to
solve the subproblem at step 3 of Algorithm 3.1 or step 4 of Algorithm 3.2. The “Augmented
Graph” entry refers to an augmented graph construction that is used to understand the
subproblem that is solved at each iteration of Dinkelbach’s algorithm. Note that we omit
all log-factors and constants from the runtimes of the algorithms; more detailed runtimes
can be found in the referenced theorems. We use O as O-notation without logarithmic

factors.
Method Dinkelbach Binary Search Subproblem
and Runtime and Runtime Construction, Runtime,
and Solvers
MQI Algorithm 6.1 Algorithm 6.2 Problem (6.3)
O(cut(R) - subproblem) ((subproblem) Augmented Graph 1
Theorem 6.3 Theorem 6.5 MaxFlow with vol(R)
(Lang and Rao, 2004) (Lang and Rao, 2004) edges (section 6.1)
FlowImprove Algorithm 7.1 Algorithm 7.2 Problem (7.3)
O(cut(R) - subproblem) ((subproblem) Augmented Graph 2
Theorem 7.3 Theorem 7.5 MaxFlow with vol(G)
(Andersen and Lang, 2008) (Andersen and Lang, 2008) edges (section 7.1)
LocalFlow- SimpleLocal Algorithm 8.1 Problem (8.3)
Improve(s) O(cut(R) - subproblem) O(subproblem) Augmented Graph 3
o= § 4 YR Theorem 8.3 (Veldt, Theorem 8.3 O((14+1/0)? vol(R)?) with

vol(R) Gleich, and Mahoney, 2016) (Orecchia and Zhu, 2014) Alg. 8.3 (sections 8.1-8.3)

3.7. Beyond Conductance and Degree-Weighted Nodes. Our discussion and
analysis of fractional programming for cluster improvement objectives has, so far, fo-
cused on the MQI, FlowImprove, and LocalFlowImprove problems as unified through
problem (3.2). However, there is a broader class of objectives that generalizes beyond
these specific types of cuts and volume ratios. We will highlight a few definitions that
are reasonably straightforward to understand, although we will return to the MQI,
FlowImprove, and LocalFlowImprove definitions above in what follows.

As an instance of a more generalized setting, we can define a generalized volume
of a set S, which we call v, with respect to an arbitrary vector of positive weights w,

v(S;w) = Zwi = 1%w.
€S

Note that setting w to be the degree vector d gives the standard definition of volume,
ie., v(S;d) = vol(S). Then we can seek solutions of

minimize cut(s)
inimiz _
scv v(SNR;w) — k(SN R;w)

subject to denominator > 0

as a generalized notion of MQI, FlowImprove, and LocalFlowlmprove (where x >
v(R:w) /v(Riw)).

A particularly useful instance is where w is simply the vector of all ones, 1,, in
which case v(S, 1,,) is simply the cardinality of the set S. In this case, cut(S)/v(S, 1,)
is the expansion or ratio cut value of a set (section 2.6). This approach was used in
the original MQI paper (Lang and Rao, 2004), which discussed ratio cuts instead
of conductance values. This more general notion of volume also appeared in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 85

FlowImprove paper (Andersen and Lang, 2008) in order to unify the analysis of ratio
cuts and conductance objectives. While these two choices have been explored, of
course, the theory allows us to choose virtually any vector and this gives a large
amount of flexibility. The MaxFlow and MinCut constructions for the subproblems
in subsequent sections would need to be adjusted to account for this type of arbitrary
choice. This is reasonably straightforward given our derivations. For example, we
could set w = v/d to generate a hybrid objective between expansion and conductance.

As another example of how the framework can be even more general, we mention
the ideas from Veldt, Klymko, and Gleich (2019) that penalize excluding nodes from
R in the solution set S. These penalties can be set sufficiently large that we can solve
variations of FlowImprove and LocalFlowImprove where all the nodes in R must be
in the result; for instance,

L cut(.S)
minimize

Scv v(SNRyw) — k(SN R;w)
subject to R C S, denominator > 0.

They can also, however, be set smaller such that we aim to have most of R within the
solution S. This scenario is helpful when the elements of R may have a confidence
associated with them.

All of the analysis in subsequent sections—including the locality of computations
—applies to these more general settings; however, the generalized details often obscure
the simplicity of and connections among the methods. Thus, we do not conduct the
most general description possible but simply emphasize that it is possible and useful
to do so.

4. Cluster Improvement, Flow-Based, and Other Related Methods. As we
have already briefly discussed, graph clustering is a well-established problem with
an extensive literature. Cluster improvement algorithms have received comparatively
little attention. In this section, we will discuss how the cluster improvement problem
and algorithms for solving it are both similar to and different from other related
techniques in the literature. Our goal is to draw a helpful distinction and explain the
relationships among cluster improvement problems and algorithms and a number of
other (sometimes substantially but sometimes superficially) related topics.

For instance, we will discuss how the cluster improvement perspective yields the
best results on graph and mesh partitioning benchmark problems (section 4.1). We
will then highlight key differences between the types of graphs arising in scientific and
distributed computing and the types of graphs based on sparse relational data and
complex systems (section 4.2), which strongly motivates the use of local algorithms for
these data. These local graph clustering algorithms, in turn, have strong relationships
with the community detection problem in networks as well as with inferring metadata,
which we will explore more concretely in the empirical sections.

Taking a step back, we explain our cluster improvement algorithms in terms of
finding sets of small conductance, and so we also briefly survey the state of conduc-
tance optimization techniques more generally (section 4.4). Likewise, our algorithms
are all based on the use of a network flow optimizer as a subroutine to accomplish
something else. Since this scenario is surprisingly common, e.g., because there are fast
algorithms for network flow computations, we highlight a few notable applications of
network flow—based computing (section 4.5) as well as the current state of the art for
computing network flows (section 4.6).

Finally, we conclude this section by relating our cluster improvement perspective

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

86 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

to network flows in continuous domains (section 4.7), total variation metrics, and a
wide range of work using graph cuts and flows in image segmentation (section 4.8).

4.1. Graph and Mesh Partitioning in Scientific Computing. Graph and mesh
partitioning are important tools in parallel and distributed computing, where the goal
is to partition a computation into many large pieces that can be treated with minimal
dependencies among the pieces. This can then be used to maximize parallelism and
minimize communication in large scientific computing algorithms (Pothen, Simon,
and Liou, 1990; Simon, 1991; Karypis and Kumar, 1998; Hendrickson and Leland,
1994b, 1995; Karypis and Kumar, 1999; Hendrickson and Leland, 1994; Walshaw
and Cross, 2007, 2000; Pellegrini and Roman, 1996; Knight, Carson, and Demmel,
2014). The traditional inputs to graph partitioning for scientific computing are graphs
representing computational dependencies involved in solving a spatially discretized
partial differential equation. In these problems, there is often a strong underlying
geometry, in which nodes are localized in space and edges are between nearby nodes.
Furthermore, one of the key goals (indeed, almost a constraint in this application) is
that the partitions should be very well balanced so that no piece is much larger than
the others.

In the context of this literature, our goal is not to produce an overall partitioning
of the graph. Rather, given a piece of a partition, our tools and algorithms should
enable a user to improve that partition in light of an objective function such as graph
conductance or another related objective. Indeed, work on improving and refining
the quality of an initial graph bisection can be found in the Fiduccia—Mattheyses im-
plementation of the Kernighan—Lin method (Fiduccia and Mattheyses, 1982). Given
a quality score for a two-way partition of a graph and a desired balance size, this
algorithm searches among a class of local moves that could improve the quality of
the partition. This improvement technique is incorporated, for instance, into the
SCOTCH (Pellegrini and Roman, 1996), Chaco (Hendrickson and Leland, 1994), and
METIS (Karypis and Kumar, 1998) partitioners.

This strategy for partition-and-improvement is also a highly successful paradigm
for generating the best quality bisections and partitions on benchmark data. For
example, on the Walshaw collection of partitioning test cases (Soper, Walshaw, and
Cross, 2004), around half of the current best-known results are the result of improving
an existing partitioning using an improvement algorithm (Henzinger, Noe, and Schulz,
2020). This has occurred a few times in the past as well (Sanders and Schulz, 2011;
Hein and Setzer, 2011; Lang and Rao, 2004). There are important differences between
the applications we consider (which are more motivated by machine learning and data
science) and those in mesh partitioning for scientific computing. Most notably, having
good balance among all the partitions is extremely important for efficient parallel and
distributed computing, but it is much less so for social and information networks, as
we discuss in the next section.

4.2. The Nature of Clusters in Sparse Relational Data and Complex Sys-
tems. Beyond the runtime difference between local and global graph analysis tools,
there is another important reason to consider local graph analysis for sparse relational
data such as social and information networks, machine learning, and complex systems.
There is strong evidence that large-scale graphs arising in these fields (Leskovec et al.,
2009, 2008; Leskovec, Lang, and Mahoney, 2010; Gargi et al., 2011; Jeub et al., 2015)
have interesting small-scale structure, as opposed to interesting and nontrivial large-
scale global structure. Even aside from runtime considerations, this means that global
graph methods tend to have trouble identifying these small and good clusters and thus

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 87

may not be very applicable to many large graphs that arise in large-scale data ap-
plications. As a simple example of the impact the differences in data may have on a
method, note that for graphs such as discretizations of a partial differential equation,
simply enlarging a spatially coherent set of vertices results in a set of better conduc-
tance (until it is more than half the graph). On the other hand, the sets of small
conductance in machine learning and social network based graphs tend to be small,
in which case enlarging them simply makes them worse in terms of conductance. This
has been quantified by the Network Community Profile (NCP) plot (Leskovec et al.,
2009; Jeub et al., 2015).

4.3. Local Graph Clustering, Community Detection, and Metadata Infer-
ence. Local graph clustering is, by far, the most highly developed setting for local
graph algorithms. A local graph clustering method seeks a cluster nearby the refer-
ence set R, which can be as small as a single node. Cluster improvement algorithms
are, from this perspective, instances of local graph clustering where the input is a
good cluster R and the output is an even better cluster S. Local graph clustering
itself emerged simultaneously out of the study of partitioning graphs for improve-
ment in theoretical runtime of Laplacian solvers (Spielman and Teng, 2013) and the
limitations of global algorithms applied to graphs based on machine learning and
data analysis (Lang, 2005; Andersen and Lang, 2006; Andersen, Chung, and Lang,
2006). Subsequently, there have been a large number of developments in both theory,
practice, and applications. These include

e improved theoretical bounds (Zhu, Lattanzi, and Mirrokni, 2013; Andersen
et al., 2016);

e novel recovery scenarios (Kloumann and Kleinberg, 2014);

e optimization-based approaches and formulations (Gleich and Mahoney, 2014,
2015; Fountoulakis, Gleich, and Mahoney, 2017; Fountoulakis et al., 2019c¢);

e heat kernel-based approaches (Chung, 2007a, 2009; Chung and Simpson,
2014; Kloster and Gleich, 2014; Avron and Horesh, 2015);

e Krylov- and Lanczos-based approaches (Li et al., 2015; Shi et al., 2017);

e local higher-order clustering based on triangles (Yin et al., 2017; Tsourakakis,
Pachocki, and Mitzenmacher, 2017);

e large-scale parallel approaches (Shun et al., 2016).

One reason for the diversity of methods in this area is that local graph clustering
is a common technique used to study the community structure of a complex system or
social network (Leskovec et al., 2009, 2008; Leskovec, Lang, and Mahoney, 2010). The
communities, or modules, of a network represent a coarse-grained view of the under-
lying system (Newman, 2006; Palla et al., 2005). In particular, local clustering, local
improvement, and local refinement algorithms are often used to generate overlapping
groups of communities from any community partition (Lancichinetti, Fortunato, and
Kertész, 2009; Xie, Kelley, and Szymanski, 2013; Whang, Gleich, and Dhillon, 2016).
This is often called a local optimization and expansion methodology.

Another application of local graph clustering is metadata inference. The metadata
inference problem is closely related to semisupervised learning, where the input is a
graph and a set of labels with many missing entries. The goal is to interpolate the
labels around the remainder of the graph. Hence, any local clustering method can
also be used for semisupervised learning problems (Joachims, 2003; Zhou et al., 2004;
Liu and Chang, 2009; Belkin, Niyogi, and Sindhwani, 2006; Zhu, Ghahramani, and
Lafferty, 2003) (and thus metadata inference). That said, the metadata application
raises a variety of statistical consistency questions (Ha, Fountoulakis, and Mahoney,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

88 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

2020), methodological questions due to a no-free-lunch theorem (Peel, Larremore,
and Clauset, 2017), and data suitability questions (Peel, 2017). We omit discussion
of these questions in the interest of brevity and note that some caution with this
approach is advisable.

Among the local graph clustering methods, the Andersen—Chung—-Lang algorithm
for seeded PageRank computation (Andersen, Chung, and Lang, 2006) is often the
de facto choice. This method has both useful theoretical and useful empirical proper-
ties, namely, recovery guarantees in terms of small conductance clusters (Andersen,
Chung, and Lang, 2006; Zhu, Lattanzi, and Mirrokni, 2013) and extremely fast com-
putation (Andersen, Chung, and Lang, 2006). It also has close relationships to many
other perspectives on graph problems (see, e.g., Gleich and Mahoney (2015), Foun-
toulakis et al. (2019¢), and Fountoulakis, Gleich, and Mahoney (2017)), including
robust and 1-norm regularized versions of these problems.

Cluster improvement algorithms are a natural fit for both community detection
and metadata inference settings. Given any partition of the network, set of commu-
nities, set of overlapping communities, or any other set of vertex sets, we can study
the results of improving each set individually. This is exactly the setting of Figure 1,
where we were able to find a better partition of the network given an initial parti-
tion (although these techniques may not result in a partition). Second, for metadata
inference, we simply seek to use a given label as a reference set that we improve.
We explore these applications from an empirical perspective in section 9, where we
compare them to a relative of the Andersen—Chung—Lang method for these tasks.

4.4. Conductance Optimization. Taking a step back, the cluster improvement
algorithms we discuss improve the conductance or ratio cut scores. Finding the overall
minimum conductance set in a graph is a well-known NP-hard problem (Shahrokhi,
1990; Leighton and Rao, 1999). That said, there exist approximation algorithms
based on linear programming (Leighton and Rao, 1988, 1999), semidefinite program-
ming (Arora, Rao, and Vazirani, 2009), and so-called cut-matching games (Khandekar,
Rao, and Vazirani, 2009; Orecchia et al., 2012). A full comparison and discussion of
these ideas is beyond the scope of this survey. We note that these techniques are not
often implemented due to complexities in the theory needed to get the sharpest pos-
sible bounds. However, they do inspire new scalable approaches, for instance, (Lang,
Mahoney, and Orecchia, 2009).

4.5. Network Flow-Based Computing. More broadly, beyond conductance op-
timization, our work relates to the idea of using network flow itself as a fundamental
computing primitive. By this, we mean that many other algorithms can be cast as in-
stances of network flow or sequences of network flow problems. When this is possible,
it enables us to use highly optimized solvers for this specific purpose that often out-
perform more general methods. Bipartite matching is a well-known textbook example
of this scenario (Kleinberg and Tardos, 2005, section 7.5). Other examples include
finding the densest subgraph of a network, which is the subset of vertices with highest
average degree. Formally, if we define

vol(S) — cut(S)

density(S) = 5])

then the set S that maximizes this quantity is polynomial time computable via a
sequence of network flow problems (Goldberg, 1984). Another instance is one of the
many definitions of communities on the web that can be solved exactly as a max-flow

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 89

problem (Flake, Lawrence, and Giles, 2000). More relevant to our setting is the work
of Hochbaum (2013), who showed that the sets that satisfy

f;l(ﬁ((g)) and minismize cu|té|$

minimize
S

can be found in polynomial time through a sequence of max-flow and min-cut com-
putations. Although feasible to compute, in general these sets are unlikely to be
interesting on many machine learning and data analysis based graphs, as they will
tend to be very large sets that cut off a small piece of the rest of the graph. (Formally,
suppose there exists a node of degree 1 in an unweighted graph; then the complement
set of that node will be the solution.) Among other reasons, this is why we use the
objective functions that are symmetric in S and S.

Four other interesting cases show the diversity of this technique. First, the semisu-
pervised learning algorithm of Blum and Chawla (2001) uses the min-cut algorithm
to identify other vertices likely to share the same label as those that are given. The
second case is the use of flows to estimate a gradient in an algorithm for ranking a
set of data due to Osting, Darbon, and Osher (2013). Third, there are useful con-
nections between matching algorithms (which can be solved as flow problems) and
semisupervised learning problems (Jacobs, Merkurjev, and Esedoglu, 2018). Finally,
there is a recent set of research on total variation or TV norms in graphs and their
connections to network flow (Jung et al., 2019). These were originally conceptualized
for semisupervised learning but can also be used to build local clustering mecha-
nisms that optimize a combination of 2-norm and 1-norm objectives with max-flow
techniques (Jung and SarcheshmehPour, 2021).

4.6. Recent Progress on Network Flow Algorithms. Having flow as a sub-
routine is useful because there is a large body of work in both theory and practice
that concerns making flow computations fast. For an excellent survey of the overall
problem, the challenges, and recent progress, we recommend Goldberg and Tarjan
(2014). This overview touches on the exciting line of work in theory that showed a
connection between Laplacian linear system solving and approximate max-flow com-
putations (Christiano et al., 2011; Lee, Rao, and Srivastava, 2013) as well as recent
progress on the exact problem (Orlin, 2013). We refer readers also to Lee and Sid-
ford (2013) and Liu and Sidford (2020), as well as to software packages that compute
maximum flows fast (Dezso, Alpér, and Kovécs, 2011).

4.7. Continuous and Infinite-Dimensional Network Flow and Cuts. Our ap-
proach in this survey begins with a finite graph based on data and is entirely finite-
dimensional. Alternative approaches seek to understand problems in the continuous or
infinite-dimensional setting. For instance, Strang (1983) posed a continuous max-flow
problem in a domain, where the goal is to identify a function that satisfies continuous
generalizations of the flow conditions. As a quick example of these generalizations, re-
call that the cut of a set S can be computed as || Bz|| ;. The TV of an indicator func-
tion for a set generalizes the cut quantity to a continuous domain. This connection,
and its relationship to sharp boundaries, motivates TV image denoising (Rudin, Os-
her, and Fatemi, 1992) as well as ideas of continuous minimum cuts (Chan, Esedoglu,
and Nikolova, 2006). Continued development of the theory (Strang, 2010) has led to
interesting new connections between the infinite-dimensional and finite-dimensional
cases (Yuan, Bae, and Tai, 2010). There are strong connections in motivation be-
tween our cluster improvement framework and finding optimal continuous functions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

90 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

o

0
a) Original b) Boundary blur (¢) Blur and noise (d) MQI-like e) MQI-like
(5 0.11) solution (5 0.04) solution

Fig. 4 An example of using MQI-like procedures to reconstruct a binary image (a) from a blurry (b),
noisy (c) sample. Here, the result set is a binary image, which is a set in the grid graph. The
value § is from the fractional programming subproblem (3.3) with a custom denominator term
as described in the reproduction details. Using 6 = 0.11 produces 209 error pizels around the
boundary (d). Reducing & to 0.04 (e) produces a convezr shape due to the conductance-like
bias in this setting where convex shapes are optimal for isoperimetric-like objectives on grids.

in these settings—for example, we can think of sharpening a blurry, noisy image as
improving a cluster (see Figure 4)—but the details of the algorithms and data are
markedly different. In particular, we think of the cluster improvement routine largely
as a strongly local operation. Understanding how these ideas generalize to continuous
or infinite-dimensional scenarios is an important problem raised by our approach.

4.8. Graph Cuts and Max-Flow-Based Image Segmentation. One final appli-
cation of maximum flows is graph cut—based image processing (Boykov and Veksler,
2006; Marlet, 2017). The general setting in which these arise is an energy minimiza-
tion framework (Greig, Porteous, and Seheult, 1989; Kolmogorov and Zabih, 2004)
with binary variables. The goal is to identify a binary latent feature in an image as
an exact or approximate solution of an optimization problem. An extremely large
and useful class of these energy functions can be solved via a single or a sequence of
max-flow computations. The special properties of the max-flow problems on image-
like data motivated the development of specialized max-flow solvers that, empirically,
have runtimes that scale linearly in the size of the data (Boykov and Kolmogorov,
2004).

This methodology has a number of applications in image segmentation in two- and
three-dimensional images (Boykov and Funka-Lea, 2006) such as MRIs. For instance,
one task in medical imaging is separating water from fat in an MRI, for which a
graph cut-based approach is highly successful (Hernando et al., 2010). More recently,
deep learning—based methods have often provided a substantial boost in performance
for image processing tasks. Even these, however, benefit from a cluster improvement
perspective. Multiple papers have found that postprocessing or refining the output
of a convolutional neural net using a graph cut approach yields improved results in
segmenting tumors (Ullah et al., 2018; Ma et al., 2018). These recent applications are
an extremely close fit for our cluster improvement framework, where the goal is to
find a small object in a big network starting from a good reference region. We often
illustrate the benefits of and differences between our methodologies with the closely
related problem of refining a local image segmentation output, e.g., in Figure 3.

Part Il. Technical Details behind the Main Theoretical Results.

5. Minimum Cut and Maximum Flow Problems. As a simple introduction to
our presentation of the technical details of MQI, FlowImprove, and LocalFlowImprove,
we will start with the min-cut and max-flow problems. We will review the basics of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 91

these problems from an optimization and duality perspective. This is because our
technical discussions in subsequent sections will involve related, but more intricate,
transformations and will use max-flow problems as subroutines. To simplify the text,
we use the names MinCut and MaxFlow to refer to the s-t min-cut and s-t max-flow
problems, which are the fully descriptive terms for these problems.

5.1. MinCut. Given a graph G = (V, E), let s and t be two special nodes where
s is commonly called the source node and t is the sink node. The undirected MinCut
problem is

minisgnize cut(9, S)

(5.1) ; _
subject to se€ S,;te S, SCV.

The objective function of the MinCut problem measures the sum of the weights of
edges between the sets S and S. The constraints encode the idea that we want
to separate the source from the sink and so we want the source node s to be in S
and the sink node ¢ to be in S. Putting the objective function and the constraints
together, we see that the purpose of the MinCut problem is to find a partition (S, S)
that minimizes the number of edges needed to separate node s from node ¢t. As an
example, see Figure 5, where we demonstrate the optimal partition for the MinCut
problem (5.1) on a toy graph.

Fig. 5 Demonstration of the optimal MinCut solution of problem (5.1). The numbers show the
weight of each edge. The red nodes (s, b, d) and the blue nodes (a, c, t) denote the optimal
partitions (S, S), respectively, for problem (5.1). The black dashed line denotes the edges
that are being cut, i.e., the edges that cross the partition between S and S. The optimal
objective value of problem (5.1) for this example is equal to 9.

We can express the MinCut problem in other equivalent ways, some of which are
more convenient for analysis and implementations. For example, we use indicator
vector notation and the incidence matrix from section 2 to represent problem (5.1) as

minimize ||Bz|c1
xT

5.2
(5:2) subject to zs =1,z; =0,z € {0,1}".

Expressing the MinCut problem with this notation will be especially useful later when
we develop a unified framework for many cluster improvement algorithms. In practice,
when implementing a solver for this problem, we need not take the binary constraints
into account. This is because we can relax them without changing the objective value
to obtain the following equivalent form of the MinCut problem:

miniwmize I1Bx||c 1

(5.3) :
subject to zs =1,z =0,z € R™.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

92 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

It can be shown that there exists a solution to (5.3) that has the same objective func-
tion value as the optimal solution of (5.2). Given any solution to the relaxed problem,
the integral solution can be obtained by an exact rounding procedure. In that sense,
the relaxed problem (5.3) and the integral problem (5.2) are equivalent (Papadim-
itriou and Steiglitz, 1982). In the next subsection, we will obtain a solution to (5.2)
through the MaxFlow problem.

5.2. Network Flow and MaxFlow. We provide a basic definition of a network
flow, which is crucial for defining MaxFlow. For more details about network flows we
recommend reading the notes of Trevisan (2011).

Network flows are commonly defined on directed graphs. Given an undirected
graph, we will simply allow flow to go in both directions of an edge. This means
that instead of doubling the number of edges, which is a common technique in the
literature, we fix an arbitrary direction of the edges, encoded in the B matrix, and let
flow go in either direction by simply allowing the flow variables to be negative. Also,
in the context of flows, edge weights are usually called edge capacities. We will use
these terms interchangeably, but we tend to use capacities when discussing flow and
weights when discussing cuts.

A network flow is a mapping that assigns values to edges, i.e., a mapping f : E —
R from the set of edges E to R, which also satisfies capacity and flow conservation
constraints. We view f as a vector that encodes this mapping for a fixed ordering of
the edges consistent with the incidence matrix. The capacity constraints are easy to
state. Let ¢ = diag(C') be the capacity for each edge; then we need

—c< f<ec

so that the flow along an edge is bounded by its respective capacity. The flow preser-
vation constraints ensure that flow is only created at the source and removed at the
sink and that all other nodes neither create nor destroy flow. This can be evaluated
using the incidence matrix that, given a flow f mapping, computes the changes via
BT f. Consequently, flow conservation is written

BTf=q-p,

where p; € R,p; =0 for all i € V\{s} and ¢, € R,¢; = 0 for all i € V\{¢}.

The max-flow problem is to compute a feasible network flow with the maximum
amount of flow that emerges from the source and reaches the sink. The corresponding
MaxFlow optimization problem can be expressed as

maximize pT1,
fipa

subject to BT f =q—p,
(5.4) ps € R, p; =0 Vi€ V\{s},
qt € R, ¢ =20 Vi € V\{t}a
—c< f<e

See Figure 6 for a visual depiction of the flow variables and the optimal solution of
problem (5.4) for the same graph used in Figure 5.

We will obtain the MaxFlow problem (5.4) by computing the Lagrange dual of
the relaxed MinCut problem (5.3). For basics about Lagrangian duality, we refer the
reader to Chapter 5 in Boyd and Vandenberghe (2004). The process of obtaining
the dual of a problem is important, because it will allow us to understand how to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 93

3/8 5/8
0/2 3/9 2/2 8/9
G(-3/3 0 0/1 0/2 >) G(-3/3 -1/1 2/2 >3>
3/9 0/1 7/9 11
0/9 3/9
(a) Demonstration of a (nonoptimal) flow (b) Demonstration of the MaxFlow solution

Fig. 6 In this figure, all edges are undirected edges but each edge has an arrow in the middle
indicating the positive direction of flow. A negative flow value on an edge means that the
flow is flowing against the positive direction. The numerators in each expression show the
flow that passes through an edge, and the demominators show the capacity of each edge. In
(a), we demonstrate a flow that starts from the source node s and ends at the sink node t and
has value equal to 3. The path of that flow is highlighted by gray dashed arrows and includes
nodes s, b, a, ¢, and t. Note that the flow in (a) is not optimal since we can send more flow
from the source to the sink while satisfying the constraints of problem (5.4). The optimal
solution of the MazFlow problem (5.4) for this toy graph is shown in (b). The optimal flow
that can be sent from the source to the sink is equal to 9.

implement flow-based clustering methods in subsequent sections. First, we will convert
problem (5.3) into an equivalent linear program

minimize fu+ v

xT,u,v
(5.5) subject to Bz =u —wv,
Ts = 17xt = 071' € Rn’
u,v > 0.

This can be done by starting with problem (5.3) and following standard steps in the
conversion of a linear program into standard form. Here, this involves introducing
nonnegative variables u and v such that Bx = v — v and then writing the objective as
above. (Note that due to the minimization, at optimality, we will never have both u
and v nonzero in the same index.) Consequently, the Lagrangian function of problem
(5.5) is given by

L(uw,v,2, f,5,9,p,q) = u+cTv— fT(Bx —u+v) —sTu—g"v
—pT(x—1)+q"x
=(f-s+ u+(-f-g+) v+ (-B'f-p
+q) "z +p"1,,

(5.6)

where 5,9 >0, f € R™, p, e Rand p; =0 for all i € V\{s}, and ¢; € R and ¢; = 0 for
all i € V\{t}. The latter constraints are important for Lagrangian duality because
they guarantee that the dual function (that we derive below) will provide a lower
bound for the optimal solution of the primal problem (5.3). See Chapter 5 in Boyd
and Vandenberghe (2004). The dual function is

(5.7) h(f;5:9,p,q) := min L(u,v, 2, f,s,9,p,9)-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

94 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Note that the Lagrangian function L is a linear function with respect to u, v, x. There-
fore, we can obtain an analytic form for the dual function by requiring the partial
derivatives of L with respect to u, v, and x to be zero. The following three equations
arise from the latter process:

BYf+p—q=0,, f—s+c=0,, —f—g4+c=0,.
By substituting these conditions into (5.6), we have
(5.8) h(f,5,9,p,9) = p" 15,
with a domain that is defined by the constraints

BTf+p—q= 0y, f—s+ec=0,, —f—gtc=0,,
ps ER,pi=0Vie V\{s}, ¢ €R,q=0VieV\{t}, 5,9 >0.

Thus, we obtain that the dual problem of problem (5.5) is

maximize p’1, = h(f,s,9,p,q)

f:8,9,p,q
subject to BT f =q —p,
f—s5+c=0,
(5.9) —f—g+ec=0,

ps € Rip; = 0Vie V\{s},
q: € R7qi =0Vie V\{t}a
s, > 0.

By eliminating the variables s and g we obtain the MaxFlow problem (5.4). (These
correspond to slack variables associated with —¢ < f < ¢.)

Both the primal (5.5) and the dual (5.9) are feasible (with a trivial cut and a zero
flow, respectively) and also have finite solutions (0 is a lower bound on the cut and
vol(G) = 17¢ is an upper bound on the flow). So, strong duality will hold between
the two solutions at optimality, and the optimal value of the MaxFlow problem (5.4)
is equal to the optimal value of the relaxed MinCut problem (5.3) (which is equal
to the optimal value of (5.2)). This fact is often one component of the so-called
MaxFlow-MinCut Theorem. Another important component is discussed next.

5.3. From MaxFlow to MinCut. Assume that we have solved the MaxFlow prob-
lem to optimality and that we have obtained the optimal flow f. Then the MaxFlow-
MinCut Theorem is a statement about the equivalence between the objective function
value of the optimal solution to the MinCut problem (5.1) and the objective function
value of the optimal solution of the MaxFlow problem (5.4). In many cases, obtaining
this quantity suffices, but in some cases, we want to work with the actual solutions
themselves.

To obtain the optimal MinCut solution from an optimal MaxFlow solution, we
define the notion of a residual graph. A residual graph G of a given G has the same
set of nodes as G, but for each edge e;; € E, it has a forward edge é;;, i.e., from node
i to node j, with capacity max(c;; — fi;,0) and a backward edge é;;, i.e., from node j
to node 4, with capacity max(f;;,0), where f is the optimal solution of the MaxFlow
problem (5.4). A depiction of a residual graph for a given flow is shown in Figure 7.

Note that there cannot exist a path from s to ¢ in the residual graph at a max-flow
solution (otherwise, we would be able to increase the flow!). Consequently, we can
look at the set S of vertices that are reachable starting from the source node s (this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 95

(a) The residual graph of the nonoptimal flow (b) The residual graph of the MaxFlow solu-
Figure 6(a) tion Figure 6(b)

Fig. 7 The two subfigures show the directed residual graph for the flows from Figure 6. The edge
capacities are removed for simplicity. Edges are only shown if they have positive capacity.
Note that the flow in Figure 6(a) is not optimal since we can send more flow from the source
to the sink while satisfying the constraints of problem (5.4); this is equivalent to having an
s to t path in the residual graph in (a). In (b), we show the corresponding residual graph
for the optimal flow and note that in the residual graph of the MaxFlow solution there is no
path from the source node to the sink node.

can be algorithmically identified using a breadth-first or depth-first search starting
from s). It is now a standard textbook argument that the cut of the set S, which
does not contain ¢, is equal to the maximum flow.

5.4. MaxFlow Solvers for Weighted and Unweighted Graphs. MaxFlow prob-
lems can be solved substantially faster than general linear programs. See our discus-
sion in section 4.6 for more information on state-of-the-art solvers.

It is often assumed that the graphs are unweighted or have integer positive
weights. All of the MaxFlow problems we need to solve will be weighted with ra-
tional weights that depend on the current estimate of the ratio in the fractional
programming problem. Many of the same algorithms can be applied for weighted
problems as well. We explicitly mention both Dinic’s algorithm (Dinitz, 1970) and
the Push—Relabel algorithm (Goldberg and Rao, 1998), both of which can be imple-
mented for the types of weighted graphs we need. In our implementations, we use
Dinic’s algorithm. In these cases, however, the runtime becomes slightly tricky to
state and is fairly pessimistic. Consequently, when we have a runtime that depends
on MaxFlow, we simply state the number of edges involved in the computation as a
proxy for the runtime.

6. The MQI Problem and Algorithm. In this section, we will describe the
MaxFlow Quotient-Cut Improvement (MQI) algorithm, due to Lang and Rao (2004).
This cluster improvement method takes as input a graph G = (V, F) and a reference
set R C V, with vol(R) < vol(G)/2, and it returns as output an “improved” cluster,
in the sense that the output is a subset of R of minimum conductance.

The basic MQI problem is

~—

t

minimize cut(S
(6.1) s vol(S
subject to S C R.

~

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

96 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Due to the assumption that vol(R) < vol(G)/2, this problem is equivalent to

minislgnize (S)

(6.2) ;
subject to S C R.

In the equivalence with conductance, this con-

straint that vol(R) < vol(G)/2 is crucial be- ~ ASIDE 6. A curious implication of
cause it'makes the probleTn polynomially so.lv— ZZ’; d]‘/[tglﬁzlge:tz:?z% ifoif SJ;I PS
able. Without this constraint, the problem with ol G5 bty covem, amtetioy Abe oo
conductance is intractable, but we can still mini- of minimum conductance.

mize the cut to volume ratio even when vol(R) >

vol(G) /2.

Recall that this MQI problem is related to the fractional programming prob-
lem (3.2) by setting g(S) := vol(S) and @ = R. Lang and Rao (2004) describe an
algorithm to solve the MQI problem which is equivalent to what is presented as Algo-
rithm 6.1 (they describe solving (6.3) via the flow procedure we will highlight shortly).
It is easy to see that this algorithm is simply Algorithm 3.1 for fractional programming
specialized to this scenario. Consequently, we can apply our standard theory.

Algorithm 6.1 MQI (Lang and Rao, 2004).
1: Initialize k := 1, S; := R, and ;1 := ¢(51).
2: while we have not exited via else clause do

3: Solve Syt := argmingc p cut(S) — oy vol(.S)
4: if ¢(Sk+1) < 0 then B

5: Okr1 = O(Sky1)

6: else

7 0 is optimal, return previous solution Sy.
8: k:=k+1

The following theorem implies that MQI monotonically decreases the objective
function in problem (6.1) at each iteration. It was first shown by Lang and Rao
(2004), but it is a corollary of Theorem 3.4. Note that d; is equal to the objective
function of problem (6.1) evaluated at S.

THEOREM 6.1 (convergence of MQI). Let G be an undirected, connected graph

with nonnegative weights and let R be a subset of vertices with vol(R) < vol(R). The
sequence 0, monotonically decreases at each iteration of MQIL

6.1. Solving the MQI Subproblem Using MaxFlow Algorithms. In this sub-
section, we will discuss how to solve efficiently the subproblem at step 3 of MQI
Algorithm 6.1, namely,

(6.3) argming cut(S) — dvol(.9)
’ subject to S C R.

To summarize this subsection, the subproblem corresponds to a MinCut-like problem

and by introducing a number of modifications, we can turn it into an instance of

a MinCut problem. This enables us to use MaxFlow solvers to compute a binary

solution efficiently. The final solver will run a MaxFlow problem on the subgraph of

G induced by R along with a few additional edges.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 97

(a) Graph and seed set R (b) Nonlocal MinCut problem (c) Local MinCut problem

Fig. 8 [llustration of the augmented graph for solving the MQI subproblem. Panel (a) illustrates a
small graph and a seed set R denoted by the red ellipse. This set includes nodes with IDs 1
to 5. Panel (b) demonstrates the addition of a source node s and sink node t that involves
the entire graph but solves the subproblem. Panel (c) illustrates the collapse of all nodes in
R into a single sink node t. Edges from R to R are maintained with the same weights but
they are rewired to the sink node t. The final MinCut problem in (c) can be solved via a
MaxFlow problem from the source to the sink.

By translating problem (6.3) into indicator notation, we have

minimize || Bz|c1 — éxTd
x

6.4 _
(6.4) subject to x; =0Vi e R,x € {0,1}™

This is not a MinCut problem as stated, but there exists an equivalent problem that is
a MinCut problem. To generate this problem, we’ll go through two steps. First, we’ll
shift the objective to be nonnegative. This is necessary because a MinCut problem
always has a nonnegative objective. Second, we’ll introduce a source and sink to
handle the terms that are not of the form | Bz|lc,; and the equality constraints.
Again, this step is necessary because these problems must have a source and sink.

For step 1, note that the maximum negative term is §17d. (It’s actually smaller
due to the equality constraints, but this overestimate will suffice.) Thus, we shift the
objective by this value and regroup terms:

minimize || Bz|c1 +6(1 —z)Td

6.5 ~
(6:5) subject to x; =0Vi e R,z € {0,1}".

Note that 1 — 2 is simply an indicator for S, the complement solution set. Con-
sequently, we want to introduce a penalty for each node placed in S. To do so, we
introduce a source node s that will connect to each node of the graph with weight
proportional to the degree of each node. (A penalty for S corresponds to an edge
from the source s.) Since nothing in R can be in the solution, we can introduce a sink
node ¢ and connect it with infinite weight edges to each node in R. Thus, these edges
will never be cut at optimality, as a finite-valued objective is possible. Also note that
the infinite weight can be replaced by a sufficiently large graph-dependent weight to
achieve the same effect.

This MinCut construction is given in Figure 8(b), although this omits the edges
from s to nodes in R. This construction, however, is not amenable to a strongly local

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

98 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Augmented Graph 1 for the subproblem at step 3 of MQI Algorithm 6.1.

1: Extract the subgraph with nodes in R and the edges of these nodes, which we
denote by E(R).

2: Add to the set of nodes R a source node s and a sink node t.

3: Add to the set of edges E(R) an edge from the source node s to every node in
the seed set of nodes R with weight the degree of that node times §.

4: For any edge in G from R to R, rewire it to node ¢ and combine multiple edges
by summing their weights.

solution method, as it naively involves the entire graph. Note that, in practice, we
can form the graph construction in Figure 8(c) with the collapsed vertices without
ever examining the whole graph.

To generate a strongly local method, note that we can collapse all the vertices in
R and t into a single supersink ¢. This simply involves rewiring all edges (u,v) where
u ¢ Rand v € R into a new edge (u, t), where we handle multiedges by summing their
weights. This results in a number of s to t edges, one for each node in R, which we can
further delete as they exert a constant penalty of J vol(R) on the final objective. An
illustration is given in Figure 8(c), where importantly there are only a small number
of nodes in R that are collapsed into the sink node ¢, but R could have had thousands
or millions or billions of nodes. In that case, the final graph would still have only a
very small number of nodes, in which case strongly local algorithms would be much
faster.

To recap, see the Augmented Graph 1 procedure shown above. We now give
an explicit instance of the MinCut problem to illustrate how it maps to our desired
binary objective. Let B(R) and C'(R) be the incidence and weight matrices for the
subgraph induced by the set R. Then consider the incidence and diagonal edge-weight
matrices of the modified graph, which are

S R t
y 1 I 0 5 6Dr 0 0
B:=10 B(R) 0 1 C=10 CR 0]
o I -1 0 0 Z

where Dp, is the submatrix of D that corresponds to nodes in R (ordered conformally),
and Z is a diagonal matrix that stores the weights of the rewired edges from R to the
sink ¢, i.e.,

Ly = Z Ce, Where e is an edge from ¢ € R to any node in R.

e

(These weights can be zero if there are no edges leaving from a node i € R.) The first
column of matrix B corresponds to the source node, the last column corresponds to
the sink node, and all other columns in between correspond to nodes in R. The first
block 6Dy in C' corresponds to edges from the source to nodes in R, the second block
Crin C corresponds to edges from R to R, and the third block Z in C corresponds
to edges from nodes in R to the sink node t. Let

T
T:= |zgr|, so that 71 = x5 and T|gj12 = T;
T

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 99

then the MinCut problem with respect to the modified graph is

minimize HBi‘Hél = |B(R)xr|c(ry,1 + TDr(1g — 2g) + 17 Zzg

(6.6) . N N N
subject to 1 = 1, %42 = 0,Z; € {0,1}.

It is straightforward to verify that problem (6.6) is equivalent to a shifted version of
problem (6.5), where the objectives differ by 6 vol(R). Finally, to obtain a solution
of the original problem, we have to further decrease the objective by the constant
dvol(R).

To solve this MinCut problem, we then simply use an undirected MaxFlow solver.
The input has O(vol(R)) edges and |R| + 2 nodes.

6.2. Iteration Complexity. We now specialize our general analysis in section 3
and present an iteration complexity result for Algorithm 6.1. First, we present
Lemma 6.2, which will be used in the iteration complexity result in Theorem 6.3.

An interesting property of MQI that is shown in Lemma 6.2 is that the volume
of Sy monotonically decreases at each iteration, i.e., vol(Sk11) < vol(Sk). This result
has important practical implications since it shows that MQI is searching for subsets
S that have smaller volume than the set S;. Moreover, Lemma 6.2 shows that the
numerator of problem (6.1) decreases monotonically.

LEMMA 6.2. Let G be an undirected, connected graph with nonnegative weights.
If the MQI algorithm proceeds to iteration k + 1, it satisfies both vol(Sk4+1) < vol(Sk)
and cut(Sk41) < cut(Sk).

Proof. The proof for this claim is given in the proof of Lemma 3.5. O

THEOREM 6.3 (iteration complexity of MQI). Let G be a connected, undirected
graph with nonnegative integer weights. Algorithm 6.1 has at most cut(R) iterations
before converging to a solution.

Proof. This is just an explicit specialization of Theorem 3.6.]

Remark 6.4 (time per iteration). At each iteration a weighted MaxFlow problem
is being solved. Therefore, the worst-case time of MQI will be its iteration complexity
times the cost of computing a MaxFlow on a graph of size vol(R). Here vol(R) is an
upper bound on the number of edges incident to vertices in R because the weights are
integers.

6.3. A Faster Version of the MQI Algorithm. The original MQI algorithm re-
quires at most vol(R) iterations to converge to the optimal solution for graphs with
integer weights. After at most that many iterations the algorithm returns the exact
output. However, if we are not interested in exact solutions, we can improve the iter-
ation complexity of MQI to at most O (log %), where € > 0 is an accuracy parameter.
To achieve this we will use binary search for the variable 4. It is true that for (S*,*)
we have cut(S*)/vol(S*) = 0*. Therefore, 6* € [0,1]. We will use this interval as our
search space for the binary search. The modified algorithm is shown in Algorithm 6.2.
This algorithm is an instance of Algorithm 3.2. Note that the subproblem in step 4 of
Algorithm 6.2 is the same as the subproblem in step 3 of the original Algorithm 6.1.
The only part that changes is that we introduce binary search for 6.

Putting the iteration complexity of Fast MQI together with its per iteration com-
putational complexity, we get the following theorem.

THEOREM 6.5 (iteration complexity of the Fast MQI Algorithm 6.2). Let G be
an undirected, connected graph with nonnegative weights. Let R be a subset of vertices

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

100 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Algorithm 6.2 Fast MQL.

1: Initialize k := 1, dmin := 0, dmax := ¢(R), and € € (0, 1]
2: while dax — Omin > €0min do
3: O 1= (5max =+ 6min)/2

4: Solve Spi1 = argmingcpcut(S) — 6 vol(S) via MaxFlow on Augmented
Graph 1. B

5. if vol(Sk41) > 0 {Then Jj is above §*} then

6: Omax = &(Sk+1), and set Spax = Sk+1 {Note ¢(Sg+1) < 0k}

7. else

8: Omin := Ok

9: kE=k+1

10: Return argmingc p cut(S) — dmax vol(S) or Shax based on minimum conductance.

with vol(R) < vol(R). The sequence 0y of Algorithm 6.2 converges to an approzimate
solution |6* — §x|/0* < € in O(logl/e) iterations, where 6* = ¢(S*) and S* is an
optimal solution to problem (6.1). Moreover, if G has nonnegative integer weights,

then the algorithm will return the exact minimizer when € < W'

Proof. The iteration complexity of MQI is an immediate consequence of Theo-
rem 3.8. The exact solution result is a consequence of the smallest difference between
values of conductance among subsets of R for integer-weighted graphs. Let S; and
Sy be arbitrary subsets of vertices in R with ¢(S1) > ¢(S2). Then

~cut(Sy) vol(S2) — cut(S3) vol(Sy) Ly
?(S1) — 0(52) = vol(5) vol(S5) > (vol(R))~~.

The last inequality occurs because if cut(Sy) vol(Sz) — cut(S2) vol(S1) is an integer,
the smallest possible difference is 1. At termination, Fast MQI satisfies dmax — Omin <
€6min- By the above difference bound, the next objective function value that is larger
than §* is at least 6* + W. Therefore, setting & < W, we find that dpax <

* 1
0" + vol(R)? " 0

Remark 6.6 (time per iteration). Each iteration involves a weighted MaxFlow
problem on a graph with volume equal to O(vol(R)).

7. The Flowlmprove Problem and Algorithm. In this section, we will describe
the FlowImprove method, due to Andersen and Lang (2008). This cluster improve-
ment method was designed to address the issue that the MQI algorithm will always
return an output set that is strictly a subset of the reference set R. The FlowImprove
method also takes as input a graph G = (V, E) and a reference set R C V, with
vol(R) < vol(G)/2, and it also returns as output an “improved” cluster. Here, the
output is “improved” in the sense that it is a set with conductance at least as good
as R that is also highly correlated with R.

To state the Flowlmprove method, consider the following variant of conductance:

_cut(S,5) when the denominator is positive
(7.1) ¢r(S) = | rvol(S; R, 0) i |
00 otherwise,

where 6 = vol(R)/vol(R) and where the value is oo if the denominator is negative.
This particular value of 8 arises as the smallest value such that the rvol(S; R, 0) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 101

vol(SN R) — 6 vol(SNR) denominator is exactly zero when S = V and hence will rule
out trivial solutions. (This idea is equivalent to picking 6 so that the total weight of
edges connected to the source is equal to the total weight of edges connected to the
sink in the upcoming flow problem (Andersen and Lang, 2008).) Note that this setup
is also equivalent to the statement in section 3.1 where the denominator constraint is
adjusted to be a positive infinity value.

For any set S with vol(S) < vol(S), since rvol(S; R,) = vol(SNR) —fvol (SN R),
it holds that ¢r(S) > ¢(S). Thus, this modified conductance score ¢r(-) provides an
upper bound on the true conductance score ¢(-) for sets that are not too big; but this
objective provides a bias toward R, in the sense that the denominator penalizes sets
S that are outside of the reference set R.

Consequently, the FlowImprove problem is

minibgnize or(S)

(7.2) .
subject to S C V.

This FlowImprove problem is related to the fractional programming problem (3.2) by
setting g(S) := vol(S N R) — §vol(SN R) and Q = V. Andersen and Lang (2008)
describe an algorithm to solve the FlowImprove problem which is equivalent to what
we present as Algorithm 7.1. It is easy to see that this algorithm is a special case of
Algorithm 3.1 for general fractional programming.

Algorithm 7.1 FlowImprove (Andersen and Lang, 2008).
1: Initialize kK =1, S; := R, and 6 = ¢R(Sl)
2: while we have not exited via else clause do
3. Solve Spiq:= argming cut(S)— & (vol(SNR)—6Ovol(SNR))
if ¢R(Sk+1) < 0 then
Okt1 = ORr(Sky1)
else
0 is optimal, return previous solution Sj.
k=k+1

The following theorem implies that Flowlmprove monotonically decreases the
objective function in problem (7.2) at each iteration. It was first shown by Andersen
and Lang (2008), but it is a corollary of Theorem 3.4. Note that dj is equal to the
objective function of problem (7.2) evaluated at S.

THEOREM 7.1 (convergence of Flowlmprove). Let G be an undirected, connected
graph with nonnegative weights. Let R be a subset of vertices with vol(R) < vol(R).
The sequence & monotonically decreases at each iteration of FlowImprove (Algo-

rithm 7.1).

7.1. The Flowlmprove Subproblem. In this subsection, we will discuss how to
solve efficiently the subproblem at step 3 of FlowImprove. We will follow similar steps
to those for MQI in section 6.1; that is, we convert the MinCut-like problem into a
true MinCut problem on an augmented graph, and then we use MaxFlow to find
the set minimizing the objective. As a summary and overview, see the Augmented
Graph 2 procedure and an example of this new modified graph in Figure 9. (Observe
that here we do not have a fourth step where we combine multiple edges, as we did
in Augmented Graph 1 and Figure 8(c)—thus, the FlowImprove Algorithm 7.1 will
not be strongly local.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

102 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Augmented Graph 2 for the subproblem at step 3 of FlowImprove Algorithm 7.1.

1: Add to the set of nodes V' a source node s and a sink node t.

2: Add to the set of edges E an edge from the source node s to every node in the
seed set of nodes R with weight the degree of that node times §.

3: Add to the set of edges E an edge from the sink node ¢ to every node in the set
of nodes R with weight the degree of that node times 66.

(a) Graph and seed set R (b) MinCut graph for FlowImprove subproblem

Fig. 9 Illustration of the augmented graph for solving the FlowImprove subproblem. Panel (a)
tllustrates the same graph and seed set from Figure 8. Panel (b) demonstrates the addition
of a source node s and a sink node t, along with corresponding edges from node s to nodes in
R and node t to every node in R. The MinCut problem in panel (b) can be solved to identify
a set via a MaxFlow problem from the source to the sink.

Turning back to the derivation of this formulation, the MinCut subproblem at
step 3 of the FlowImprove problem is equivalent to

(73) minimize ||Bz|c1 — 6xTdp + 6027 dp
. x
subject to z € {0,1}",
where dp is an n-dimensional vector that is equal to d for components with index in
R and zero elsewhere. Similarly for d. Consequently, d = dr + dj, where the two
pieces have disjoint support.

As with the previous case, we shift this and then add sources and sinks. First,
the largest possible negative value is at least 617dgr. Adding this yields

minimize ||Bx|c1 + (1 — JC)TLiR + (59de1§
x

(7.4)
subject to z € {0,1}".

Again, we have penalty terms associated with S (given by nonzero entries of x) and
S (given by nonzero entries of 1 —). For these, we introduce a source and sink.
The source connects to penalties associated with S and the sink connects to penalties
associated with S. Note that these penalties partition into two groups, associated
with R and R. Consequently, we add a source node s and connect it to all nodes in
R with weight ddp, and we also add a sink node ¢ and connect it to all nodes in R
with weight 60d .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 103

The resulting MinCut problem is associated with the incidence matrix and the
diagonal edge-weight matrix of a modified problem as follows:

s \%4 t
_ 1 —-Ip O ~ 0Dr 0 0
B:= |0 B 0], C=10 C 0]
0 Ip -1 0 0 00Dg

Here, D and Dj are diagonal submatrices of D corresponding to nodes in R and R,
respectively, and Ir and I are matrices where each row contains an indicator vector
for a node in R and R, respectively. These matrices give Igrx = zr and Ipr = 25
and are ordered in the same way as Dg and Dp. Let

Ts
T:= |z |, sothat 71 = 25 and T|g4o = 2¢;
Ty

then the MinCut problem with respect to the modified graph is

minimize ||B§;||é1 = ||Bz|lc1 +0(1 —zr)Tdr + 60z zdp

7.5
(7.5) subject to &1 = 1,Zp42=0,2; € {0,1} Vi=2,...,n+ 1.
Again, note that this objective corresponds to a constant shift with respect to problem
(7.3). This problem can be solved via MaxFlow to give a set solution.

7.2. Iteration Complexity. In Lemma 7.2 we show that when using FlowIm-
prove, the denominator of problem (7.2), i.e., vol(S N R) — #vol(S N R), decreases
monotonically at each iteration. Moreover, the numerator of problem (7.2) decreases
monotonically as well.

LEMMA 7.2. If the FlowImprove algorithm proceeds to iteration k + 1, it satis-
fies vol(Sg41 N R) — vol(Sy N R) < 0 (vol(Sk41 N R) — vol(Sk N R)) and cut(Sk41) <
cut(Sk).

Proof. This result is a specialization of Lemma 3.5 and the proof is the same. 0O

THEOREM 7.3 (iteration complexity of the FlowImprove Algorithm 7.1). Let G
be a connected, undirected graph with nonnegative integer weights. Then Algorithm 7.1
needs at most cut(R) iterations to converge to a solution.

Proof. This is just an explicit specialization of Theorem 3.6.]

Remark 7.4 (time per iteration). At each iteration a weighted MaxFlow problem
is being solved; see section 7.1. The MaxFlow problem size is proportional to the whole
graph.

7.3. A Faster Version of the Flowlmprove Algorithm. The original FlowIm-
prove algorithm requires at most cut(R) < vol(R) iterations to converge to the optimal
solution. After at most that many iterations the algorithm returns the ezact output.
However, if we are not interested in exact solutions we can improve the iteration
complexity of FlowImprove to at most O (log é), where € > 0 is an accuracy param-
eter. To achieve this we will use binary search for the variable §. It is true that
or(R) € [0,1], and therefore, 6* € [0, 1]. We will use this interval as our search space
for the binary search. The modified algorithm is shown in Algorithm 7.2. Note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

104 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

the subproblem in step 4 of Algorithm 7.2 is the same as the subproblem in step 3 of
the original Algorithm 7.1. The only part that changes is that we introduce binary
search for 4.

Algorithm 7.2 Fast FlowImprove.

1: Initialize &k := 1, dmin := 0, dmax := 1, and € € (0,1]
2: while 6max — Omin > €0min dO
3: 5k = (5max + 5min)/2

4: Solve Sk := argming cut(S) — & (vol(S N R) — §vol(S N R)) via MaxFlow
5. if vol(Sk41 N R) > Ovol(Sg+1 N R) {Then J; is above 6*} then

6: Omax := ®Rr(Sk+1) and set Spax := Sk+1 {Note ¢pr(Sk+1) < 9k}

7. else

8: 5min = 5k

9: k=k+1

10: Return argming cut(S) —dmax (vol(SNR) —0 vol(SNR)) or Spax based on min ¢g.

Putting the iteration complexity of Fast Flowlmprove together with its per iter-
ation computational complexity, we get the following theorem.

THEOREM 7.5 (iteration complexity of the Fast FlowImprove Algorithm 7.2). Let
G be an undirected, connected graph with nonnegative weights. Let R be a subset of V
with vol(R) < vol(R). The sequence & of Algorithm 7.2 converges to an approzimate
solution |6* — 6x|6* < e in O(log1/e) iterations, where §* = ¢r(S*) and S* is an
optimal solution to problem (7.2). Moreover, if G has nonnegative integer weights,

then the algorithm will return the exact minimizer when € < IR vol(F) °

Proof. Tteration complexity of FlowImprove is an immediate consequence of The-
orem 3.8. The exact solution result is a consequence of the smallest difference between
values of relative conductance for integer-weighted graphs. Let S; and Sy be arbitrary
sets of vertices in the graph with ¢r(S1) > ¢r(S2). Let k1 = cut(Sy) vol(S2 N R) —
cut(S2) vol(S; N R) and kg = cut(S;) vol(S2 N R) — cut(S2) vol(S; N R). Both are
integers. Then

cut(Sy) cut(Ss) k1 vol(R) — kg vol(R) S 1

rvol(S1; R,0) rvol(Se; R,6) vol(R)rvol(Sy; R, 0)rvol(Ss; R,0) — vol(R)? vol(R)

The last inequality occurs because ki and ko are integers, and thus the smallest

positive value of kj vol(R) — ko vol(R) is 1. The rest of the argument for the exact
solution is the same as the proof of Theorem 6.5. 0

The subproblem is the same and so the cost per iteration is the same as discussed
in Remark 7.4.

7.4. Nonlocality in Flowlmprove. The runtime bounds for FlowImprove assume
that we may need to solve a MaxFlow problem with size proportional to the entire
graph. We now show that this is essentially tight and that in general the solution of
a FlowImprove problem is not strongly local. Indeed, the following example shows
that FlowImprove will return one fourth of the graph even when started with a set R
that is a singleton.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 105

LEMMA 7.6. Consider a cycle graph with some @ @ @ @ @ @ @

extra edges connecting neighbors or neighbors
in some parts (illustrated on the right) with
AN + 8 nodes in 4 major regions. FEach set
A and B has N nodes of degree 4 correspond-
ing to a contiguous piece of the cycle graph with
neighbors and neighbors of neighbors connected.
FEach set C and D has N degree 2 nodes. This
introduces two extra nodes, of degree 3, between
each pair of adjacent degree 2 and degree 4 re-
gions. Consider using any node of degree 4 as
the seed node to the FlowImprove algorithm.
Then, at optimality, FlowImprove will return a
set with N +4 nodes that is a continuous degree
4 region plus the four adjacent degree 3 nodes.

set D,
N nodes of degree 2

set A, set B,
N nodes N nodes
of of

degree 4 degree 4

Proof. Without loss of generality, suppose we seed on a node from set A. Ac-
cording to Lemma 7.2, when Dinkelbach’s algorithm for FlowImprove proceeds from
iteration to iteration, it must return a set with a strictly smaller cut value; otherwise
the seed set R was optimal. This means FlowImprove will only return one of the
following sets (due to symmetry, there may be equivalent sets that we don’t list):

1. The seed node with cut 4.
2. A continuous subset of the A region, G, G1, and a continuous subset of the
set D, with cut 3.
3. All of the A region, two adjacent degree 3 nodes (without loss of generality,
Gy and G7) on one end and one adjacency degree 3 node on the other edge
(F1), with cut 3.
4. All of the A region and all adjacency degree 3 nodes (Go, Gy, Fo, F1), with
cut 2.
5. All of the A region and all adjacency degree 3 nodes (Go, G1, Fy, F1, and
additional nodes from sets C' and D), with cut 2.
The goal is to show that case 4 is optimal, i.e., has the smallest objective value. Obvi-
ously, case 5 cannot be optimal since it has the same cut value as case 4 but smaller rel-
ative volume. Similarly, case 3 has the same cut value as case 2 but smaller relative vol-
ume. So case 3 won’t be optimal either. So we only need to compare ¢pr(S1), ¢r(S2),

and ¢r(S4). Observe that in this setting, § = zgigg = (2N71)4f2N.2+8_3 3N1+5,

SO

we can compute that

2 3N +5

¢R(54):4_€(4(N_1)+3.4) AN +6

< 1= ¢r(S1).

On the other hand, suppose that in case 2 there are 1 < k < N nodes from A and
m > 0 nodes from D; then we can write

3 S 3 9N + 15

Or(%2) = T) 53 242m) S 1-60 12N + 14

> ¢R(S4)

So case 4 is optimal.]

7.5. Relationship with PageRank. The FlowImprove subproblem (7.5) is closely
related to the PageRank problem if the 1-norm objective is translated into a 2-norm

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

106 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

objective and we relax to real-valued vectors (and make a small perturbation to the
resulting systems). This was originally observed, in slightly different ways, in our
previous work (Gleich and Mahoney, 2014, 2015). For the same matrix B, consider
the problem

o . . S ~ 2
minimize HB&L‘HC,’2

7.6
(7.6) subject to zs =71 =0, = T2 =1,%; € {0,1} Vi=2,...,n+ 1.

Note that this problem, with the binary constraints, is exactly equivalent to the
original problem. However, if we relax the binary constraints to real-valued vectors
and substitute in x; = 1 and z,42 = 0, then this is a strongly convex quadratic
objective, which can be solved as the following linear system:

(7.7) (BTCB + § diag(dg) + 00 diag(dz))z = 0/2dg.

Here, BTCB = L = D — A is the Laplacian of the original graph. Also, if we have
6 =1 (or simply assume this is true), then § diag(dgr) + 606 diag(dz) = §D. This yields
the linear system

(L+6D)x=6/2 & (I—5AD)Dx=5/(2+20)dg.

The second system is equivalent to a rescaled PageRank problem for an undirected
graph (I — aAD™ 1)y = yv, where y = Dx. This form, or a scaled version, is widely
used in practice (Gleich, 2015).

8. The LocalFlowlmprove (and SimpleLocal) Problem and Algorithm. In
this section, we will describe the LocalFlowImprove method, due to Orecchia and
Zhu (2014), and the related SimpleLocal method, due to Veldt, Gleich, and Mahoney
(2016). This cluster improvement method was designed to address the issue that
FlowImprove is weakly (and not strongly) local, i.e., that the FlowImprove method
has a runtime that depends on the size of the entire input graph and not just on the
size of the reference set R. The setup is the same: the LocalFlowImprove method
takes as input a graph G = (V, E) and a reference set R C V, with vol(R) < vol(G)/2,
and it returns as output an “improved” cluster.

To understand the LocalFlowlmprove method, consider the following variant of
conductance:

cut (S, 5) when the denominator is positive
(8.1) ¢ro(S) =< vol(SNR) —avol(SNR) ’

00 otherwise,

where o € [vol(R)/vol(R), 00). This is identical to Flowlmprove (7.1), but we change
0 into o and allow it to vary. Given this, the basic LocalFlowImprove problem is

minibgnize ORr,0(5)

(3.2) |
subject to S C V.

On the surface, it is straightforward to adapt FlowImprove to LocalFlowImprove.
Simply “repeating” the entire previous section with o instead of 8 will result in correct
algorithms. For example, the original algorithm proposed for LocalFlowImprove by
Orecchia and Zhu (2014) is presented in a fashion equivalent to Algorithm 8.1, which
is simply an instance of the bisection-based fractional programming Algorithm 3.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 107

The key difference between FlowImprove and ,)

. . ASIDE 7. For the theory in this

LocalFlowImprove is that by setting o larger section, we parameterize the Lo-
than vol(R)/ vol(R), we will be able to show that calFlowImprove objective with o in-
the runtime is independent of the size of the in- stead of 046 as in sections 3.1 and
put graph. Recall that we have already shown 9. This choice reduces the num-
that the output set has a graph size independent ber of constants in the statement of
theorems. The previous choice of &

bound in Lemma 3.2. is designed to highlight the FlowIm-

This strongly local aspect of LocalFlowlm- prove to MQI spectrum.

prove manifests in the subproblem solve step.
Put another way, we need to crack open the black-box flow techniques in order to
make them run in a way that scales with the size of the output rather than the size of
the input. As a simple example of how we’ll need to look inside the black box, note
that when o = oo, then LocalFlowImprove corresponds to MQI as discussed in sec-
tion 3.1, which has an extremely simple strongly local algorithm. We want algorithms
that will be able to take advantage of this property without needing to be told this
will happen. Consequently, in this section, we are going to discuss the subproblem
solver extensively.

In particular, we will cover how to adapt a sequence of standard MaxFlow solves
to be strongly local, as in the SimpleLocal method of Veldt, Gleich, and Mahoney
(2016) (section 8.1), as well as improvements that arise from using blocking flows and
adapting Dinic’s algorithm (sections 8.2 and 8.3). We will also cover differences with
solvers with different types of theoretical tradeoffs that were discussed in the original
Orecchia and Zhu (2014) paper (section 8.4).

Note that the SimpleLocal algorithm of Veldt, Gleich, and Mahoney (2016) did
not use binary search on J as in Algorithm 8.1 (and nor do our implementations),
but instead it used the original Dinkelbach’s algorithm. As we have pointed out a
few times, binary search is not as useful as it may seem for these problems, as a few
iterations of Dinkelbach’s method are often sufficient on real-world data. The point
here is that the tradeoff between bisection and the greedy Dinkelbach’s method is
independent of the subproblem solves that are the heart of what differentiates Lo-
calFlowlmprove from FlowImprove. Finally, note that Algorithm 8.1 is also a special
instance of Algorithm 3.2.

Algorithm 8.1 LocalFlowImprove (Orecchia and Zhu, 2014).

1: Initialize k := 1, dmin := 0, dmax := 1, 0 € [‘V’Z}E%,oo) and € € (0,1]
2: While 6max - Jmin > €5min dO
3: 5k = (5max + 5min)/2

4: Solve Siy1 := argming cut(S) — & (vol(S N R) — o vol(S N R)) via MaxFlow
5. if vol(Sky+1 N R) > o vol(Sk+1 N R) {Then é; > §*} then

6: Omax = Or,o(Sk+1) and set Spyax := Sk+1 {Note ¢r o (Sk+1) < 0k}

7. else

8: 5min = 5k

9: k=k+1

10: Return argming cut(S)—dmax (vol(SNR)—cvol(SNR)) or Spax based on min ¢g ..

The iteration complexity of Algorithm 8.1 is now just a standard application of
the fractional programming theory.

THEOREM 8.1 (iteration complexity of LocalFlowImprove). Let G be an undi-
rected, connected graph with nonnegative weights. Let R be a subset of nodes with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

108 K. FOUNTOULAKIS, M. LIU, D. F. GLEICH, AND M. W. MAHONEY

vol(R) < vol(R). In Algorithm 8.1, the sequence 8y converges to an approrimate op-
timal value |0* — 0y |/0* < e in O(log1/e) iterations, where 6* = ¢r - (S*) and S* is
an optimal solution to problem (8.2). Moreover, if G has nonnegative integer weights

and o = (n+ vol(R))/ vol(R) for an integer value of n, then the algorithm will return
1

the exact minimizer when € < SOlR)Zvol(F) -

Proof. The first part is an immediate consequence of Theorem 3.8 with d,. = 1.
The exact solution result is a consequence of the smallest difference between values of
relative conductance for integer weights. Let S7 and S5 be arbitrary sets of vertices in
the graph with ¢g »(S1) > ¢r,(S2). Let k1 = cut(S1) vol(S2NR)—cut(S2) vol(S1NR)
and ky = cut(S7) vol(Sy N R) — cut(Ss) vol(S; N R), which are both integers. Then

cut(S1) cut(Sa) k1 vol(R) — ka(n + vol(R)) S 1

rvol(S1; R,0) 1vol(Sa; R,0) vol(R)rvol(Si; R, o)rvol(Sy; R, o) = vol(R)2 vol(R)

The inequality follows because the integrality of k1 and ko ensures that the smallest

positive value of ki vol(R) — ko(n + vol(R)) is 1. The rest of the argument on the
exact solution is the same as in the proof of Theorem 6.5. 0

Augmented Graph 3 for the subproblem at step 4 of LocalFlowlmprove Algo-
rithm 8.1. This is identical to the FlowImprove procedure with o instead of 6; for
LocalFlowImprove we develop algorithms to work with this problem implicitly.
1: Add to the set of nodes V a source node s and a sink node t.
2: Add to the set of edges E an edge from the source node s to every node in the
seed set of nodes R with weight the degree of that node times 4.
3: Add to the set of edges E an edge from the sink node ¢ to every node in
the set of nodes R with weight the degree of that node times do, where o €
[vol(R)/ vol(R), 00).

Moreover, the subproblem construction and augmented graph are identical to
FlowImprove, except with ¢ instead of 6. For the construction of the modified graph
to use at the subproblem step, see Augmented Graph 3. The MinCut problem for a
specific value of § = d;, from the algorithm is also equivalent with ¢ instead of 6,

(8.3) minimize || Bzfc + (1 — §)aTdp + doxTdg

' subject to z € {0,1}",

using the same notation as in (7.3). (Here, we have not implemented the subsequent
step of associating terms with sources and sinks, because that follows an identical
reasoning to the FlowImprove problem.)

However, in practice, we never explicitly build this augmented graph, as that
would tmmediately preclude a strongly local algorithm, where the runtime depends
on vol(R) instead of n or m (the number of vertices or edges). Instead, the algorithms
seek to iteratively identify a local graph, whose size is bounded by a function of vol(R)
and o that has all of R and just enough of the rest of G to be able to guarantee a
solution to (8.3).

As some quick intuition as to why the LocalFlowImprove subproblem might have
this property, we recall Lemma 3.2, which showed that there is a bound on the output
size that is independent of the graph size. We further note the following sparsity-
promoting intuition in the LocalFlowImprove subproblem.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 109

LEMMA 8.2 (originally from Veldt, Gleich, and Mahoney (2016, Theorem 1)). The
subproblem solve in LocalFlowImprove (8.3) corresponds to a degree-weighted 1-norm
reqularized variation on the subproblem solve in FlowImprove (7.4). More specifically,
the 1-norm reqularized problem is

(8.4) minimize || Bz||c.1 4 0(1 — 2)Tdg + 0027 dg + || Dz|,
. subject to = € {0,1}"

with § = 6 + K and k = %, where § = vol(R)/ vol(R).

Proof. The proof follows from expanding (8.4) using § and | Dz, = kaTdg +
kxTdp for indicator vectors, and then ignoring constant terms. O

Given the rich literature on solving 1-norm
regularized problems in time much smaller than ASIDE 8. We also note that this
the ambient problem space or with provably fewer adee o @iy @ Lo ey

. . . a common design pattern to create

samples (Tibshirani, 1996; Efron et al., 2004;) e e
Candes, Romberg, and Tao, 2006; Donoho and
Tsaig, 2008), these results are perhaps somewhat less surprising.

In the remainder of this section, we will explain two solution techniques for the
subproblem solve that will guarantee the runtime in the following theorem for finding
the set that minimizes the LocalFlowImprove objective.

THEOREM 8.3 (runtime of LocalFlowImprove, based on Veldt, Gleich, and Ma-
honey (2016)). Let G be a connected, undirected graph with nonnegative integer weights.
A LocalFlowImprove problem can be solved via Dinkelbach’s Algorithm 3.1 or Algo-
rithm 8.1. The algorithms terminate in worst-case time

O(cut(R) - subproblem) for Dinkelbach and O(log L - subproblem) for bisection.

Letv=1+ % For solving the subproblem, we have the following possible runtimes:

Algorithm 8.2 vy vol(R) calls to MazFlow on yvol(R) edges (MaxFlow-based),
Algorithm 8.3 O (v*vol(R)? log[y vol(R)]) (BlockingFlow-based).

Proof. This result can be obtained by combining the iteration complexity of
Dinkelbach’s Theorem 3.6 or LocalFlowImprove from Theorem 8.1 with either the
runtime of the MaxFlow-based SimpleLocal subsolver Algorithm 8.2 or the runtime
of the blocking flow algorithm in Theorem 8.5.]

See section 8.4 for details on faster algorithms from Orecchia and Zhu (2014).

8.1. Strongly Local Constructions of the Augmented Graph. Before we pre-
sent algorithms for the LocalFlowImprove subproblem, we discuss a crucial result
from Orecchia and Zhu (2014) that reduces Augmented Graph 3 for the MaxFlow
problem to a reduced modified graph that includes only nodes relevant to the optimal
solution. The crux of this section is an appreciation of the following statement:

An unsaturated edge in a flow is an edge where the flow value is strictly less
than the capacity. If, in a solution of MaxFlow on the augmented graph,
there is an unsaturated edge from a node in R to t, then that node is not
in the solution MinCut set.

This result is a fairly simple structural statement about how we might verify a solution
to such a MaxFlow problem. We will illustrate it first using a simple example where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

110 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

the optimal solution set is contained within R, akin to MQI but without that explicit
constraint, and then we move to the more general case which will involve introducing
the idea of a bottleneck set B. Throughout these discussions, we will use G to denote
the full s,¢ augmented graph construction for a LocalFlowImprove subproblem with
R, 9,0 fixed.

Consider what happens in solving a MaxFlow on G’, where o > vol(R). In this
scenario, LocalFlowImprove will always return S C R and this will be true on the
subproblem solve as well. (See the discussion in section 3.1.) We will show how we can
locally certify a solution on G—without even creating the entire augmented graph.
We first note the structure of the G partitioned into the following sets: R, OR, and

everything else, i.e., R — OR. This results in the following view of the subproblem:

full subproblem G or edge subset

Suppose that we delete all the gray edges and solve the resulting MaxFlow problem
(or just solve the problem for the teal-colored subset). This will result in a MaxFlow
problem on a subset of the edges of the augmented graph—and one that has size
bounded by vol(R). In any solution of the resulting MaxFlow problem, we have that
all of the edges from OR to ¢ will be unsaturated, meaning that the flow along those
edges will be strictly smaller than the capacity. This is straightforward to see because
the total flow out of the source is d vol(R) and each edge from OR to t has weight
d;60 > d;d vol(R). Consequently, the nodes in R will always be on the sink side of
the MinCut solution.

This ability of unsaturated edges to provide a local guarantee that we have found
a solution arises from two aspects. First, we have a strict edge subset of the true
augmented graph, so any flow value we compute will be a lower bound on the max-
flow objective function on the entire graph. Second, we have not removed any edges
from the source. Consequently, we can locally certify this solution because none of
the edges leading to t are saturated, so the bottleneck must have been outside of the
boundary of R. Put another way, since the edges from JR to t are unsaturated, there
is no way the omitted gray nodes and edges could have helped get more flow from the
source to the sink.

Now, suppose that ¢ is smaller such that at least one node in the boundary
of R has a saturated edge to t. Then we lose the proof of optimality because it’s
possible those missing gray nodes and edges could have been used to increase the
flow. Suppose, however, we add those bottleneck nodes in R to a set B and solve
for the MaxFlow on the subgraph of G with all edges among s,t, R, B, O(RU B) as
follows:

B is one node or B is two nodes

As long as the bottleneck is not in the boundary (R U B), then we have an optimal
solution. The best way to think about this is to look at the missing edges in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 11

Algorithm 8.2 MaxFlowSimpleLocal (Veldt, Gleich, and Mahoney, 2016).
1: Set B:=10
2: while the following procedure has not yet returned do
3: Solve the MaxFlow problem on Gg . s(B) consistent with previous iterations.
Let J denote the vertices in (R U B) whose saturated edges to the sink ¢.
if |J| = 0 then return the MinCut set S as the solution
else B «+— B U J and repeat

picture. If all the edges to ¢ from the boundary (R U B) are unsaturated, then we
must have a solution, as the other edges could not have increased the flow.

Of course, there may still be saturated edges in the boundary, but this suggests
a simple algorithm. To state it, let G, s(B) be the s,t MaxFlow problem with

e all vertices {s,t} URU BUOJ(RU B),

e all edges from the source s to nodes in set R,

e all edges with nodes in the set BUJ(R U B) to the sink node ¢,

e all edges from nodes in RU B to nodes in V.
We iteratively grow B by nodes whose edges to t are saturated in a MaxFlow solve
on Ggss(B), starting with B empty. This procedure is described in Algorithm 8.2,
which uses the idea of solving MaxFlow problems consistently with previous iterations,
to which we will return shortly. What this means is that among multiple optimal
solutions, we choose the one that would saturate edges to B in the same way as
previous solutions. There is a simple way to enforce this by using the residual graph,
and this really just means that once a node goes into B, it stays in B.

Locally finding the set B is, in a nutshell, the idea behind strongly local algorithms
for LocalFlowImprove. These strongly local algorithms construct the set B for each
subproblem solve by doing exactly what we describe here, along with using a few
small ideas to make them go fast. The algorithms to accomplish this will always
produce a set B whose size is bounded in terms of ¢ and vol(R), as guaranteed by
the following result.

LEMMA 8.4 (Lemma 4.3 (Orecchia and Zhu, 2014)). We have vol(B) <
for every iteration for the iteratively growing procedure in Algorithm 8.2.

vol(R)

1
o

Proof. The proof follows because each time a node v is added to B, we know
there is a flow that saturates the edge with weight odd,. Since the total flow from
s is d vol(R), this implies that if vol(B) > vol(R)/c, then we have expanded enough
edges to t to guarantee that the flow can be fully realized with no bottlenecks. O

8.2. Blocking Flow. In each iteration of Algorithm 8.2, we need to identify the
set J. We motivated this set with a mazimum flow on the graph Ggr,s(B). It
turns out that we do not actually need to solve a MaxFlow problem. Instead, the
concept of a blocking flow suffices. The difference is subtle but important. A blocking
flow is a flow such that every path from the source to the sink contains at least one
saturated edge. For a depiction of a blocking flow, see Figure 10. See also the helpful
descriptions in Williamson (2019, Chapter 4). By this definition, a maximum flow is
always a blocking flow because the source and sink are disconnected in the residual
graph.

The relevance of blocking flows is that after finding a blocking flow and looking
at the residual graph, then the distance between the source and sink increases by one.
This is essentially what we do with the set B and J: If B is not yet optimal and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

112 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

4/6
o
i 0/2
@/3'@’3/5*@\3/3 0
12 02012,

hogd

Fig. 10 We demonstrate a flow that starts from the source node s and ends at the sink node t. This
flow includes the paths (s,b,d,t), (s,a,c,t), and (s,e,t). Note that this flow is a blocking flow
since every path from s to t includes at least one saturated edge. It is not a mazimum flow
because there is a path from t to s with reversed edges.

we find nodes J in Algorithm 8.2, then the length of the next path from the source
to the sink that is found to become optimal must increase by one. Blocking flow
algorithms use this property, along with other small properties of the residual graph,
to accelerate flow computations. We defer additional details to Williamson (2019) in
the interest of space.

The best algorithm for computing blocking flows was suggested in Sleator and
Tarjan (1983). There, the authors proposed a link-cut tree data structure that is used
to develop a strongly polynomial time algorithm for weighted graphs that computes
blocking flows in O(mlogn) time, where m is the number of edges in the given graph.
Blocking flows are a major tool and subroutine inside other solvers for MaxFlow prob-
lems. For example, Dinic’s algorithm (Dinitz, 1970) simply runs successive blocking
flow computations on the residual graph to compute a maximum flow (see Williamson
(2019, Algorithm 4.1) as well). This iteratively finds the maximum flow up to a dis-
tance d. Here, blocking flows serve the purpose of giving us a lower bound on the
maximum flow that could saturate some edges of the graph.

8.3. The SimpleLocal Subsolver. For the SimpleLocal subsolver, we will use the
concept of local bottleneck graph Gr(B) that was introduced in section 8.1. (We omit
0,0 for simplicity.) The only other idea involved is that we can iteratively update the
entire flow itself using the residual graph. So, rather than solving MaxFlow at each
step, we compute a blocking flow to find new elements J and update the residual
graph. This ensures that the flow between iterations is consistent in the fashion we
mentioned in Algorithm 8.2. The algorithm is presented in Algorithm 8.3. SimpleLo-
cal is exactly Dinic’s algorithm but specialized for our LocalFlowImprove problem.

THEOREM 8.5 (iteration complexity and runtime for SimpleLocal). Let G be an

undirected connected graph with nonnegative weights. SimpleLocal requires (1 +

)VOI(R) iterations to converge to the optimal solution of the MazFlow subproblem
and O(vol(R)?(1 4 1)%log[(1 + Z) vol(R)]) runtime.

Proof. Dinic’s algorithm converges in at most (14 1) vol(R) iterations (Proposi-
tion A.1 and Lemma 4.3 of Orecchia and Zhu (2014)). Each iteration requires a block-
ing flow operation that costs O((1+ 1) vol(R)log[(1 + %) vol(R)]) time (Lemma 4.2
of Orecchia and Zhu (2014)). Hence, SimpleLocal requires O(vol(R)?(1+4 1)%log[(1 +
L) vol(R)]) time. d

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 113

Algorithm 8.3 SimpleLocal (Veldt, Gleich, and Mahoney, 2016).

1: Initialize the flow variables f to zero and B :=

2: while True do

3. Compute a blocking flow f for the residual graph of G(B) with the flow f; if
flow is zero, then stop.
fef+f
Let J denote the vertices in (R U B) whose edges to the sink node t get
saturated using the new flow variables f.

6: B+ BUJ

7: The current flow variables f are optimal for the MaxFlow in G(B); return a

MinCut set S on the source side s.

In Veldt, Gleich, and Mahoney (2016), SimpleLocal is described using MaxFlow
to compute the blocking flows in step 3 of Algorithm 8.3. We also used Dinkelbach’s
algorithm instead of binary search. Otherwise, however, the two algorithms are iden-
tical. In practice, both of those modifications result in faster computations, although
they are slower in theory.

8.4. More Sophisticated Subproblem Solvers. More advanced solvers for the
LocalFlowImprove algorithm are possible in theory. For instance, Orecchia and Zhu
(2014) also present a solver based on the Goldberg—Rao Push-Relabel method (Gold-
berg and Rao, 1998) that will yield a strongly local algorithm. Finally, note that the
goal in using these algorithms is often to minimize the conductance of a set S in-
stead of the relative conductance ¢ »(S), in which case relative conductance is just
a computationally useful proxy. The analysis of Orecchia and Zhu (2014) shows that
running Algorithm 8.3 for a bounded number of iterations either will return a set S
that minimizes the relative conductance exactly or will find an easy-to-identify bottle-
neck set S’ that has conductance ¢(S") < 2§. Using this second property, the authors
are able to relate the runtime of the algorithm to the conductance of the set returned
for a slightly different type of guarantee than exactly solving the LocalFlowImprove
subproblem (Orecchia and Zhu, 2014, Theorem 1la).

Part lll. Empirical Performance and Conclusion.

9. Empirical Evaluation. In this section, we provide a detailed empirical eval-
uation of the cluster improvement algorithms we have been discussing. The focus
of this evaluation is on illustrating how the methods behave and how they might be
incorporated into a wide range of use cases. The specific results we show include:

1. Reducing conductance. (Section 9.1.) Flow-based cluster improvement algo-
rithms are effective at finding sets of smaller conductance near the reference set,
as the theory promises. This is illustrated with examples from a road network
(see Figure 12 and Table 3, where the algorithm finds geographic features to make
the conductance small) as well as on a data-defined graph from astronomy; see
Figures 13 and 14. We also illustrate empirically Theorem 3.1, which states that
FlowImprove and LocalFlowImprove always return smaller conductance sets than
MQI. In our experiments, these improvement algorithms commonly return sets of
nodes in which the conductance is cut in half, occasionally reducing it by up to
one order of magnitude or more.

2. Growing and shrinking. (Section 9.2.) Flow-based improvement algorithms are
useful for the target set recovery task (basically, the task of finding a desired set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

114 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

of vertices in a graph, when given a nearby reference set of nodes), even when the
conductance of the input is not especially small. In particular, we show how these
methods can grow and shrink input sets to identify these hidden target sets when
seeded nearby, by improving precision (the fraction of correct results) or recall (the
fraction of all possible results). In this case, we use a weighted graph constructed
from images, where the goal is to identify an object inside the image; see Figure 15.
We also use a social network, where the goal is to identify students with a specific
class year or major within the Johns Hopkins school community; see Figure 16.

. Semisupervised learning. (Section 9.3.) Going beyond simple unsupervised

clustering methods, semisupervised learning is the task of predicting the labels of
nodes in a graph, when the nearby nodes share the same label and when given a
set of true labels. Flow-based improvement algorithms accurately refine large col-
lections of labeled data in semisupervised learning experiments. Our experiments
show that flow algorithms are effective for this task, to a greater extent when one
is given large collections of true labels, and somewhat less so when one is given
only a small number of true labels; see Figure 17.

. Scalable implementations. (Section 9.4.) Our software implementations of

these algorithms can be used to find thousands of clusters in a given graph in par-
allel. These computations scale to large graphs; see Table 4. Our implementations
use Dinkelbach’s method and Dinic’s algorithm for exact solutions of the MaxFlow
problems.

. Locally biased flow-based coordinates. (Section 9.5.) We can use our flow

improvement algorithms to define locally biased coordinates or embeddings in a
manner analogous to how global spectral methods are often used to define global
coordinates or embeddings for data; see Figures 19 and 20. This involves a novel
flow-based coordinate system that will highlight subtle hidden structure in data
that is distinctly different from what is found by spectral methods, as illustrated
on road networks and in the spectra of galaxies.

To simplify and shorten the captions,

throughout the remainder of this section, we will
use the abbreviations MQI, FI (FlowImprove),
and LFI (LocalFlowImprove). Because LFI de-
pends on a parameter §, we will simply write
LFI-§, e.g., LFI-1.0. The formal interpretation
of this parameter is LocalFlowImprove(R,oc =
vol(R)/vol(R)+6), where § is a nonnegative real
number. Recall that LFI1-0.0 is equivalent to FI

and LFI-oo is equivalent to MQI.

ASIDE 9. Large set results. The
sets found by FI and LFI may not
have vol(S) < wvol(S). For in-
stance, the FI result in Figure 12(d)
has vol(S) > wvol(S). In our
computer codes, we always give
vol(S) < vol(S) and flip S and S
to force this property. Figure 12(d)
reverses this flip to show the rela-
tionship with R.

9.1. Flow-Based Cluster Improvement Algorithms Reduce Conductance.
The first result we wish to illustrate is that the algorithms MQI, FI, and LFI reduce the
conductance of the input reference set, as dictated by our theory. For this purpose,
we are going to study the US highway network as a graph (see Figure 11). Edges in
this network represent nationally funded highways, and nodes represent intersections.
Ferry routes are included, and there exist other major roads that are not in this data.

This network has substantial local and small-scale structure that makes it a useful

example. It has a natural large-scale geometry that makes it easy to understand vi-
sually, and it has large (in terms of number of nodes) good (in terms of conductance)

partitions.

We create a variety of reference sets for our flow improvement methods to refine.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 115

Fig. Il The US National Highway Network as a simplified graph has 51,144 nodes and 86,397
undirected edges. Edges represent roads and are shown as orange lines, and nodes are places
where roads meet and are shown as black dots. This display highlights major topographical
features as well as major rivers. Mountain ranges, rivers, and lakes create interesting fine-
scale features for our flow algorithms to find. There are also dense local regions around
cities akin to small well-connected pieces of social networks.

In Figure 12, nodes in black show a set and purple edges with white interior show
the cut.

e We start with two partitions of the network, one horizontal and one vertical
(Figures 12(a) and 12(c)). These are simple-to-create sets based on using
latitude and longitude, and they roughly bisect the country into two pieces.
They are also inherently good conductance sets due to the structure of roads
on the surface of the Earth: they are tied to the two-dimensional geometric
structure, and thus they have good isoperimetric or surface-to-volume prop-
erties.

e Next, we consider a large region in the western US centered on Colorado
(Figure 12(e)). Again, this set is shown in black, and the purple edges (with
white interior) highlight the cut. The rest of the graph is shown in orange.

e We further consider using the vertices visited in 200 random walks of length
60 around the capital of Virginia (Figure 12(g)). This example will show
our ability to refine a set which, due to the noise in the random walks, is of
lower quality.

e Finally, we consider the result of the METIS program for bisection, which
represents our ability to refine a set that is already high quality. This is not
shown because it looks visually indistinguishable from Figure 12(d), although
the cut and volume are slightly different, as discussed below and in Table 3.

The conductance improvement results from a number of our algorithms are shown
in Table 3 and Figure 12. The table shows additional results that are not present in
the figure. We make several observations. First, as given by MQI, the optimal subset

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

116 K. FOUNTOULAKIS, M. LIU, D. F GLEICH, AND M. W. MAHONEY

alifornia ¢ = 0.001

T
L]

¢) A simple vertical split ¢ = 0.0018 — (d) FI (*) finds rivers and lakes ¢ = 0.0005
7 S v o |7 ol

2.

oy XA
/o'—,‘ls‘l \/
Gl

;
2

Fig. 12 Our flow-based cluster improvement algorithms reduce the conductance of simple input sets
by finding natural features including mountains, rivers, and cities. The purple edges high-
light the boundary of the set shown in black nodes, and ¢ is the conductance of the depicted
set. Panel (a) shows an input that cuts the map horizontally and (b) is the corresponding
output of MQL. Panel (¢) shows an input that cuts the map vertically and (d) shows the
output of F1. Panel (e) shows an input which corresponds to a large region in the western
US centered on Colorado and (f) shows the output of LFI1. Finally, panel (g) shows an input
around the capital of Virginia, which has been created using random walks, and (h) and (i)
are the corresponding output of LF1-1.0 and LFI1-0.1, respectively.

*See the large set results aside (Aside 9).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 117

Table 3 The results of applying our algorithms to input sets of various quality for the graph of
Figure 12. A few of the sets and cuts are illustrated in Figure 12. All of the methods
reduce the conductance score considerably, with improvement ratios from 131% to 621%.
The smallest improvements happen when the input is high quality, such as the output from

METIS.
Input Result
cut vol. size cond. Alg. cut vol. size cond. ratio

Horiz. 233 85335 25054 0.0027 MQI 12 9852 2763 0.0012 225%
FI 29 35189 10471 0.0008 330%

Vert. 131 72780 21552 0.0018 MQI 29 35195 10473 0.0008 220%
FI 42 84582 25030 0.0005 365%

Colorado 195 23377 6982 0.0083 MQI 9 1799 506 0.0050 167%

region LFI-1.0 97 23617 7037 0.0041 203%
LF1-0.1 101 26613 7941 0.0038 220%
FI 42 84204 24916 0.0005 1672%

Virginia 112 1344 393 0.0833 LFI-1.5 23 1067 312 0.022 386%

random walks LFI-1.0 24 1212 357 0.0198 420%
LFI-0.1 26 1938 572 0.0134 621%

METIS 56 85926 25422 0.0007 MQI 42 84594 25034 0.0005 131%
LFI-0.1 42 84594 25034 0.0005 131%
FI 42 84594 25034 0.0005 131%

of the horizontal split of Figure 12(a) identifies a region in the lower US, specifically,
the Southern California region around Los Angeles, San Diego, and Santa Barbara
(Figure 12(b)). The Southern California area is separated by mountains and deserts
that are spanned by just 12 national highways that connect to the rest of the country.
Second, the result of FI on the vertical split of Figure 12(c) of the US traces the
Mississippi, Ohio, and Wabash rivers up to Lake Michigan (Figure 12), splitting just
42 highways and ferry routes. Note that although we start with the reference on the
East Coast, the set returned by the algorithm is entirely disjoint. This is because
optimizing the FI objective expanded the set to be larger than half the volume, which
caused the returned set to flip to the other coast. Third, the region around Colorado
in Figure 12(e) is refined by LFI-1.0 to include Dallas (which was split in the initial
set) and follows the Missouri river up into Montana. Finally, a set of random walks
around the Virginia capital visit much of the interior region of the state, albeit in a
noisy fashion. Using LFI-1.0 (Figure 12(h)) refines the edges of this region to reduce
conductance. Reducing 6 to 0.1 and using LFI1-0.1 (Figure 12(i)) results in a bigger set
that includes the nearby city (and dense region) of Norfolk. Note that, for the high
quality METIS partition, all of our algorithms return exactly the same result. (Again,
these are not shown because the results are indistinguishable.) We also note that this
set is the overall smallest conductance result in the entire table because the volume
is slightly larger than vertical split experiments.

Overall, these results show the ability of our flow improvement algorithms to
improve conductance by up to a factor of 16 in the best-case scenario and by a ratio
of 1.31 on the high quality METIS partition. The most useful summary from these
figures is as follows:

e Reducing the value of ¢ in LFI corresponds to finding smaller conductance sets
compared to MQI. We also observe that reducing § in LFI results in larger
clusters in terms of number of nodes and volume.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

118 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

(a) The full graph (b) Zoom into top-right

Fig. 13 The Main Galaxy Sample (MGS) dataset has 517,182 nodes and 32,229,812 edges. This
display shows an eigenvector embedding of the graph along with edges shown in light blue.
The edges dominate the visualization in parts and nodes are only shown where there is suf-
ficient density. The node color is determined by the horizontal coordinate (pink to orange).
The right part of the visualization (dark orange to light orange coordinates in (b) hints at
structure hidden within the upper band, which we will study in section 9.5.

e As predicted by Theorem 3.1, the results for LFI and FI are always better in
terms of conductance than MQI in terms of conductance.

While visually useful in understanding our algorithms, obtaining such results
on a road network is less useful and less interesting than obtaining similar results
on graphs representing data with fewer or different structural constraints. Thus,
we now illustrate these points in another, larger dataset with a study of around
2500 improvement calls. This second dataset is a k = 32 nearest neighbor graph
constructed on the Main Galaxy Sample (MGS) in SDSS Data Release 7. We briefly
review the details of this standard type of graph construction and provide further
details in Appendix A. This data begins with the emission spectra of 517,182 galaxies
in 3841 bands. We create a node for each galaxy and connect vertices if either is
within the 16 closest vertices to the other based on a Euclidean distance-like measure
(see Appendix A). The graph is then weighted proportional to this distance. The
result is a weighted undirected graph with 517,182 nodes and 15,856,315 edges (and
517,182 self-loops) representing nearest neighbor relationships among galaxy spectra.
Figure 13 provides a visualization of a global Laplacian eigenvector embedding of this
graph. For more details on this dataset, we refer readers to Lawlor, Budavari, and
Mahoney (2016a,b).

In this case, we compute reference sets using seeded PageRank using a random
node, followed by a sweepcut procedure by Andersen, Chung, and Lang (2006) to lo-
cally optimize the conductance of the result. Consequently, the reference sets we start
with are already fairly high quality. Then we run MQI, LFI-1, LFI-0.1, and LFI1-0.01 on
the results. We repeat this experiment 2526 times. The output to input conductance
ratio is shown in Figure 14 with reference to the original reference conductance from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 119

MQl 1 6- |
CDF = LFI (6 =0.01)

. ——— LFI (6 =0.01) o
5- —— LFI (6=0.1) : > — ti: Egig)l)
PR — LFI(6=1) 4-

Probability density
w
v
Probability density
w
v

0-
00 02 0.4 0.6 0.8 1.0 00 02 0.4 06 08 10
@(Improved) / ¢(Seeded PR) ¢(LocalFlowlmprove) / ¢(MQI)

(a) Conductance improvement relative to seeded (b) Conductance improvement relative to MQI
PageRank

6- — MQl 6-
—— LFI(6=0.01) . CDF = LFI (6 =0.01)

5- — LFI(6=0.1) 5- = LFI (6=0.1)

” — LFl6=1) —— LFI(6=1)

Probability density
w
v
Probability density

0n T T { ' ' '

00 02 0.4 06 0.8 10 00 02 0.4 06 038 10
¢(Improved) / ¢(2-hop BFS) ¢(LocalFlowlmprove) / ¢(MQI)

(¢) Conductance improvement relative to 2-hop (d) Conductance improvement relative to MQI
BFS

Fig. 14 A summary of 3102 (top row) and 2585 (bottom row) experiments in the MGS dataset that
show (i) that reducing § in LFI produces sets of smaller conductance, when the input set
is from another conductance minimizing procedure (seeded PageRank, top row) or a 2-hop
breadth first search (BFS) set (bottom row), and also (ii) that LFI and FI always find smaller
conductance sets than MQ1. The inset figures shows the cumulative density function (CDF)
of the probability density.

seeded PageRank (Figure 14(a)) and also with reference to the MQI conductance
(Figure 14(b)). Like the previous experiments with the road network, reducing § in
this less easily visualizable dataset results in improved conductance. Also, like in the
previous experiments, LFI always reduces the conductance more than MQI does.

The point of these initial experiments is to demonstrate that these algorithms
achieve their primary goal of finding small conductance sets in a variety of scenarios.
They can do so both in a graph with an obviously geometric structure as well as in a
graph without an obvious geometric structure that was constructed from noisy obser-
vational data. In addition, they can do so starting from higher or lower quality inputs.
In the next section, we evaluate our algorithms on specific tasks where finding small
conductance sets is not the end goal.

9.2. Finding Nearby Targets by Growing and Shrinking. Another use for clus-
ter improvement methods is to recover a hidden target set of vertices from a nearby
reference set, e.g., a conjectured subregion of a graph or a coherent section of an
image. The goal here is accuracy in returning the vertices of this set, and we can
measure this in terms of precision and recall. Let T be a target set we seek to find,
and let S be the set returned by the algorithm. Then the precision score is |[T'N.S|/|S],
which is the fraction of results that were correct, and the recall score is |T'N S|/|T,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

120 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

which is the fraction of all results that were obtained. The ideal scenario is that both
precision and recall are near 1.

We begin by looking at the simple scenario when the initial reference R is entirely
contained within 7', and also a scenario when R is a strict superset of T'. This set-
ting allows us to see how the flow-based algorithms grow or shrink sets to find these
targets T', and it gives us a useful comparison against simple greedy improvement
algorithms as well as against spectral graph-based approaches. For simplicity of illus-
tration, we examine these algorithms on weighted graphs constructed from images.
The construction of a graph based on an image is explained in Appendix B.

The results of the experiment are shown in Figure 15. We consider three distinct
targets within a large image, as shown in Figures 15(a) and 15(b): the left dog, middle
dog, and right person. In our first case, the reference is entirely contained within the
target. In this case, we can use either FI or LFI to attempt to enlarge to the target.
(Note that we cannot use MQI, as the target set is larger than the seed set.) For
comparison, we use a seeded PageRank algorithm as well. The choice of PageRank is
because PageRank largely corresponds to replacing || Bz||; in the flow-based objective

with the minorant function ||B:c||§ as discussed in section 7.5. We use two seeded
PageRank scenarios that correspond to both FI and LFI; see Figures 15(c) to 15(f).
These show that spectral methods that grow tend to either find a region that is too
big or fail to grow large enough to capture the entire region. This is quantified by a
substantial drop in precision compared with the flow method. Second, we consider the
case when the target is contained within the reference set. This corresponds to the
MQI setting as well as a variation of spectral clustering called Local Fiedler (Chung,
2007b) (because it uses the eigenvector with minimal eigenvalue in a submatrix of
the Laplacian). The results are given in Figures 15(g) and 15(h), and they show a
small precision advantage for the flow-based methods (see the text below each image).
Finally, for reference, in Figures 15(i) and 15(j) we also include the results of a purely
greedy strategy that grows or shrinks the reference set R to improve the conductance.
This is able to find reasonably good results for only one of the test cases and shows
that these sets are not overly simple to identify, e.g., since they cannot be detected
by algorithms that trivially grow or expand the seed set.

Next, we repeat these target set experiments using the Johns Hopkins network,
a less visualizable network, for which we see similar results. The data are a subset
of the Facebookl00 dataset from Red et al. (2011) and Traud, Mucha, and Porter
(2012). The graph is unweighted. It represents “friendship” ties and it has 5157
nodes and 186,572 edges. This dataset comes with 6 features: major, second major,
high school, gender, dorm, and year. We construct two targets by using the following
features: students with a class year of 2009 and student with major id 217. The
visualization shows that major id 217 looks like it will be a fairly good cluster as
the graph visualization has moved the bulk away. However, the conductance of this
set is 0.26. Indeed, neither of these sets has particularly small conductance, which
makes the target identification problem much harder than in the images. Both sets
are illustrated in Figure 16(a).

Here, we use a simple breadth first search (BFS) method to generate the input
to MQI and LFI to mirror the previous experiment with images. Given a single and
arbitrary node in the target cluster, we generate a seed set R by including its neighbor-
hood within 2 hops. Like the previous examples, we then use MQI to refine precision
and LFI to boost recall. We repeat this generating and refining procedure 25 times
for distributional statistics. The inputs as well as results from MQI and LFI are shown

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 121

PR=0.970, RC=0.930 PR=0.975, RC=0.898 PR=0.627, RC=0.937 PR=0.706, RC=0.916 PR=0.932, RC=0.836 PR=0.887, RC=0.917
$=0.0035 $=0.0017 $=0.0001 $=0.0170 $=0.0201 $=0.0017

(c) FI (d) Seeded PageRank, p = 10712

PR=0.970, RC=0.930 PR=0.975, RC=0.898 PR=0.938, RC=0.913 PR=0.839, RC=0.794 PR=0.937, RC=0.796 PR=0.972, RC=0.664
$=0.0035 $=0.0017 $=0.0008 $=0.0358 $=0.0234 $=0.0368

(e) LF1-0.3 (f) Seeded PageRank, p = 1076

PR=0.970, RC=0.930 PR=0.975, RC=0.898 PR=0.916, RC=0.933 PR=0.959, RC=0.944 PR=0.975, RC=0.899 PR=0.929, RC=0.923
$=0.0035 $=0.0017 $=0.0008 $=0.0040 $=0.0018 $=0.0009

(8) MQ1 (h) LocalFiedler

PR=0.356, RC=0.999 PR=0.272, RC=0.999 PR=0.234, RC=0.999
10595 $=0.0367

PR=0.965, RC=0.502 PR=0.987, RC=0.407 PR=0.939, RC=0.772
¢=0.0361 ¢=0.0166 ¢$=0.0626 ¢=0.059

$=0.0367
(i) Greedy Grow (j) Greedy Shrink

Fig. 15 Illustration of finding targets within an image (a) corresponding to the three low-
conductance regions shown in (b). The reference sets given to MQl, FI, and LFI are denoted
by the yellow regions, which need to be either grown or shrunk to find the target. For grow-
ing, we compare against seeded PageRank, which is a spectral analogue of FI and LFI; for
shrinking, we compare against a local Fiedler vector, a spectral analogue of MQI, as well as
stmple greedy approaches for both. The flow-based methods capture the borders nicely and
give high recall for growing and high precision for shrinking. Among other things, in this
case, FI grows too large on the right person (c), whereas LFI (e) captures this target better.
“RC” stands for recall and “PR” stands for precision.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

122 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

. . year 2009
iy

5

majorindex 217

Target Set Size Cond. Prec. Rec.

g oW T S Major-217 Input 1282 0.58 0.15 0.94
: # MQI Result 203 0.19 0.90 0.90
LFl Result 218 0.18 088 0.95

Feature Vol. Size Cond.

- Class-2009 Input 1129 0.52 0.35 0.51
Major-217 10696 200 0.26 MQI Result 472 029 096 0.50
Class-2009 32454 836 0.19 LFI Result 802 0.18 094 0.83

(a) Target sets for Johns Hopkins

(b) Median statistics on input sets as well as MQI
and LFI results

(e) Class-2009 LFI

(f) Major-217 Input (g) Major-217 MQI (h) Major-217 LFI

Fig. 16 The MQI and LFI-0.1 algorithms can also find target sets in the Johns Hopkins Facebook
social network, even though they have fairly large conductance, which makes them more
challenging. The algorithms use as the reference set a simple 2-hop BFS set with low
precisions starting from a random target node. The layout for this graph has been obtained
using the force-directed algorithm, which is available from the graph-tool project (Peizoto,
2014). The colors show the regions that are excluded (black) or included (red or blue) by
each input set or algorithm over 25 trials.

in Figures 16(b) to 16(h). The colors show the regions that are excluded (black) or
included (red or blue) by each input set or algorithm over 25 trials.

We first summarize in Figure 16(b) the increase in precision for MQI and the
increase in both precision and recall for LFI. The remaining figures illustrate the sets
on top of the graph layout showing where the error occurs or the regions missed over
these 25 trials. In particular, in Figures 16(c) and 16(f) we illustrate the BFS input
for the target clusters. These inputs include a lot of false positives. In Figures 16(d)
and 16(g) we illustrate the corresponding outputs of MQI. Note that MQI removes the
most false positives by contracting the input set, but the outputs of MQI can have
low recall as MQI can only shrink the input set. In Figures 16(e) and 16(h) we show
that LFI is able to both contract and expand the input set and it obtains a good
approximation to the target cluster.

This particular set of examples is designed to illustrate algorithm behavior in a
simplified and intuitive setting. In both cases we see results that reflect the interaction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 123

between the algorithm and the data transformation. For the images, we create a graph
designed to correlate with segments, then run an algorithm designed to improve and
find additional structure. For the social network, we simply take the data as given,
without any attempt to change it to make algorithms perform better. However, with
more specific tasks in mind, we would suggest altering the graph data in light of its
targeted use as in Gleich and Mahoney (2015), Benson, Gleich, and Leskovec (2016),
and Peel (2017).

9.3. Using Flow-Based Algorithms for Semisupervised Learning. Semisuper-
vised learning on graphs is the problem of inferring the value of a hidden label on all
vertices, when given a few vertices with known labels. Algorithms for this task need
to assume that the graph edges represent a high likelihood of sharing a label. For
instance, one of the datasets we will study is the MNIST dataset. Each node in the
MNIST graph represents an image of a handwrit-
ten digit, and edges connect two images based AsIDE 10. If edges from the graph
on nearest neighbor relationships. The idea is e ot wepiesE @ b Wadden

. L. . of a shared attribute, then there are
that images that show similar digits should share (.. orios where the graph data it-
many edges. Hence, knowing a few node labels self can be transformed such that
would allow one to infer the hidden labels. Note this becomes the case (Peel, 2017).
that this is a related, but distinct, problem to the
target set identification problem (section 9.2). The major difference is that we need
to handle multiple values of a label and produce a value of the label for all vertices.

An early paper on this topic suggested that MinCut and flow-based approaches
should be useful (Blum and Chawla, 2001). In our experiments, we compare flow-
based algorithms LFI and FI with seeded PageRank, and we find that the flow-based
algorithms are more sensitive to an increase in the size of the set of known labels. In
the following experiments, this manifests as an increase in the recall while keeping the
precision fixed. For these experiments, MQI is not a useful strategy as the purpose is
to grow and generalize from a fixed and known set of labels to the rest of the graph.

There are three datasets we use to evaluate the algorithm for semisupervised
learning: a synthetic stochastic block model, the MNIST digits data, and a cita-
tion network.

e SBM. SBM is a synthetic stochastic block model network. It consists of 6000
nodes in three classes, where each class has 2000 nodes. The probability of
having a link between nodes in the same class is 0.005, while the probability
of having a link between nodes in different classes is 0.0005. The network
we use in the experiment has 36102 links. By our construction, the edges
preferentially indicate class similarity.

e MNIST. MNIST is a k-NN (nearest neighbor) network (Lecun et al., 1998).
The raw data consists of 60000 images. Each image represents a handwritten
sample of one arabic digit. Thus, there are 10 total classes. In the graph, each
image is represented by a single node and then connected to its 10 nearest
neighbors based on Euclidean distance between the images when represented
as vectors of grayscale pixels. We assume that edges indicate class similarity.

e PubMed. PubMed is a citation network (Namata et al., 2012). It consists of
19717 scientific publications about diabetes with 44338 citation links. Each
article is labeled with one of three types. By our assumption, articles about
one type of diabetes cite others about the same type more often.

The experiment goes as follows: for each class, we randomly select a small subset
of nodes and we fix the labels of these nodes as known. We then run a spectral method

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

124 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

PubMed MNIST SBM

1.0 — e

Precision
o
1
%> [

—s— SPR (Seeded PageRank)

0-4- —— LFI (LocalFlowImprove)
FI (FlowImprove)

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1.0

0:8 | | //r iy 7‘ —;—“_‘_7“7;7: ;
0.6 An e by] /
0.4 L : / /

3
Q 4 /
14 y. A
0.2 / /1 7
0.0 £
No.labels 99 296 592 887 1183 1479 300 900 1800 2700 3600 4500 60 180 360 540 720 900
Ratio (%) 05 15 3 45 6 7.5 0515 3 45 6 75 103 6 9 12 15

)

SSPRO.560.54 0.53 0.51 0.53 0.59 0.760.73 0.75 0.79 0.74 0.76 0.880.86 0.87 0.87 0.88 0.86
LFI 0.04 0.28 057 067 070 0.71 0.010.88 0.96 0.96 0.96 0.96 0.100.36 0.77 0.98 0.99 0.99
FI

F1 Sc

Fig. 17 The horizontal axis shows the number of true labels included in the seeds and the plots are
aligned with the tables so you can read off the F'1 score as well as the associated precision
and recall for each choice. These results on semisupervised learning show that the flow-based
methods LFI-0.1 and FI are more sensitive to the number of known true labels included in
the reference seed sets than seeded PageRank.

or flow method with this set of nodes as reference. We vary the number of labeled
nodes included from 0.5% to 15% of the class size. For each fixed number of labeled
nodes, we repeat this 30 times to generate a distribution of precision, recall, and F'1
scores (where F'1 is the harmonic mean of precision and recall), and we represent
an aggregate view of this procedure. For the flow methods, the output is a binary
vector with 1 suggesting the node belongs to the class of reference nodes. Thus, it’s
possible that some nodes are classified into multiple classes, while other nodes remain
unclassified. We consider the first case as false positives and the second case as false
negatives when computing precision and recall. For the spectral method, we use the
real-valued solution vector to uniquely assign a node to a class.

The results are shown in Figure 17 and show that the flow-based methods have
uniformly high precision. As the set of known labels increases, the recall increases,
yielding a higher overall F'1 score. Furthermore, the regularization in LFI-0.1 causes
the set sizes to be smaller than F1, which manifests as a decrease in recall compared
with FI. In terms of why the flow-based algorithms have low recall with small groups
of known labels sizes, note Lemma 3.5, which requires that the cut and denominator
are reduced at each step. This makes it challenging for the algorithms and objectives
to produce high recall when started with small sets unless the sets are exceptionally
well separated.

9.4. Improving Thousands of Clusters on Large-Scale Data. In practice, it
is often the case that one might want to explore thousands of clusters in a single
large graph. For example, this is a common task in many computational topology
pipelines (Lum et al., 2013). Another example that requires thousands of clusters

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 125

Table 4 Runtimes in seconds for generating and improving clusters on small-scale biological net-
works and large-scale social networks. The input cluster to the flow-based improvement
methods is the oulput of seeded PageRank. It takes around 20 minutes to generate the
input clusters for large-scale social networks. Running the flow-based tmprovement algo-
rithms takes around the same amount of time, except for LF1-0.3 on LiveJournal, which
takes roughly 30 minutes. The time measurements reflect the pleasingly parallel computa-
tion of results for all clusters on a 16-core machine.

Time (s)
graph nodes edges clusters seeded MQI LFI-0.3 LFI-0.6 LFI-0.9
found PR
sfld 232 16k 342 18 0.5 1.7 1.6 1.5
ppi 1096 13k 1199 46 1 2.6 2.5 2.3
orkut 3M 117M 13799 1130 171 838 701 628
livej 4.8M 69M 31622 1057 105 1940 1326 1094

is computing the network community profile (Leskovec et al., 2009, 2008; Leskovec,
Lang, and Mahoney, 2010), which shows a conductance-vs.-size result for a large
number of sets, as a characteristic feature of a network. In this section, we will
explore the runtime of the flow-based solvers on two small biological networks and
two large social networks, where nodes are individuals and edges represent declared
friendship relationships:
e sfld has 232 nodes and 15570 edges in this graph (Brown et al., 2006).
e ppi has 1096 nodes and 13221 edges (Pagel et al., 2004).
e orkut has 3,072,441 nodes and 117,185,083 edges (Mislove et al., 2007). This
dataset can be accessed via Leskovec and Krevl (2014).
e livej has 4,847,571 nodes and 68,993,773 edges (Mislove et al., 2007). This
dataset can be accessed via Leskovec and Krevl (2014).

The goal is to enable studies such as those discussed above using instead the flow-
based algorithms as a subroutine on the graphs. To generate seed sets to refine, we use
seeded PageRank. Each input set is the result of a seeded PageRank algorithm on a
random node with a variety of settings to generate sets of size from a few nodes to up
to around 10000 nodes. For each resulting set, we then run the MQI, LFI-0.9, LFI-0.6,
and LFI-0.3 improvement methods. Our code (Fountoulakis et al., 2019b), which has
a Python interface and methods that are implemented using C++, is used for all of
these experiments and runtimes. Our machine environment has a dual CPU Intel
E5-2670 (8 cores) CPU with 128 GB RAM. We parallelize over individual runs of the
seeded PageRank and flow methods using the Python Multiprocessing module using
a common shared graph structure. Note that each individual run is independent.

In this way, we are able to explore tens of thousands of clusters in around 30—40
minutes, as we demonstrate in Table 4. There, we present runtimes for producing the
seeded PageRank sets and then refining them with the flow-based methods. Note that
the fastest method is MQI, which is even faster than the seeded PageRank method
that generates the input sets. This is because MQI only explores the input subcluster,
while LFI reaches outside of the input seed set of nodes. Also, note the dependence
of the runtime for LFI on the parameter §. The larger the parameter § for LFI, the
smaller the part of the graph that it explores outside of the input set of nodes. This
property is captured in Table 4 by the runtime of LFI.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

126 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Bosten
Argeles
York
Philaclelphia

Washington

Fig. 18 A spectral embedding of the US Highway Network corresponding to the first and second
nontrivial eigenvectors of the Laplacian matriz. The embedded locations of major cities are
labeled as well. Node color is determined by the true longitude of a node, which shows that
the first eigenvector of the Laplacian correlates with an east-west split of the network. This
global embedding, however, compresses major regions of the northeastern US (Washington,
New York, Boston) as well as the western US (Los Angeles, San Diego, Phoeniz).

9.5. Using Flow-Based Methods for Local Coordinates. A common use case
for global (but also local (Lawlor, Budavari, and Mahoney, 2016a,b)) spectral methods
on graphs and networks is using eigenvector information in order to define coordinates
for the vertices of a graph. This is often called a spectral embedding or eigenvector
embedding (Hall, 1970); it may use two or more eigenvectors directly or with simple
transformations of them in order to define coordinates for each node (Ng, Jordan, and
Weiss, 2001). The final choice is typically made for aesthetic reasons. An example
of a spectral embedding for the US highway network is shown in Figure 18. One
of the problems with such global embeddings is that they often squash interesting
and relevant regions of the network into filamentary structures. For instance, notice
that both the extreme pieces of this embedding compress massive and interesting
population centers of the US on the East and West Coasts. Alternative eigenvectors
show different but similar structure. A related problem is that they smooth out
interesting features, making them difficult to use.

Semisupervised eigenvectors are one way to
address this aspect of global spectral embed- ASIDE 11. A bigger issue with spec-
dings (Hansen and Mahoney, 2014; Lawlor, Bu- ool ezl o Ui dizg ofiien

. produce useless results for many
davari, and Mahoney, 2016a,b). These seek or- large networks; see Lang (2005).
thogonal vectors that minimize a constrained Here, we use networks where these
Rayleigh quotient. One challenge in using related techniques yield interesting results.
ideas to study flow-based computation is that the
solution of flow problems is fundamentally discrete and binary; that is, a spectral so-
lution produces a real-valued vector whose entries, e.g., for seeded PageRank, can
be interpreted as probabilities. We can thus meaningfully discuss and interpret sub-
optimal, orthogonal solutions. Flow computations only give 0 or 1 values, where
orthogonality implies disjoint sets.

In this section, we investigate how flow-based methods can be used to compute
real-valued coordinates that can show different types of structure within data com-
pared with spectral methods. In the interests of space, we are going to be entirely
procedural with our description; justification is provided in Appendix A.

Given a reference set R, we randomly choose N subsets (we use 500-2500 subsets)
of R with exactly k entries; for each subset we add all nodes within distance d and call
the resulting sets Ry,..., Ry. These serve as inputs to the flow algorithms. For each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 127

Algorithm 9.1 The local flow-based algorithm to generate flow-based coordinates.

Require: A graph G, a set R, and parameters
N: the number of sets to sample
k: the size of each subset
d: the expansion distance
c: the dimension of the final embedding
e improve: a cluster improvement algorithm
Ensure: An embedding of the graph into ¢ coordinates for each node
: Let n be the number of vertices.
: Allocate X, an n-by-N matrix of zeros.
: for iin 1 to n do
Let T be a sample of k entries from R at random without replacement
Let R; be the set of T' and also all vertices within distance d from T
Let S; be the set that results from improve(G, R;)
Set X[v,i] =1 for all v € S;
: Compute the rank-c truncated SVD of X and let U be the left singular vectors.
: Return U; each row gives the ¢ coordinates for a node

subset, we compute the result of a flow-based improvement algorithm, which gives us
sets S;. For each S;, we form an indicator vector over the vertices, x;, where the entry
is 1 if the vector is in the set, and 0 otherwise. We assemble these vectors as columns
of a matrix X, and we use the coordinates of the dominant two left singular vectors
as flow-based coordinates. This procedure is given in Algorithm 9.1. Note also that
this procedure can be performed with spectral algorithms as well (see the appendix
for additional details).

The results of using Algorithm 9.1 (see parameters in Appendix A) to generate
local coordinates for a set of vertices on the West Coast of the US highway map are
shown in Figure 19. The set of vertices shown in Figure 19(a) is in a region where
the spectral embedding compresses substantial information. This region is shown on
a map in Figure 19(b), and it includes major population centers on the West Coast.
In Figure 19(c), we show the result of a local spectral embedding that uses seeded
PageRank in Algorithm 9.1, along with a few small changes that are discussed in our
reproducibility section. (Here, we note that these changes do not change the character
of our findings, they simply make the spectral embedding look better.) In the spectral
embedding, the region shows two key areas: (1) Seattle, Portland, and San Francisco
and (2) Los Angeles, San Diego, and Phoenix. In Figure 19(d), we show the result of
the local flow-based embedding that uses LFI-0.1 as the algorithm. This embedding
clearly and distinctly highlights major population centers, and it does so in a way
that is clearly qualitatively different from spectral methods.

We repeat this analysis on the MGS dataset to highlight the local structure in
a particularly dense region of the spectral embedding that was used for Figure 13.
The seed region we use is shown in Figure 20(a) and has 201,252 vertices, which rep-
resents almost half the total graph. We again use Algorithm 9.1 (see parameters in
Appendix A) to obtain local spectral (Figure 20(b)) and local flow embeddings (Fig-
ure 20(c)). Again, we find that the local flow embedding shows considerable substruc-
ture that is useful for future analysis.

As a simple validation that this substructure is real, we use the two-dimensional
embedding coordinates as input to a k-means clustering procedure on both the local

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

128 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

WA TT
’A‘!‘?'F :
< 2N
AR
d

(a) The subset of nodes (left) from the (b) The same subset shown on a map
spectral embedding of the US Highway with major cities labeled

Network used to compute local embed-

dings

FAMENES

QakIanS

0;JoSess
R

(¢) The local spectral embedding of the (d) The local flow embedding of the US
US West Coast cities West Coast cities

Fig. 19 We select a subset of 7143 nodes that are compressed in the spectral embedding of the
US Highway network (shown in red and blue in (a) and (b)) that represent the magjority
of major cities on the West Coast. Note that interior cities such as Phoeniz and Las
Vegas are not included in the set. In (c) and (d) we show the results of running the
pipeline from Algorithm 9.1 to generate local spectral and local flow-based embeddings in two
dimensions. The color of a mode is determined by its north-south latitude. Note that both
include Phoeniz and Las Vegas. The local flow embedding clearly and distinctly delineates
clusters corresponding to major population centers, whereas the local spectral embedding
shows a smooth view with only two magjor regions: (1) Northern California to Seattle and
(2) Southern California to Phoeniz and Las Vegas.

spectral and the local flow coordinates. For each cluster that results from this pro-
cedure, we compute its conductance. Histograms of conductance values are shown in
Figure 21 for £ = 50 and k = 100. Both of these histograms show consistently smaller
conductance values for the flow-based embedding.

10. Discussion and Conclusion. Our goal with this survey is to highlight the
advantages and wide utility of flow-based algorithms for improving clusters. The lit-
erature on these methods is much smaller than for other graph computation method-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 129

(a) The seed region (b) Local spectral embedding (c) Local flow embedding

Fig. 20 Local spectral and local flow embeddings of the large, 201,252 node, seed region, shown in
green in (a), that is compressed in the global spectral embedding from Figure 13. In (b),
the local spectral embedding shows the nodes colored with the same colors as in Figure 13.
Nodes that were not touched by the local embedding are shown with the big node on the
right-hand side. In (c), the local flow embedding is shown with the same color scheme and
same big nmode on the right-hand side. Note that the spectral embedding does not show
any clear substructure besides a top-bottom split. In contrast, the flow embedding shows a
number of pockets of structure indicative of small conductance subsets.

26 Local Flow Embedding 2 8- = Local Flow Embedding
@ —— Local Spectral Embedding @ —— Local Spectral Embedding
S 36-
£4- £
3 24
S S
&2° & 5.
O 1 1 1 1 1 1 0 1 1 1 1 1 1
03 04 05 06 07 08 09 1.0 03 04 05 06 07 08 09 1.0
¢(kmeans clusters) d(kmeans clusters)
(a) k=50 (b) k=100

Fig. 21 A histogram of cluster conductance scores that come from using k-means on the two-
dimensional local spectral and local flow embeddings from Figure 20. These show that
the flow embedding produces clusters with smaller conductance, and they support the intu-
ition from Figure 20 that the additional structure suggested by the flow embedding reflects
meaningful substructure within the data.

ologies, despite attractive theoretical benefits. For example, global spectral methods
based on random walks or eigenvectors are ubiquitous in computer science, machine
learning, and statistics. Here, we have illustrated similar possibilities for flow-based
methods. We have also shown that these local flow-based improvement algorithms
can scale to very large graphs, often returning outputs without even touching most of
the graph, and that many popular machine learning and data analysis uses of flow-
based methods can be applied to them. This is the motivation behind our software
package where these algorithms have been implemented (Fountoulakis et al., 2019b).
An alternative implementation is available in Julia (Veldt, 2019). These results and
methods open the door for novel analyses of very large graphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

130 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

As an example of these types of novel analyses, note that the fractional ratio d
inside MQI, FlowImprove, and LocalFlowImprove (Algorithms 6.1, 7.1, and 8.1) can
be interpreted as a ratio between the numerator and denominator. This enables one
to search for a value of § that would correspond to a given solution. See the ideas
in Veldt, Wirth, and Gleich (2019) for how to use search methods to choose ¢ for a
specific application of clustering.

In our explanation of the theory behind the methods, we often encountered sit-
uations where we could have made more general, albeit more complex, statements.
Our guiding principle was to make it easy to appreciate the opportunities for these
methods. As an example of where there are more general results, note that much of
the theory of this survey holds where vol(R) > vol(R) for the seed. For instance, the
MQI, FlowImprove, and LocalFlowImprove procedures are all well-defined algorithms
in these scenarios, although our theory statements list the explicit requirement that
vol(R) < vol(R). What happens in these scenarios is that some of the details of the
runtime and other aspects change. In terms of another generalization, the methods
could have been stated in terms of a general volume function as noted in section 3.7.
Again, however, this setting becomes more complex to state for noninteger volume
functions and when considering a number of other subtle issues. In these cases, we
looked for the explanations that would make the underlying issues clear and focused
on conductance in order to do so.

There are a number of interesting directions that are worth exploring further.
First, in the theory from this survey, the binary search or bisection-based search meth-
ods have superior worst-case times. However, in practice, these methods are rarely
used. For instance, our own implementations always use the Dinkelbach greedy frame-
work. This is because this strategy commonly terminates in just a few iterations, as
was noted in both the MQI and FlowImprove papers (Lang and Rao, 2004; Andersen
and Lang, 2008), yet there is still no theoretically satisfying explanation. To provide
some data, for the LocalFlowlmprove experiments in Figure 14, we never needed to
evaluate more than 10 values of the fractional ratio to find the optimal solution in
Dinkelbach’s algorithm. As evidence that this effect is real, note that Lemma 3.5
actually shows that cut(R) is a bound on the number of iterations for Dinkelbach’s
algorithm. But for weighted graphs, this becomes cut(R)/u, where u is the minimum
spacing between elements (think of the floating-point machine value €). A specific
case where this type of insight would be helpful is in terms of weighted graphs with
nonnegative weights. Dinkelbach’s algorithm does not appear to be much slower on
such problems, yet the worst-case theory bound is extremely bad and depends on the
minimum spacing between elements.

Another direction of exploration is a set of algorithms that span the divide be-
tween the fractional program and the MinCut problem. For instance, it not necessary
to completely solve the flow problem to optimality (until the last step) since all that
is needed is a result that there is a better solution available. This offers a wide space
in which to deploy recent advances in Laplacian-based solvers to handle the problem,
especially because the electrical flow-based solutions largely correspond to PageRank
problems. It seems optimistic, but reasonable, to expect good solutions in time that
are more like a random walk or spectral algorithm.

Finally, another direction for future research is to study these algorithms in hy-
pergraphs (Veldt, Benson, and Kleinberg, 2020) and other types of higher-order struc-
tures. This was a part of early work on graph cuts in images that showed that problems
where hyperedges had at most three nodes could be solved exactly (Kolmogorov and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 131

Zabih, 2004). More recently, hypergraphs have been used to identify refined structure
in networks based on motifs (Li and Milenkovic, 2017).

In closing, our hope is that this survey and the associated LocalGraphCluster-
ing package (Fountoulakis et al., 2019b) helps to make these powerful and useful
methods—basic flow-based analysis of smaller graphs, but especially local flow-based
analysis of very large data graphs—more common in the future.

Part IV. Replicability Appendices and References.

Appendix A. Replicability Details for Figures and Tables. In the interest of
reproducibility and replicability, we provide additional details on the methods under-
lying the figures. To replicate these experiments, see our publicly available code (Foun-
toulakis et al., 2019a). All of the seeded PageRank examples in this survey use an
¢1-regularized PageRank method (Fountoulakis et al., 2019¢). We use p to denote the
regularization parameter in ¢;-regularized PageRank, a to denote the teleportation
parameter in ¢;-regularized PageRank, and § to denote the parameter of LocalFlow-
Improve.

Our implementations use Dinkelbach’s method, Algorithm 3.1, for the fractional
programming problem and Dinic’s algorithm for exact solutions of the weighted Max-
Flow problems at each step. Put another way, for MQI, we use Algorithm 6.1 and
Dinic’s algorithm to solve the MaxFlow problems. For Flowlmprove and LocalFlow-
Improve, we use the Dinkelbach variation on Algorithm 8.1 with Dinic’s algorithm
used to compute blocking flows in Algorithm 8.3. We use the same implementation
for LocalFlowImprove and FlowImprove and simply set § = 0 for FlowImprove. Using
Dinkelbach’s method and Dinic’s MaxFlow has a worse runtime in theory, but better
performance in practice. The implementations always return the smallest connected
set that achieves the minimum of the objective functions. They also always return a
set with less than half the total volume of the graph.

Figure 1. We use the implementation of the Louvain algorithm in Aynaud (2018).
We use our own code to generate the SBM. The code for this experiment is in the
notebook sbm_demo.ipynb in the subdirectory ssl available in Fountoulakis et al.
(2019a).

Figure 2. This is a geometric-like stochastic block model “hybrid.” A short de-
scription of the data-generation procedure follows but the code serves as the precise
description. Create g groups of n points. Each group is assigned the same random
two-dimensional spatial coordinate from a standard mean 0, variance 1 normal dis-
tribution. But each node within a group is also perturbed by a mean 0 random
normally distributed amount with variance o. Add p additional points with normally
distributed p (a “center” group). These determine the coordinates of all the nodes.
Now, add edges to k nearest neighbors and also within radius e. For this experiment,
we set g = 25, n = 100, 0 = 0.05, p = 2000, p =5, k = 5, and € = 0.06. The code is
in the Jupyter notebook Geograph-Intro.ipynb (Fountoulakis et al., 2019a).

Figure 3. The image can be downloaded from van der Walt et al. (2014). Tt is
turned into a graph using the procedure described in Appendix B. In particular,
we set r = 80, o2 = O(10%), and o2 = 1/10, where [is the maximum of the row
and column lengths of the image. The code for this experiment is in the Jupyter
notebook astronaut.ipynb in the subdirectory usroads available in Fountoulakis
et al. (2019a).

Figure 4. The original image is 100 by 100 pixels with a 13 pixel wide by 77
pixel tall vertical strip and a 77 pixel wide by 25 pixel tall horizontal strip that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

132 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

intersect in a 13-by-25 pixel region. This setup and intersection produce a rotated
T-like shape centered in the 100-by-100 pixel grid. To generate the noisy, blurred
figure, we used a Moffat kernel (Moffat, 1969) that arises from stellar photography
(parameters « = 1.5, § = 1.2, and length scale 5) and added uniform [—0.1, 0.1] noise
(roughly 38% of max blurred value 0.261) for each pixel before scaling by 1/0.3 and
clamping to the [0, 1] range. This stellar photography scenario was chosen to simulate
a binary image reconstruction scenario. Let f be a noisy, blurry image with values
in the range [0,1]. Let G be the grid graph associated with the grid underlying the
image f. Make sure to read section 6 before reading the details of the reconstruction
algorithm. Then we construct the following augmented graph: connect s toi € V
with weight ¢ f;d; (where d is the degree); connect t to ¢ € V, where f; = 0 with
weight co. We show the MinCut solution S for the two values of ¢ explained in
the problem. This corresponds to a minimization problem similar to (6.3), namely,
minimize cut(S) — 6) ;. g di fi subject to S C {i | f; > 0}, which uses a biased notion
of volume v(S) = » ;. di f; (as in section 3.7). In this case, if ¢ is 0.04, then we can no
longer continue improving the result and we end up with the convex set. For § = 0.11,
we have the rough reconstruction of the original shape. For our own purposes, we
used a Julia implementation (Veldt, 2019) of the flow code that is available in the
mqi-images subdirectory in Fountoulakis et al. (2019a).

Figure 12. All details are given in the main text of the survey. The code is in the
Jupyter notebook usroads-figures.ipynb in the subdirectory usroads available in
Fountoulakis et al. (2019a).

Table 3. This table provides additional details for the results of Figure 12. The
code for this experiment is in the Jupyter notebook usroads-figures.ipynb in the
subdirectory usroads available in Fountoulakis et al. (2019a).

Figure 13. This dataset has been obtained from Lawlor, Budavéri, and Mahoney
(2016a). It is a k = 32 nearest neighbor graph constructed on the MGS in SDSS Data
Release 7. Each galaxy is captured in a 3841-band spectral profile. Each spectrum is
normalized based on the median signal over 520 bands selected in Lawlor, Budavari,
and Mahoney (2016a). Since the results are sensitive to this set and it is not available
elsewhere, the indices of the bands were as follows:

856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875,
876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895,
896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915,
916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935,
936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955,
956, 957, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265,
1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282,
1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299,
1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316,
1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333,
1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350,
1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 1361, 1362, 1363, 1364, 1365, 1366, 1367,
1368, 1369, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384,
1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401,
1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418,
1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435,
1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964,
1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981,
1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,
2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2106, 2107, 2108, 2109, 2110,
2111, 2112, 2113, 2114, 2115, 2116, 2117, 2118, 2119, 2120, 2121, 2122, 2123, 2124, 2125, 2126, 2127,
2128, 2129, 2130, 2131, 2132, 2133, 2134, 2135, 2136, 2137, 2138, 2139, 2140, 2141, 2142, 2143, 2144,
2145, 2146, 2147, 2148, 2149, 2150, 2151, 2152, 2153, 2154, 2155, 2156, 2157, 2158, 2159, 2160, 2161,
2162, 2163, 2164, 2165, 2166, 2167, 2168, 2169, 2170, 2171, 2172, 2173, 2174, 2175, 2176, 2177, 2178,
2179, 2180, 2181, 2182, 2183, 2184, 2185, 2186, 2187, 2188, 2189, 2190, 2191, 2192, 2193, 2194, 2195,
2196, 2197, 2198, 2199, 2200, 2201, 2202, 2203, 2204, 2205, 2206, 2207, 2208, 2209, 2210, 2211, 2212,
2213, 2214, 2215, 2216, 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 2228, 2229,
2230, 2231, 2232, 2233, 2234, 2235, 2236, 2237, 2238, 2239, 2240, 2241, 2242, 2243, 2244, 2245, 2246,
2247, 2248, 2249, 2250, 2251, 2252, 2253, 2254, 2255, 2256, 2257, 2258

We create a node for each galaxy and connect vertices if either is within the 16 closest
vertices to the other based on a Euclidean distance after this median normalization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 133

The graph is then weighted proportional to this distance and the distance to the 8th
nearest neighbor based on a k-nearest neighbor tuning procedure in manifold learning.
(The results for spectral embeddings are somewhat sensitive to this procedure.) For-
mally, let p; be the distance to the 8th nearest neighbor (or oo if all of these distances
are 0). We add a weighted undirected edge based on node i to node j with distance d; ;
as W; j = exp(—(d; j/p;)). If i and j are both nearest neighbors, then we increment the
weights, so the construction is symmetric. Each node also has a self-loop with weight
1. The adjacency matrix of the graph has 32,229,812 nonzeros, which is 15,856,315
edges and 517,182 self-loops. The code for this experiment is in the Jupyter notebook
hexbingraphplots_global. jl in the subdirectory flow_embedding/hexbin_plots
available in Fountoulakis et al. (2019a). The full code to process the graph is avail-
able upon request.

Figure 14. For this experiment we used seeded PageRank to find the seed set for
the flow algorithms MQI and LocalFlowImprove. We set the teleportation parameter
of the seeded PageRank algorithm to 0.01. The code for this experiment is in the
Jupyter notebook plot_cluster_improvement.ipynb in the subdirectory cluster_
improvement available in Fountoulakis et al. (2019a).

Figure 15. In our experiments constructing the graph from the image, we fol-
low Appendix B and we set 7 = 80, o7 = O(10%), and o2 = 1/10, where [is
the maximum of the row and column lengths of the image. The code for this ex-
periment is in the Jupyter notebook image_segmentation.ipynb in the subdirec-
tory image_segmentation available in Fountoulakis et al. (2019a).

Figure 16. The input is a 2-hop BFS set starting from a random target node. We
independently generate 25 such BFS sets. The transparency level of red or blue nodes
is determined by the ratio of including each node in the resulting sets. The code for
this experiment is in the Jupyter notebook social.ipynb in the subdirectory social
available in Fountoulakis et al. (2019a). Specific details about tuning can also be
found in the code.

Figure 17. For every class we randomly select a small percentage of labeled nodes;
the exact percentages are given in the main text. The nodes that are selected from
each class are considered a single seed set. For each seed set and for each class we use
seeded PageRank with teleportation parameter equal to 0.01. This procedure provides
one PageRank vector per class. For each unlabeled node in the graph we look at the
corresponding coordinates in the PageRank vectors and we give to each unlabeled
node the label that corresponds to the largest value in the PageRank vectors. For
flow methods, for every labeled node that is used, we run one step of BFS to expand
the single seed node to a seed set. The expanded seed set is used as input to the flow
methods. We find a cluster and each node in the cluster is considered to have the same
label as the seed node. Based on this technique, it is possible that one node can be
allocated to more than one class; we consider such nodes as false positives. The code
for this experiment is in the Jupyter notebook semisupervised_learning.ipynb in
the subdirectory ssl available in Fountoulakis et al. (2019a). The MNIST graph
was weighted for this experiment. The distance between two images is computed by a
radial basis function with width 2. To make robust the process of rounding a diffusion
vector to class labels, we use a strategy from Gleich and Mahoney (2015) that involves
rounding to classes based on the node with the smallest rank in the ranked list of each
diffusion vector.

Table 4. The code for this experiment is in the Jupyter notebooks in the subdirec-
tory large_scale available in Fountoulakis et al. (2019a).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

134 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Figure 18. We use the eigenvector of the Laplacian matrix D — A associated with
the smallest nonzero eigenvalues to compute the vectors v; and vs. The coordinates
of the plot are generated by assigning x and y based on the rank of a node in vy
and vy in a sorted order. This has the effect of stretching out the eigenvector layout,
which often compresses many nodes at similar point. The color of the nodes is pro-
portional to the east-west latitude. The code for this experiment is in the notebook
usroads-embed. ipynb in the subdirectory usroads in Fountoulakis et al. (2019a).

Figure 19. We use Algorithm 9.1 with N = 500 sets, k = 1, d = 20, ¢ = 2, along
with LFI1-0.1 as the improve algorithm. For the local spectral embedding, we use the
same seeding parameters as seeded PageRank with p = le-6. When we create the
matrix X for seeded PageRank, we take the base-10 logarithm of the result value
(which is always between 0 and 1). For vertices with 0 values, we assign them —10,
which is lower than any other value. This gave a more useful embedding and helped
the spectral embedding show more structure. The node labeled “Rest of graph” was
manually placed in both cases because the embedding does not suggest a natural
place for it. Here, we also used the ranks of the nodes in a sorted order, which
helps to spread out nodes that are all placed in exactly the same location. The
code for this experiment is in the Jupyter notebook usroads-embed.ipynb in the
subdirectory usroads available in Fountoulakis et al. (2019a).

Figure 20. We use Algorithm 9.1 with N = 500 sets, k = 1, d = 3, ¢ = 2, along
with LFI-0.1 as the improve algorithm. We used the same local spectral methodology
as in Figure 19. The large red node, which represents the remainder of the graph
and all “unembedded nodes,” is manually placed to highlight edges to the rest of the
graph. Here, we also used the ranks of the nodes in a sorted order, which helps to
spread out nodes that are all placed in exactly the same location. The code for this
experiment is in the Python script flow_embedding.py in the subdirectory flow_
embedding available in Fountoulakis et al. (2019a) and Jupyter notebooks in the
subdirectory flow_embedding/hexbin_plots available in Fountoulakis et al. (2019a).
The Python script needs to be run first to generate data and then the notebook can
be used to generate the figures.

Figure 21. The code is in the Jupyter notebooks social.ipynb in the subdirec-
tory flow_embedding/cond_hists available in Fountoulakis et al. (2019a). They
both need the embedding results from Figure 20 to generate the figures.

The Rationale for the Local Flow Embedding Procedure. We now briefly justify the moti-
vation for the structure of the local flow embedding algorithm. The key idea is that
spectral algorithms are based on linear operations: if we have any way of sampling
the reference set R with a normalized set indicator T" such that E[T] = ﬁl R, then
if f is a linear function, such as an exact seeded PageRank computation, we have
E[f(T)) = f (ﬁl r)- This expectation corresponds to the seeded PageRank result
on the entire set. To include another dimension, we could seek to find an orthogonal
direction to E[f(T)], such as is done with constrained eigenvector computations. It
is this linear function perspective that inspired our flow embedding algorithm: col-
lect samples of f(T;) into a matrix and then use the SVD on the samples of T to
approximate E[f(T)] and the orthogonal component (given by the second singular
vector). While some of these arguments can be formalized and made rigorous for
a linear function, that is an orthogonal discussion (pun intended). Here, we simply
make the observation that this perspective enables us to use a nonlinear procedure f
without any issue. This gave rise to Algorithm 9.1, which differs only in that we grow
the sets T — R; by including all vertices within graph distance d.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 135

(a) Input Image (b) Add nodes for each pixel (c) Add edges between pixels

(d) Each pixel adds edges to nearby pixels to reflect the similarity of intensity values
Add weighted edge (u,v) {d(w v) = Vllzu = 20| + [l — 90| < 7 Distance is small

if d(u,v) is small and
w(u,v) is large

_Uu=I)? d(u,v)?
w(u,v) =e 1 q > Intensity and distance are close

Fig. 22 We turn an image into a graph by adding a node for every pizel (b). Then we connect
the nodes if the associated pizels are close by (distance less than r) as well as have similar
pizel values). We weight the edge by the degree of similarity. The resulting graph has small
conductance sets when there are regions with similarly colored pizels.

Appendix B. Converting Images to Graphs. For illustration purposes, we use
images to generate graphs in various examples throughout this survey. The purpose
of this construction is that visually distinct segments of the picture should have small
conductance. Given an image, we create a weighted nearest-neighbor graph using a
Gaussian kernel as described in Shi and Malik (2000). We create a node for each
pixel. Then we connect pixels with weighted edges. In particular, let w;; denote the
the weight of the edge between pixels i and j, let p; € R? be the position of pixel 1,
¢; € R? the color representation of pixel i, 02 the variance for the position, and 0%
the variance for the color. Then, we define the edge weights as

lpi—pjl3 llei—c;l3
2 2 . 2
Wij 1= € 7d o if ||pl —pJ” <,
0 otherwise.

Note that there is a region r that restricts the feasible edges, illustrated in Figure 22.

Acknowledgments. We would like to thank many individuals for discussions
about these ideas over the years. We would also like to especially thank Nate Veldt
for a careful reading of an initial draft, Charles Colley for reviewing a later draft, both

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

136

K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

Di Wang and Satish Rao for discussions on geometric aspects of flow algorithms, and
finally Kent Quanrud for many helpful pointers.

E.

M.

M.

REFERENCES

ABBE (2018), Community detection and stochastic block models: Recent developments, J. Mach.
Learn. Res., 18, art. 177, http://jmlr.org/papers/v18/16-480.html. (Cited on p. 62)
ACKERMAN AND S. BEN-DAVID (2018), Measures of clustering quality: A working set of axioms
for clustering, in Advances in Neural Information Processing Systems 21, Curran Associates,
pp. 121-128, http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-
of-axioms-for-clustering.pdf. (Cited on p. 62)

. ANDERSEN, F. CHUNG, AND K. LANG (2006), Local graph partitioning using PageRank vectors,

in FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 475-486. (Cited on pp. 65, 87, 88, 118)

. ANDERSEN, S. O. GHARAN, Y. PERES, AND L. TREVISAN (2016), Almost optimal local graph

clustering using evolving sets, J. ACM, 63, art. 15. (Cited on p. 87)

. ANDERSEN AND K. J. LANG (2006), Communities from seed sets, in Proceedings of the 15th

International Conference on the World Wide Web, ACM, pp. 223-232. (Cited on p. 87)

. ANDERSEN AND K. J. LANG (2008), An algorithm for improving graph partitions, in Proceedings

of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 651-660. (Cited
on pp. 63, 67, 83, 84, 85, 100, 101, 130)

. ARORA, S. RAO, AND U. VAZIRANI (2009), Ezpander flows, geometric embeddings and graph

partitioning, J. ACM, 56 (2), art. 5. (Cited on p. 88)

. AVRON AND L. HORESH (2015), Community detection using time-dependent personalized Page-

Rank, in Proceedings of the 32nd International Conference on Machine Learning, PMLR, pp.
1795-1803, http://proceedings.mlr.press/v37/avronl5.pdf. (Cited on p. 87)

. AWASTHI, A. S. BANDEIRA, M. CHARIKAR, R. KRISHNASWAMY, S. VILLAR, AND R. WARD (2015),

Relaz, no need to round: Integrality of clustering formulations, in Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ACM, pp. 191-200. (Cited on
p. 62)

AYNAUD (2018), Python-Louvain, https://github.com/taynaud/python-louvain. (Cited on
p. 131)

BELKIN, P. N1YOGI, AND V. SINDHWANI (2006), Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples, J. Mach. Learn. Res., 7, pp. 2399-2434. (Cited
on p. 87)

. BEN-DAVID (2018), Clustering—what both theoreticians and practitioners are doing wrong, in

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp.
7962-7964, https://www.aaal.org/ocs/index.php/AAAT/AAAIL8/paper/view/17420. (Cited
on p. 61)

. BENsoN, D. F. GLEICH, AND J. LESKOVEC (2016), Higher-order organization of complex net-

works, Science, 353 (6295), pp. 163-166, https://doi.org/10.1126/science.aad9029. (Cited on
pp. 70, 123)

. L. BERTOZZI AND A. FLENNER (2016), Diffuse interface models on graphs for classification

of high dimensional data, STAM Rev., 58, pp. 293-328, https://doi.org/10.1137/16M1070426.
(Cited on p. 62)

. BIENSTOCK, M. CHERTKOV, AND S. HARNETT (2014), Chance-constrained optimal power flow:

Risk-aware network control under uncertainty, STAM Rev., 56, pp. 461-495, https://doi.org/
10.1137/130910312. (Cited on p. 62)

. D. BLONDEL, J.-L. GUILLAUME, R. LAMBIOTTE, AND E. LEFEBVRE (2008), Fast unfolding of

communities in large networks, J. Statist. Mech. Theory Exper., 10, art. P10008. (Cited on
p. 63)

. BLum AND S. CHAWLA (2001), Learning from labeled and unlabeled data using graph mincuts, in

Proceedings of the Eighteenth International Conference on Machine Learning, Morgan Kauf-
mann, pp. 19-26, https://web.archive.org/web/20190718171105/http://www.aladdin.cs.cmu.
edu/papers/pdfs/y2001/mincut.pdf. (Cited on pp. 89, 123)

. BOoYD AND L. VANDENBERGHE (2004), Convex Optimization, Cambridge University Press. (Cited

on pp. 92, 93)

BoyKov AND G. FUNKA-LEA (2006), Graph cuts and efficient N-D image segmentation, Internat.
J. Comput. Vision, 70, pp. 109-131. (Cited on p. 90)

Boykov AND V. KOLMOGOROV (2004), An ezperimental comparison of min-cut/maz-flow al-
gorithms for energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell., 26, pp.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://jmlr.org/papers/v18/16-480.html
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.pdf
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.pdf
http://proceedings.mlr.press/v37/avron15.pdf
https://github.com/taynaud/python-louvain
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1137/16M1070426
https://doi.org/10.1137/130910312
https://doi.org/10.1137/130910312
https://web.archive.org/web/20190718171105/http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
https://web.archive.org/web/20190718171105/http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf
https://dl.acm.org/doi/abs/10.5555/3504035.3505023

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 137

1124-1137. (Cited on p. 90)

Y. Boykov AND O. VEKSLER (2006), Graph cuts in vision and graphics: Theories and applications,
in Handbook of Mathematical Models in Computer Vision, Springer-Verlag, Boston, MA, pp.
79-96. (Cited on p. 90)

U. BRANDES AND T. ERLEBACH, EDS. (2005), Network Analysis: Methodological Foundations,
Springer. (Cited on p. 62)

S. D. BRowN, J. A. GERLT, J. L. SEFFERNICK, AND P. C. BABBITT (2006), A gold standard set of
mechanistically diverse enzyme superfamilies, Genome Biology, 7, art. R8. (Cited on p. 125)

E. J. Canpis, J. ROMBERG, AND T. TAO (2006), Robust uncertainty principles: Ezact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52,
pp. 489-509. (Cited on p. 109)

J. J. CAaRrAsco, D. C. FaIN, K. J. LANG, AND L. ZHUKOV (2003), Clustering of bipartite advertiser-
keyword graph, in Proceedings of the Workshop on Clustering Large Data Sets at the 2003
International Conference on Data Mining, pp. 72-79. (Cited on p. 62)

T. F. CHAN, S. ESEDOGLU, AND M. NIKOLOVA (2006), Algorithms for finding global minimizers of
image segmentation and denoising models, SIAM J. Appl. Math., 66, pp. 1632-1648, https:
//doi.org/10.1137/040615286. (Cited on p. 89)

P. CHRISTIANO, J. A. KELNER, A. MADRY, D. A. SPIELMAN, AND S.-H. TENG (2011), Electrical
flows, Laplacian systems, and faster approximation of mazimum flow in undirected graphs,
in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp.
273-282. (Cited on p. 89)

F. CHUNG (2007a), The heat kernel as the PageRank of a graph, Proc. Natl. Acad. Sci. USA, 104,
pp. 19735-19740. (Cited on p. 87)

F. CHUNG (2007b), Random walks and local cuts in graphs, Linear Algebra Appl., 423, pp. 22-32.
(Cited on p. 120)

F. CHUNG (2009), A local graph partitioning algorithm using heat kernel PageRank, Internet Math.,
6, pp. 315-330. (Cited on p. 87)

F. CHUNG AND O. SIMPSON (2014), Computing heat kernel PageRank and a local clustering algo-
rithm, in Combinatorial Algorithms (IWOCA 2014), Springer, pp. 110-121. (Cited on p. 87)

J.-C. DELVENNE, S. N. YALIRAKI, AND M. BARAHONA (2010), Stability of graph communities across
time scales, Proc. Natl. Acad. Sci. USA, 107, pp. 12755-12760, https://doi.org/10.1073/pnas.
0903215107. (Cited on p. 65)

B. DEzso, J. ALPAR, AND P. KovAcs (2011), LEMON-—an open source C++ graph template
library, Electron. Notes Theoret. Comput. Sci., 264, pp. 23-45. (Cited on p. 89)

E. DiNiTz (1970), Algorithm for solution of a problem of mazimum flow in a network with
power estimation, Dokl. Akad. Nauk SSSR, 11, pp. 1277-1280, https://web.archive.org/web/
20190215224206 /https://www.cs.bgu.ac.il/~dinitz/D70.pdf. (Cited on pp. 95, 112)

W. DINKELBACH (1967), On nonlinear fractional programming, Management Sci., 13, pp. 492-498.
(Cited on p. 79)

D. L. DONOHO AND Y. TsAIG (2008), Fast solution of £1-norm minimization problems when the
solution may be sparse, IEEE Trans. Inform. Theory, 54, pp. 4789-4812, https://doi.org/10.
1109/tit.2008.929958. (Cited on p. 109)

D. EasLEy AND K. Jo (2010), Networks, Crowds, and Markets: Reasoning about a Highly Con-
nected World, Cambridge University Press, New York. (Cited on p. 62)

D. EckLES, B. KARRER, AND J. UGANDER (2017), Design and analysis of experiments in networks:
Reducing bias from interference, J. Causal Infer., 5, art. 20150021, https://doi.org/10.1515/jci-
2015-0021. (Cited on p. 62)

B. ErFrON, T. HASTIE, I. JOHNSTONE, AND R. TIBSHIRANI (2004), Least angle regression, Ann.
Statist., 32, pp. 407-499. (Cited on p. 109)

B. EHRHARDT AND P. J. WOLFE (2019), Network modularity in the presence of covariates, SIAM
Rev., 61, pp. 261-276, https://doi.org/10.1137/17M1111528. (Cited on p. 62)

E. ESTRADA AND N. HATANO (2016), Communicability angle and the spatial efficiency of networks,
SIAM Rev., 58, pp. 692-715, https://doi.org/10.1137/141000555. (Cited on p. 62)

E. ESTRADA AND D. J. HIGHAM (2010), Network properties revealed through matriz functions, SIAM
Rev., 52, pp. 696-714, https://doi.org/10.1137/090761070. (Cited on p. 62)

C. FaLoutsos, K. S. MCCURLEY, AND A. TOMKINS (2004), Fast discovery of connection subgraphs,
in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 118-127. (Cited on pp. 65, 67)

P. F. FELZENSZWALB AND D. P. HUTTENLOCHER (2004), Efficient graph-based image segmentation,
Internat. J. Comput. Vision, 59, pp. 167-181. (Cited on p. 73)

P. G. FENNELL AND J. P. GLEESON (2019), Multistate dynamical processes on networks: Analysis
through degree-based approzimation frameworks, SIAM Rev., 61, pp. 92-118, https://doi.org/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/040615286
https://doi.org/10.1137/040615286
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1073/pnas.0903215107
https://web.archive.org/web/20190215224206/https://www.cs.bgu.ac.il/~dinitz/D70.pdf
https://web.archive.org/web/20190215224206/https://www.cs.bgu.ac.il/~dinitz/D70.pdf
https://doi.org/10.1109/tit.2008.929958
https://doi.org/10.1109/tit.2008.929958
https://doi.org/10.1515/jci-2015-0021
https://doi.org/10.1515/jci-2015-0021
https://doi.org/10.1137/17M1111528
https://doi.org/10.1137/141000555
https://doi.org/10.1137/090761070
https://doi.org/10.1137/16M1109345
https://doi.org/10.1137/16M1109345

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

138 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

10.1137/16M1109345. (Cited on p. 62)

C. M. Fibuccia AND R. M. MATTHEYSES (1982), A linear-time heuristic for improving network
partitions, in Proceedings of the 19th Design Automation Conference, ACM, pp. 175-181,
http://dl.acm.org/citation.cfm?id=800263.809204. (Cited on p. 86)

G. W. FLAKE, S. LAWRENCE, AND C. L. GILES (2000), Efficient identification of web communities,
in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 150-160. (Cited on p. 89)

B. K. Fospick, D. B. LARREMORE, J. NISHIMURA, AND J. UGANDER (2018), Configuring random
graph models with fized degree sequences, SIAM Rev., 60, pp. 315-355, https://doi.org/10.
1137/16M1087175. (Cited on p. 62)

. FounTourakis, D. F. GLEICH, AND M. W. MAHONEY (2017), An optimization approach to
locally-biased graph algorithms, Proc. IEEE, 105, pp. 256-272. (Cited on pp. 74, 87, 88)

K. FountouLAakis, M. Liu, D. GLEICH, AND M. W. MAHONEY (2019a), Code for Ezrperiments of

the Present Paper, https://github.com/dgleich /flowpaper-code/tree/master/figures. (Cited on
pp. 131, 132, 133, 134)

K. FounTouLakis, M. Liu, D. GLEICH, AND M. W. MAHONEY (2019b), LocalGraphClustering API,
https://github.com/kfoynt /LocalGraphClustering. (Cited on pp. 67, 125, 129, 131)

K. FounTouLAKIS, F. ROOSTA-KHORASANI, J. SHUN, X. CHENG, AND M. W. MAHONEY (2019c¢),
Variational perspective on local graph clustering, Math. Program. Ser. B, 174, pp. 553-573.
(Cited on pp. 65, 87, 88, 131)

H. FRENK AND S. SCHAIBLE (2009), Fractional programming, in Encyclopedia of Optimization,
Springer, Boston, MA, pp. 1080-1091. (Cited on p. 78)

J. H. FRIEDMAN AND J. J. MEULMAN (2004), Clustering objects on subsets of attributes (with
discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 66, pp. 815-849. (Cited on p. 61)

G. GALLO, M. D. GRIGORIADIS, AND R. E. TARJAN (1989), A fast parametric mazimum flow
algorithm and applications, STAM J. Comput., 18, pp. 30-55, https://doi.org/10.1137/0218003.
(Cited on pp. 67, 81)

U. GArGl, W. Lu, V. MIRROKNI, AND S. YOON (2011), Large-scale community detection on
YouTube for topic discovery and exploration, in Proceedings of the Fifth International AAAI
Conference on Weblogs and Social Media, pp. 486-489. (Cited on p. 86)

. F. GLEICH (2015), PageRank beyond the web, SIAM Rev., 57, pp. 321-363, https://doi.org/10.
1137/140976649. (Cited on pp. 65, 67, 106)

D. F. GLEICH AND M. W. MAHONEY (2014), Anti-differentiating approzimation algorithms: A case
study with min-cuts, spectral, and flow, in Proceedings of the 31st International Conference on
Machine Learning, PMLR, pp. 1018-1025. (Cited on pp. 87, 106)

D. F. GLEICH AND M. W. MAHONEY (2015), Using local spectral methods to robustify graph-based
learning algorithms, in Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 359-368. (Cited on pp. 87, 88, 106, 123, 133)

D. F. GLEICH AND M. W. MAHONEY (2016), Mining large graphs, in Handbook of Big Data, CRC
Press, pp. 191-220, https://doi.org/10.1201/b19567-17. (Cited on pp. 65, 74)

A. V. GOLDBERG (1984), Finding a Mazimum Density Subgraph, M.S. Thesis CSD-84-171, Univer-
sity of California at Berkeley, https://web.archive.org/web/20151129022137 /http://www.eecs.
berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf. (Cited on p. 88)

A. V. GOLDBERG AND S. RA0 (1998), Beyond the flow decomposition barrier, J. ACM, 45, pp.
783-797, https://doi.org/10.1145/290179.290181. (Cited on pp. 95, 113)

A. V. GOLDBERG AND R. E. TARJAN (2014), Efficient mazimum flow algorithms, Commun. ACM,
57, pp. 82-89. (Cited on p. 89)

D. M. GrEIG, B. T. PORTEOUS, AND A. H. SEHEULT (1989), Ezact mazimum a posteriori estimation
for binary images, J. R. Statist. Soc. Ser. B Methodol., 51, pp. 271-279. (Cited on p. 90)

P. GRINDROD AND D. J. HIGHAM (2013), A matriz iteration for dynamic network summaries, SLAM
Rev., 55, pp. 118-128, https://doi.org/10.1137/110855715. (Cited on p. 62)

W. Ha, K. FOUNTOULAKIS, AND M. W. MAHONEY (2020), Statistical guarantees for local graph
clustering, in Proceedings of the 23rd International Conference on Artificial Intelligence and
Statistics, PMLR, 2020, pp. 2687-2697. (Cited on p. 87)

L. HAGEN AND A. B. KAHNG (1992), New spectral methods for ratio cut partitioning and clustering,
IEEE Trans. Comput.-Aided Des., 11, pp. 1074-1085. (Cited on p. 73)

K. M. HaLL (1970), An r-dimensional quadratic placement algorithm, Management Sci., 17, pp.
219-229, http://www.jstor.org/stable/2629091. (Cited on p. 126)

T. J. HANSEN AND M. W. MAHONEY (2014), Semi-supervised eigenvectors for large-scale locally-
biased learning, J. Mach. Learn. Res., 15, pp. 3691-3734, http://dl.acm.org/citation.cfm?id=
2627435.2750363. (Cited on p. 126)

M. HEIN AND S. SETZER (2011), Beyond spectral clustering—tight relazations of balanced

=~

o

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/16M1109345
https://doi.org/10.1137/16M1109345
http://dl.acm.org/citation.cfm?id=800263.809204
https://doi.org/10.1137/16M1087175
https://doi.org/10.1137/16M1087175
https://github.com/dgleich/flowpaper-code/tree/master/figures
https://github.com/kfoynt/LocalGraphClustering
https://doi.org/10.1137/0218003
https://doi.org/10.1137/140976649
https://doi.org/10.1137/140976649
https://doi.org/10.1201/b19567-17
https://web.archive.org/web/20151129022137/http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://web.archive.org/web/20151129022137/http://www.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://doi.org/10.1145/290179.290181
https://doi.org/10.1137/110855715
http://www.jstor.org/stable/2629091
http://dl.acm.org/citation.cfm?id=2627435.2750363
http://dl.acm.org/citation.cfm?id=2627435.2750363

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

M.

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 139

graph cuts, in Advances in Neural Information Processing Systems 24, Curran As-
sociates, pp. 2366-2374, http://papers.nips.cc/paper/4261-beyond-spectral-clustering-tight-
relaxations-of-balanced-graph-cuts.pdf. (Cited on p. 86)

. HENDRICKSON AND R. LELAND (1994a), The Chaco User’s Guide, Version 2.0, Technical Re-

port SAND94-2692, Sandia National Labs, Albuquerque, NM, https://cfwebprod.sandia.gov/
cfdocs/CompResearch/docs/guide.pdf. (Cited on p. 86)

. HENDRICKSON AND R. LELAND (1994b), An improved spectral graph partitioning algorithm for

mapping parallel computations, SIAM J. Sci. Comput., 16, pp. 452-469, https://doi.org/10.
1137/0916028. (Cited on p. 86)

. HENDRICKSON AND R. W. LELAND (1995), A multi-level algorithm for partitioning graphs, in

Supercomputing '95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, pp.
1-14. (Cited on p. 86)

. HENZINGER, A. NOE, AND C. ScHULZ (2020), ILP-based local search for graph partitioning, ACM

J. Exp. Algorithmics, 25, art. 1.9, https://doi.org/10.1145/3398634. (Cited on p. 86)

. HERNANDO, P. KELLMAN, J. P. HALDAR, AND Z.-P. LIANG (2010), Robust water/fat separation

in the presence of large field inhomogeneities using a graph cut algorithm, Magnetic Reson.
Med., 63, pp. 79-90. (Cited on p. 90)

. S. HocuBAUM (2010), Polynomial time algorithms for ratio regions and a variant of normalized

cut, IEEE Trans. Pattern Anal. Mach. Intell., 32, pp. 889-898. (Cited on pp. 67, 73, 83)

. S. HocuBauM (2013), A polynomial time algorithm for Rayleigh ratio on discrete variables:

Replacing spectral techniques for expander ratio, normalized cut and Cheeger constant, Oper.
Res., 61, pp. 184-198. (Cited on pp. 63, 89)

Jacoss, E. MERKURJEV, AND S. ESEDOGLU (2018), Auction dynamics: A volume constrained
MBO scheme, J. Comput. Phys., 354, pp. 288-310, https://doi.org/10.1016/j.jcp.2017.10.036.
(Cited on p. 89)

. G. S. JEUB, P. BALACHANDRAN, M. A. PORTER, P. J. MucHA, AND M. W. MAHONEY (2015),

Think locally, act locally: Detection of small, medium-sized, and large communities in large
networks, Phys. Rev. E, 91, art. 012821. (Cited on pp. 86, 87)

. Jia, A. MIRTABATABAEIL, N. E. FRIEDKIN, AND F. BuLLO (2015), Opinion dynamics and the

evolution of social power in influence networks, SIAM Rev., 57, pp. 367-397, https://doi.org/
10.1137/130913250. (Cited on p. 62)

. JOACHIMS (2003), Transductive learning via spectral graph partitioning, in Proceedings of the

20th International Conference on Machine Learning (ICML-03), AAAI Press, pp. 290-297.
(Cited on p. 87)

. Jung, A. O. HErRO, A. C. MARA, S. JAHROMI, A. HEIMOWITZ, AND Y. C. ELDAR (2019), Semi-

supervised learning in network-structured data via total variation minimization, IEEE Trans.
Signal Process., 67, pp. 6256-6269, https://doi.org/10.1109/tsp.2019.2953593. (Cited on p. 89)

. JUNG AND Y. SARCHESHMEHPOUR (2021), Local graph clustering with network lasso, IEEE Signal

Process. Lett., 28, pp. 106-110, https://doi.org/10.1109/1sp.2020.3045832. (Cited on p. 89)

. KARYPIS AND V. KUMAR (1998), A fast and high quality multilevel scheme for partition-

ing irregular graphs, SIAM J. Sci. Comput., 20, pp. 359-392, https://doi.org/10.1137/
S1064827595287997. (Cited on p. 86)

. KARYPIS AND V. KUMAR (1999), Parallel multilevel series k-way partitioning scheme for irreg-

ular graphs, SIAM Rev., 41, pp. 278-300, https://doi.org/10.1137/S0036144598334138. (Cited
on p. 86)

. KHANDEKAR, S. RAO, AND U. VAZIRANI (2009), Graph partitioning using single commodity flows,

J. ACM, 56, art. 19, https://doi.org/10.1145/1538902.1538903. (Cited on p. 88)

. KLEINBERG (2002), An impossibility theorem for clustering, in Proceedings of the 15th Inter-

national Conference on Neural Information Processing Systems, ACM, pp. 463-470, http:
//dl.acm.org/citation.cfm?id=2968618.2968676. (Cited on p. 62)

. KLEINBERG AND E. TARDOS (2005), Algorithm Design, Addison-Wesley Longman. (Cited on

p. 88)

. KLOSTER AND D. F. GLEICH (2014), Heat kernel based community detection, in Proceedings of

the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1386-1395. (Cited on p. 87)

I. M. KLOUMANN AND J. M. KLEINBERG (2014), Community membership tdentification from small

N.

V.

seed sets, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1366-1375. (Cited on pp. 65, 67, 87)

KNIGHT, E. CARSON, AND J. DEMMEL (2014), Ezploiting data sparsity in parallel matriz powers
computations, in Parallel Processing and Applied Mathematics, Springer, Berlin, pp. 15-25.
(Cited on p. 86)

KoLMOGOROV AND R. ZABIH (2004), What energy functions can be minimized via graph cuts?,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://papers.nips.cc/paper/4261-beyond-spectral-clustering-tight-relaxations-of-balanced-graph-cuts.pdf
http://papers.nips.cc/paper/4261-beyond-spectral-clustering-tight-relaxations-of-balanced-graph-cuts.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/guide.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/guide.pdf
https://doi.org/10.1137/0916028
https://doi.org/10.1137/0916028
https://doi.org/10.1145/3398634
https://doi.org/10.1016/j.jcp.2017.10.036
https://doi.org/10.1137/130913250
https://doi.org/10.1137/130913250
https://doi.org/10.1109/tsp.2019.2953593
https://doi.org/10.1109/lsp.2020.3045832
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S0036144598334138
https://doi.org/10.1145/1538902.1538903
http://dl.acm.org/citation.cfm?id=2968618.2968676
http://dl.acm.org/citation.cfm?id=2968618.2968676

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

140 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

IEEE Trans. Pattern Anal. Mach. Intell., 26, pp. 147-159. (Cited on pp. 90, 130)

A. LANCICHINETTI, S. FORTUNATO, AND J. KERTESzZ (2009), Detecting the overlapping and hi-
erarchical community structure in complex networks, New J. Phys., 11, art. 033015, https:
//doi.org/10.1088,/1367-2630/11/3/033015. (Cited on p. 87)

K. LANG (2005), Fizing two weaknesses of the spectral method, in Advances in Neural Infor-
mation Processing Systems 18 (NIPS2005), pp. 715-722, http://books.nips.cc/papers/files/
nips18/NIPS2005_0529.pdf. (Cited on pp. 65, 87, 126)

K. LANG AND S. RAO (2004), A flow-based method for improving the expansion or conductance of
graph cuts, in IPCO 2004: Integer Programming and Combinatorial Optimization, Springer,
pp. 325-337. (Cited on pp. 63, 66, 67, 68, 83, 84, 86, 95, 96, 130)

K. J. LANG, M. W. MAHONEY, AND L. ORECCHIA (2009), Empirical evaluation of graph partitioning
using spectral embeddings and flow, in Proceedings of the 8th International Symposium on
Experimental Algorithms, Springer, pp. 197-208. (Cited on p. 88)

D. LAWLOR, T. BUDAVARI, AND M. W. MAHONEY (2016a), Mapping the similarities of spectra:
Global and locally-biased approaches to SDSS galazies, Astrophys. J., 833, art. 26. (Cited on
pp. 74, 118, 126, 132)

D. LAWLOR, T. BUDAVARI, AND M. W. MAHONEY (2016b), Mapping the Similarities of Spectra:
Global and Locally-Biased Approaches to SDSS Galazy Data, preprint, https://arxiv.org/abs/
1609.03932. (Cited on pp. 74, 118, 126)

Y. LEcuNn, L. Borrou, Y. BENGIO, AND P. HAFFNER (1998), Gradient-based learning applied
to document recognition, Proc. IEEE, 86, pp. 2278-2324, https://doi.org/10.1109/5.726791.
(Cited on p. 123)

Y. T. LEE, S. RAO, AND N. SRIVASTAVA (2013), A new approach to computing mazimum flows
using electrical flows, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory
of Computing, pp. 755-764. (Cited on p. 89) B

Y. T. LEE AND A. SIDFORD (2013), Path Finding II: An O(m+/n) Algorithm for the Minimum
Cost Flow Problem, preprint, https://arxiv.org/abs/1312.6713. (Cited on p. 89)

T. LEIGHTON AND S. RAo (1988), An approzimate maz-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms, in 29th Annual Sym-
posium on Foundations of Computer Science, IEEE, pp. 422-431. (Cited on p. 83)

T. LEIGHTON AND S. Rao (1999), Multicommodity maxz-flow min-cut theorems and their use in
designing approzimation algorithms, J. ACM, 46, pp. 787-832. (Cited on p. 88)

J. LESKOVEC AND A. KREVL (2014), SNAP Datasets: Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data. (Cited on p. 125)

J. LESKOVEC, K. LANG, A. DASGUPTA, AND M. MAHONEY (2008), Statistical properties of commu-
nity structure in large social and information networks, in WWW ’08: Proceedings of the 17th
International Conference on World Wide Web, ACM, pp. 695-704. (Cited on pp. 86, 87, 125)

J. LESKOVEC, K. LANG, AND M. MAHONEY (2010), Empirical comparison of algorithms for network
community detection, in WWW ’10: Proceedings of the 19th International Conference on World
Wide Web, ACM, pp. 631-640. (Cited on pp. 86, 87, 125)

J. LEskoVEC, K. J. LANG, A. DASGUPTA, AND M. W. MAHONEY (2009), Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet
Math., 6, pp. 29-123. (Cited on pp. 62, 86, 87, 125)

P. L1 anp O. MILENKOVIC (2017), Inhomogeneous hypergraph clustering with applica-
tions, in Advances in Neural Information Processing Systems 30, Curran Associates,
pp. 2308-2318, http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-
applications.pdf. (Cited on p. 131)

Y. L1, K. HE, D. BINDEL, AND J. E. HOPCROFT (2015), Uncovering the small community struc-
ture in large networks: A local spectral approach, in Proceedings of the 24th International
Conference on World Wide Web, pp. 658-668. (Cited on p. 87)

L. LiBERTI, C. LAVOR, N. MACULAN, AND A. MUCHERINO (2014), Euclidean distance geometry and
applications, SIAM Rev., 56, pp. 369, https://doi.org/10.1137/120875909. (Cited on p. 62)

W. Liu AND S.-F. CHANG (2009), Robust multi-class transductive learning with graphs, in IEEE
Conference on Computer Vision and Pattern Recognition, pp. 381-388. (Cited on p. 87)

Y. P. Liu AND A. SIDFORD (2020), Faster energy mazimization for faster mazimum flow, in Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2020),
ACM, New York, pp. 803-814, https://doi.org/10.1145/3357713.3384247. (Cited on p. 89)

P. Y. Lum, G. SINGH, A. LEHMAN, T. ISHKANOV, M. VEJDEMO-JOHANSSON, M. ALAGAPPAN,
J. CARLSSON, AND G. CARLSSON (2013), Extracting insights from the shape of complex data
using topology, Sci. Rep., 3, art. 1236. (Cited on p. 124)

Z. Ma, X. Wu, Q. SoNnG, Y. Luo, Y. WANG, AND J. ZHOU (2018), Automated nasopharyngeal
carcinoma segmentation in magnetic resonance images by combination of convolutional neural

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1088/1367-2630/11/3/033015
https://doi.org/10.1088/1367-2630/11/3/033015
http://books.nips.cc/papers/files/nips18/NIPS2005_0529.pdf
http://books.nips.cc/papers/files/nips18/NIPS2005_0529.pdf
https://arxiv.org/abs/1609.03932
https://arxiv.org/abs/1609.03932
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1312.6713
http://snap.stanford.edu/data
http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf
http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf
https://doi.org/10.1137/120875909
https://doi.org/10.1145/3357713.3384247

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

M.

R.

M.

=

M.

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 141

networks and graph cut, Experimental Therapeutic Med., 16, pp. 2511-2521, https://doi.org/
10.3892/etm.2018.6478. (Cited on p. 90)

W. MAHONEY, L. ORECCHIA, AND N. K. VIsHNOI (2012), A local spectral method for graphs:
With applications to improving graph partitions and exploring data graphs locally, J. Mach.
Learn. Res., 13, pp. 2339-2365. (Cited on p. 74)

MARLET (2017), Graph Cuts and Application to Disparity Map Estmation, https://web.
archive.org/web/20221214152458 /https://imagine.enpc.fr/~marletr/enseignement /mva/mva-
2017 /mva-2017-graphcuts.pdf. (Cited on p. 90)

. MisLove, M. MarcoN, K. P. GumMADI, P. DRUSCHEL, AND B. BHATTACHARJEE (2007), Mea-

surement and analysis of online social networks, in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, pp. 29-42. (Cited on p. 125)

. MOFFAT (1969), A theoretical investigation of focal stellar images in the photographic emulsion

and application to photographic photometry, Astron. Astrophys., 3, pp. 455-461. (Cited on
p. 132)

. NaMATA, B. LONDON, L. GETOOR, AND B. HUANG (2012), Query-driven active surveying for

collective classification, in 10th International Workshop on Mining and Learning with Graphs,
p.- 8. (Cited on p. 123)

NEWMAN (2010), Networks: An Introduction, Oxford University Press, New York. (Cited on
p. 62)

E. J. NEWMAN (2006), Modularity and community structure in networks, Proc. Natl. Acad. Sci.
USA, 103, pp. 8577-8582. (Cited on pp. 62, 87)

. Y. NG, M. I. JorDAN, AND Y. WEISs (2001), On spectral clustering: Analysis and an algorithm,

in Advances in Neural Information Processing Systems 14, MIT Press, pp. 849-856, http:
//papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf. (Cited on
p. 126)

. ORECCHIA, L. J. SCHULMAN, U. V. VAzIRANI, AND N. K. VIsHNoOI (2012), On partitioning graphs

via single commodity flows, in Proceedings of the 44th Annual ACM Symposium on Theory of
Computing, pp. 1141-1160. (Cited on p. 88)

. ORECCHIA AND Z. A. ZHU (2014), Flow-based algorithms for local graph clustering, in Proceedings

of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1267-1286. (Cited on
pp. 63, 66, 68, 76, 84, 106, 107, 109, 111, 112, 113)

. B. ORLIN (2013), Maz flows in O(nm) time, or better, in Proceedings of the 45th Annual ACM

Symposium on Theory of Computing, pp. 765-774. (Cited on p. 89)

. OSTING, J. DARBON, AND S. OSHER (2013), Statistical ranking using the £'-norm on graphs,

Inverse Probl. Imaging, 7, pp. 907926, https://doi.org/10.3934/ipi.2013.7.907. (Cited on p. 89)

. PAaceL, S. Kovac, M. OESTERHELD, B. BRAUNER, I. DUNGER-KALTENBACH, G. FRISHMAN,

C. MONTRONE, P. MARK, V. STUMPFLEN, H.-W. MEWES, A. RUEPP, AND D. FRISHMAN
(2004), The MIPS mammalian protein—protein interaction database, Bioinform., 21, pp. 832—
834. (Cited on p. 125)

. PaLLA, I. DERENYI, I. FARKAS, AND T. VICSEK (2005), Uncovering the overlapping community

structure of complex networks in nature and society, Nature, 435, pp. 814-818. (Cited on p. 87)

. PAPADIMITRIOU AND K. STEIGLITZ (1982), Combinatorial Optimization: Algorithms and Com-

plezity, Prentice-Hall. (Cited on p. 92)

. PEEL (2017), Graph-based semi-supervised learning for relational networks, in Proceedings of the

2017 STIAM International Conference on Data Mining, pp. 435-443, https://doi.org/10.1137/1.
9781611974973.49. (Cited on pp. 88, 123)

. PEEL, D. B. LARREMORE, AND A. CLAUSET (2017), The ground truth about metadata and

community detection in networks, Sci. Adv., 3, art. e1602548, https://doi.org/10.1126/sciadv.
1602548. (Cited on p. 88)

. P. PeixoTro (2014), The Graph-Tool Python Library, figshare, http://figshare.com/articles/

graph_tool/1164194. (Cited on p. 122)

. PELLEGRINI AND J. ROMAN (1996), SCOTCH: A software package for static mapping by dual

recursive bipartitioning of process and architecture graphs, in International Conference on High-
Performance Computing and Networking, Springer, pp. 493-498. (Cited on p. 86)

. PoTHEN, H. D. SiMON, AND K.-P. Liou (1990), Partitioning sparse matrices with eigenvectors

of graphs, STAM J. Matrix Anal. Appl., 11, pp. 430-452, https://doi.org/10.1137/0611030.
(Cited on p. 86)

RED, E. D. KELsic, P. J. MucHA, AND M. A. PORTER (2011), Comparing community structure
to characteristics in online collegiate social metworks, SIAM Rev., 53, pp. 526-543, https:
//doi.org/10.1137/080734315. (Cited on pp. 62, 120)

. RomBACH, M. A. PORTER, J. H. FOWLER, AND P. J. MucHA (2017), Core-periphery structure

in networks (revisited), SIAM Rev., 59, pp. 619-646, https://doi.org/10.1137/17M1130046.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.3892/etm.2018.6478
https://doi.org/10.3892/etm.2018.6478
https://web.archive.org/web/20221214152458/https://imagine.enpc.fr/~marletr/enseignement/mva/mva-2017/mva-2017-graphcuts.pdf
https://web.archive.org/web/20221214152458/https://imagine.enpc.fr/~marletr/enseignement/mva/mva-2017/mva-2017-graphcuts.pdf
https://web.archive.org/web/20221214152458/https://imagine.enpc.fr/~marletr/enseignement/mva/mva-2017/mva-2017-graphcuts.pdf
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
https://doi.org/10.3934/ipi.2013.7.907
https://doi.org/10.1137/1.9781611974973.49
https://doi.org/10.1137/1.9781611974973.49
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://doi.org/10.1137/0611030
https://doi.org/10.1137/080734315
https://doi.org/10.1137/080734315
https://doi.org/10.1137/17M1130046

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

142 K. FOUNTOULAKIS, M. LIU, D. FE GLEICH, AND M. W. MAHONEY

(Cited on p. 62)

L. I. RupiN, S. OSHER, AND E. FATEMI (1992), Nonlinear total variation based noise removal
algorithms, Phys. D, 60, pp. 259-268. (Cited on p. 89)

P. SANDERS AND C. ScHuLZ (2011), Engineering multilevel graph partitioning algorithms, in Pro-
ceedings of the 19th European Conference on Algorithms (ESA’11), Springer-Verlag, Berlin,
Heidelberg, pp. 469-480. (Cited on p. 86)

F. SHAHROKHI (1990), The mazimum concurrent flow problem, J. ACM, 37, pp. 318-334. (Cited
on p. 88)

E. SHARON, M. GALUN, D. SHARON, R. BAsSRI, AND A. BRANDT (2006), Hierarchy and adaptivity
in segmenting visual scenes, Nature, 442 (7104), pp. 810-813. (Cited on p. 73)

G. SH1, C. ALTAFINI, AND J. S. BARAS (2019), Dynamics over signed networks, SIAM Rev., 61, pp.
229-257, https://doi.org/10.1137/17M1134172. (Cited on p. 62)

J. SHI AND J. MALIK (2000), Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell., 22, pp. 888-905. (Cited on pp. 73, 135)

P. Sui, K. HE, D. BINDEL, AND J. HOPCROFT (2017), Local Lanczos spectral approzimation for
community detection, in Proceedings of ECML-PKDD, Springer, pp. 651-667. (Cited on p. 87)

J. SHUN, F. RoosTA-KHORASANI, K. FOUNTOULAKIS, AND M. W. MAHONEY (2016), Parallel local
graph clustering, Proc. VLDB Endowment, 9, pp. 1041-1052. (Cited on pp. 74, 87)

H. D. SiMON (1991), Partitioning of unstructured problems for parallel processing, Comput. Syst.
Engrg., 2, pp. 135-148. (Cited on p. 86)

D. D. SLEATOR AND R. E. TARJAN (1983), A data structure for dynamic trees, J. Comput. Syst.
Sci., 3, pp. 362-391. (Cited on p. 112)

A. J. SOPER, C. WALsHAW, AND M. CROss (2004), A combined evolutionary search and multilevel
optimisation approach to graph-partitioning, J. Global Optim., 29, pp. 225-241. (Cited on
p. 86)

D. A. SPIELMAN AND S. H. TENG (2013), A local clustering algorithm for massive graphs and its
application to nearly linear time graph partitioning, STAM J. Comput., 42, pp. 1-26, https:
//doi.org/10.1137/080744888. (Cited on p. 87)

G. STRANG (1983), Mazimal flow through a domain, Math. Program., 26, pp. 123-143. (Cited on
p- 89)

G. STRANG (2010), Mazimum flows and minimum cuts in the plane, J. Global Optim., 47, pp.
527-535. (Cited on p. 89)

R. TIBSHIRANI (1996), Regression shrinkage and selection via the lasso, J. R. Statist. Soc. Ser. B
Methodol., 58, pp. 267288, http://www.jstor.org/stable/2346178. (Cited on p. 109)

H. ToNg, C. FALOUTSOS, AND J.-Y. PAN (2006), Fast random walk with restart and its applications,
in ICDM ’06: Proceedings of the Sixth International Conference on Data Mining, IEEE, pp.
613-622. (Cited on pp. 65, 67)

A. L. TrauD, P. J. MuCHA, AND M. A. PORTER (2012), Social structure of Facebook networks,
Phys. A, 391, pp. 4165-4180. (Cited on p. 120)

L. TREVISAN (2011), Combinatorial Optimization: Exzact and Approzimate Algorithms, lecture
notes for CS261 at Stanford University, https://web.archive.org/web/20200501020454 /http:
//theory.stanford.edu/~trevisan/books/cs261.pdf. (Cited on p. 92)

C. E. TSOURAKAKIS, J. PACHOCKI, AND M. MITZENMACHER (2017), Scalable motif-aware graph
clustering, in Proceedings of the 26th International Conference on World Wide Web, pp. 1451—
1460. (Cited on p. 87)

M. UrrLaH, A. IutAF, Q. Hou, F. ALi, AND C. Liv (2018), A foreground extraction approach using
convolutional neural network with graph cut, in 2018 IEEE 3rd International Conference on
Image, Vision and Computing (ICIVC), pp. 40-44. (Cited on p. 90)

S. VAN DER WALT, J. L. SCHONBERGER, J. NUNEz-IGLESIAS, F. BOULOGNE, J. D. WARNER,
N. YAGER, E. GOUILLART, T. YU, AND THE SCIKIT-IMAGE CONTRIBUTORS (2014), scikit-image:
Image processing in Python, PeerJ, 2, art. e453. (Cited on p. 131)

L. N. VELDT, D. F. GLEICH, AND M. W. MAHONEY (2016), A simple and strongly-local flow-based
method for cut improvement, in International Conference on Machine Learning, JMLR, pp.
1938-1947, http://jmlr.org/proceedings/papers/v48/veldt16.html. (Cited on pp. 65, 75, 84,
106, 107, 109, 111, 113)

N. VELDT (2019), PushRelabel Local Flow Algorithms, Github software, https://github.com/nveldt/
PushRelabelMaxFlow. (Cited on pp. 129, 132)

N. VELDT, A. R. BENSON, AND J. KLEINBERG (2020), Minimizing localized ratio cut objectives in
hypergraphs, in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’20), ACM, New York, pp. 1708-1718, https://doi.org/10.
1145/3394486.3403222. (Cited on pp. 70, 130)

N. VELDT, A. R. BENSON, AND J. KLEINBERG (2022), Hypergraph cuts with general splitting func-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/17M1134172
https://doi.org/10.1137/080744888
https://doi.org/10.1137/080744888
http://www.jstor.org/stable/2346178
https://web.archive.org/web/20200501020454/http://theory.stanford.edu/~trevisan/books/cs261.pdf
https://web.archive.org/web/20200501020454/http://theory.stanford.edu/~trevisan/books/cs261.pdf
http://jmlr.org/proceedings/papers/v48/veldt16.html
https://github.com/nveldt/PushRelabelMaxFlow
https://github.com/nveldt/PushRelabelMaxFlow
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1145/3394486.3403222

Downloaded 01/12/24 to 23.127.160.203 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FLOW-BASED ALGORITHMS FOR IMPROVING CLUSTERS 143

tions, SIAM Rev., 64, pp. 650685, https://doi.org/10.1137/20M1321048. (Cited on p. 70)

N. VELDT, C. KLYMKO, AND D. F. GLEICH (2019), Flow-based local graph clustering with better
seed set inclusion, in Proceedings of the 2019 SIAM International Conference on Data Mining,
pp. 378-386. (Cited on pp. 63, 77, 85)

N. VELDT, A. WIRTH, AND D. F. GLEICH (2019), Learning resolution parameters for graph clus-
tering, in The World Wide Web Conference, ACM, pp. 1909-1919. (Cited on pp. 63, 130)

U. voN LUXBURG (2007), A tutorial on spectral clustering, Statist. Comput., 17, pp. 395-416. (Cited
on p. 73)

U. voN LuxBURG, R. C. WILLIAMSON, AND I. GUYON (2012), Clustering: Science or art?, in
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 65-79, http:
//proceedings.mlr.press/v27/luxburgl2a.html. (Cited on p. 61)

C. WaLsHAW AND M. CRross (2000), Mesh partitioning: A multilevel balancing and refinement
algorithm, STAM J. Sci. Comput., 22, pp. 63-80, https://doi.org/10.1137/S1064827598337373.
(Cited on p. 86)

C. WALsHAW AND M. CRross (2007), Jostle: Parallel multilevel graph-partitioning software—an
overview, in Mesh Partitioning Techniques and Domain Decomposition Techniques, Civil-Comp
Ltd., pp. 27-58. (Cited on p. 86)

J. WHANG, D. F. GLEICH, AND 1. S. DHILLON (2016), Overlapping community detection using
neighborhood-inflated seed expansion, Trans. Knowledge Data Engrg., 28, pp. 1272-1284, http:
//arxiv.org/abs/1503.07439. (Cited on p. 87)

WIKIPEDIA (2021), FEileen Collins, https://en.wikipedia.org/wiki/Eileen_Collins [accessed 16

September 2021]. (Cited on pp. 67, 68)

D. P. WILLIAMSON (2019), Network Flow Algorithms, Cambridge University Press, https://doi.org/
10.1017/9781316888568. (Cited on pp. 111, 112)

J. XiE, S. KELLEY, AND B. K. SzZYMANSKI (2013), Overlapping community detection in networks:
The state-of-the-art and comparative study, ACM Comput. Surv., 45, art. 43. (Cited on p. 87)

H. YIN, A. R. BENSON, J. LESKOVEC, AND D. F. GLEICH (2017), Local higher-order graph clustering,
in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 555-564. (Cited on p. 87)

J. YuaN, E. BAE, AND X.-C. Tar1 (2010), A study on continuous maz-flow and min-cut approaches,
in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 2217-2224. (Cited on p. 89)

D. ZHou, O. BousQUET, T. N. LAL, J. WESTON, AND B. SCHOLKOPF (2004), Learning with local
and global consistency, in Annual Advances in Neural Information Processing Systems 16:
Proceedings of the 2003 Conference, pp. 321-328. (Cited on pp. 65, 67, 87)

X. ZHu, Z. GHAHRAMANI, AND J. D. LAFFERTY (2003), Semi-supervised learning using Gaussian
fields and harmonic functions, in Proceedings of the 20th International Conference on Machine
Learning (ICML-03), AAAI Press, pp. 912-919. (Cited on pp. 65, 67, 87)

Z. A. Znu, S. LATTANZI, AND V. MIRROKNI (2013), A local algorithm for finding well-connected
clusters, in Proceedings of the 30th International Conference on Machine Learning, JMLR, pp.
396-404. (Cited on pp. 87, 88)

~

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1321048
http://proceedings.mlr.press/v27/luxburg12a.html
http://proceedings.mlr.press/v27/luxburg12a.html
https://doi.org/10.1137/S1064827598337373
http://arxiv.org/abs/1503.07439
http://arxiv.org/abs/1503.07439
https://en.wikipedia.org/wiki/Eileen_Collins
https://doi.org/10.1017/9781316888568
https://doi.org/10.1017/9781316888568

