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Abstract

We present and analyze a sampling algorithm for the
basic linear-algebraic problem of /5 regression. The
{5 regression (or least-squares fit) problem takes as
input a matrix A € R**? (where we assume n >
d) and a target vector b € R™, and it returns as
output £ = ming,ega |b— Az|,. Also of interest is
Topt = ATb, where AT is the Moore-Penrose generalized
inverse, which is the minimum-length vector achieving
the minimum. Our algorithm randomly samples r rows
from the matrix A and vector b to construct an induced
{5 regression problem with many fewer rows, but with
the same number of columns. A crucial feature of
the algorithm is the nonuniform sampling probabilities.
These probabilities depend in a sophisticated manner
on the lengths, i.e., the Euclidean norms, of the rows
of the left singular vectors of A and the manner in
which b lies in the complement of the column space of
A. Under appropriate assumptions, we show relative
error approximations for both Z and z,,¢. Applications
of this sampling methodology are briefly discussed.

1 Introduction

One of the common paradigms in computing with large
data sets is the use of “sampling.” In this approach, one
uses only a small portion of the data, and one performs
computations of interest for the full dataset by using
that small portion as a surrogate. For many problems it
is provably impossible to compute accurately the answer
without touching each of the input elements at least
once [13]. Thus, sampling methods typically produce an
approximation to the quantity of interest. A question
arises: for what problems do sampling methods provide
accurate estimates?

In this paper, we study sampling algorithms for the
basic linear-algebraic problem of ¢» regression. This
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is one of the most fundamental regression problems,
and it has found many applications in mathematics
and statistical data analysis. Recall the /; regression
(or least-squares fit) problem: given as input a matrix
A € R"*? and a target vector b € R®, compute

(1.1) Z = min |b— Azx|,.

z€ER?

Also of interest is the computation of vectors that
achieve the minimum Z. If n > d there are more con-
straints than variables and the problem is an overcon-
strained least-squares fit problem; in this case, there
does not in general exist a vector x such that Az = b.
It is well-known that the minimum-length vector among
those minimizing |b — Az|, is

(12) Topt = A+b,

where AT denotes the Moore-Penrose generalized in-
verse of the matrix A. The classical algorithm for solv-
ing the /5 regression problem takes time O(nd?), assum-
ing, as we will, that n > d [10].

It is well-known that certain linear-algebraic prob-
lems depend quite sensitively on perturbations of indi-
vidual matrix entries, while other problems are much
more robust to perturbations [17]. Thus, a fundamen-
tal algorithmic question is: can the input to a linear-
algebraic problem like the ¢, regression problem even
be represented by a smaller-sized input for the purpose
of accurately approximating the £, regression problem?
A related and no less important algorithmic question is:
can the smaller-sized sample be found efficiently?

The main result of this paper is an elaborate sam-
pling algorithm that represents a matrix by a small
(nearly constant) number of rows so that the £5 regres-
sion problem can be solved to accuracy 1 + € for any
€ > 0. To our knowledge, this sampling method yields
the first known sublinear representation (or sample) for
the accurate approximation of the f» regression prob-
lem. More precisely, we present and analyze an algo-
rithm that constructs and solves an induced subprob-
lem of the ¢5 regression problem of Equations (1.1) and
(1.2). Let DST A be the r x d matrix consisting of the
sampled and appropriately rescaled rows of the original
matrix A, and let DS”b be the r-vector consisting of



the sampled and appropriately rescaled rows (i.e., ele-
ments) of b. (This notation is defined more precisely in
Section 2.) Then consider the problem

Z = min

1.3
( ) z€ER?

|DS"b - DS" Az, .

The minimum-length vector Z,,x € R? among those
that achieve the minimum value Z in the sampled £,
regression problem of Equation (1.3) is

(1.4) Fopt = (DSTA) " DS,

Since we will sample a number of rows r < n of the
original problem, we will compute (1.4), and thus (1.3),
exactly. Our main theorem, Theorem 3.1, states that
under appropriate assumptions on the original problem
and on the sampling probabilities, the computed quanti-
ties Z and Zopt Will provide very accurate relative error
approximations to the exact solution Z and the optimal
vector T,y Since r(= O(d?)) will always be chosen to
be at least d, solving the sampled /5 regression problem
will take O(rd?) time, i.e., time polynomial in just d
and independent of n.

The main technical contribution of this paper has
to do with the nonuniform probabilities that we use for
sampling, which depend in a sensitive manner on the
Singular Value Decomposition of A, and not on A itself.
Existing methods employ sampling probabilities that
depend on the Euclidean norms of rows and/or columns
of the matrix [8, 9, 4, 5, 6, 15, 7, 3] or on the magnitudes
of the individual elements [1]. Although these methods
are appropriate for capturing coarse structure such as
approximating matrix multiplication or computing low-
rank matrix approximations, they seem inadequate for
solving problems such as £5 regression. Intuitively, this
is since approximating ¢ regression depends in a more
sensitive manner on the way in which A disperses in-
formation to its column space and the manner in which
the target vector b interacts with that column space and
its complement. Our sampling probabilities will depend
on the lengths, i.e., the Euclidean norms, of the rows of
the left singular vectors of A as well as the manner in
which b lies in the complement of the column space of
A. More precisely, they will be required to satisfy the
conditions of the form: (3.8), (3.9), and (3.10). Note
that, as described in Section 3, O(nd?) time suffices to
compute nontrivial probabilities satisfying these condi-
tions, and it is an open problem whether such proba-
bilities can be computed more rapidly. Thus, our result
may be viewed as showing the existence of a small sam-
ple for the accurate approximation of the ¢ regression
problem, although producing the sample is currently no
faster than solving the original /5 regression problem.

2 Review of Linear Algebra and

Approximating Matrix Multiplication

Let [n] denote the set {1,2,...,n}. For any matrix
A € R™™ let Agy,i € [m] denote the i-th row
of A as a row vector, and let AU) j € [n] denote
the j-th column of A as a column vector. Let the
rank of A be p < min{m,n}. The Singular Value
Decomposition (SVD) of A is denoted by A = UaXAV Y,
where Uy € R™*P, ¥4 € RP*P and V4 € R**P.
Let 0;(A),i € [p] denote the i-th singular value of A,
and omax(A4) and omin(A4) denote the maximum and
minimum singular value of A. The condition number
of Ais k(A) = omax(A4)/omin(A). The Moore-Penrose
generalized inverse, or pseudoinverse, of A may be
expressed in terms of the SVD as At = V4 £ ,'U7 [14].
Finally, for any orthogonal matrix U € R™*¢, let U+ €
R™*(m—4) denote an orthogonal matrix whose columns
are an orthonormal basis spanning the subspace of R™
that is orthogonal to the column space of U. In terms
of U#, the solution of the £, regression problem (1.1) is
: 1T

(25) 2= min b~ Az], = ‘UA UL bL.

For more details on linear algebra, see [11, 10, 2].

The following result on approximating the product
of two matrices by random sampling will be used in
an essential manner in our main result; it is described
in more detail in [4]. Algorithm 1 takes as input two
matrices A and B, a number ¢ < n, and a probability
distribution over [n]. It returns as output two matrices
C and R, where the columns of C' are a small number of
sampled and rescaled columns of A and where the rows
of R are a small number of sampled and rescaled rows
of B. To state Algorithm 1, we have used the following
sampling matrix formalism which was introduced in
[4]. Assume that the i;-th column of A (and thus
also the i;-th row of B) is chosen in the ¢-th (for
t = 1,...,c) independent random trial. Then, define
the sampling matrix S € R" ¢ to be the zero-one
matrix where S;,; = 1 and S;; = 0 otherwise, and
define the diagonal rescaling matrix D € R°*¢ to be
the diagonal matrix with Dy = 1/,/cp;,, where p;, is
the probability of choosing the i;-th column-row pair.
Then, clearly, C = ASD is an m X ¢ matrix consisting
of sampled and rescaled copies of the columns of A, and
R = (SD)T"B = DSTB is a ¢ x n matrix consisting of
sampled and rescaled copies of the rows of B.

Theorem 2.1 is a basic quality-of-approximation
result for Algorithm 1. Its proof may be found in [4],
and it states that, under appropriate assumptions,

CR = ASDDS"B ~ AB.

The most interesting of these assumptions is that the



Data :A € R™*", B € R**P, {p;}™, such
that 3", pi=1,c<n.
Result : C € R™*¢ R € R°¥P.
(n x ¢) matrix S = 0, x¢;
(¢ x ¢) matrix D = 0.x.;
fort=1,...,cdo
Pick i; € [n], where Pr(i; =) = p;;
Dy =1/\/epi;
Sitt = 1;
end
C = ASD;
R=DSTB,

Algorithm 1: A fast Monte-Carlo algorithm for approx-
imate matrix multiplication described in [4].

sampling probabilities used to randomly sample the
columns of A and the corresponding rows of B are
nonuniform and depend on the product of the Euclidean
norm of the columns of A and the corresponding rows of
B. Note that sampling probabilities of the form (2.6),
with # = 1, are optimal for approximating AB by CR
in a sense made precise in [4]. Allowing more general
probabilities of the form (2.6) leads to only a small -
dependent loss in accuracy, but it provides important
flexibility that will be used in an essential manner in
our main result.

THEOREM 2.1. Suppose A € R™*™, B € R"*P, and

the sampling probabilities {p;}.., are such that
|A(i) |2‘ |B(i) |2
27:1 |A(J)|2 |B(j)|2

for some B € (0,1]. Construct C and R with Algo-
rithm 1, and assume that 6 € (0,1/3). Then, with prob-
ability at least 1 —§:

(2.6) pi2p

2.7)

4,/In(1/3)
A Al 7 1Bl -

Note that for simplicity of presentation we have
slightly modified the statement of the theorem for
the purposes of this paper. (Theorem 2.1 follows
immediately from the corresponding theorem in [4] since

(1+ V/(8/8)10g(1/9)) /(v/Be) < 4/In(1/3)/(8V)

if 3 € (0,1] and § € (0,1/3).) Note also that if the
sampling probabilities of the form (2.6) are used, then
Algorithm 1 may be implemented in two passes over the

[AB — CR||p <

data matrices from external storage and O(c(m+n+p))
additional storage space and computation time; see [4]
for more details.

3 Our Main Result for /5 Regression

In this section, we first present Algorithm 2, our main
random sampling algorithm for approximating the so-
lution to the ¢5 regression problem, as defined in Equa-
tions (1.1) and (1.2). Then, we discuss the sufficient
conditions on the nonuniform sampling probabilities
used by the algorithm that will guarantee that the al-
gorithm returns a good approximation to the original
problem. Then, we state Theorem 3.1, which pro-
vides our main quality-of-approximation result for Al-
gorithm 2. Finally, we provide a discussion of several
observations related to the conditions we impose on the
sampling probabilities. The proof of Theorem 3.1 is de-
ferred to Section 4.

3.1 Description of our main algorithm Algo-
rithm 2 takes as input an n x d (where d < n) matrix
A, an n-vector b, a set of sampling probabilities {p;}7;,
and a positive integer r < n. It returns as output a num-
ber Z and a d-vector Zopt- Using the sampling matrix
formalism described in Section 2, the algorithm (implic-
itly) forms a sampling matrix S, the transpose of which
samples with replacement a few rows of A and also the
corresponding elements of b, and a rescaling matrix D,
which is a diagonal matrix scaling the sampled rows of
A and the elements of b. Since r rows of A and the
corresponding r elements of b are sampled, the algo-
rithm randomly samples with replacement r of the n
constraints in the original overconstrained ¢ regression
problem. Thus, intuitively, the algorithm approximates
the solution of Az ~ b with the exact solution of the
downsampled problem DST Az ~ DSTbh. Note that it
is the high-dimensional space of constraints that is sam-
pled and that the dimension of the unknown vector x
is the same in both problems. Note also that, as we
will see below, r(= O(d?)) will always be chosen to be
at least d, and thus (assuming that we have access to
the sampling probabilities — see below) solving the sam-
pled £ regression problem takes O(rd?) time, i.e., time
polynomial just in d and independent of n, rather than
O(nd?) time.

3.2 Conditions on the sampling probabilities
An important aspect of the algorithm will be the
nonuniform sampling probabilities. The nonuniform
probabilities that we will consider and that will be suffi-
cient for the bounds we obtain will be any probabilities



Data :AeR™ peR", {p}2
Zz:l pi=1,7<n.
Result : ,,; € R?, ZeR
(n x r) matrix S = 0y, xr;
(r x r) matrix D = 0,x,;
fort=1,...,r do
Pick i; € [n], where Pr(i; = 1)
Dy = 1//Tpi,;
Sit =1
end
Z = mingega |DSTb - DSTA£U|2;
(DSTA)" DS

', such that

= Di;

fi'opt =

Algorithm 2: A Monte-Carlo algorithm for approximat-
ing ¢ regression.

that satisfy the following three conditions:

2

‘(UA)(,’)
(38) pi > p——— 2,
i (O],
59) » > b ‘(UA)(i)Q(Ujl_ ij); ’
Sie [Ua)), (V4UL"D).
(UjUij)%
S (V4U£7D),

Several things should be noted about these conditions
on the sampling probabilities. First, probabilities satis-
fying these three conditions clearly exist. For example,
for all i € [n], let

1/9) |2 )]

(3.11) p; = -
2= | (Ua) <j>|
(1/3) ‘ (Ua) (’ 2( )
+
St |, (U404 "),
. (1/3) (Uj )2
> (U Ut b)j

Then (3.8), (3.9), and (3.10) are satisfied with 8 =
B2 = B3 = 1/3. Second, note that almost all probabil-
ity distributions satisfy these conditions (in the sense

that all but a measure-zero set do satisfy them). In
particular, by choosing sufficiently small values for £,
B2, and B3, almost all sets of probabilities satisfy (3.8),
(3.9), and (3.10). Of course, as was seen in Theorem
2.1, relaxing the (3;’s has a direct and adverse effect on
the sampling complexity. Third, probabilities satisfying
these three conditions, e.g., the probabilities of (3.11),
can be computed in O(d?n) time, which is also sufficient
for exactly solving the original unsampled ¢» regression
problem. Fourth, it is an open question whether we can
compute sampling probabilities that satisfy the three
constraints with constant values for (1, (2, and B3 in
o(nd?) time.

3.3 Statement of our main theorem Theorem 3.1
is our main quality-of-approximation result for Algo-
rithm 2. Its proof may be found in Section 4.

THEOREM 3.1. Suppose A € R**¢ b € R*, and that
the sampling probabilities {p;},._, are given. Let

Z = min [b— Az, = [b— Azopl,

where T, = AT, let Algorithm 2 return as output a

number Z and a d-vector Zop, and let € € (0,1]. Then,

o If the sampling probabilities satisfy (3.8) and

(8.10), and if r > ﬁiﬂ{% then with probability
at least 1 — §:
(3.12) Z< (146 Z.

o If the sampling probabilities satisfy (3.8), (3.9),

and (8.10), and if r > m% then with

probability at least 1 — §:

b= AZopl, < (1462,

€
Z.
Omin (A)

IA

|-Z'opt - 'i.opt|2

o If, in addition, we assume that

(3.15) UAUTH], > 7 [b,

for some fized v € (0,1], then with probability at
least 1 —9§:

(3.16)

|-770pt - -'Z'opt|2 <e (N(A) \% ’7_2 - 1) |$0Pt|2 :

Equation (3.12) states that solving the sampled /5
regression problem provides a minimum value that is
an accurate approximation to the minimum value of
the original £ regression problem, and Equation (3.13)



states that if the minimum-length vector achieving the
minimum in the sampled problem is substituted back
into the original problem then a good approximation
to the original /s regression problem is obtained. Both
provide a relative error approximation to Z.

Equation (3.14) provides a bound for |Topt — Zoptly
in terms of omin(A4) and Z. If most of the “weight” of
b lies in the complement of the column space of A then
this will provide a very poor approximation in terms
of |zope|,. However, if we also assume (3.15), i.e., if a
constant fraction of the “weight” of b lies in the subspace
spanned by the columns of A, then we obtain the
relative error approximation of Equation (3.16). Thus,
Theorem 3.1 returns a good bound for |Tops — Zopel, if
A is well-conditioned and if b lies “reasonably well” in
the column space of A.

Note that if the target vector b lies completely
within the column space of A, then Z =0andy=1. In
this case, Theorem 3.1 shows that Algorithm 2 returns
Z and Zopt that are exact solutions of the original £,
regression problem, independent of k(A).

3.4 Discussion Before concluding this section, we
briefly discuss at an informal level several observations
regarding sampling probabilities that satisfy the each of
the three conditions (3.8), (3.9), and (3.10).

3.4.1 Discussion of the three conditions Condi-
tion (3.8) is the most interesting condition on the sam-
pling probabilities, as will be seen in Section 4. This
condition states that the sampling probabilities should
be close to, or rather not much less than, the lengths,
i.e., the Euclidean norms, of the rows of the left sin-
gular vectors of the matrix A. (Recall that A is an
n X d matrix, and thus U4 is an n x p matrix, where
p = rank(4) < d <« n. Thus, the Euclidean norm of
every column of Uy equals 1, but the Euclidean norm
of every row of Uy is in general not equal and is only
bounded above by 1.) These lengths may be interpreted
as capturing a notion of information dispersal by the
matrix A since they indicate to which part of the n-
dimensional vector space the singular value information
of A is being dispersed. In this case, condition (3.8) en-
sures that the sampling probabilities provide a bias to-
ward the part of the high-dimensional constraint space
to which A disperses its singular value information.
Condition (3.10) has information about where the
target vector b is positioned relative to the matrix A
of constraint vectors. Sampling probabilities satisfying
condition (3.10) provide a bias toward the part of the
complement of the column space of A where b has sig-
nificant weight. Although it may seem counterintuitive
that the bias is not toward, e.g., the part of the column

space of A where b has significant weight, note that in-
formation about the column space of A has already been
taken into account by condition (3.8). Relatedly, since
(3.12), (3.13), and (3.14) all provide bounds in terms of

Z = min

T
min, b~ Aa, = ‘UjUj b

’
2

a condition like (3.10) seems necessary.

Condition (3.9) captures a combination of the two
previous effects. Note that this condition is not needed
to prove (3.12). Note also that this condition is not
needed to prove that each of the statements of Theorem
3.1 holds with probability at least 1—9, if we are willing
to sample a number r of rows that is proportional to 1/4,
rather than proportional to /In(1/6), as in Theorem
3.1. This follows by using Markov’s inequality and
Lemma 8 of [4].

3.4.2 Intuition behind the sampling probabili-
ties Sampling probabilities satisfying the three condi-
tions (3.8), (3.9), and (3.10) should be contrasted with
sampling probabilities that depend on the Euclidean
norms of the rows or columns of A = Uy X AV} and that
have received much attention recently; see, e.g., [8, 9]
and more recently [4, 5, 6, 7]. Sampling probabilities
with this latter form depend in a complicated manner
on a mixture of subspace information (as found in Uyx
and V4) and “size-of-A” information (as found in X 4).
This convolution of information may account for their
ability to capture coarse statistics such as approximat-
ing matrix multiplication or computing low-rank matrix
approximations, but it also accounts for their difficulty
in dealing with problems such as £, regression.

Since the solution of the /s regression problem in-
volves the computation of a pseudoinverse, the problem
is not well-conditioned with respect to a perturbation
(such as that introduced by sampling) that entails a
change in dimensionality, even if (actually, especially
if) that change in dimensionality corresponds to a small
singular value. Since sampling probabilities satisfying
(3.8) allow us to disentangle subspace information and
“size-of-A” information, we will see that they will allow
us to capture (with high probability) the entire sub-
space of interest by sampling. More precisely, as we will
see in Lemma 4.1, by using sampling probabilities that
satisfy condition (3.8) and by choosing r appropriately,
then with high probability it will follow that

rank(DSTU,) = rank(U4) = rank(A).

Then, we will go to the low-dimensional, i.e., the
r-dimensional rather than then n-dimensional, space
and approximate the {» regression problem by doing
computations that involve “size-of-A” information on
the random sample.



4 Proof of Our Main Theorem

In this section we provide a proof of Theorem 3.1,
which is our main quality-of-approximation result for
Algorithm 2. For simplicity of notation in this section,
we will let S = DST denote the r x n rescaled row-
sampling matrix.

Let the rank of the n x d matrix A be p < d, and
let its SVD be

A=UsZAVYE,

where Uy € R*™P %4 € R*P and V4 € RXP. In
addition, let the rank of the 7 x p matrix SU4 = DSTU4
be p, and let its SVD be

SU4 = Usu,Zsv,Vau,»

where Usy, € R"™%?, Ygy, € RP*? and Vsy, € RPXP.
Recall that S = DST denotes the r x n row-sampling-
and-rescaling matrix, and that p < p < d<r.

In order to illustrate the essential difficulty in
constructing a sampling algorithm to approximate the
solution of the £5 regression problem, consider inserting
Topt = (SA)TSb into b — Az:

b— AZoy = b— A(SA)TSD
= b—UaSaVY (SUAZAVT)" Sb
= b—Ua%4(SUAZA)" Sb
= b= UaSa (UsuaSsva Vi, Sa) b
= b—UaZa (Zsv,Viy, EA)Jr Usy,Sb.

To proceed further, we must deal with the pseudoin-
verse, which is not well-behaved with respect to pertur-
bations that involve a change in dimensionality. To deal
with this, we will focus on probabilities that depend on
the subspace that we are downsampling, i.e., that de-
pend on Uy, in order to guarantee that we capture the
full subspace of interest.

4.1 Several lemmas of general interest In this
subsection, we will present several lemmas, each of
which will be used in the proof of (most or) all of
the claims of Theorem 3.1. Then, in the next four
subsections, we will use these lemmas to provide a proof
of each of the four claims of Theorem 3.1.

For the first lemma of this subsection, r depends
quadratically on d, and the only assumption on the
sampling probabilities is that they satisfy condition
(3.8).

LEMMA 4.1. Let e € (0,1]. If the sampling probabilities
satisfy equation (3.8) and if r > 64d*In(3/0)/ (Bi€?),

then with probability at least 1 — §/3:

(4.17) p=pie., rank(SUa) = rank(Ua) = rank(A)
(418) [Ssu - S, </v2
(4.19) (SAT =Vazt (SUL)T.

Proof. To prove the first claim, note that for all i € [p]

|1=07(SUA)| = |03 (UAUA) —0i (U4STSUL)|
< ||UAU4 —UZSTSUA|,
(4.20) < ||UAUA—ULSTSUA||, -

To bound the error of approximating UiU4 by
U¥STSU 4 we apply our main theorem for approximat-
ing the product of two matrices. Since the sampling
probabilities p; satisfy equation (3.8), it follows from
Theorem 2.1 that with probability at least 1 — §/3:

4./1n(3/9) 9
< T\/F”UA”F
4d\/In(3/9)

vr

where (4.21) follows since ||UA||; = p < d By
combining (4.20) and (4.21), and using the assumed
choice of r it follows that

|UAUA —ULASTSUA|| .

(4.21) <

|1—07 (SUa)| <€/2<1/2

since € < 1. This implies that all singular values of
SU, are strictly positive, and thus that rank(SU4) =
rank(U,4) = rank(A), which establishes the first claim.

To prove the second claim, recall that under the
assumptions of the lemma p = p with high probability,
and thus o; (SU4) > 0 for all ¢ € [p]. Thus,

1
-1 o
%50, = Bsualls = meng o+ (U0 = Sy
lo; (SUA) 05 (SUA) — 1]
= ma.
ielr] 05 (SUA)]
|0']2- (SUA) — 1|
loj (SU4)|

(4.22) < max
i€lp]

Using that fact that for all i € [p],
|1 =07 (SUA)| < |UAUA — ULSTSUA|,
it follows that for all i € [p]

1 1
< .
ot (SUA) ™\ /1 - UL U - U STSUL




When these are combined with (4.22) it follows that
|USUs —ULSTSU4|,
V1= V50 - UFSTSUA|,

IBsva = st <

Combining this with the Frobenius norm bound of
(4.21), and noticing that our choice for r guarantees
that 1 — HUXUA - UJ{STSUAH2 > 1/2, concludes the
proof of the second claim.

Finally, to prove the third claim, note that

(SA)+ (SUAS V)T

+
= (Usu,Zsv,Viy,ZaVy)
+
(423) = VA (ESUAVgUAZA) Ug‘—'UA'
To remove the pseudoinverse in the above derivations,
notice that since p = p with high probability, all three

matrices Y5y, , Vsu,, and X4 are full rank square px p
matrices, and thus are invertible. In this case,

(ESUAVSTUAEA)+ = -

(4.24) =

(ESUAVSTUA EA)
Y1 Vsua S50, -
By combining (4.23) and (4.24) we have that
(SA)+ = VAEA Vsua ESUAUgUA
VAZA (SUA) ’

which establishes the third claim. This concludes the
proof of the lemma.

The previous lemma showed that, in terms of
its singular values, the matrix SUy, i.e., the row
sampled and rescaled version of Uy, is almost an
orthogonal matrix. A useful property of a matrix U
with orthonormal columns is that Ut = U?T. The
next lemma (especially in combination with the previous
lemma) shows that, although this property does not
hold for SU,, the difference between (SU4)" and

(SU4)" can be bounded.
LEMMA 4.2. Define Q = (SUA)" = (SUA)T. Then,
”an - ”ESUA ESUA ”2 .

Proof. Using the SVD of SU4, we have that
lell, = [Tyt - v |
= || WsvaZs0, V)" = WsvaSsva Vi)'

- z:SUA) UgUA ||2 )

The lemma follows since Vsy, and Usy, are matrices
with orthonormal columns.

= [Vsua (50,

The next two lemmas provide two different approx-
imate matrix multiplication bounds that are also useful
in the proof of the claims of Theorem 3.1. For the next
lemma, r depends linearly on d, and the only assump-
tion on the sampling probabilities is that they satisfy
condition (3.9).

LEMMA 4.3. Let € € (0,1]. If the sampling probabilities
satisfy equation (3.9) and if r > 16d1n(3/6)/ (B3€®),
then with probability at least 1 — §/3:

‘U;{STSUA ‘ ‘U b‘

Proof. First, note that since U4 is an orthogonal matrix,
we have that

‘U} STSULUL | \UAU,"{STSUA b‘

Thus, since UAUTULUL"b = 0 we may write

(4.25) ‘U}STSUA b‘
- ‘UAU,ZUjUj b— UAU,ZSTSUjUijL.

Thus, we can estimate the Euclidean norm of the vector
UIsTsutU j(Tb by bounding the error of approximat-
ing the product UsUTU+UL b by UsULSTSULUL b
; T _ T
To do so, note that since ‘(UAUA)(i) , = ‘(UA)(i) ,
sampling probabilities appropriate for bounding the
right hand side of (4.25) are also those satisfying sat-
isfying (3.9). Thus, since the sampling probabilities p;
satisfy equation (3.9), it follows from Theorem 2.1 that
with probability at least 1 —§/3

Tb‘ 4\/1n 3/(5 VB0 1y

UESTSUAUX Bz
The lemma follows by the choice of r and since

[UAU%], = Vo < V.

The final lemma of 7tﬂhis subsection relates the norm
of the n -vector U#Uz " b to the norm of the r-vector

SUx b i.e., the sampled and rescaled version of the
0r1g1na1 n-vector. For this lemma, r is independent of d,
and the only assumption on the sampling probabilities
is that they satisfy condition (3.10).

LEMMA 4.4. Let e € (0,1]. If the sampling probabilities
satisfy equation (8.10) and if r > 161n(3/6)/ (B3€?),
then with probability at least 1 — §/3:

2 2 2
“UjULTb‘ - ‘SUjUij‘ ‘ge‘UjUijL.



Proof. First recall that

2
‘UjUij| = Uit uiutTy

2
‘SUjUij| = yuivtTsTsutuie.

Thus, to prove this lemma it suffices to bound the er-
ror of approximating the product b7U+U+ U+U+"b
by bTU UL STSULUL"b. Since the sampling prob-
abilities p; satisfy equation (3.10) and by the choice of

r, it follows from Theorem 2.1 that with probability at
least 1 —4/3:

|bTUjUjTUjUij - bTUjUjTSTSUjUij‘

7

2
<e ‘UjUij

from which the lemma follows.

4.2 Proof of Equation (3.12) In this subsection,
we will bound Sb — SAZ,p:, thus proving (3.12).

For the moment, let us assume that r =
64d?In(3/6)/ (e* min{?,53}). Note that since d > 1
and since we have taken min{/3?, 33} in the denomina-
tor, the assumption on r is satisfied for both Lemma 4.1
and Lemma 4.4. Thus, the claims of both lemmas hold
simultaneously with probability at least 1 — 2(6/3) >
1 — 6, and so let us condition on this event. Note also
that Lemma 4.3 is not necessary to establish (3.12), and
thus we do not assume that the probabilities satisfy con-
dition (3.9).

First, we have that

Sb—SAZ,; = Sb—SA(SA)*'Sh
(4.26) = Sb—SUASAVIVAZ (SUA)T SD
= Sb—S8U4 (SU4)" S,

where (4.26) follows from Lemma 4.1.
UAUT + ULUL" = I,,, we have that

Then, since

Sb—SAG,y = Sb—SUa(SUA)T SUAUSD
—SUA (SUL)TSULUE"D
= Sb—SULUTb
—SUA (SUL)T SULUE" D
= SULUu+Th

—SUA (SUL)T SULUL .

Thus, it follows that

2 = |Sb—SAFol,
_ ‘SUALUij — SUA(SUA)T SUjUij‘z
- ‘(I - SUA(SUA)*) SUjUijL
(4.27) < ‘SUjUij ,

where (4.27) follows since SUA (SUA)* = Usu, Uy,
is a projection. By combining (4.27) with the bound

on ‘SU TU j-TbL provided by Lemma 4.4, and recalling
(2.5), it follows that

Z< (1+ve) 2.

Equation (3.12) follows by setting € = 4/e and using
the value of r assumed by the theorem.

4.3 Proof of Equation (3.13) In this subsection,
we will bound b — A&, thus proving (3.13).

For the moment, let us assume that r =
64d*In(3/6)/ (¢* min{7, 53, 53}). Note that since we
have taken min{/?, 33, 3%} in the denominator, the as-
sumption on r is satisfied for each of Lemma 4.1, Lemma,
4.3, and Lemma 4.4. Thus, the claims of all three
lemmas hold simultaneously with probability at least
1-3(8/3) > 1—46, and so let us condition on this event.

First, we have that

b— A%, = b—A(SA)TSH
(4.28) = b—Ux(SU4)T Sb
(4.29) b—Ua (SUA)TSUAULD
—U4 (ULt SULULT b
(4.30) = ULULTb— U4 (SUL) T SULULD.

(4.28) follows from Lemma 4.1, (4.29) follows by in-
serting UaUJ + UjUjT = I,,, and (4.30) follows since
(SUA)+SUA = I, by Lemma 4.1. We emphasize that
(SUA)T SUA = Visy, V&, = I, does not hold for gen-
eral sampling methods, but it does hold in this case
since p = p, which follows from Lemma 4.1.

By taking the Euclidean norm of both sides of
(4.30), by using the triangle inequality, and recalling
that Q = (SUA)T — (SU4)", we have that

b= Agopl, < [UXUL"B| + |Ua (SUN)T SUFUF "],
+ ‘UAQSUjUijL
(43) < |UiULTb| + [ULSTSUZUL Y|

+l2ll, [SUiUz "

’
2



where (4.31) follows by submultiplicitivity and since Ugx
is an orthogonal matrix. By combining (4.31) with the
bounds provided by Lemma 4.1 through Lemma 4.4,
and recalling (2.5), it follows that

(1+e+e/V2+€2V2)2
(1+ 2.5¢) 2,

where the second inequality follows since € < 1. Equa-
tion (3.13) follows by setting € = €/2.5 and using the
value of r assumed by the theorem.

4.4 Proof of Equation (3.14) In this subsection,
we will provide a bound for |Zops — Zopt|, in terms of
Z, thus proving (3.14).

For the moment, let us assume that r =
64d*1n(3/6)/ (e* min{B3, 83,83}). Note that since we
have taken min{/?, 33, 3%} in the denominator, the as-
sumption on r is satisfied for each of Lemma 4.1, Lemma
4.3, and Lemma 4.4. Thus, the claims of all three
lemmas hold simultaneously with probability at least
1—3(8/3) > 1—46, and so let us condition on this event.

Since UsUT+ULUL" = I, and (SUA) T SU4 = I,
we have that

Topt = Fopt = ATD — (SA)T 8b
=VaZ UL — VaZ,t (SUA)T Sb
=VaS ' USh — Va2 (SUA)T SULUD
—VART (SUA)T SULUET
= —VuS . (SUL)T SULULTD.
Thus, it follows that

~ _ T
|xopt - wopt|2 = ‘VAEAl (SUA)—FSUj(Uj" b|2

‘z;l (sua)" +9) SUjUijL
1
Omin(A)
+ﬁ ‘QSUjUijt

Omin

IN

‘(SUA)T SUjUij‘Q

1 ToTorrlyrrlT
E— ‘UAS SULUl b‘z

Omin

(4.32)

IN

1 17T
oy 19l SuiUE Y| -

By combining (4.32) with Lemma 4.1 through Lemma
4.4, and recalling (2.5), it follows that

IN

o (4) (e +e/V2+ 63/2/\/5) Z
2.5¢
Umin(A)

|Zopt — Toptl,

IN

Z,

where the second inequality follows since € < 1. Equa-
tion (3.14) follows by setting ¢’ = €/2.5 and using the
value of r assumed by the theorem.

4.5 Proof of Equation (3.16) The error bound
provided by (3.14) could be quite weak, since
mingcpa |b — Az|, could be quite close or even equal
to |bly, if b has most or all of its “weight” outside of the
column space of A. Under a slightly stronger assump-
tion, we will provide a bound |Zops — Top¢l, in terms of
|Zopt,, thus proving (3.16).

If we make the additional assumption (3.15), which
is satisfied if a constant fraction of the “weight” of b lies
in the subspace spanned by the columns of A, then it
follows that

2
z? = (min |b—A$|2)

rzeR4d

2
‘UjUijL

b2 — [UAUTS];

(4.33) < (-1 |UaUSs);.

In order to relate |[UoUZb|, and thus Z to |,p|, note
that

[VaS,'U%D|,
|Z2'U4D),
Omin(Z1") |UAD|,
|UAU£b|2
Omax(4)
By combining (3.14) with (4.33) and (4.34), we get

|$opt|2

v

(4.34) =

€

|570pt - wopt|2 S Umin(A)Z
€
< ——— /v 2= 1|UaU%D],
amin(A)
Omax(A) _
< Gm\/’y 2 —1|Zoptly

which establishes (3.16).

5 Conclusion

Recently, a row norm-based sampling algorithm has
been applied to the ¢; regression problem by Clark-
son [3]. Such a sampling method does not appear to
work for the /5 regression problem. Nevertheless, the
similarities and differences between the two methods are
worth exploring in greater detail.

Two open questions immediately suggest them-
selves. One is whether we can compute sampling prob-
abilities that satisfy the three constraints (3.8), (3.9),



and (3.10) with constant values for 81, f2, and f3 in
o(nd?) time. A second open question is whether we can
improve the sampling complexity, either with respect
to € or, more importantly, with respect to d. With
regard to the latter, notice that the only place where
we need a quadratic dependency on d is in bounding
||UZ;UA - UZ;SDDSTUA”F in Lemma 4.1. It seems
likely that one could obtain an improved bound that
would only require a linear dependency on d by bound-
ing the spectral norm of the error matrix directly by
employing techniques related to those of Rudelson and
Vershynin [16, 18].

The overconstrained ¢, regression problem is such a
fundamental problem in applied mathematics and sta-
tistical data analysis that numerous applications of this
work suggest themselves. We briefly discuss just two.
One application is to statistical learning theory. A dif-
ficulty in applying traditional random sampling tech-
niques to statistical learning problems is that the dis-
criminative variables for a particular learning problem
are not in general in the dominant part of the singu-
lar value spectrum. The sampling methodology de-
scribed in this paper will have application to learning
problems such as regression, classification, and cluster-
ing since, e.g., linear Support Vector Machines with
£5-loss functions (such as those used in text classifica-
tion) may be formulated as a regularized least squares
problem [12]. A second application is to computing
low-rank matrix approximations that are expressed in
terms of the columns and/or rows of the input matrix
(see, e.g., [5, 6] and references therein). In these al-
gorithms, a small number of columns and/or rows are
randomly sampled and used as a basis with which to
express the remaining columns/rows in an approximate
least squares sense. These algorithms typically sam-
ple columns and/or rows with probabilities depending
on the norms of the columns and/or rows of the input
matrix and return additive error guarantees. It seems
likely that using the sampling methodology described
in this paper one will be able to obtain relative error
guarantees efficiently.
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