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ABSTRACT

Viewing recurrent neural networks (RNNs) as continuous-time dynamical sys-
tems, we propose a recurrent unit that describes the hidden state’s evolution with
two parts: a well-understood linear component plus a Lipschitz nonlinearity. This
particular functional form facilitates stability analysis of the long-term behavior
of the recurrent unit using tools from nonlinear systems theory. In turn, this en-
ables architectural design decisions before experimentation. Sufficient conditions
for global stability of the recurrent unit are obtained, motivating a novel scheme
for constructing hidden-to-hidden matrices. Our experiments demonstrate that
the Lipschitz RNN can outperform existing recurrent units on a range of bench-
mark tasks, including computer vision, language modeling and speech prediction
tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz
recurrent unit is more robust with respect to input and parameter perturbations as
compared to other continuous-time RNNs.

1 INTRODUCTION

Many interesting problems exhibit temporal structures that can be modeled with recurrent neural
networks (RNNs), including problems in robotics, system identification, natural language process-
ing, and machine learning control. In contrast to feed-forward neural networks, RNNs consist of one
or more recurrent units that are designed to have dynamical (recurrent) properties, thereby enabling
them to acquire some form of internal memory. This equips RNNs with the ability to discover and
exploit spatiotemporal patterns, such as symmetries and periodic structures (Hinton, 1986). How-
ever, RNNs are known to have stability issues and are notoriously difficult to train, most notably due
to the vanishing and exploding gradients problem (Bengio et al., 1994; Pascanu et al., 2013).

Several recurrent models deal with the vanishing and exploding gradients issue by restricting the
hidden-to-hidden weight matrix to be an element of the orthogonal group (Arjovsky et al., 2016;
Wisdom et al., 2016; Mhammedi et al., 2017; Vorontsov et al., 2017; Lezcano-Casado & Martinez-
Rubio, 2019). While such an approach is advantageous in maintaining long-range memory, it limits
the expressivity of the model. To address this issue, recent work suggested to construct hidden-to-
hidden weights which have unit norm eigenvalues and can be nonnormal (Kerg et al., 2019). Another
approach for resolving the exploding/vanishing gradient problem has recently been proposed by Kag
et al. (2020), who formulate the recurrent units as a differential equation and update the hidden states
based on the difference between predicted and previous states.

In this work, we address these challenges by viewing RNNs as dynamical systems whose temporal
evolution is governed by an abstract system of differential equations with an external input. The data
are formulated in continuous-time where the external input is defined by the function x = x(t) ∈ Rp,
and the target signal is defined as y = y(t) ∈ Rd. Based on insights from dynamical systems theory,
we propose a continuous-time Lipschitz recurrent neural network with the functional form{

ḣ = AβA,γAh+ tanh(WβW ,γW h+ Ux+ b) ,

y = Dh ,

(1a)
(1b)
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where the hidden-to-hidden matrices Aβ,γ ∈ RN×N and Wβ,γ ∈ RN×N are of the form{
AβA,γA = (1− βA)(MA +MT

A ) + βA(MA −MT
A )− γAI

WβW ,γW = (1− βW )(MW +MT
W ) + βW (MW −MT

W )− γW I,
(2a)

(2b)

where βA, βW ∈ [0, 1], γA, γW > 0 are tunable parameters and MA,MW ∈ RN×N are trainable
matrices. Here, h = h(t) ∈ RN is a function of time t that represents an internal (hidden) state, and
ḣ = ∂h(t)

∂t is its time derivative. The hidden state represents the memory that the system has of its
past. The function in Eq. (1) is parameterized by the hidden-to-hidden weight matrices A ∈ RN×N
and W ∈ RN×N , the input-to-hidden encoder matrix U ∈ RN×p, and an offset b. The function
in Eq. (1b) is parameterized by the hidden-to-output decoder matrix D ∈ Rd×N . Nonlinearity is
introduced via the 1-Lipschitz tanh activation function. While RNNs that are governed by differen-
tial equations with an additive structure have been studied before (Zhang et al., 2014), the specific
formulation that we propose in (1) and our theoretical analysis are distinct.

Treating RNNs as dynamical systems enables studying the long-term behavior of the hidden state
with tools from stability analysis. From this point of view, an unstable unit presents an exploding
gradient problem, while a stable unit has well-behaved gradients over time (Miller & Hardt, 2019).
However, a stable recurrent unit can suffer from vanishing gradients, leading to catastrophic for-
getting (Hochreiter & Schmidhuber, 1997b). Thus, we opt for a stable model whose dynamics do
not (or only slowly do) decay over time. Importantly, stability is also a statement about the robust-
ness of neural units with respect to input perturbations, i.e., stable models are less sensitive to small
perturbations compared to unstable models. Recently, Chang et al. (2019) explored the stability of
linearized RNNs and provided a local stability guarantee based on the Jacobian. In contrast, the
particular structure of our unit (1) allows us to obtain guarantees of global exponential stability
using control theoretical arguments. In turn, the sufficient conditions for global stability motivate
a novel symmetric-skew decomposition based scheme for constructing hidden-to-hidden matrices.
This scheme alleviates exploding and vanishing gradients, while remaining highly expressive.

In summary, the main contributions of this work are as follows:

• First, in Section 3, using control theoretical arguments in a direct Lyapunov approach,
we provide sufficient conditions for global exponential stability of the Lipschitz RNN unit
(Theorem 1). Global stability is advantageous over local stability results since it guarantees
non-exploding gradients regardless of the state. In the special case where A is symmetric,
we find that these conditions agree with those in classical theoretical analyses (Lemma 1).

• Next, in Section 4, drawing from our stability analysis, we propose a novel scheme based
on the symmetric-skew decomposition for constructing hidden-to-hidden matrices. This
scheme mitigates the vanishing and exploding gradients problem, while obtaining highly
expressive hidden-to-hidden matrices.

• In Section 6, we show that our Lipschitz RNN has the ability to outperform state-of-the-
art recurrent units on computer vision, language modeling and speech prediction tasks.
Further, our results show that the higher-order explicit midpoint time integrator improves
the predictive accuracy as compared to using the simpler one-step forward Euler scheme.

• Finally, in Section 7), we study our Lipschitz RNN via the lens of the Hessian and show
that it is robust with respect to parameter perturbations; we also show that our model is
more robust with respect to input perturbations, compared to other continuous-time RNNs.

2 RELATED WORK

The problem of vanishing and exploding gradients (and stability) have a storied history in the
study of RNNs. Below, we summarize two particular approaches to the problem (constructing uni-
tary/orthogonal RNNs and the dynamical systems viewpoint) that have gained significant attention.

Unitary and orthogonal RNNs. Unitary recurrent units have received attention recently, largely
due to Arjovsky et al. (2016) showing that unitary hidden-to-hidden matrices alleviate the vanishing
and exploding gradients problem. Several other unitary and orthogonal models have also been pro-
posed (Wisdom et al., 2016; Mhammedi et al., 2017; Jing et al., 2017; Vorontsov et al., 2017; Jose
et al., 2018). While these approaches stabilize the training process of RNNs considerably, they also
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limit their expressivity and their prediction accuracy. Further, unitary RNNs are expensive to train,
as they typically involve the computation of a matrix inverse at each step of training. Recent work
by Lezcano-Casado & Martinez-Rubio (2019) overcame some of these limitations. By leveraging
concepts from Riemannian geometry and Lie group theory, their recurrent unit exhibits improved
expressivity and predictive accuracy on a range of benchmark tasks while also being efficient to
train. Another competitive recurrent design was recently proposed by Kerg et al. (2019). Their ap-
proach is based on the Schur decomposition, and it enables the construction of general nonnormal
hidden-to-hidden matrices with unit-norm eigenvalues.

Dynamical systems inspired RNNs. The continuous time view of RNNs has a long history in the
neurodynamics community as it provides higher flexibility and increased interpretability (Pineda,
1988; Pearlmutter, 1995; Zhang et al., 2014). In particular, RNNs that are governed by differen-
tial equations with an additive structure have been extensively studied from a theoretical point of
view (Funahashi & Nakamura, 1993; Kim et al., 1996; Chow & Li, 2000; Hu & Wang, 2002; Li
et al., 2005; Trischler & D’Eleuterio, 2016). See Zhang et al. (2014) for a comprehensive survey of
continuous-time RNNs and their stability properties.

Recently, several works have adopted the dynamical systems perspective to alleviate the challenges
of training RNNs which are related to the vanishing and exploding gradients problem. For non-
sequential data, Ciccone et al. (2018) proposed a negative-definite parameterization for enforcing
stability in the RNN during training. Chang et al. (2019) introduced an antisymmetric hidden-to-
hidden weight matrix and provided guarantees for local stability. Kag et al. (2020) have proposed a
differential equation based formulation for resolving the exploding/vanishing gradients problem by
updating the hidden states based on the difference between predicted and previous states. Niu et al.
(2019) employed numerical methods for differential equations to study the stability of RNNs.

Another line of recent work has focused on continuous-time models that deal with irregular sam-
pled time-series, missing values and multidimensional time series. Rubanova et al. (2019) and
De Brouwer et al. (2019) formulated novel recurrent models based on the theory of differential
equations and their discrete integration. Lechner & Hasani (2020) extended these ordinary differ-
ential equation (ODE) based models and addresses the issue of vanishing and exploding gradients
by designing an ODE-model that is based on the idea of long short-term memory (LSTM). This
ODE-LSTM outperforms the continuous-time LSTM (Mei & Eisner, 2017) as well as the GRU-D
model (Che et al., 2018) that is based on a gated recurrent unit (GRU).

The link between dynamical systems and models for forecasting sequential data also provides the
opportunity to incorporate physical knowledge into the learning process which improves the gener-
alization performance, robustness, and ability to learn with limited data (Chen et al., 2019).

3 STABILITY ANALYSIS OF LIPSCHITZ RECURRENT UNITS

One of the key contributions in this work is that we prove that model (1) is globally exponentially
stable under some mild conditions on A and W . Namely, for any initial hidden state we can guaran-
tee that our Lipschitz unit converges to an equilibrium if it exists, and therefore, gradients can never
explode. We improve upon recent work on stability in recurrent models, which provide only a local
analysis, see e.g., (Chang et al., 2019). In fact, global exponential stability is among the strongest
notions of stability in nonlinear systems theory, implying all other forms of Lyapunov stability about
the equilibrium h∗ (Khalil, 2002, Definitions 4.4 and 4.5).
Definition 1. A point h∗ is an equilibrium point of ḣ = f(h, t) if f(h∗, t) = 0 for all t. Such a
point is globally exponentially stable if there exists some C > 0 and λ > 0 such that for any choice
of initial values h(0) ∈ RN ,

‖h(t)− h∗‖ ≤ Ce−λt‖h(0)− h∗‖, for any t ≥ 0. (3)

The presence of a Lipschitz nonlinearity in (1) plays an important role in our analysis. While we
focus on tanh in our experiments, our proof is more general and is applicable to models whose
nonlinearity σ(·) is an M -Lipschitz function. Specifically, we consider the general model

ḣ = Ah+ σ(Wh+ Ux+ b) , (4)
for which we have the following stability result. In the following, we let σmin and σmax denote the
smallest and largest singular values of the hidden-to-hidden matrices, respectively.
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Theorem 1. Let h∗ be an equilibrium point of a differential equation of the form (4) for some
x ∈ Rp. The point h∗ is globally exponentially stable if the eigenvalues of Asym := 1

2 (A + AT )
are strictly negative, W is non-singular, and either (a) σmin(Asym) > Mσmax(W ); or (b) σ is
monotone non-decreasing, W +WT is negative definite, and ATW +WTA is positive definite.

The two cases show that global exponential stability is guaranteed if either (a) the matrix A has
eigenvalues with real parts sufficiently negative to counteract expanding trajectories in the nonlin-
earity; or (b) the nonlinearity is monotone, both A and W yield stable linear systems u̇ = Au,
v̇ = Wv, and A,W have sufficiently similar eigenvectors. In practice, case (b) occasionally holds,
but is challenging to ensure without assuming specific structure onA,W . Because such assumptions
could limit the expressiveness of the model, the next section will develop a tunable formulation for
A and W with the capacity to ensure that case (a) holds.

In Appendix A.1, we provide a proof of Theorem 1 using a direct Lyapunov approach. One ad-
vantage of this approach is that the driving input x is permitted to evolve in time arbitrarily in the
analysis. The proof relies on the classical Kalman-Yakubovich-Popov lemma and circle criterion
from control theory — to our knowledge, these tools have not been applied in the modern RNN
literature, and we hope our proof can illustrate their value to the community.

In the special case whereA is symmetric and x(t) constant, we show that we can also inherit criteria
for both local and global stability from a class of well-studied Cohen–Grossberg–Hopfield models.
Lemma 1. Suppose that A is symmetric and W is nonsingular. There exists a diagonal matrix
D ∈ RN×N , and nonsingular matrices L, V ∈ RN×N such that an equilibrium of (4) is (globally
exponentially) stable if and only if there is a corresponding (globally exponentially) stable equilib-
rium for the system

ż = Dz + Lσ(V z + Ux+ b). (5)

For a thorough review of analyses of (5), see (Zhang et al., 2014). In this special case, the criteria in
Theorem 1 coincide with those obtained for the corresponding model (5). However, in practice, we
will not choose A to be symmetric.

4 SYMMETRIC-SKEW HIDDEN-TO-HIDDEN MATRICES

In this section we propose a novel scheme for constructing hidden-to-hidden matrices. Specifically,
based on the successful application of skew-symmetric hidden-to-hidden weights in several recent
recurrent architectures, and our stability criteria in Theorem 1, we propose an effective symmetric-
skew decomposition for hidden matrices. Our decomposition allows for a simple control of the
matrix spectrum while retaining its wide expressive range, enabling us to satisfy the spectral con-
straints derived in the previous section on both A and W . The proposed scheme also accounts for
the issue of vanishing gradients by reducing the magnitude of large negative eigenvalues.

Recently, several methods used skew-symmetric matrices, i.e., S + ST = 0 to parameterize the
recurrent weights W ∈ RN×N , see e.g., (Wisdom et al., 2016; Chang et al., 2019). From a sta-
bility analysis viewpoint, there are two main advantages for using skew-symmetric weights: these
matrices generate the orthogonal group whose elements are isometric maps and thus preserve norms
(Lezcano-Casado & Martinez-Rubio, 2019); and the spectrum of skew-symmetric matrices is purely
imaginary which simplifies stability analysis (Chang et al., 2019). The main shortcoming of this
parametrization is its reduced expressivity, as these matrices have fewer than half of the parameters
of a full matrix (Kerg et al., 2019). The latter limiting aspect can be explained from a dynamical sys-
tems perspective: skew-symmetric matrices can only describe oscillatory behavior, whereas a matrix
whose eigenvalues have nonzero real parts can also encode viable growth and decay information.

To address the expressivity issue, we aim for hidden matrices which on the one hand, allow to control
the expansion and shrinkage of their associated trajectories, and on the other hand, will be sampled
from a superset of the skew-symmetric matrices. Our analysis in Theorem 1 guarantees that Lips-
chitz recurrent units maintain non-expanding trajectories under mild conditions on A and W . Un-
fortunately, this proposition does not provide any information with respect to the shrinkage of paths.
Here, we opt for a system whose expansion and shrinkage can be easily controlled. Formally, the
latter requirement is equivalent to designing hidden weights S with smallRλi(S), i = 1, 2, . . . , N ,
where R(z) denotes the real part of z. A system of the form (4) whose matrices A and W exhibit
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(a) β = 0.5, γ = 0 (b) β = 0.75, γ = 0.01 (c) β = 0.85, γ = 0.01 (d) β = 1.0, γ = 0

Figure 1: Vector fields of hidden states that are governed by Eq. (1) trained for simple pendulum
dynamics. In (a), an unstable model is shown. In (b) and (c), it can be seen that we yield models
that are asymptotically stable,i.e., all trajectories are attracted by an equilibrium point. In contrast,
in (d), a skew-symmetric parameterization leads to a stable model without an attracting equilibrium.

small spectra and satisfy the conditions of Theorem 1, will exhibit dynamics with moderate decay
and growth behavior and alleviate the problem of exploding and vanishing gradients. To this end,
we propose the following symmetric-skew decomposition for constructing hidden matrices:

Sβ,γ := (1− β) · (M +MT ) + β · (M −MT )− γI, (6)

where M is a weight matrix, and β ∈ [0.5, 1], γ > 0 are tuning parameters. In the case (β, γ) =
(1, 0), we recover a skew-symmetric matrix, i.e., S1,0 + ST1,0 = 0. The construction Sβ,γ is useful
as we can easily bound its spectrum via the parameters β and γ, as we show in the next proposition.
Proposition 1. Let Sβ,γ satisfy (6), and let M sym = 1

2 (M +MT ). The real parts <λi(Sβ,γ) of the
eigenvalues of Sβ,γ , as well as the eigenvalues of Ssym

β,γ = Sβ,γ + STβ,γ , lie in the interval

[(1− β)λmin(M sym)− γ, (1− β)λmax(M sym)− γ].

A proof is provided in Appendix A.2. We infer that β controls the width of the spectrum, while
increasing γ shifts the spectrum to the left along the real axis, thus enforcing eigenvalues with non-
positive real parts. Choosing our hidden-to-hidden matrices to be AβA,γA and WβW ,γW of the form
(6) for different values of βA, βW and γA, γW , we can ensure small spectra and satisfy the conditions
of Theorem 1 as desired. Note, that different tuning parameters β and γ affect the stability behavior
of the Lipschitz recurrent unit. This is illustrated in Figure 1, where different values for β and γ are
used to construct both Aβ,γ and Wβ,γ and applied to learning simple pendulum dynamics.

One cannot guarantee that model parameters will remain in the stability region during training.
However, we can show that when β is taken to be close to one, the eigenvalues of Asym

β,γ and W sym
β,γ

(which dictate the stability of the RNN) change slowly during training. Let ∆δF denote the change
in a function F depending on the parameters of the RNN (1) after one step of gradient descent with
step size δ with respect to some loss L(y). For a matrix A, we let λk(A) denote the k-th singular
value of A. We have the following lemma.
Lemma 2. As β → 1−, maxk |∆δλk(Asym

β,γ )|+ maxk |∆δλk(W sym
β,γ )| = O(δ(1− β)2).

Therefore, provided both the initial and optimal parameters lie within the stability region, the model
parameters will remain in the stability region for longer periods of time with high probability as
β → 1. Further empirical evidence of parameters often remaining in the stability region during
training are provided alongside the proof of Lemma 2 in the Appendix (see Figure 5).

5 TRAINING CONTINUOUS-TIME LIPSCHITZ RECURRENT UNITS

ODEs such as Eq. (1) can be approximately solved by employing numerical integrators. In sci-
entific computing, numerical integration is a well studied field that provides well understood tech-
niques (LeVeque, 2007). Recent literature has also introduced new approaches which are designed
with neural network frameworks in mind (Chen et al., 2018).

To learn the weightsA,W,U and b, we discretize the continuous model using one step of a numerical
integrator between sequence entries. In what follows, a subscript t denotes discrete time indices,
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∆t represents the time difference between a pair of consecutive data points. Letting f(h, t) =

Ah+ tanh(Wh+ Ux(s) + b) so that ḣ(t) = f(h, t), the exact and approximate solutions for ht+1

given ht are given by

ht+1 = ht +

∫ t+∆t

t

f(h(s), s)ds := ht +

∫ t+∆t

t

Ah(s) + tanh(Wh(s) + Ux(s) + b) ds (7)

≈ ht + ∆t · scheme [f, ht, ∆t] , (8)

where scheme represents one step of a numerical integration scheme whose application yields an
approximate solution for 1

∆t

∫ t+∆t

t
f(h(s), s)ds given ht using one or more evaluations of f .

We consider both the explicit (forward) Euler scheme,

ht+1 = ht + ∆t ·Aht + ∆t · tanh(zt), (9)

as well as the midpoint method which is a two-stage explicit Runge-Kutta scheme (RK2),

ht+1 = ht + ∆t ·Ah̃+ ∆t · tanh(Wh̃+ Uxt + b), (10)

where h̃ = ht + ∆t/2 · Aht + ∆t/2 · tanh(zt) is an intermediate hidden state. The RK2 scheme
can potentially improve the performance since the scheme is more accurate, however, this scheme
also requires twice as many function evaluations as compared to the forward Euler scheme. Given
a β and γ that yields a globally exponentially stable continuous model, ∆t can always be chosen so
that the model remains in the stability region of forward Euler and RK2 (LeVeque, 2007).

6 EMPIRICAL EVALUATION

In this section, we evaluate the performance of the Lipschitz RNN and compare it to other state-of-
the-art methods. The model is applied to ordered and permuted pixel-by-pixel MNIST classification,
as well as to audio data using the TIMIT dataset. We show the sensitivity with respect to to random
initialization in Appendix B. Appendix B also contains additional results for: pixel-by-pixel CIFAR-
10 and a noise-padded version of CIFAR-10; as well as for character level and word level prediction
using the Penn Tree Bank (PTB) dataset. All of these tasks require that the recurrent unit learns
long-term dependencies: that is, the hidden-to-hidden matrices need to have sufficient memory to
remember information from far in the past.

6.1 ORDERED AND PERMUTED PIXEL-BY-PIXEL MNIST

The pixel-by-pixel MNIST task tests long range dependency by sequentially presenting 784 pixels
to the recurrent unit, i.e., the RNN processes one pixel at a time (Le et al., 2015). At the end of the

Table 1: Evaluation accuracy on ordered and permuted pixel-by-pixel MNIST.

Name ordered permuted N # params

LSTM baseline by (Arjovsky et al., 2016) 97.3% 92.7% 128 ≈68K
MomentumLSTM (Nguyen et al., 2020) 99.1% 94.7% 256 ≈270K
Unitary RNN (Arjovsky et al., 2016) 95.1% 91.4% 512 ≈9K
Full Capacity Unitary RNN (Wisdom et al., 2016) 96.9% 94.1% 512 ≈270K
Soft orth. RNN (Vorontsov et al., 2017) 94.1% 91.4% 128 ≈18K
Kronecker RNN (Jose et al., 2018) 96.4% 94.5% 512 ≈11K
Antisymmteric RNN (Chang et al., 2019) 98.0% 95.8% 128 ≈10K
Incremental RNN (Kag et al., 2020) 98.1% 95.6% 128 ≈4K/8K
Exponential RNN (Lezcano-Casado & Martinez-Rubio, 2019) 98.4% 96.2% 360 ≈69K
Sequential NAIS-Net (Ciccone et al., 2018) 94.3% 90.8% 128 ≈18K

Lipschitz RNN using Euler (ours) 99.0% 94.2% 64 ≈9K
Lipschitz RNN using RK2 (ours) 99.1% 94.2% 64 ≈9K

Lipschitz RNN using Euler (ours) 99.4% 96.3% 128 ≈34K
Lipschitz RNN using RK2 (ours) 99.3% 96.2% 128 ≈34K
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Table 2: Evaluation on TIMIT using 1 layer models. The mean squared error (MSE) is computes the
distance between the predicted and actual log-magnitudes of each predicted frame in the sequence.

Name val. MSE test MSE N # params

LSTM (Helfrich et al., 2018) 13.66 12.62 158 ≈200K
LSTM (Nguyen et al., 2020) 9.33 9.37 158 ≈200K
MomentumLSTM (Nguyen et al., 2020) 5.86 5.87 158 ≈200K
SRLSTM (Nguyen et al., 2020) 5.81 5.83 158 ≈200K
Full-capacity Unitary RNN (Wisdom et al., 2016) 14.41 14.45 256 ≈200K
Cayley RNN (Helfrich et al., 2018) 7.97 7.36 425 ≈200K
Exponential RNN (Lezcano-Casado & Martinez-Rubio, 2019) 5.52 5.48 425 ≈200K

Lipschitz RNN using Euler (ours) 2.95 2.82 256 ≈198K
Lipschitz RNN using RK2 (ours) 2.86 2.76 256 ≈198K

sequence, the learned hidden state is used to predict the class membership probability of the input
image. This task requires that the RNN has a sufficient long-term memory in order to discriminate
between different classes. A more challenging variation to this task is to operate on a fixed random
permutation of the input sequence.

Table 1 provides a summary of our results. The Lipschitz RNN, with hidden dimension of N = 128
and trained with the forward Euler and RK2 scheme, achieves 99.4% and 99.3% accuracy on the
ordered pixel-by-pixel MNIST task. For the permuted task, the model trained with forward Euler
achieves 96.3% accuracy, whereas the model trained with RK2 achieves 96.2% accuracy. Hence,
our Lipschitz recurrent unit outperforms state-of-the-art RNNs on both tasks and is competitive even
when a hidden dimension of N = 64 is used, however, it can be seen that a larger unit with more
capacity is advantageous for the permuted task. Our results show that we significantly outperform
the Antisymmetric RNN (Chang et al., 2019) on the ordered tasks, while using fewer weights. That
shows that the antisymmetric weight paramterization is limiting the expressivity of the recurrent
unit. The exponential RNN is the next most competitive model, yet this model requires a larger
hidden-to-hidden unit to perform well on the two considered tasks.

6.2 TIMIT

Next, we consider the TIMIT dataset (Garofolo, 1993) to study the capabilities of the Lipschitz
RNN for speech prediction using audio data. For our experiments, we used the publicly available
implementation of this task by Lezcano-Casado & Martinez-Rubio (2019). This implementation
applies the preprocessing steps suggested by Wisdom et al. (2016): (i) downsample each audio
sequence to 8kHz; (ii) process the downsampled sequences with a short-time Fourier transform
using a Hann window of 256 samples and a window hop of 128 samples; and (iii) normalize the log-
magnitude of the Fourier amplitudes. We obtain a set of frames that each have 129 complex-valued
Fourier amplitudes and the task is to predict the log-magnitude of future frames. To compare our
results with those of other models, we used the common train / validation / test split: 3690 utterances
from 462 speakers for training, 192 utterances for validation, and 400 utterances for testing.

Table 2 lists the results for the Lipschitz recurrent unit as well as for several benchmark models. It
can be seen that the Lipschitz RNN outperforms other state-of-the-art models for a fixed number of
parameters (≈ 200K). In particular, LSTMs do not perform well on this task, however, the recently
proposed momentum based LSTMs (Nguyen et al., 2020) have improvemed performance. Inter-
estingly, the RK2 scheme leads to a better performance since this scheme provides more accurate
approximations for the intermediate states.

7 ROBUSTNESS WITH RESPECT TO PERTURBATIONS

An important consideration beyond accuracy is robustness with respect to input and parameter
perturbations. We consider a Hessian-based analysis and noise-response analysis of different
continuous-time recurrent units and train the models on MNIST. Here, we reshape each MNIST
thumbnail into sequences of length 98 so that each input has dimension x ∈ R8. We consider this
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simpler problem so that all models obtain roughly the same training loss. Here we use stochastic
gradient decent (SGD) with momentum to train the models.

Eigenanalysis of the Hessian provides a tool for studying various aspects of neural net-
works (Hochreiter & Schmidhuber, 1997a; Sagun et al., 2017; Ghorbani et al., 2019). Here, we
study the Hessian H spectrum with respect to the model parameters of the recurrent unit using Py-
Hessian (Yao et al., 2019). The Hessian provides us with insights about the curvature of the loss
function L. This is because the Hessian is defined as the derivatives of the gradients, and thus the
Hessian eigenvalues describe the change in the gradient of L as we take an infinitesimal step into
a given direction. The eigenvectors span the (local) surface of the loss function at a given point,
and the corresponding eigenvalue determines the curvature in the direction of the eigenvectors. This
means that larger eigenvalues indicate a larger curvature, i.e., greater sensitivity, and the sign of the
eigenvalues determines whether the curvature will be positive or negative.

To demonstrate the advantage of the additional linear term and our weight parameterization, we
compare the Lipschitz RNN to two other continuous-time recurrent units. First, we consider a
simple neural ODE RNN (Rubanova et al., 2019) that takes the form

ḣ = tanh(Wh+ Ux+ b), y = Dh, (11)

where W is a simple hidden-to-hidden matrix. As a second model we consider the antisymmetric
RNN (Chang et al., 2019), that takes the same form as (11), but uses a skew-symmetric scheme to
parameterize the hidden-to-hidden matrix as W := (M −MT )−γI , where M is a trainable weight
matrix and γ is a tunable parameter.

Table 3 reports the largest eigenvalue λmax(H) and the trace of the Hessian tr(H).The largest eigen-
value being smaller indicates that our Lipschitz RNN found a flatter minimum, as compared to the
simple neural ODE and Antisymmetric RNN. It is known that such flat minima can be perturbed
without significantly changing the loss value (Hochreiter & Schmidhuber, 1997a). Table 3 also re-
ports the condition number κ(H) := λmax(H)

λmin(H) of the Hessian. The condition number κ(H) provides
a measure for the spread of the eigenvalues of the Hessian. It is known that first-order methods can
slow down in situations where κ is large (Bottou & Bousquet, 2008). The condition number and
trace of our Lipshitz RNN being smaller also indicates improved robustness properties.

Next, we study the sensitivity of the response yT at time T in terms of the test accuracy with re-
spect to a sequence of perturbed inputs {x̃1, . . . , x̃T } ∈ R8. We consider three different pertur-
bations. The results for the artificially constructed perturbations are presented in Table 3, showing
that the Lipschitz RNN is more resilient to adversarial perturbation. Here, we have considered
the projected gradient decent (PGD) (Goodfellow et al., 2014) method with l∞, and the DeepFool

Table 3: Summary of Hessian-based robustness metrics and resilience to adversarial attacks.

Model PGD DF2 DF∞ λmax(H) tr(H) κ(H)

Neural ODE RNN 88.5% 69.6% 44.5% 0.30 4.7 37.6
Antisymmetric RNN 84.7% 83.4% 44.3% 0.24 4.8 35.5
Lipschitz RNN (ours) 93.0% 89.2% 54.1% 0.14 3.1 23.2
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(a) White noise perturbations.
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Figure 2: Sensitivity with respect to different input perturbations.
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(a) Effect of the linear term.
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Figure 3: The ablation study examines the effect of the linear term Ah (in (a)) and the importance
of the Skew-Symmetric Decomposition for constructing the hidden-to-hidden matrices (in (b)).

method (Moosavi-Dezfooli et al., 2016) with l2 and l∞ norm ball perturbations. We construct the
adversarial examples with full access to the models, using 7 iterations. The step size for PGD is set
to 0.01.

Further, Figure 2 shows the results for white noise and salt and pepper noise. It can be seen that the
Lipschitz unit is less sensitive to input perturbations, as compared to the simple neural ODE RNN,
and the antisymmetric RNN. In addition, we also show the results for an unitary RNN here.

7.1 ABLATION STUDY

The performance of the Lipschitz recurrent unit is due to two main innovations: (i) the additional
linear term; and (ii) the scheme for constructing the hidden-to-hidden matrices A and W in Eq. (6).
Thus, we investigate the effect of both innovations, while keeping all other conditions fixed. More
concretely, we consider the following ablation recurrent unit

ht+1 = ht + α · ε ·Aht + ε · tanh(zt), with zt = Wht + Uxt + b, (12)

where α controls the effect of the linear hidden unit. Both A and W depend on the parameters β, γ.

Figure 3a studies the effect of the linear hidden unit, with β = 0.65 for the ordered task and β = 0.8
for the permuted task. In both cases we use γ = 0.001. It can be seen that the test accuracies of
both the ordered and permuted pixel-by-pixel MNIST tasks clearly depend on the linear hidden unit.
For α = 0, our models reduces to simple neural ODE recurrent units (Eq. (11)). The recurrent unit
degenerates for α > 1.6, since the external input is superimposed by the hidden state. Figure 3b
studies the effect of the hidden-to-hidden matrices with respect to β. It can be seen that β =
{0.65, 0.70} achieves peak performance for the ordered task, and β = {0.8, 0.85} does so for the
permuted task. Note that β = 1.0 recovers an skew-symmetric hidden-to-hidden matrix.

8 CONCLUSION

Viewing RNNs as continuous-time dynamical systems with input, we have proposed a new Lipschitz
recurrent unit that excels on a range of benchmark tasks. The special structure of the recurrent unit
allows us to obtain guarantees of global exponential stability using control theoretical arguments. In
turn, the insights from this analysis motivated the symmetric-skew decomposition scheme for con-
structing hidden-to-hidden matrices, which mitigates the vanishing and exploding gradients prob-
lem. Due to the nice stability properties of the Lipschitz recurrent unit, we also obtain a model that
is more robust with respect to input and parameter perturbations as compared to other continuous-
time units. This behavior is also reflected by the Hessian analysis of the model. We expect that the
improved robustness will make Lipschitz RNNs more reliable for sensitive applications. The theo-
retical results for our symmetric-skew decomposition of parameterizing hidden-to-hidden matrices
also directly extend to the convolutional setting. Future work will explore this extension and study
the potential advantages of these more parsimonious hidden-to-hidden matrices in combination with
our parameterization in practice. Research code is shared via github.com/erichson/LipschitzRNN.
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A PROOFS

A.1 PROOFS OF THEOREM 1 AND LEMMA 1

There are numerous ways that one can analyze the global stability of (4) through the related model
(5), many of which are discussed in Zhang et al. (2014). Instead, here we shall conduct a direct
approach and avoid appealing to diagonalization in order to obtain cleaner conditions, and a more
straightforward proof that readily applies in the time-inhomogeneous setting.

Our method of choice relies on Lyapunov arguments summarized in the following theorem, which
can be found as (Khalil, 2002, Theorem 4.10). For more details on related Lyapunov theory, see
also Hahn (1967); Sastry (2013).

Theorem 2. An equilibrium h∗ for ḣ = f(t, h) is globally exponentially stable if there exists a
continuously differentiable function V : [0,∞)×RN → [0,∞) such that for all h ∈ RN and t ≥ 0,

k1‖h− h∗‖α ≤ V (t, h) ≤ k2‖h− h∗‖α, and
∂V

∂t
+
∂V

∂h
≤ −k3‖h− h∗‖α,

for some constants k1, k2, k3, α > 0. and V̇ (h) < 0 for h 6= h∗.

To simplify matters, we shall choose a Lyapunov function V : RN → [0,∞) that is independent
of time. The most common type of Lyapunov function satisfying the conditions of Theorem 2 is of
the form V (h) = (h− h∗)TP (h− h∗), where P is a positive definite matrix. One need only show
that V̇ (h) ≤ −(h − h∗)TQ(h − h∗) for some other positive definite matrix Q to guarantee global
exponential stability.

The construction of the Lyapunov function V that satisfies the conditions of Theorem 2 is accom-
plished using the Kalman-Yakubovich-Popov lemma, which is a statement regarding strictly positive
real transfer functions. We use the following definition, equivalent to other standard definitions by
(Khalil, 2002, Lemma 6.1).
Definition 2. A function G : C→ CN×N is strictly positive real if it satisfies the following:

(i) The poles of G(s) have negative real parts.

(ii) G(iω) +G(−iω)T is positive definite for all ω ∈ R, where i =
√
−1.

(iii) Either G(∞) + G(∞)T is positive definite or it is positive semidefinite and
limω→∞ ω2MT [G(iω) +G(−iω)T ]M is positive definite for any N × (N − q) full-rank
matrix M such that MT [G(∞) +G(∞)T ]M = 0, where q = rank[G(∞) +G(∞)T ].

The following is presented in (Khalil, 2002, Lemma 6.3).
Lemma 3 (Kalman-Yakubovich-Popov). Let A,W : RN → RN be full-rank square matrices.
There exists a symmetric positive-definite matrix P and matrices L,U and a constant ε > 0 such
that

PA+ATP = −LTL− εP
P = LTU −WT

UTU = 0,

if and only if the transfer function G(s) = W (sI − A)−1 is strictly positive real. In this case, we
may take ε = 2µ, where µ > 0 is chosen so that G(s− µ) remains strictly positive real.

A shorter proof for case (a) is available to us through the (multivariable) circle criterion — the
following theorem is a corollary of (Khalil, 2002, Theorem 7.1) suitable for our purposes.
Theorem 3 (Circle Criterion). The system of differential equations

ḣ = Ah+ ψ(t,Wh)

is globally exponentially stable towards an equilibrium at the origin if ‖ψ(t, y)‖ ≤ M‖y‖ for
some M > 0 and Z(s) = [I + MG(s)][I −MG(s)]−1 is strictly positive real, where G(s) =
W (sI −A)−1.
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Both the Kalman-Yakubovich-Popov lemma and the circle criterion are classical results in control
theory, and are typically discussed in the setting of feedback systems (Khalil, 2002, Chapter 6, 7).
Our presentation here is less general than the complete formulation, but makes clearer the connection
to RNNs. With these tools, we state our proof of Theorem 1.

Proof of Theorem 1. To begin, we shall center the differential equation about the equilibrium. By
assumption, there exists h∗ such that Ah∗ = −σ(Wh∗ + Ux(t) + b). Letting h̄ = h− h∗, we find
that

˙̄h = Ah+ σ(Wh+ Ux(t) + b)

= Ah̄+Ah∗ + σ(Wh̄+Wh∗ + Ux(t) + b)

= Ah̄+ σ(Wh̄+Wh∗ + Ux(t) + b)− σ(Wh∗ + Ux(t) + b). (13)

It will suffice to show that (13) is globally exponentially stable at the origin.

Let us begin with case (a). The proof follows arguments analogous to (Khalil, 2002, Example 7.1).
Let G(s) = W (A− sI)−1 denote the transfer function for the system (13). Letting

ψ(t, x) = σ(x+Wh∗ + Ux(t) + b)− σ(Wh∗ + Ux(t) + b),

since σ is M -Lipschitz, we know that ‖ψ(t, x)‖ ≤ M‖x‖ for any x ∈ RN . Therefore, let Z(s) =
[I + MG(s)][I −MG(s)]−1 denote the transfer function in the circle criterion. Our objective is
to show that Z(s) is strictly positive real — by Theorem 3, this will guarantee the desired global
exponential stability of (4). First, we need to show that the poles of Z(s) have negative real parts.
This can only occur when G(s) itself has poles or I −MG(s) is singular. The former case occurs
precisely where A − sI is singular, which occurs when s is an eigenvalue of A. Since A + AT is
assumed to be negative definite, A must have eigenvalues with negative real part by Lemma 4, and
so the poles of G(s) also have negative real parts. The latter case is more difficult to treat. First,
since σmax(AB) ≤ σmax(A)σmax(B) and σmax(B−1) = σmin(B)−1,

σmax(G(s)) ≤ σmax(W )

σmin(A− sI)
. (14)

Therefore, we observe that

σmin(I −MG(s)) ≥ 1− σmax(MG(s))

≥ 1−Mσmax(G(s))

≥ 1− Mσmax(W )

σmin(A− sI)
.

From the Fan-Hoffman inequality (Bhatia, 2013, Proposition III.5.1), we have that

σmin(A− sI) = σmin(sI −A) ≥ λmin

(
<(s)I − A+AT

2

)
= <(s) + λmin

(
−A+AT

2

)
,

and since A+AT is negative definite, for any s with <(s) ≥ 0,

σmin(A− sI) ≥ <(s) + σmin

(
A+AT

2

)
≥ σmin(Asym). (15)

Since σmin(Asym) > Mσmax(W ), it follows that σmin(I − MG(s)) > 0 whenever s has non-
negative real part, and so the poles of Z(s) must have negative real parts.

Next, we need to show that Z(iω) + Z(−iω)T is positive definite for all ω ∈ R. Observe that

Z(iω) + Z(−iω)T = [I +MG(iω)][I −MG(iω)]−1 + [I −MG(−iω)T ]−1[I +MG(−iω)T ]

= 2[I −MG(−iω)T ]−1[I −M2G(−iω)TG(iω)][I −MG(iω)]−1.

From Sylvester’s law of inertia, we may infer that Z(iω) +Z(−iω)T is positive definite if and only
if I + Yω is positive definite, where Yω = M2G(−iω)TG(iω). If we can show that the eigenvalues
of Yω lie strictly within the unit circle, that is, σmax(Yω) < 1 for all ω ∈ R, then I + Yω will
necessarily be positive definite. From (14) and (15), we may verify that

sup
ω∈R

σmax(G(iω)) ≤ sup
ω∈R

σmax(W )

σmin(A− iωI)
≤ σmax(W )

σmin(Asym)
.
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Therefore,

σmax(Yω) ≤M2σmax(G(−iω)T )σmax(G(iω)) ≤
(
Mσmax(W )

σmin(Asym)

)2

< 1,

by assumption. Finally, since Z(∞) + Z(∞)T = 2I is positive definite, Z(s) is strictly positive
real and Theorem 3 applies.

Now, consider case (b). The proof proceeds in two steps. First, we verify that the transfer function
G(s) = W (A − sI)−1 satisfies the conditions of the Kalman-Yakubovich-Popov lemma. Then,
using the matrices P , L, U , and the constant ε inferred from the lemma, a Lyapunov function is
constructed which satisfies the conditions of Theorem 2, guaranteeing global exponential stability.
Once again, condition (i) of Lemma 3 is straightforward to verify: G(s) exhibits poles when s is
an eigenvalue of A, and so the poles of G(s) also have negative real parts. Furthermore, condition
(iii) is easily satisfied with M = I since G(∞) + G(∞)T = 0. To show that condition (ii) holds,
observe that for any ω ∈ R, letting A−T = (A−1)T for brevity,

G(iω) +G(−iω)T = W (A− iωI)−1 + (A+ iωI)−TWT

= (A+ iωI)−T [(A+ iωI)TW +WT (A− iωI)](A− iωI)−1.

Since the inner matrix factor is Hermitian, Sylvester’s law of inertia implies that G(iω) +G(−iω)T

is positive definite if and only if

Bω := (A+ iωI)TW +WT (A− iωI).

is positive definite. SinceBω is a Hermitian matrix, it has real eigenvalues, with minimal eigenvalue
given by the infimum of the Rayleigh quotient:

λmin(Bω) = inf
‖v‖=1

vTBωv

= inf
‖v‖=1

vT (ATW +WTA)v + iωvT (W −WT )v

= inf
‖v‖=1

vT (ATW +WTA)v

= λmin(ATW +WTA).

By assumption, ATW + WTA has strictly positive eigenvalues, and hence Bω and G(iω) +
G(−iω)T are positive definite. Therefore, Lemma 3 applies, and we obtain matrices P,L, U and a
constant ε > 0 with the corresponding properties.

Now we may construct our Lyapunov function V . Let v = Wh̄ and

u(t) = σ(v(t) +Wh∗ + Ux(t) + b)− σ(Wh∗ + Ux(t) + b),

so that ˙̄h = Ah̄ + u. Since σ is monotone non-decreasing, σ(x) − σ(y) ≥ 0 for any x ≥ y. This
implies that for each i = 1, . . . , N , vi and ui have the same sign. In particular, vTu ≥ 0. Now, let
V (h) = hTPh be our Lyapunov function, noting that V is independent of t. Taking the derivative
of the Lyapunov function over (13) and using the properties of P,L, U, ε,

V̇ (h̄) = h̄TP ˙̄h+ ˙̄hTPh̄

= h̄T (PA+ATP )h̄+ 2h̄TPu

= h̄T (−LTL− εP )h̄+ 2h̄T (LTU −WT )u

= −(Lh̄)T (Lh̄) + (Lh̄)TUu+ (Uu)T (Lh̄)− uTUTUu− 2vTu

= −(Lh̄+ Uu)T (Lh̄+ Uu)− εh̄TPh̄− 2vTu.

Since vTu ≥ 0 and (Lh̄ + Uu)T (Lh̄ + Uu) ≥ 0, it follows that V̇ (h̄) ≤ −ελmin(P )‖h‖2, and
hence global exponential stability follows from Theorem 2 and positive-definiteness of P .

To finish off discussion regarding the results from Sec. 3, we provide a quick proof of Lemma 1
using a simple diagonalization argument.
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Proof of Lemma 1. Since A is symmetric and real-valued, by (Horn & Johnson, 2012, Theorem
4.1.5), there exists an orthogonal matrix P and a real diagonal matrix D such that A = PDPT .
Letting z = PTh where h satisfies (4), since h = Pz, we see that

ż = PTPDPTh+ PTσ(Wh+ Ux+ b)

= Dz + PTσ(WPz + Ux+ b).

Therefore, z satisfies (5) with L = PT and V = WP , both of which are nonsingular by orthogo-
nality of P . By the same argument, for any equilibrium h∗, taking z∗ = PTh∗,

Dz∗ + PTσ(WPz∗ + Ux+ b) = PT (PDPTh∗ + σ(Wh∗ + Ux+ b))

= PT (Ah∗ + σ(Wh∗ + Ux+ b)) = 0,

implying that z∗ is an equilibrium of (5). Furthermore, since

‖z − z∗‖2 = (PTh− PTh∗)T (PTh− PTh∗)
= (h− h∗)TPPT (h− h∗) = ‖h− h∗‖2,

from orthogonality of P . Because every form of Lyapunov stability, both local and global, including
global exponential stability, depend only on the norm ‖h − h∗‖ (Khalil, 2002, Definitions 4.4 and
4.5), h∗ is stable under any of these forms if and only if z∗ is also stable.

We remark that the proof of Lemma 1 can extend to matrices A which have real eigenvalues and are
diagonalizable. These attributes are implied for symmetric matrices. However, they can be difficult
to ensure in practice for nonsymmetric matrices without imposing difficult structural constraints.

A.2 PROOF OF PROPOSITION 1

The proof of Proposition 1 relies on the following lemma, which we also have made use of several
times throughout this work.
Lemma 4. For any matrix A ∈ RN×N , the real parts of the eigenvalues <λi(A) are contained in
the interval [λmin(Asym), λmax(Asym)], where Asym = 1

2 (A+AT ).

Proof. Recall by the min-max theorem, for 〈u, v〉 = u∗v, where u∗ is the conjugate transpose of u,
the upper and lower eigenvalues of A+AT satisfy

λmin(A+AT ) = inf
v∈CN , ‖v‖=1

〈v, (A+AT )v〉 = inf
v∈CN , ‖v‖=1

〈v,Av〉+ 〈Av, v〉,

λmax(A+AT ) = sup
v∈CN , ‖v‖=1

〈v, (A+AT )v〉 = sup
v∈CN , ‖v‖=1

〈v,Av〉+ 〈Av, v〉.

Let λi(A) = u + iω be an eigenvalue of A with corresponding eigenvector v satisfying ‖v‖ = 1.
Since Av = (u+ iω)v,

〈v,Av〉+ 〈Av, v〉 = 〈v,Av〉+ 〈v,Av〉 = 2<〈v,Av〉 = 2u‖v‖2 = 2u.

Hence, λmin(A+AT ) ≤ u ≤ λmax(A+AT ).

Proof of Proposition 1. By construction, Ssym
β,γ = Sβ,γ + STβ,γ = (1− β)M sym − γI, and so from

Lemma 4, both the real parts <λi(Sβ,γ) of the eigenvalues of Sβ,γ as well as the eigenvalues of
Ssym
β,γ lie in the interval

[λmin(Ssym
β,γ ), λmax(Ssym

β,γ )] = [λmin((1− β)M sym − γI), λmax((1− β)M sym − γI)].

If β < 1, for any eigenvalue λ of Ssym
β,γ with corresponding eigenvector v,

(1− β)M symv − γv = λv, and so M symv =
λ+ γ

1− β
v

implying that λ+γ
1−β is an eigenvalue of M sym, and therefore contained in

[λmin(M sym), λmax(M sym)]. In particular, we find that
[λmin(Ssym

β,γ ), λmax(Ssym
β,γ )] ⊆ [(1− β)λmin(M sym)− γ, (1− β)λmax(M sym)], (16)

as required. Finally, if β = 1, then (16) still holds, since both intervals collapse to the single point
{−γ}.
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Figure 4: Empirical evaluation of the theoretical bounds (16). The red lines track the largest real
part and the blue lines track the smallest real part of the eigenvalues of the hidden-to-hidden matrix
Aβ . Each line corresponds to a different hidden-to-hidden matrix of dimension N = 64 in (a) and
N = 128 in (b). The dashed black lines indicate the theoretical bound for each trial.

Figure 4 illustrates the effect of β onto the eigenvalues of Aβ,γ with the largest and smallest real
parts. It can be seen, both empirically and theoretically, that the real part of the eigenvalues con-
verges towards zero as β tends towards one, i.e., we yield a skew-symmetric matrix with purely
imaginary eigenvalues in the limit. Thus, for a sufficiently large parameter β we yield a system that
approximately preserves an “energy” for a limited time-horizon

Rλi(Aβ,γ) ≈ 0, for i = 1, 2, . . . , N. (17)

A.3 PROOF OF LEMMA 2

First, it follows from Gronwall’s inequality that the norm of the final hidden state ‖h(T )‖ is bounded
uniformly in β. From Weyl’s inequalities and the definition of Aβ,γ ,

max
k
|∆δλk(Asym

β,γ )| ≤ ‖∆δA
sym
β,γ ‖ = (1− β)‖∆δM

sym
A ‖.

By the chain rule, for each element M ij
A of the matrix MA,

∂L

∂M ij
A

=
∂L

∂y(T )

∂y(T )

∂h(T )

∂h(T )

∂M ij
A

=
∂L

∂y(T )
D
∂h(T )

∂M ij
A

.

Now, for any collection of parameters θi,

d

dt

∑
i

∂h

∂θi
= A

∑
i

∂h

∂θi
+
∑
i

∂A

∂θi
h+ sech2 (Wh+ Ux+ b)

(
W
∑
i

∂h

∂θi
+
∑
i

∂W

∂θi
h

)
,

and from Gronwall’s inequality,∥∥∥∥∥∑
i

∂h(T )

∂θi

∥∥∥∥∥ ≤
(∥∥∥∥∥∑

i

∂Aβ,γ
∂θi

∥∥∥∥∥+

∥∥∥∥∥∑
i

∂Wβ,γ

∂θi

∥∥∥∥∥
)
‖h‖ e(‖Aβ,γ‖+‖Wβ,γ‖)T .

Since ∆δM
sym
A = δ ∂L

∂MA
+ δ

(
∂L
∂MA

)T
,

‖∆δM
sym
A ‖ ≤ ‖∆δM

sym
A ‖F

≤ δ

√√√√∑
i,j

(
∂L

∂M ij
A

+
∂L

∂M ij
A

)2

≤ δ
∥∥∥∥∂L∂y

∥∥∥∥ ‖D‖ ‖h‖ e(‖Aβ,γ‖+‖Wβ,γ‖)T

√√√√∑
i,j

∥∥∥∥∥∂Aβ,γ∂M ij
A

+
∂Aβ,γ

∂M ji
A

∥∥∥∥∥
2

.

Since ∂(MAh)

∂Mij
A

=
∂(MT

Ah)

∂Mji
A

, it follows that

∂Aβ,γ

∂M ij
A

+
∂Aβ,γ

∂M ji
A

= 2(1− β)

(
∂(MAh)

∂M ij
A

+
∂(MT

Ah)

∂M ji
A

)
,
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and so ‖∆δM
sym
A ‖ = O(δ(1−β)), and therefore maxk |∆δσk(Asym

β,γ )| = O(δ(1−β)2). Similarly,
for the matrix MW ,

max
k

∣∣∣∆δλk(W sym
β,γ )

∣∣∣ ≤ (1− β) ‖∆δM
sym
W ‖

≤ δ(1− β)

∥∥∥∥∂L∂y
∥∥∥∥ ‖D‖ ‖h‖ e(‖Aβ,γ‖+‖Wβ,γ‖)T

√√√√∑
i,j

∥∥∥∥∥∂Wβ,γ

∂M ij
W

+
∂Wβ,γ

∂M ji
W

∥∥∥∥∥
2

= 2δ(1− β)2

∥∥∥∥∂L∂y
∥∥∥∥ ‖D‖ ‖h‖ e(‖Aβ,γ‖+‖Wβ,γ‖)T

√√√√∑
i,j

(
∂(MWh)

∂M ij
W

+
∂(MT

Wh)

∂M ji
W

)2

,

and hence maxk |∆δλk(W sym
β,γ )| = O(δ(1− β)2).

In Figure 5, we plot the most positive real part of the eigenvalues of Aβ,γ and Wβ,γ during training
for the ordered MNIST task. As β increases, the eigenvalues change less during training, remaining
in the stability region provided by case (b) of Theorem 1 for more of the training time.
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Figure 5: The red lines track the largest real part of the eigenvalues of the hidden-to-hidden matrix
Aβ,γ and the blue lines track the largest real part of the eigenvalues of Wβ,γ . We show results for
two models trained on the ordered MNIST task with varying β.

B ADDITIONAL EXPERIMENTS

B.1 SENSITIVITY TO RANDOM INITIALIZATION FOR MNIST AND TIMIT

The hidden matrices are initialized by sampling weights from the normal distributionN (0, σ), where
σ is the variance, which can be treated as a tuning parameter. In our experiments we typically chose
a small σ; see the Table 8 for details. To show that the Lipschitz RNN is insensitive to random
initialization, we have trained each model with 10 different seeds. Table 4 shows the maximum,
average and minimum values obtained for each task. Note that higher values indicate better perfor-
mance on the ordered and permuted MNIST tasks, while lower values indicate better performance
on the TIMIT task.

B.2 ORDERED PIXEL-BY-PIXEL AND NOISE-PADDED CIFAR-10

The pixel-by-pixel CIFAR-10 benchmark problem that has recently been proposed by (Chang et al.,
2019). This task is similar to the pixel-by-pixel MNIST task, yet more challenging due to the
increased sequence length and the more difficult classification problem. Similar to MNIST, we
flatten the CIFAR-10 images to construct a sequence of length 1024 in scanline order, where each
element of the sequence consists of three pixels (one from each channel).

A variation of this problem is the noise-padded CIFAR-10 problem (Chang et al., 2019), where we
consider each row of an image as input at time step t. The rows from each channel are stacked so
that we obtain an input of dimension x ∈ R96. Then, after the 32 time step which process the 32
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Table 4: Sensitivity to random initialization evaluated over 10 runs.

Solver Task Minimum Average Maximum N # params

Euler ordered MNIST 98.9% 99.0% 99.0% 64 ≈9K
RK2 ordered MNIST 98.9% 99.0% 99.1% 64 ≈9K
Euler ordered MNIST 99.0% 99.2% 99.4% 128 ≈34K
RK2 ordered MNIST 98.9% 99.1% 99.3% 128 ≈34K

Euler permuted MNIST 93.5% 93.8% 94.2% 64 ≈9K
RK2 permuted MNIST 93.5% 93.9% 94.2% 64 ≈9K
Euler permuted MNIST 95.6% 95.9% 96.3% 128 ≈34K
RK2 permuted MNIST 95.4% 95.8% 96.2% 128 ≈34K

Euler TIMIT (test MSE) 2.82 2.98 3.10 256 ≈198K
RK2 TIMIT (test MSE) 2.76 2.81 2.84 256 ≈198K

Table 5: Evaluation accuracy on pixel-by-pixel CIFAR-10 and noise padded CIFAR-10.

Name ordered noise padded N # params

LSTM baseline by (Chang et al., 2019) 59.7% 11.6% 128 69K
Antisymmetric RNN (Chang et al., 2019) 58.7% 48.3% 256 36K
Incremental RNN (Kag et al., 2020) - 54.5% 128 -

Lipschitz RNN using Euler (ours) 60.5% 57.4% 128 34K/46K
Lipschitz RNN using RK2 (ours) 60.3% 57.3% 128 34K/46K

Lipschitz RNN using Euler (ours) 64.2% 59.0% 256 134K/158K
Lipschitz RNN using RK2 (ours) 64.2% 58.9% 256 134K/158K

row, we start to feed the recurrent unit with independent standard Gaussian noise for 968 time steps.
At the final point in T = 1000, we use the learned hidden state for classification. This problem is
challenging because only the first 32 time steps contain signals. Thus, the recurrent unit needs to
recall information from the beginning of the process.

Table 5 provides a summary of our results. Our Lipschitz recurrent unit outperforms both the in-
cremental RNN (Kag et al., 2020) and the antisymmetric RNN (Chang et al., 2019) by a significant
margin. This impressively demonstrates that the Lipschitz unit enables the stable propagation of
signals over long time horizons.

B.3 PENN TREE BANK (PTB)

B.3.1 CHARACTER LEVEL PREDICTION

Next, we consider a character level language modeling task using the Penn Treebank Corpus
(PTB) (Marcus et al., 1993). Specifically, this task studies how well a model can predict the next
character in a sequence of text. The dataset is composed of a train / validation / test set, where
5017K characters are used for training, 393K characters are used for validation and 442K characters
are used for testing. For our experiments, we used the publicly available implementation of this task
by Kerg et al. (2019), which computes the performance in terms of mean bits per character (BPC).

Table 6 shows the results for back-propagation through time (BPTT) over 150 and 300 time steps,
respectively. The Lipschitz RNN performs slightly better then the exponential RNN and the non-
normal RNN on this task. (Kerg et al., 2019) notes that orthogonal hidden-to-hidden matrices are
not particular well-suited for this task. Thus, it is not surprising that the Lipschitz unit has a small
advantage here.

For comparison, we have also tested the Antisymmetric RNN (Chang et al., 2019) on this task. The
performance of this unit is considerably weaker as compared to our Lipschitz unit. This suggests
that the Lipschitz RNN is more expressive and improves the propagation of meaningful signals over
longer time scales.
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Table 6: Evaluation accuracy on PTB for character-level prediction for different sequence lengths
T . The * indicate results that were adopted from Kerg et al. (2019).

Name TPTB = 150 TPTB = 300 # params

RNN baseline by (Arjovsky et al., 2016) 2.89 2.90 ≈1.32M
RNN-orth (Henaff et al., 2016) (*) 1.62 1.66 ≈1.32M
EURNN (Jing et al., 2017) (*) 1.61 1.62 ≈1.32M
Exponential RNN (Lezcano-Casado & Martinez-Rubio, 2019) (*) 1.49 1.52 ≈1.32M
Non-normal RNN (Kerg et al., 2019) 1.47 1.49 ≈1.32M
Antisymmteric RNN 1.60 1.64 ≈1.32M
Lipschitz RNN using Euler (ours) 1.43 1.46 ≈1.32M

B.3.2 WORD-LEVEL PREDICTION

In addition to character-level prediction, we also consider word-level prediction using the PTB cor-
pus. For comparison with other state-of-the-art units, we consider the setup by Kusupati et al. (2018),
who use a sequence length of 300. Table 7 shows results for back-propagation through time (BPTT)
over 300 time steps. The Lipschitz RNN performs slightly better than the other RNNs on this task
and the baseline LSTM for the test perplexity metric reported by Kusupati et al. (2018).

Table 7: Evaluation accuracy on PTB for word-level prediction. The * indicate results adopted from
Kusupati et al. (2018). Note that here the parameters for the hidden-to-hidden units are reported.

Name validation perplexity test perplexity N # params

LSTM (*) - 117.41 - 210K
SpectralRNN (*) - 130.20 - 24.8K
FastRNN (*) - 127.76 - 52.5K
FastGRNN-LSQ (*) - 115.92 - 52.5K
FastGRNN (*) - 116.11 - 52.5K
Incremental RNN (Kag et al., 2020) - 115.71 - 29.5K
Lipschitz RNN using Euler (ours) 124.55 115.36 160 50K

C TUNING PARAMETERS

For tuning we utilized a standard training procedure using a non-exhaustive random search within
the following plausible ranges for the our weight parameterization β = 0.65, 0.7, 0.75, 0.8, γ =
[0.001, 1.0]. For Adam we explored learning rates between 0.001 and 0.005, and for SGD we con-
sidered 0.1. For the step size we explored values in the range 0.001 to 1.0. We did not perform an
automated grid search and thus expect that the models can be further fine-tuned.

The tuning parameters for the different tasks that we have considered are summarized in Table 8.

For pixel-by-pixel MNIST and CIFAR-10, we use Adam for minimizing the objective. We train
all our models for 100 epochs, with scheduled learning rate decays at epochs {90}. We do not use
gradient clipping during training. Figure 6 shows the test accuracy curves for our Lipschitz RNN
for the ordered and permuted MNIST classification tasks.

For TIMIT we use Adam with default parameters for minimizing the objective. We also tried Adam
using betas (0.0, 0.9) as well as RMSprop with α = 0.9, however, Adam with default values worked
best in our experiments. We train the model for 1200 epochs without learning-rate decay. Similar
to Kerg et al. (2019) we train our model with gradient clipping, however, we observed that the
performance of our model is relatively insensitive to the clipping value.

For the character level prediction task, we use Adam with default parameters for minimizing the
objective, while we use RMSprop with α = 0.9 for the word level prediction task. We train the
model for 200 epochs for the character-level task, and for 500 epochs for the word-level task.
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Table 8: Tuning parameters used for our experimental results and the performance evaluated with
12 different seed values for the parameter initialization of the model.

Name N lr decay β γa γw ε σ

Ordered MNIST 64 0.003 0.1 0.75 0.001 0.001 0.03 0.1/64
Ordered MNIST 128 0.003 0.1 0.75 0.001 0.001 0.03 0.1/128

Permuted MNIST 64 0.0035 0.1 0.75 0.001 0.001 0.03 0.1/128
Permuted MNIST 128 0.0035 0.1 0.75 0.001 0.001 0.03 0.1/128

Ordered CIFAR10 256 0.1 0.2 0.65 0.001 0.001 0.01 6/256
Noise-padded CIFAR10 256 0.1 0.2 0.75 0.001 0.001 0.01 6/256

TIMIT 256 0.001 - 0.8 0.8 0.001 0.9 12/256

PTB character-level 150 750 0.005 - 0.8 0.5 0.001 0.1 12/256
PTB character-level 300 750 0.005 - 0.8 0.5 0.001 0.1 12/256

PTB word-level 160 0.1 - 0.8 0.9 0.001 0.01 10/256
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Figure 6: Test accuracy for the Lipschitz RNN for different classification tasks.
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