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Abstract—In this work we propose LASAGNE, a methodology
to learn locality and structure aware graph node embeddings in
an unsupervised way. In particular, we show that the performance
of existing random-walk based approaches depends strongly
on the structural properties of the graph, e.g., the size of the
graph, whether the graph has a flat or upward-sloping Network
Community Profile (NCP), whether the graph is expander-like,
whether the classes of interest are more k-core-like or more
peripheral, etc. For larger graphs with flat NCPs that are
strongly expander-like, existing methods lead to random walks
that expand rapidly, touching many dissimilar nodes, thereby
leading to lower-quality vector representations that are less useful
for downstream tasks. Rather than relying on global random
walks or neighbors within fixed hop distances, LASAGNE exploits
strongly local Approximate Personalized PageRank stationary
distributions to more precisely engineer local information into
node embeddings. This leads, in particular, to more meaningful
and more useful vector representations of nodes in poorly-
structured graphs. We show that LASAGNE leads to significant
improvement in downstream multi-label classification for larger
graphs with flat NCPs and that it is comparable for smaller
graphs with upward-sloping NCPs.

I. INTRODUCTION

Graphs are a common way to describe interactions between

entities. The entities are modeled as nodes, and the interactions

between pairs of entities are represented by edges between

nodes. Describing nodes of a graph as low dimensional vec-

tors has the advantage that many popular machine learning

algorithms can be automatically applied, and it is applicable

in many areas like visualization, link prediction, classification,

etc. Motivated by this, representation learning methods for

graph vertices, e.g., [24], [28], [12], [8], [17], [1], [30], [6],

focus on learning vectors to represent information in neigh-

borhoods around a node, e.g., nodes within a short geodesic

distance or nodes encountered in random walks starting at a

given node.

Somewhat more formally, let G = (V,E) be a graph, with
V = {v1, . . . vN} being the set of nodes and E = {e |e ∈
V × V } being the set of (undirected) edges. The general

goal is to find a vector embedding or latent representation for

each node vi such that the resulting set of embedded nodes

E = {f(vi)|vi ∈ V } in the d-dimensional vector space Rd still

reflects structural properties of G. For instance, such structural
properties could be the similarity of the neighborhoods of two

nodes vi and vj . The neighborhood N (v) of a node v is

defined as the set of nodes having the highest probabilities to

be visited by a random walk starting from node v, a geodesic
walk starting from v, or some other related process. This

means if N (vi) ≈ N (vj) holds in the original graph, it should
also hold that f(vi) ≈ f(vj) in Rd.

The intuition behind these representation learning methods

is that nodes having similar neighborhoods are similar to each

other, and thus one can use information in the neighbors of

a node to make predictions for a given node. Defining the

right neighborhood for each node, however, is a challenging

task. For example, in unsupervised multi-label classification,

the labels of the nodes define the underlying local structure for

a particular class, but often this does not necessarily overlap

significantly with the local structure defined by the edge con-

nectivity of the graph. Alternatively, realistic graphs typically

have large-scale properties that are very poorly structured with

respect to the behavior of random walks [20], [22], [21], [15],

[2], [3].

The basic assumption of random walk based methods and,

of course, the large body of very related methods based on

spectral graph theory is that nodes visited more often than

others by random walks starting from a particular node are

also more useful to describe that node in terms of downstream

prediction tasks. However, the problem with random walks

is that typically most of the graph can be reached within

a few steps, and thus information about where the random

walk began (which is the node for which these methods are

computing the embedding) is quickly lost.

This issue is particularly problematic for extremely sparse

graphs with upward-sloping Network Community Profiles

(NCPs) [20], [22], [21] and for flat NCPs [15] (expander-

like graphs) or deep k-cores [2], [3]. These properties are

ubiquitous among realistic social and information networks.

This suggests that, unless carefully engineered, embedding

methods based on random walks will perform sub-optimally,

since the random walks will mix rapidly, thereby degrading

the local information that one hopes they identify.

We explore these issues, and we present a method which

takes into account the local neighborhood structure of each

node in the graph individually. This leads to insight into how

to better exploit graph topology in poorly structured graphs,

and it can result in improved embedding vectors. In opposite

to random walk based methods, which are likely to get stuck

in dense areas of a graph, our approach furthermore better ex-
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ploits the local neighborhood structure for peripherical nodes

and finally the subsequent learning procedure is not biased

towards concentrating on optimizing the representations with

preference to nodes within deep k-cores.
Our method, LASAGNE, is an unsupervised algorithm for

learning locality and structure aware graph node embeddings.

It uses an Approximate Personalized PageRank vector [4] to

adapt and improve state-of-the-art methods for determining the

importance of the nodes in a graph from a specific node’s point

of view. The proposed methodology is easily parallelizable,

even on distributed environments, and it has even been shown

that the methods we adapt were applied to graphs with more

than billions of nodes on a single machine [27].

We evaluate our algorithm with multi-label classification

on several real-world datasets from different domains under

real-life conditions. Our evaluations show that our algorithm

achieves better results – especially for downstream machine

learning tasks whose objectives are sensitive to local infor-

mation – in terms of prediction accuracy than the state-of-

the-art methods. As has been described previously [22], [15],

[2], [3], and as we review in Section IV, graphs with flat

NCPs and many deep k-core nodes have local structure that
is particularly difficult to identify and exploit. Importantly,

our empirical results for this class of graphs are substantially

improved, relative to previous methods. This illustrates that,

by carefully engineering locally-biased information into node

embeddings, one can obtain improved results even for this

class of graphs, without sacrificing quality on other less

poorly-structured graphs.

We also illustrate several reasons why random walk based

methods do not perform as expected in practice, justifying our

interpretation that our method leads to improved results due

to the manner in which we engineer locality.

II. PRELIMINARIES

A. Related Work on Node Embedding
Most recent representation learning methods for graph ver-

tices construct vectors on the basis of local neighborhood

information [24], [28], [8], [12], [17], [1], [30], [6]. The

unsupervised DeepWalk algorithm learns latent representations

for graph vertices by using multiple random walks [24];

and it then applies the Skip-gram model, originating from

natural language processing, to the sequences of nodes given

by the random walks. Grover et al. presented the so-called

node2vec method [12]. Instead of using a random search

strategy, node2vec introduces two hyperparameters to use

second order random walks in order to bias the random walks

towards a particular search strategy. The GraRep algorithm

takes this a step further and computes a sequence of matrices,

random walk transition matrix taken to powers ranging from

1 to k, and then applies SVD to them [8]. Abu-El-Haija et

al. propose matrix factorization of random-walk occurrences

matrix with different approaches to determine the context

window size distribution [1]. The LINE algorithm learns two

different representations [28], the first of which encourages

two nodes to have close embeddings when they are directly

connected, and the second of which encourages two nodes to

be close when they share the same direct neighbors. The SDNE

method has similar objectives and additionally uses deep

architectures to capture non-linearities within graphs [30].

Variational Graph Auto-Encoders also force directly connected

vertices to have similar representations but use a different

architecture [17]. The method was originally proposed for

attributed graphs, but can also be applied to learn embed-

dings of non-attributed graphs. Graph2Gauss goes one step

further and ranks neighbors according to hop distance [6].

Representations of one-hop neighbors are more similar to the

node’s own representation than the representations of two-hop

neighbors, and two-hop representations are more similar than

three-hop representations and so on. The struc2vec method

attempts to learn similar representations for nodes having

similar role in the graph. Nodes with similar roles do not

have to be related locally [25]. Yang et al. proposed a semi-

supervised learning technique which uses labels for embedding

learning [31]. Further related approaches relying on supervised

learning methods, e.g., convolutional approaches like [16],

have been presented recently. Most of them can be summarized

in message passing neural network approaches as shown in

[10]. However, these approaches are supervised and hence not

further focussed in this work.

B. Embedding Words with Word2vec
Word2vec [23], [19] is a framework for learning word repre-

sentations in some vector space by simultaneously preserving

the words’ semantic meaning. The representations are learned

based on some contexts so that embeddings sharing similar

contexts end up close to each other in the learned space. The

embeddings are learned by maximizing the prediction proba-

bility of the contexts given the input embeddings, i.e., Skip-
gram model. Note, that the model assumes independence of

different contexts from each other for the same input. Negative
sampling is used to estimate the prediction probability during

the training. It maximizes the log probability of the input’s

context by simultaneously minimizing the prediction proba-

bility for k randomly selected contexts. Furthermore logistic

regression is used to estimate the prediction probability:

log σ(vTI vci) +
k∑

j=1

Ewj∼Pn(w)
log σ(−vTI vj).

For each word the model maintains two representations, em-

bedding and context representation. The vector vI denotes

the embedding representation of the input, vci is the context
representation and vj are representations of randomly selected
contexts. The stochastic gradient descent algorithm is used for

model optimization. An analysis of this word2vec method has
been provided by [11], reflecting a perspective similar to ours.

C. Approximate Personalized PageRank

The PageRank algorithm computes an “importance” score

for every node in some graph. Each of the scores corresponds

to the probability of a “random surfer” to visit a node given
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Algorithm 1 LASAGNE ApproximatePPR
Input: Node s, teleportation parameter α, Probability significance threshold δ
Output: APPR vector p

1: p = �0, r = �0, heap=heap()
2: r(s) = 1

3: heap.push((s,1))

4: sumProbUpdates = 0

5: lastDistrUpdate = 1

6: while lastDistrUpdate > δ do
7: u = heap.pop()

8: probUpdate = (2α/(1 + α))r(u)
9: if u �= s then
10: sumProbUpdates += probUpdate

11: lastDistrUpdate = probUpdate / sumProbUpdates

12: end if
13: p(u) = p(u) + probUpdate

14: neighResUpdate = ((1− α)/(1 + α))r(u)/d(u)
15: for v with (u,v)∈ E do
16: r(v) = r(v) + neighResUpdate

17: heap.update((v, r(v)/size(v.neighbours)))

18: end for
19: r(u) = 0

20: end while
21: p(s) = 0

22: p(s) = max(p)

23: return p

some start distribution. The PageRank vector is the solution

of the linear system:

pr(s) = αs+ (1− α)pr(s)W, (1)

with W = D−1A being the random walk transition matrix.

A is the adjacency matrix, D is the degree matrix having the

node degrees on the diagonal. The constant α is the telepor-
tation probability. The starting nodes or more specifically the

probability for each node to be the starting point of a random

walk are given by the vector s. A variant of PageRank is the

Personalized PageRank (PPR) whose result corresponds to the
result of the PageRank algorithm, where the probabilities in

the starting vector s are biased towards some set of nodes. The
push algorithm described in [14], [5], [4] is used to compute

an Approximate Personalized PageRank (APPR) vector in a

more efficient way if the start distribution vector s is sparse,

i.e., has probability mass on only a few nodes. The idea

behind the push algorithm is to propagate a node’s probability

locally and only if there is a sufficient amount of probability to

update. This leads to a sparse solution which means that only

relatively few nodes of the underlying graph are contained in

the resulting APPR vector.1

III. LASAGNE: LOCALITY AND STRUCTURE AWARE

GRAPH NODE EMBEDDING

The LASAGNE algorithm consists of two steps: a prepro-

cessing step, which computes the APPR vectors for each node;

and the learning step, which uses the APPR vectors to generate

training examples batchwise to learn the final embeddings.

A. Approximate Personalized PageRank for Node Embeddings
The computation of the APPR vectors for the node em-

beddings is described in Algorithm 1. There are two main

modifications compared to the original method in [4]. The

1We emphasize that this APPR method has been remarkably successful at
characterizing the local and global structural properties in large social and
information networks [20], [22], [21], [15], suggesting (as we show here) that
it can also be used for improved learning on these graphs.

first is the assignment of probability mass to the seed node in
its own APPR vector, and the second is a modification of the

stopping criterion.2

The first modification allows the seed node to be considered

as its own neighbor during sampling the training examples.

Consequently, the seed node is considered to be similar to

other nodes that have the seed node among their neighbors,

which in turn leads to higher proximity of such nodes in the

embedded space. To avoid each node being considered to be

the most important member of its own neighborhood (and thus

being overrepresented during the training phase), we replace

the node’s own entry in its APPR vector with the second

highest probability, c.f., line 21 - 22.

The second modification is an adaptation of the stopping

criterion since our main motivation is not to approximate the

PPR vector but instead to keep only the relevant neighbors
that represent a meaningful context for the seed node. The idea

is to avoid considering neighbors which are visited relatively

rarely by the random walk.3 Thus, our algorithm stops when

the new node, which can be added to the APPR vector during

the next iteration has a low chance to be visited by the random

walk compared to the overall probability of previously added

nodes.

The running time for the algorithm depends on the proba-

bility significance threshold δ. The number of updates of the
APPR vector is at most 1

δ . Given that the amount of probability

moved in subsequent steps is always lower, we can assume it to

be the same. Therefore it holds that sumProbUpdates = n ·
probUpdate, with n being the number of previous steps. Given

that lastDistrUpdate = probUpdate/sumProbUpdates, it
follows that lastDistrUpdate ≤ 1

n . The overall complexity

of this procedure is O(Nδ ) for processing entire graphs with

N denoting the number of nodes in the graph.

B. Learning of Embeddings From Approximated Personalized
PageRank Vector
Each training instance used during the learning step is a pair

of nodes. We call one of them seed node and the other one

neighbor node. The embedding is learned for the seed node
while the neighbor node is used as context. The embeddings

are learned analogously to the Skip-gram model described in

Section II-B. For each training pair the probability of the

neighbor node is maximized given the seed node.
To generate the training pairs, we sample the neighbor

nodes based on the APPR vector of the corresponding seed
node. This means that for each seed node, we consider only
those nodes as context which have some probability mass

in the seed node’s APPR vector, i.e., relevant nodes. Each

neighbor node is sampled with the probability proportionally

to its entry in the seed’s APPR vector. Neighbor nodes are

sampled with replacement and the probability to be sampled

is equal to the relative ratio of probability mass each neighbor

2These modifications seem minor, but getting them right is extremely
important for obtaining a robust and successful method.

3These nodes tend to be “far from” the node of interest; but, in total, they
may absorb a significant large amount of the overall probability mass.
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node contributes to the entire APPR vector. With this sampling

strategy training data can be generated on request and the

number of training examples per node can be easily controlled,

and it leads to higher quality training data. Using the alias

method [18], the sampling setup costs are O(k), where k is

the size of the APPR vector and the costs to sample a neighbor
are O(1). Our approach scales linearly with number of nodes
and can easily be parallelized.

IV. EMPIRICAL RESULTS

We have evaluated the node embeddings produced by the

LASAGNE algorithm by performing prediction tasks which

aim at inferring node labels in multi-label classification. We

have used a variety of real-world graph datasets from various

domains, i.e., a biological network, social networks, and a col-

laboration network. Here, we compare our results against the

state-of-the-art techniques DeepWalk, node2vec and GraRep.
Note that we omit a comparison with the LINE since it is

already shown in [12] and [8] that the results produced by

node2vec and GraRep are superior to the ones produced by

LINE. We have implemented GraRep using sparse matrix

operations. Despite of this, we were not able to run it for

larger graphs due to out of memory errors. We tested on a

machine with 387GB RAM.

A. Datasets
We consider the following graph datasets from various

domains with different sizes and number of classes.

Protein-Protein Interactions (PPI) [7]: This is a subgraph of

the PPI network for Homo Sapiens which is also used in [12].

The nodes represent proteins, edges represent the existence of

interactions between the corresponding proteins and the labels

represent biological states.

BlogCatalog [29]: This is a social network graph where each

node corresponds to a user and edges represent the friendship

relationships between bloggers. The interest groups provide

the labels. This network is used in both [12] and [24].

IMDb Germany: This dataset is created from the IMDb movie

database [13]. Each node represents an actor/actress who

played in a german movie. Edges connect actors/actresses that

were in a cast together and the node labels represent the genres

that the corresponding actor/actress played.

Flickr [29]: The Flickr network is a social network graph with
each node describing a user and the links represent friendships.

The labels stem from different interest groups. This dataset is

also used in [24].

Table I summarizes some statistics of these networks.

The selection of networks captures different structures, and

we use Network Community Profile (NCP) plots from [20],

[22], [21], [15] to analyze them. The NCP depicts the best

“score” for different clusters in the graph as a function of

their size. The cluster “score” is defined by conductance, i.e.,
the ratio of edges going out of a cluster to cluster internal

edges. As can be seen in Figure 1, the IMDb Germany

network has quite clear clusters of about 50 to 100 nodes. For

each outgoing edge in the small clusters with near-minimum

conductance value, there are about 800 internal edges. The

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Fig. 1. NCP plots for used datasets. Red, solid lines sketch the community
structure of the original graph. (Down represents better cluster quality.) Blue,
dashed lines plot the structure of randomly rewired networks.

three other datasets are not well separable.4 The best cluster

in the Flickr graph has a size of about 5000 nodes and only

about 50 internal edges for each outgoing edge.

B. Experimental Setup
Like previous works, we use multi-label classification to

evaluate the quality of the node embeddings. We evaluate

LASAGNE exactly as in [24], [28], [12]. However, as discussed

in the following we think that this evaluation method has a

major drawback: it is hardly applicable in real world scenarios.

Thus, we also propose a new method for evaluating node

embeddings that also relies on multi-label classification but

is far closer to a real-life application scenario than the method

of [24], [28], [12].

We propose the following modified evaluation method

MOREREALISTICMETHOD that reflects better the real world

classification scenario where no a priori knowledge is given.

Generally, we also train logistic classifiers to predict the labels

of the test instances. In contrast to the method in [24], [28],

[12], we suggest to use a 10-fold stratified cross-validation

for each one-vs-rest classifier. Using such stratified sampling

is a common way to split the data into training and test set

by coincidently preserving the ratio of subpopulations within

the data. In this way, the prediction accuracy does not suffer

from classes that may not appear in either the training or the

test set due to small numbers of positive examples. Note that

the former evaluation method requires to know the number of

labels k for each test instance at inference time. Instead of

ranking the probabilities and taking the labels corresponding

to the top k probabilities, we make the decision of labeling

the test instance based on the label probabilities directly, i.e.,

if the probability of a label l is at least 50% we consider l
as positive. This way, we get rid of using prior knowledge to

determine the positive predicted labels.

We use micro-F1 and macro-F1 as evaluation metrics.

Macro-F1 scores build the unweighted average of F1 scores for

4In particular, the cluster quality is only slightly better than that of a
randomly-rewired graph; LASAGNE does particularly well for these graphs.
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Network |V | |E| |L| d C D D kmax Pkmax Description
PPI 3,890 38,739 50 9.959 0.146 8 3.1 30 0.028 biological network
BlogCatalog 10,312 333,983 39 32.388 0.463 5 2.4 115 0.043 social network
IMDb Germany 32,732 1,175,364 27 35.909 0.870 11 3.5 102 0.009 collaboration network
Flickr 80,513 5,899,882 195 73.279 0.165 6 2.9 551 0.018 social network

TABLE I
STATISTICS OF NETWORKS USED FOR MULTI-LABEL CLASSIFICATION: NUMBER OF NODES |V |, NUMBER OF EDGES |E|, NUMBER OF

CLASSES |L|, AVERAGE DEGREE d, AVERAGE CLUSTERING COEFFICIENT C , DIAMETER D AND AVERAGE SHORTEST PATH LENGTH D,
MAXIMUM k OF k-CORES kmax , FRACTION Pkmax OF NODES IN kmax k-CORE

positive classes over all classifiers. Micro-F1 scores build the

global average based on precision and recall by treating each

test example equally. We primarily focus the discussion on the

macro-F1 metric, but we also report the micro-F1 scores.

A more precise documentation of the experiments, including

experiments on link prediction where LASAGNE performs

comparable to previous methods can be found in [9].

C. Results of the MoreRealisticMethod
The results reported in this section were obtained by using

the parameter settings suggested in [24]. We use γ = 80 as the
length for the random walks performed during the DeepWalk
and node2vec procedures.5 The number of random walks is

|V |·r, with |V | being the number of vertices and r = 10 being
the number of random walks starting from each node in the

graph. The size of the window which slides over each random

walk sequence extends to at most w = 10 in each direction

of the currently regarded vertex and the dimensionality of the

node embeddings is set to d = 128. To get a fair comparison

between our method and the random walk based methods, it

is crucial to use similarly sized training sets for the learning

procedure since larger training sets typically tend to result in

higher prediction accuracy for the test phase. Thus we sample

|T | = |V | ·
[
γ · r · 2 · E(U(1, w))− 2 ·

w∑
i=1

E(U(1, i))
]

training examples which corresponds to the expected num-

ber of training instances generated by the random walk ap-

proaches. The notation E(U(x, y)) denotes the expected value
of a uniform distribution U in the interval [x, y].
For node2vec we follow the suggestions of the authors and

perform full grid searches over the set {0.25, 0.5, 1.0, 2.0, 4.0}
for both hyperparameters. The GraRep hyperparameter k is

ranged from 1 to 6. For LASAGNE we used σ = 1× 10−4 as

significance threshold for probability updates in all empirical

evaluations. We show results for different values of teleporta-

tion parameter α. The learning costs for our and random walk

methods are equal. The same applies for sampling or random

walks simulations. The only difference is the preprocessing.

The LASAGNE preprocessing for the largest dataset we used

in our evaluation took few hours on one core without paral-

lelization. In contrast, the node2vec preprocessing took several

days. The DeepWalk algorithm does not have a preprocessing

step. For all datasets and all approaches we demonstrate the

results when we used 90% of the data for training and the

remaining data as test set for the classification tasks. We

adapted the computation of the Approximated Personalized

5If diameter D = 5, 6, 8, 11, then walk length γ = 80 is quite long.

PageRank implemented in the Ligra framework [26] for our

implementation. The learning procedure for the embeddings

is implemented in TensorFlow.
For all networks and methods the macro-F1 scores are

reported in Figure 2. For the PPI network, the scores are

consistently over 8% for all α values, while the random walk

approaches reach scores between 7% and 7.5%. The best

node2vec setting is p = 4 and q = 1, which corresponds to a

rather low willingness to allow the random walks to return to

already visited nodes. This meets the outcomes of LASAGNE,

which are best for small α values; the method performed best

for α = 0.2. The generally low prediction quality for all

approaches, and especially the bad score for GraRep (best

score for k = 4), may indicate that the distribution of class

labels do not follow any representative, local patterns and

hence are hardly graspable within local structures.

The results for BlogCatalog are even more clear. LASAGNE

improves the best competitor by approximately 23%. As can

be seen in Figure 2(b) the performance of LASAGNE decreases

almost monotonically with increasing values for α. The best
score is achieved for α = 0.001. This means that neighbors
which describe a node best are not extremely local. The best

node2vec setting, i.e., p = 0.25 and q = 0.25, confirms this
result. Recalling Figure 2 from [12], the 2nd order random

walks are biased towards leaving the neighborhoods.

For IMDb Germany, the best result of LASAGNE, that is for

α = 0.99, is only slightly better than the best results achieved
with node2vec. Since LASAGNE is, as well as node2vec with

parameter setting p = 0.25, q = 4, able to stay extremely local,
both approaches reach high prediction scores on this dataset

where labels are concentrated in low conductance clusters.

Using the Flickr network, LASAGNE reaches the highest

improvement over the other random walk based methods, i.e.,

more than 33% with α = 0.001. The results behave similar to
the ones for the BlogCatalog data, but in contrast the scores

remain more stable. Indeed, the gap between the smallest and

largest selected α values is only 1%. As mentioned previously,

we could not run GraRep on Flickr, because of its size.

Figure 3 shows the micro-F1 scores achieved with the same

settings as used for the macro-F1 score evaluation. The results

show that the micro scores are higher than the macro scores

for all datasets except for IMDb Germany. Also the relative

differences between the results for LASAGNE and the best

competitor are higher for the macro-F1 scores than for the

micro-F1 scores. This is due to the micro score metric effec-

tively gives higher weight to larger classes. Since LASAGNE

performs better for smaller classes which, except for IMDb

Germany, are the vast majority of classes, the macro-F1 scores
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(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Fig. 2. Macro-F1 scores achieved by doing multi-label classification as downstream task for the considered representation learning techniques. LASAGNE
scores are presented for different values of parameter α.

(a) PPI (b) BlogCatalog

(c) IMDb Germany (d) Flickr

Fig. 3. Micro-F1 scores achieved by doing multi-label classification as downstream task for the considered representation learning techniques. LASAGNE
scores are presented for different values of parameter α.

take benefit due to weighting each class equally independent

from the class sizes. Recalling that the micro-F1 considers

the sizes of the classes, the performance improvements for

this score are reasoned by the fact that LASAGNE performs

better on smaller classes and similarly good to random walk

based methodologies on larger classes.

An important summary point from the Figures 2 and 3 is

that, in the case of graphs without even small-sized good

conductance clusters, the performance of LASAGNE clearly

overcomes the performance from random walk based meth-

ods. On the other hand, for graphs that have an upward-

sloping NCP and thus small-sized good conductance clusters,

LASAGNE shows similar prediction quality to random walk

based methods. In particular, while we are never worse than

previous methods, we observe the weakest improvement for

IMDb Germany, which is consistent with Figure 1(c), where

the upward-sloping NCP suggests relatively good local struc-

ture, and we observe the strongest improvement for the Flickr

network, which is consistent with Figures 1(d), which indicate

a relatively flat NCP, and many deep k-core nodes (about one
tenth of nodes are in k-cores with k > 150).
D. Results of the former evaluation method
Tables II and III show the macro-F1 scores, resp. the micro-

F1 scores when applying the evaluation proposed by [24] and

using 90% of the node representations for training. While

GraRep shows the best results on PPI, the performance of
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Algorithm
Dataset

PPI BlogCatalog IMDb Ger Flickr
DeepWalk 0.1747±.0133 0.2221±.0119 0.6868±.0159 0.2104±.0049
node2vec 0.1930±.0192 0.2418±.0123 0.6996±.0070 0.2349±.0039
GraRep 0.1991±.0148 0.2231±.0127 0.5770±.0177 -
LASAGNE 0.1835±.0116 0.2843±.0116 0.7042±.0252 0.2930±.0061

TABLE II
MACRO-F1 SCORES FOR MULTI-LABEL CLASSIFICATION WHEN

USING FORMER EVALUATION METHOD AND 90% OF INSTANCES

FOR TRAINING.

Algorithm
Dataset

PPI BlogCatalog IMDb Ger Flickr
DeepWalk 0.2206±.0142 0.3889±.0093 0.7043±.0055 0.3762±.0038
node2vec 0.2293±.0185 0.3963±.0093 0.7060±.0047 0.3841±.0037
GraRep 0.2487±.0152 0.3913±.0149 0.6648±.0076 -
LASAGNE 0.2216±.0091 0.4116±.0129 0.6967±.0045 0.4078±.0048

TABLE III
MICRO-F1 SCORES FOR MULTI-LABEL CLASSIFICATION WHEN

USING FORMER EVALUATION METHOD AND 90% OF INSTANCES

FOR TRAINING.

the LASAGNE embeddings clearly overcomes the competitors

when testing on the considered social networks, similar to the

results in our more realistic (and more refined) evaluation.

E. Explaining our improved empirical results
LASAGNE improves previous methods by considering more

finely the structure of the graph around each node. In partic-

ular, we compute local node neighborhoods by touching only

the relevant neighbors of each node, which leaves the major

part of the graph unconsidered. For the node a we call b its
relevant neighbor if b has high probability to be visited by a

random walk with restart starting from a.

1) Locality for nodes with different degrees: Due to using

random walks, existing methods fail to adapt to the local

graph structure, even when using biased random walks as in

[12]. When random walks are used to obtain neighbors, nodes

having very low probability to be visited also appear among

the considered neighbors. Nodes having high probabilities to

be visited appear more frequently. However, the cumulative

probability of low probability nodes may still be significant.

The wider the window is, the more far away neighbors end

up in it. However, smaller window sizes will not help to

tackle the problem with low probability neighbors, since the

nodes in sparse graph areas may have distant neighbors with

high probability to be visited by random walk. Grover et al.

[12] even show, that they achieve better results with larger

window sizes. However, since the same window size is used

for all nodes in the same graph, the distributions of hop

distances of nodes to their neighbors are similar and barely

adapt to local node neighborhoods. To confirm this intuition,

we computed the hop distances to the nodes considered as

context by node2vec and DeepWalk algorithms for different

datasets. For all of them, we observed similar behavior, i.e.,

the level of locality was barely adapted with increasing node

degree, c.f., Figure 4(a). Note that the node2vec parameters

were set to p = 0.25 and q = 4.0, which constrains the

random walks to capture very local neighborhoods (but in a

non-adaptive manner). The distributions of hop distances to the

neighbors found by the LASAGNE algorithm are very similar

per dataset; an example is depicted in Figure 4(b). In contrast

(a) node2vec (b) LASAGNE

Fig. 4. Distributions of hop distances to neighbors from nodes with different
degrees. These plots visualize the ability to adjust to differently dense areas
in the graph for node2vec (left, not well) and LASAGNE (right, very well).

to the previous methods, LASAGNE adapts to the local node

environment, i.e., for the high degree nodes only the neighbors

with the highest probability to be visited by the random walk

are considered as context. Consequently, we observe a clear

tendency that the preference to local neighborhoods increases

with increasing node degree (which is known to correlate

with poor NCP clusters and deep k cores [22], [15], [2]).

The LINE algorithm considers only one-hop neighbors, and

the assumption that only direct neighbors are relevant is very

strong, especially for low degree nodes.
2) Locality for more versus less peripheral classes: Large

graphs with flat NCP, especially with large and highly con-

nected regions (with large deep k-cores) are notably affected

by random walk problems. For graphs with flat NCPs, the

connectivity among nodes’ relevant neighbors is not much

stronger than to the rest of the graph. Furthermore, the larger

and deeper are graphs k-cores, the more time random walks

will spend in them. This affects the neighborhoods obtained

by random walks for most nodes, since most parts of even

large graphs can be reached within few steps. Therefore, even

if dense parts of the graph have high probabilities to be visited

by global random walks, if the probabilities of single nodes in

these components are low, then nodes from these components

are not considered by LASAGNE as neighbors. Consequently,

for the nodes from large deep k-cores, the neighborhood will

be restricted to the most relevant core neighbors. Therefore,

our method adapts to the structure of local neighborhood.
To confirm this intuition, we used the Flickr network, a

graph with flat NCP. As can be seen in Table I, the graph

has large deep k-cores, e.g., the largest k-core has degree

over 550. We expect random walk based methods to perform

poorly on such a graph, especially if the similarity to neighbors

outside of large deep k-cores is important for the downstream
task. As multi-label classification is a common downstream

task, Figure 5 provides empirical evidence that LASAGNE’s

embeddings overcome performance issues of previous embed-

dings. In Figure 5, each line stands for a class, and the color

depicts the classification improvement of LASAGNE over the

best previous method. Additionally, each plotted line shows

the fraction of nodes with the corresponding class label in

each k-core, relative to the fraction of nodes with that label in
the entire graph. When the fraction of class labels is zero,

the line breaks. It can be clearly seen from the plot that

LASAGNE achieves the best improvement for classes with

members outside of large k-cores with high k, i.e., for classes
that are more peripheral.
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Fig. 5. Each line depicts the class label distribution in k-cores with
performance information for one class in the Flickr data. X-axis: k-core; Y-
axis: log scaled proportion between fraction of class label i within the k-core,
i.e., F k−core

i , and the fraction of this class label within the entire graph G,
i.e., FG

i ; color code: absolute difference in F1 score between LASAGNE and
the best random walk based method. For ease of presentation, the plot shows
only the 20 classes where LASAGNE reached the highest improvement as well
as the 20 classes where the improvement was smallest.

3) Distribution of training examples per node: Another

shortcoming of existing random walk based methods is the

distribution of training examples per node that they generate.

Since high-degree nodes are visited more often by random

walks, there are more training examples for them. Since

small-degree nodes are visited much less often, they are

underrepresented during training. Due to the way in which

locality is engineered into LASAGNE, it solves this problem.

V. CONCLUSION

We have proposed LASAGNE, an unsupervised learning al-

gorithm to compute embeddings for the nodes of a graph. The

basic idea of LASAGNE is to use an Approximate Personalized
PageRank algorithm to bias random walks more strongly to the

local neighborhood of each node; and, thus, the embedding

for a given node is more finely tuned to the local graph

structure around that node than the embeddings from previous

similar methods. Our method performs particularly well for

larger graphs that are not well-structured, e.g., that have flat

NCPs and/or have many nodes in deep k-cores. Our empirical
evaluation has shown that our embeddings achieve superior

prediction accuracy over competitors when used for multi-

label classification in several different real-world networks.

Our empirical results also provide evidence justifying the

reason for this improvement. While LASAGNE is primarily an

exploratory tool, if one wants to use it in a more automated

manner, then an important question will be how to automate

the averaging of the APPR vectors over different values of the

locality parameter.
ACKNOWLEDGEMENTS

This work was partially supported by Siemens, the Army

Research Office, the Defense Advanced Research Projects

Agency, and it was developed in cooperation with the Berkeley

Institute of Data Science.

REFERENCES

[1] Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., Alemi, A.: Watch your
step: Learning graph embeddings through attention. arXiv preprint
arXiv:1710.09599 (2017)

[2] Adcock, A.B., Sullivan, B.D., Mahoney, M.W.: Tree-like structure in
large social and information networks. In: Proc. of IEEE ICDM. pp.
1–10 (2013)

[3] Adcock, A.B., Sullivan, B.D., Mahoney, M.W.: Tree decompositions and
social graphs. Internet Mathematics 12(5), 315–361 (2016)

[4] Andersen, R., Chung, F., Lang, K.: Local graph partitioning using
pagerank vectors. In: Proc. of IEEE FOCS. pp. 475–486. IEEE (2006)

[5] Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank
computing. Internet Mathematics 3(1), 41–62 (2006)
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