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Randomized Dimensionality Reduction
for k-Means Clustering

Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas

Abstract— We study the topic of dimensionality reduc-
tion for k-means clustering. Dimensionality reduction encom-
passes the union of two approaches: 1) feature selection and
2) feature extraction. A feature selection-based algorithm for
k-means clustering selects a small subset of the input features
and then applies k-means clustering on the selected features.
A feature extraction-based algorithm for k-means clustering
constructs a small set of new artificial features and then
applies k-means clustering on the constructed features. Despite
the significance of k-means clustering as well as the wealth
of heuristic methods addressing it, provably accurate feature
selection methods for k-means clustering are not known. On the
other hand, two provably accurate feature extraction methods for
k-means clustering are known in the literature; one is based on
random projections and the other is based on the singular value
decomposition (SVD). This paper makes further progress toward
a better understanding of dimensionality reduction for k-means
clustering. Namely, we present the first provably accurate feature
selection method for k-means clustering and, in addition, we
present two feature extraction methods. The first feature extrac-
tion method is based on random projections and it improves upon
the existing results in terms of time complexity and number of
features needed to be extracted. The second feature extraction
method is based on fast approximate SVD factorizations and it
also improves upon the existing results in terms of time com-
plexity. The proposed algorithms are randomized and provide
constant-factor approximation guarantees with respect to the
optimal k-means objective value.

Index Terms— Clustering, dimensionality reduction,
randomized algorithms.

I. INTRODUCTION

CLUSTERING is ubiquitous in science and engineering
with numerous application domains ranging from bio-

informatics and medicine to the social sciences and the
web [1]. Perhaps the most well-known clustering algorithm
is the so-called “k-means” algorithm or Lloyd’s method [2].
Lloyd’s method is an iterative expectation-maximization type
approach that attempts to address the following objective:
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given a set of Euclidean points and a positive integer k
corresponding to the number of clusters, split the points into
k clusters so that the total sum of the squared Euclidean dis-
tances of each point to its nearest cluster center is minimized.
Due to this intuitive objective as well as its effectiveness [3],
the Lloyd’s method for k-means clustering has become enor-
mously popular in applications [4].

In recent years, the high dimensionality of modern massive
datasets has provided a considerable challenge to the design
of efficient algorithmic solutions for k-means clustering. First,
ultra-high dimensional data force existing algorithms for
k-means clustering to be computationally inefficient, and
second, the existence of many irrelevant features may not
allow the identification of the relevant underlying structure in
the data [5]. Practitioners have addressed these obstacles by
introducing feature selection and feature extraction techniques.
Feature selection selects a (small) subset of the actual features
of the data, whereas feature extraction constructs a (small)
set of artificial features based on the original features. Here,
we consider a rigorous approach to feature selection and
feature extraction for k-means clustering. Next, we describe
the mathematical framework under which we will study such
dimensionality reduction methods.

Consider m points P = {p1, p2, . . . , pm} ⊆ R
n and an

integer k denoting the number of clusters. The objective of
k-means is to find a k-partition of P such that points that are
“close” to each other belong to the same cluster and points
that are “far” from each other belong to different clusters.
A k-partition of P is a collection S = {S1,S2, . . . ,Sk}
of k non-empty pairwise disjoint sets which covers P . Let
s j = |S j | be the size of S j ( j = 1, 2, . . . , k). For each set Sj ,
let µ j ∈ R

n be its centroid:

µ j =
∑

pi∈S j
pi

s j
.

The k-means objective function is

F(P,S) =
m∑

i=1

‖pi − µ(pi )‖2
2,

where µ(pi ) ∈ R
n is the centroid of the cluster to which pi

belongs. The objective of k-means clustering is to compute
the optimal k-partition of the points in P ,

Sopt = arg min
S

F(P,S).

Now, the goal of dimensionality reduction for k-means
clustering is to construct points

P̂ = {p̂1, p̂2, . . . , p̂m} ⊆ R
r
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(for some parameter r � n) so that P̂ approximates the
clustering structure of P . Dimensionality reduction via fea-
ture selection constructs the p̂i ’s by selecting actual features
of the corresponding pi ’s, whereas dimensionality reduction
via feature extraction constructs new artificial features based
on the original features. More formally, assume that the
optimum k-means partition of the points in P̂ has been
computed

Ŝopt = arg min
S

F(P̂,S).

A dimensionality reduction algorithm for k-means clustering
constructs a new set P̂ such that

F(P, Ŝopt ) ≤ γ · F(P,Sopt)

where γ > 0 is the approximation ratio of Ŝopt . In other
words, we require that computing an optimal partition Ŝopt

on the projected low-dimensional data and plugging it back
to cluster the high dimensional data, will imply a γ fac-
tor approximation to the optimal clustering. Notice that we
measure approximability by evaluating the k-means objective
function, which is a well studied approach in the litera-
ture [3], [6]–[11]. Comparing the structure of the actual
clusterings Ŝopt to Sopt would be much more interesting but
our techniques do not seem to be helpful towards this direction.
However, from an empirical point of view (see Section VII),
we do compare Ŝopt directly to Sopt observing favorable
results.

A. Prior Work

Despite the significance of dimensionality reduction in the
context of clustering, as well as the wealth of heuristic methods
addressing it [14], to the best of our knowledge there are
no provably accurate feature selection methods for k-means
clustering known. On the other hand, two provably accurate
feature extraction methods are known in the literature that we
describe next.

First, a result by [15] indicates that one can construct
r = O(log(m)/ε2) artificial features with Random Projections
and, with high probability, obtain a (1 + ε)-approximate
clustering. The algorithm implied by [15], which is a random-
projection-type algorithm, is as follows: let A ∈ R

m×n contain
the points P = {p1, p2, . . . , pm} ⊆ R

n as its rows; then,
multiply A from the right with a random projection matrix
R ∈ R

n×r to construct C = AR ∈ R
m×r containing the points

P̂ = {p̂1, p̂2, . . . , p̂m} ⊆ R
r as its rows (see Section III-

B for a definition of a random projection matrix). The
proof of this result is immediate mainly due to the Johnson-
Lindenstrauss lemma [15]. Ref. [15] proved that all the
pairwise Euclidean distances of the points of P are pre-
served within a multiplicative factor 1 ± ε. So, any value
of the k-means objective function, which depends only on
pairwise distances of the points from the corresponding center
point, is preserved within a factor 1 ± ε in the reduced
space.

Second, [12] argues that one can construct r = k artificial
features using the SVD, in O(mn min{m, n}) time, to obtain

Algorithm 1 Randomized Feature Selection for k-Means
Clustering

Input: Dataset A ∈ R
m×n , number of clusters k,

and 0 < ε < 1/3.
Output: C ∈ R

m×r with r = O(k log(k)/ε2)
rescaled features.

1: Let Z = FastFrobeniusSVD(A, k, ε); Z ∈ R
n×k

(via Lemma 2).
2: Let r = c1 · 4k ln(200k)/ε2 (c1 is a sufficiently

large constant - see proof).
3: Let [�, S] = RandomizedSampling(Z, r);

� ∈ R
n×r , S ∈ R

r×r (via Lemma 3).
4: Return C = A�S ∈ R

m×r with r rescaled
columns from A.

a 2-approximation on the clustering quality. The algorithm
of [12] is as follows: given A ∈ R

m×n containing the points
of P and k, construct C = AVk ∈ R

m×k . Here, Vk ∈ R
n×k

contains the top k right singular vectors of A. The proof of
this result will be (briefly) discussed in Sections II-B and VI.

Finally, an extension of the latter SVD-type result (see
[13, Corollary 4.5]) argues that O(k/ε2) dimensions (singular
vectors) suffice for a relative-error approximation.

B. Summary of Our Contributions

We present the first provably accurate feature selection
algorithm for k-means (Algorithm 1). Namely, Theorem 1
presents an O(mnkε−1 + k log(k)ε−2 log(k log(k)ε−1)) time
randomized algorithm that, with constant probability, achieves
a (3 + ε)-error with r = O(k log(k)/ε2) features. Given A
and k, the algorithm of this theorem first computes Z ∈ R

n×k ,
which approximates Vk ∈ R

n×k which contains the top
k right singular vectors of A.1 Then, the selection of the
features (columns of A) is done with a standard randomized
sampling approach with replacement with probabilities that
are computed from the matrix Z. The proof of Theorem 1
is a synthesis of ideas from [12] and [17], which study the
paradigm of dimensionality reduction for k-means clustering
and the paradigm of randomized sampling, respectively.

Moreover, we describe a random-projection-type
feature extraction algorithm: Theorem 2 presents an
O(mn�ε−2k/ log(n)�) time algorithm that, with constant
probability, achieves a (2 + ε)-error with r = O(k/ε2)
artificial features. We improve the folklore result of the
first row in Table I by means of showing that a smaller
number of features are enough to obtain an approximate
clustering. The algorithm of Theorem 2 is the same as
with the one in the standard result for random projections
that we outlined in the prior work section but uses only
r = O(k/ε2) dimensions for the random projection matrix.
Our proof relies on ideas from [12] and [18], which study the

1Ref. [16] presented an unsupervised feature selection algorithm by working
with the matrix Vk ; in this work, we show that the same approximation bound
can be achieved by working with a matrix that approximates Vk in the sense
of low rank matrix approximations (see Lemma 2).
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TABLE I

PROVABLY ACCURATE DIMENSIONALITY REDUCTION METHODS FOR k-MEANS CLUSTERING. RP STANDS FOR RANDOM PROJECTIONS, AND

RS STANDS FOR RANDOM SAMPLING. THE THIRD COLUMN CORRESPONDS TO THE NUMBER OF SELECTED/EXTRACTED FEATURES;

THE FOURTH COLUMN CORRESPONDS TO THE TIME COMPLEXITY OF EACH DIMENSIONALITY REDUCTION METHOD;

THE FIFTH COLUMN CORRESPONDS TO THE APPROXIMATION RATIO OF EACH APPROACH

paradigm of dimension reduction for k-means clustering and
the paradigm of speeding up linear algebra problems, such
as the low-rank matrix approximation problem, via random
projections, respectively.

Finally, Theorem 3 describes a feature extraction algorithm
that employs approximate SVD decompositions and constructs
r = k artificial features in O(mnk/ε) time such that, with
constant probability, the clustering error is at most a 2 + ε
multiplicative factor from the optimal. We improve the existing
SVD dimensionality reduction method by showing that fast
approximate SVD gives features that can do almost as well as
the features from the exact SVD. Our algorithm and proof are
similar to those in [12], but we show that one only needs to
compute an approximate SVD of A.

We summarize previous results as well as our results in
Table I.

II. LINEAR ALGEBRAIC FORMULATION

AND OUR APPROACH

A. Linear Algebraic Formulation of k-Means

From now on, we will switch to a linear algebraic formula-
tion of the k-means clustering problem following the notation
used in the introduction. Define the data matrix A ∈ R

m×n

whose rows correspond to the data points,

AT = [p1, . . . , pm ] ∈ R
n×m .

We represent a k-clustering S of A by its cluster indicator
matrix X ∈ R

m×k . Each column j = 1, . . . , k of X cor-
responds to a cluster. Each row i = 1, . . . , m indicates the
cluster membership of the point pi ∈ R

m . So, Xi j = 1/
√

s j

if and only if data point pi is in cluster Sj . Every row of X
has exactly one non-zero element, corresponding to the cluster
the data point belongs to. There are s j non-zero elements
in column j which indicates the data points belonging to
cluster Sj . By slightly abusing notation, we define

F(A, X) := ‖A − XXTA‖2
F.

Hence, for any cluster indicator matrix X, the following
identities hold

F(A, X) =
m∑

i=1

‖pT
i − Xi XTA‖2

2

=
m∑

i=1

‖pT
i − µ(pi )

T‖2
2

= F(P,S),

where we define Xi as the i th row of X and we have used the
identity Xi XTA = µ(pi )

T, for i = 1, ..., m. This identity
is true because XTA is a matrix whose row j is

√
s j µ j ,

proportional to the centroid of the j th cluster; now, Xi picks
the row corresponding to its non-zero element, i.e., the cluster
corresponding to point i , and scales it by 1/

√
s j . In the above,

μ(pi ) ∈ R
m denotes the centroid of the cluster of which

the point pi belongs to. Using this formulation, the goal of
k-means is to find X which minimizes ‖A − XXTA‖2

F.
To evaluate the quality of different clusterings, we will use

the k-means objective function. Given some clustering X̂, we
are interested in the ratio F(A, X̂)/F(A, Xopt), where Xopt is
an optimal clustering of A. The choice of evaluating a clus-
tering under this framework is not new. In fact, [3], [6]–[10]
provide results (other than dimensionality reduction methods)
along the same lines. Below, we give the definition of the
k-means problem.

Definition 1 [The k-Means Clustering Problem]: Given
A ∈ R

m×n (representing m data points – rows – described
with respect to n features – columns) and a positive integer
k denoting the number of clusters, find the indicator matrix
Xopt ∈ R

m×k which satisfies,

Xopt = arg min
X∈X

‖A − XXTA‖2
F.

The optimal value of the k-means clustering objective is

F(A, Xopt) = min
X∈X

‖A − XXTA‖2
F

= ‖A − XoptXT
optA‖2

F

= Fopt.

In the above, X denotes the set of all m × k indicator
matrices X.

Next, we formalize the notation of a “k-means approxima-
tion algorithm”.

Definition 2 [k-Means Approximation Algorithm]: An algo-
rithm is called a “γ -approximation” for the k-means cluster-
ing problem (γ ≥ 1) if it takes inputs the dataset A ∈ R

m×n

and the number of clusters k, and returns an indicator matrix
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Xγ ∈ R
m×k such that w.p. at least 1 − δγ ,

‖A − Xγ XT
γ A‖2

F ≤ γ min
X∈X

‖A − XXTA‖2
F

= γ · F(A, Xopt)

= γ · Fopt.
An example of such an approximation algorithm for

k-means is in [7] with γ = 1 + ε (0 < ε < 1), and
δγ a constant in (0, 1). The corresponding running time
is O(mn · 2(k/ε)O(1)

).
Combining this algorithm (with γ = 1 + ε) with, for

example, our dimensionality reduction method in Section V,
would result in an algorithm that preserves the clustering
within a factor of 2 + ε, for any ε ∈ (0, 1/3), and runs in
total time O(mn�ε−2k/ log(n)� + kn2(k/ε)O(1)

/ε2). Compare
this with the complexity of running this algorithm on the
high dimensional data and notice that reducing the dimension
from n to O(k/ε2) leads to a considerably faster algorithm.
In practice though, the Lloyd algorithm [2], [3] is very
popular and although it does not admit a worst case the-
oretical analysis, it empirically does well. We thus employ
the Lloyd algorithm for our experimental evaluation of our
algorithms in Section VII. Note that, after using, for example,
the dimensionality reduction method in Section V, the cost
of the Lloyd heuristic is only O(mk2/ε2) per iteration. This
should be compared to the cost of O(kmn) per iteration if
applied on the original high dimensional data. Similar run time
improvements arise if one uses the other dimension reduction
algorithms proposed in this work.

B. Our Approach

The key insight of our work is to view the k-means problem
from the above linear algebraic perspective. In this setting,
the data points are rows in a matrix A and feature selection
corresponds to selection of a subset of columns from A. Also,
feature extraction can be viewed as the construction of a
matrix C which contains the constructed features. Our feature
extraction algorithms are linear, i.e., the matrix C is of the
form C = AD, for some matrix D; so, the columns in C are
linear combinations of the columns of A, i.e., the new features
are linear combinations of the original features.

Our work is inspired by the SVD feature extraction algo-
rithm of [12], which also viewed the k-means problem from
a linear algebraic perspective. The main message of the result
of [12] (see the algorithm and the analysis in Section 2
in [12]) is that any matrix C which can be used to approximate
the matrix A in some low-rank matrix approximation sense
can also be used for dimensionality reduction in k-means
clustering. We will now present a short proof of this result
to better understand its implications in our dimensionality
reduction algorithms.

Given A and k, the main algorithm of [12] constructs
C = AVk , where Vk contains the top k right singular vectors
of A. Let Xopt and X̂opt be the cluster indicator matrices
that corresponds to the optimum partition corresponding to
the rows of A and the rows of C, respectively. In our
setting for dimensionality reduction, we compare F(A, X̂opt )

to F(A, Xopt ). From the SVD of A, consider

A = AVkVT
k︸ ︷︷ ︸

Ak

+ A − AVkVT
k︸ ︷︷ ︸

Aρ−k

.

Also, notice that for any cluster indicator matrix X̂opt

((
Im − X̂optX̂T

opt

)
Ak

) ((
Im − X̂optX̂T

opt

)
Aρ−k

)T = 0m×m ,

because

AkAT
ρ−k = 0m×m .

Combining these two steps and by orthogonality, it follows
that

‖A − X̂opt X̂T
optA‖2

F = ‖(Im − X̂opt X̂T
opt)Ak‖2

F
︸ ︷︷ ︸

θ2
α

+ ‖(Im − X̂optX̂T
opt )Aρ−k‖2

F
︸ ︷︷ ︸

θ2
β

.

We now bound the second term of the later equation.
Im − X̂optX̂T

opt is a projection matrix, so it can be dropped
without increasing the Frobenius norm. Hence, by using this
and the fact that XoptXT

optA has rank at most k:

θ2
β ≤ ‖Aρ−k‖2

F = ‖A − Ak‖2
F ≤ ‖A − XoptXT

optA‖2
F.

From similar manipulations combined with the optimality of
X̂opt, it follows that

θ2
α ≤ ‖A − XoptXT

optA‖2
F.

Therefore, we conclude that

F(A, X̂opt ) ≤ 2F(A, Xopt ).

The key insight in this approach is that Ak = AVkVT
k = C · H

(with H = VT
k ) and A − CH = Aρ−k , which is the best rank

k approximation of A in the Frobenius norm (see Section III
for useful notation).

In all three methods of our work, we will construct matrices
C = AD, for three different matrices D, such that C · H, for
an appropriate H, is a good approximation to A with respect
to the Frobenius norm, i.e., ‖A − C · H‖2

F is roughly equal
to ‖A − Ak‖2

F, where Ak is the best rank k matrix from the
SVD of A. Then, replicating the above proof gives our main
theorems. Notice that the above approach is a 2-approximation
because Ak = C · H is the best rank k approximation to A;
our algorithms will give a slightly worse error because our
matrix C · H give an approximation which is slightly worse
than the best rank k approximation.

III. PRELIMINARIES

A. Basic Notation

We use A, B, . . . to denote matrices; a, p, . . . to denote
column vectors. In is the n × n identity matrix; 0m×n is the
m × n matrix of zeros; A(i) is the i -th row of A; A( j ) is the
j -th column of A; and, Ai j denotes the (i, j)-th element of A.
We use E Y to take the expectation of a random variable Y
and P(E) to take the probability of a probabilistic event E .
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We abbreviate “independent identically distributed” to “i.i.d”
and “with probability” to “w.p”.

B. Matrix Norms

We use the Frobenius and the spectral matrix norms:

‖A‖F =
√∑

i, j A2
i j and ‖A‖2 = maxx:‖x‖2=1 ‖Ax‖2, respec-

tively (for a matrix A). For any A,B: ‖A‖2 ≤ ‖A‖F, ‖AB‖F ≤
‖A‖F‖B‖2, and ‖AB‖F ≤ ‖A‖2‖B‖F. The latter two proper-
ties are stronger versions of the standard submultiplicativity
property: ‖AB‖F ≤ ‖A‖F‖B‖F. We will refer to these versions
as spectral submultiplicativity. Finally, the triangle inequality
of matrix norms indicates that ‖A + B‖F ≤ ‖A‖F + ‖B‖F.

Lemma 1 (Matrix Pythagorean Theorem): Let X, Y ∈
R

m×n satisfy XYT = 0m×m . Then,

‖X + Y‖2
F = ‖X‖2

F + ‖Y‖2
F.

Proof:

‖X + Y‖2
F = Tr

(
(X + Y) (X + Y)T

)

= Tr
(

XXT + XYT + YXT + YYT
)

= Tr
(

XXT + 0m×m + 0m×m + YYT
)

= Tr
(

XTX
)

+ Tr
(

YYT
)

= ‖X‖2
F + ‖Y‖2

F.

This matrix form of the Pythagorean theorem is the starting
point for the proofs of the three main theorems presented in
this work. The idea to use the Matrix Pythagorean theorem to
analyze a dimensionality reduction method for k-means was
initially introduced in [12] and it turns to be very useful to
prove our results as well.

C. Singular Value Decomposition

The SVD of A ∈ R
m×n of rank ρ ≤ min{m, n} is

A = UA
AVT
A, with UA ∈ R

m×ρ, 
A ∈ R
ρ×ρ, and

VA ∈ R
n×ρ. In some more details, the SVD of A is:

A = (
Uk Uρ−k

)

︸ ︷︷ ︸
UA∈Rm×ρ

(

k 0
0 
ρ−k

)

︸ ︷︷ ︸

A∈Rρ×ρ

(
VT

k
VT

ρ−k

)

︸ ︷︷ ︸
VT

A∈Rρ×n

,

with singular values σ1 ≥ . . . ≥ σk ≥ σk+1 ≥ . . . ≥ σρ > 0.
We will use σi (A) to denote the i -th singular value of A
when the matrix is not clear from the context. The matrices
Uk ∈ R

m×k and Uρ−k ∈ R
m×(ρ−k) contain

the left singular vectors of A; and, similarly, the
matrices Vk ∈ R

n×k and Vρ−k ∈ R
n×(ρ−k)

contain the right singular vectors. 
k ∈ R
k×k and


ρ−k ∈ R
(ρ−k)×(ρ−k) contain the singular values of A.

It is well-known that Ak = Uk
kVT
k = AVkVT

k = UkUT
k A

minimizes ‖A − X‖F over all matrices X ∈ R
m×n of rank

at most k ≤ ρ. We use Aρ−k = A − Ak = Uρ−k
ρ−kVT
ρ−k .

Also, ‖A‖F =
√∑ρ

i=1 σ 2
i (A) and ‖A‖2 = σ1(A).

The best rank k approximation to A also satisfies:

‖A − Ak‖F =
√∑ρ

i=k+1 σ 2
i (A).

D. Approximate Singular Value Decomposition

The exact SVD of A takes cubic time. In this work, to speed
up certain algorithms, we will use fast approximate SVD.
We quote a recent result from [19], but similar relative-error
Frobenius norm SVD approximations can be found elsewhere;
see, for example, [18].

Lemma 2: Given A ∈ R
m×n of rank ρ, a target rank

2 ≤ k < ρ, and 0 < ε < 1, there exists a randomized algo-
rithm that computes a matrix Z ∈ R

n×k such that ZTZ = Ik ,
EZ = 0m×k (for E = A − AZZT ∈ R

m×n), and

E ‖E‖2
F ≤ (1 + ε) ‖A − Ak‖2

F.

The proposed algorithm runs in O (mnk/ε) time. We use
Z = FastFrobeniusSVD(A, k, ε) to denote this algorithm.

Notice that this lemma computes a rank-k matrix AZZT

which, when is used to approximate A, is almost as good -
in expectation - as the rank-k matrix Ak from the SVD
of A. Since, Ak = AVkVT

k , the matrix Z is essentially an
approximation of the matrix Vk from the SVD of A.

We now give the details of the algorithm. The algorithm
takes as inputs a matrix A ∈ R

m×n of rank ρ and an integer
2 ≤ k < ρ. Set r = k + ⌈ k

ε + 1
⌉

and construct Z with the
following algorithm.

1: Generate an n×r standard Gaussian matrix R whose entries
are i.i.d. N (0, 1) variables.

2: Y = AR ∈ R
m×r.

3: Orthonormalize the columns of Y to construct the matrix
Q ∈ R

m×r.
4: Let Z ∈ R

n×k be the top k right singular vectors of QTA ∈
R

r×n.

E. Pseudo-Inverse

A† = VA
−1
A UT

A ∈ R
n×m denotes the so-called

Moore-Penrose pseudo-inverse of A (here 
−1
A is the inverse

of 
A), i.e., the unique n × m matrix satisfying all four
properties: A = AA†A, A†AA† = A†, (AA†)T = AA†,
and (A†A)T = A†A. By the SVD of A and A†,
it is easy to verify that, for all i = 1, . . . , ρ =
rank(A) = rank(A†): σi (A†) = 1/σρ−i+1(A). Finally, for
any A ∈ R

m×n, B ∈ R
n×�: (AB)† = B†A† if any one

of the following three properties hold: (i) ATA = In ;
(ii) BTB = I�; or, (iii) rank(A) = rank(B) = n.

F. Projection Matrices

We call P ∈ R
n×n a projection matrix if P2 = P. For such

a projection matrix and any A: ‖PA‖F ≤ ‖A‖F. Also, if P is a
projection matrix, then, In − P is a projection matrix. So, for
any matrix A, both AA† and In −AA† are projection matrices.

G. Markov’s Inequality and the Union Bound

Markov’s inequality can be stated as follows: Let Y be a ran-
dom variable taking non-negative values with expectation E Y .
Then, for all t > 0, and with probability at least 1 − t−1,
Y ≤ t · E Y. We will also use the so-called union bound.
Given a set of probabilistic events E1, E2, . . . , En holding with
respective probabilities p1, p2, . . . , pn , the probability that all



1050 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 2, FEBRUARY 2015

events hold simultaneously (a.k.a., the probability of the union
of those events) is upper bounded as: P(E1 ∪ E2 . . . ∪ En) ≤∑n

i=1 pi .

H. Randomized Sampling

1) Sampling and Rescaling Matrices: Let A = [A(1), . . . ,
A(n)] ∈ R

m×n and let C = [A(i1), . . . , A(ir )] ∈ R
m×r consist

of r < n columns of A. Note that we can write C = A�,
where the sampling matrix is � = [ei1 , . . . , eir ] ∈ R

n×r

(here ei are the standard basis vectors in R
n). If S ∈ R

r×r

is a diagonal rescaling matrix then A�S contains r rescaled
columns of A.

The following definition describes a simple randomized
sampling procedure with replacement, which will be critical
in our feature selection algorithm.

Definition 3 (Random Sampling With Replacement): Let
X ∈ R

n×k with n > k and let X(i) denote the i -th row of X
as a row vector. For all i = 1, . . . , n, define the following set
of sampling probabilities:

pi = ‖X(i)‖2
2

‖X‖2
F

,

and note that
∑n

i=1 pi = 1. Let r be a positive integer and
construct the sampling matrix � ∈ R

n×r and the rescaling
matrix S ∈ R

r×r as follows: initially, � = 0n×r and S = 0r×r ;
for t = 1, . . . , r pick an integer it from the set {1, 2, . . . , n}
where the probability of picking i is equal to pi ; set
�it t = 1 and St t = 1/

√
r pit . We denote this randomized

sampling technique with replacement by

[�, S] = RandomizedSampling(X, r).

Given X and r, it takes O(nk) time to compute the probabilities
and another O(n + r) time to implement the sampling proce-
dure via the technique in [20]. In total, this method requires
O(nk) time.

The next three lemmas present the effect of the above
sampling procedure on certain spectral properties, e.g. singular
values, of orthogonal matrices. The first two lemmas are
known; short proofs are included for the sake of completeness.
The third lemma follows easily from the first two results
(a proof of the lemma is given for completeness as well).
We remind the reader that σ 2

i (X) denotes the i th singular value
squared of the matrix X.

Lemma 3 argues that sampling and rescaling a sufficiently
large number of rows from an orthonormal matrix with the
randomized procedure of Definition 3 results in a matrix with
singular values close to the singular values of the original
orthonormal matrix.

Lemma 3: Let V ∈ R
n×k with n > k and VTV = Ik .

Let 0 < δ < 1, 4k ln(2k/δ) < r ≤ n, and
[�, S] = RandomizedSampling(V, r). Then, for all
i = 1, . . . , k, w.p. at least 1 − δ,

1 −
√

4k ln(2k/δ)

r
≤ σ 2

i (VT�S) ≤ 1 +
√

4k ln(2k/δ)

r
.

Proof: This result was originally proven in [17]. We will
leverage a more recent proof of this result that appeared

in [21] and improves the original constants. More specifically,
in [21, Th. 2], set S = I, β = 1, and replace ε as a function
of r , β, and d to conclude the proof.

Lemma 4 argues that sampling and rescaling columns from
any matrix with the randomized procedure of Definition 3
results in a matrix with Frobenius norm squared close to the
Frobenius norm squared of the original matrix. Intuitively,
the subsampling of the columns does not affect much the
Frobenius norm of the matrix.

Lemma 4: For any r ≥ 1, X ∈ R
n×k , and Y ∈ R

m×n , let
[�, S] = RandomizedSampling(X, r). Let δ be a parameter
with 0 < δ < 1. Then, w.p. at least 1 − δ,

‖Y�S‖2
F ≤ 1

δ
‖Y‖2

F.

Proof: Define the random variable Y = ‖Y�S‖2
F ≥ 0.

Assume that the following equation is true:
E ‖Y�S‖2

F = ‖Y‖2
F. Applying Markov’s inequality with

failure probability δ to this equation gives the bound in
the lemma. All that remains to prove now is the above
assumption. Let B = Y�S ∈ R

m×r , and for t = 1, . . . , r, let
B(t) denotes the t-th column of B = Y�S. We manipulate
the term E ‖Y�S‖2

F as follows,

E ‖Y�S‖2
F

(a)= E

r∑

t=1

‖B(t)‖2
2

(b)=
r∑

t=1

E ‖B(t)‖2
2

(c)=
r∑

t=1

n∑

j=1

p j
‖Y( j )‖2

2

r p j

(d)= 1

r

r∑

t=1

‖Y‖2
F = ‖Y‖2

F

(a) follows by the definition of the Frobenius norm of B.
(b) follows by the linearity of expectation. (c) follows by
our construction of �, S. (d) follows by the definition of
the Frobenius norm of Y. It is worth noting that the above
manipulations hold for any set of probabilities since they
cancel out in Equation (d).

Notice that X does not appear in the bound; it is only
used as an input to the RandomizedSampling. This means that
for any set of probabilities, a sampling and rescaling matrix
constructed in the way it is described in Definition 3 satisfies
the bound in the lemma.

The next lemma shows the effect of sub-sampling in a low-
rank approximation of the form A ≈ AZZT, where Z is a
tall-and-skinny orthonormal matrix. The sub-sampling here
is done on the columns of A and the corresponding rows
of Z.

Lemma 5: Fix A ∈ R
m×n, k ≥ 1, 0 < ε < 1/3, 0 <

δ < 1, and r = 4k ln(2k/δ)/ε2. Compute the n × k matrix
Z of Lemma 2 such that A = AZZT + E and run [�, S] =
RandomizedSampling(Z, r). Then, w.p. at least 1 − 3δ, there
exists Ẽ ∈ R

m×n such that

AZZT = A�S(ZT�S)†ZT + Ẽ,

and ‖Ẽ‖F ≤ 1.6ε√
δ
‖E‖F .

Proof: See Appendix.
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In words, given A and the rank parameter k, it is possible to
construct two low rank matrices, AZZT and A�S(ZT�S)†ZT

that are “close” to each other. Another way to view this
result is that given the low-rank factorization AZZT one can
“compress” A and Z by means of the sampling and rescaling
matrices � and S. The error from such a compression will be
bounded by Ẽ.

This result is useful in proving Theorem 1 because at some
point of the proof (see Eqn. (3)) we need to switch from a rank
r matrix (A�S(ZT�S)†ZT) to a rank k matrix (AZZT) and
at the same time keep the bounds in the resulting inequality
almost unchanged (they would change by the norm of the
matrix Ẽ).

I. Random Projections

A classic result of [15] states that, for any 0 < ε < 1, any
set of m points in n dimensions (rows in A ∈ R

m×n) can be
linearly projected into

rε = O
(

log(m)/ε2
)

dimensions while preserving all the pairwise Euclidean dis-
tances of the points within a multiplicative factor of (1 ± ε).
More precisely, [15] showed the existence of a (ran-
dom orthonormal) matrix R ∈ R

n×rε such that, for all
i, j = 1, . . . , m, and with high probability (over the random-
ness of the matrix R),

(1 − ε)‖A(i) − A( j )‖2 ≤ ‖ (
A(i) − A( j )

)
R‖2

≤ (1 + ε)‖A(i) − A( j )‖2.

Subsequent research simplified the proof of [15] by showing
that such a linear transformation can be generated using a
random Gaussian matrix, i.e., a matrix R ∈ R

n×rε whose
entries are i.i.d. Gaussian random variables with zero mean
and variance 1/r [22]. Recently, [23] presented the so-called
Fast Johnson-Lindenstrauss Transform which describes an
R ∈ R

n×rε such that the product AR can be computed
fast. In this paper, we will use a construction by [24], who
proved that a rescaled random sign matrix, i.e., a matrix
R ∈ R

n×rε whose entries have values {±1/
√

r} uniformly
at random, satisfies the above equation. As we will see in
detail in Section V, a recent result of [25] indicates that,
if R is constructed as in [24], the product AR can be
computed fast as well. We utilize such a random projection
embedding in Section V. Here, we summarize some proper-
ties of such matrices that might be of independent interest.
We have deferred the proofs of the following lemmata to the
Appendix.

The first lemma argues that the Frobenius norm squared of
any matrix Y and the Frobenius norm squared of YR, where
R is a scaled signed matrix, are “comparable”. Lemma 6 is
the analog of Lemma 4.

Lemma 6: Fix any m × n matrix Y, fix k > 1 and ε > 0.
Let R ∈ R

n×r be a rescaled random sign matrix constructed
as described above with r = c0k/ε2, where c0 ≥ 100. Then,

P

(
‖YR‖2

F ≥ (1 + ε)‖Y‖2
F

)
≤ 0.01.

The next lemma argues about the effect of scaled random
signed matrices to the singular values of orthonormal matrices.

Lemma 7: Let A ∈ R
m×n with rank ρ (k < ρ),

Ak = Uk
kVT
k , and 0 < ε < 1/3. Let R ∈ R

n×r be a
(rescaled) random sign matrix constructed as we described
above with r = c0k/ε2, where c0 ≥ 3330. The following hold
(simultaneously) w.p. at least 0.97:

1) For all i = 1, . . . , k:

1 − ε ≤ σ 2
i (VT

k R) ≤ 1 + ε.

2) There exists an m × n matrix Ẽ such that

Ak = AR(VT
k R)†VT

k + Ẽ,

and

‖Ẽ‖F ≤ 3ε‖A − Ak‖F.
The first statement of Lemma 7 is the analog of Lemma 3
while the second statement of Lemma 7 is the analog of
Lemma 5. The results here replace the sampling and rescaling
matrices �, S from Random Sampling (Definition 3) with
the Random Projection matrix R. It is worth noting that
almost the same results can be achieved with r = O(k/ε2)
random dimensions, while the corresponding lemmata for
Random Sampling require at least r = O(k log k/ε2) actual
dimensions.

The second bound in the lemma is useful in proving
Theorem 2. Specifically, in Eqn. (2) we need to replace the
rank k matrix Ak with another matrix of rank k which is as
close to Ak as possible. The second bound above provides
precisely such a matrix AR(VT

k R)†VT
k with corresponding

error Ẽ.

IV. FEATURE SELECTION WITH RANDOMIZED SAMPLING

Given A, k, and 0 < ε < 1/3, Algorithm 1 is our main
algorithm for feature selection in k-means clustering. In a
nutshell, construct the matrix Z with the (approximate) top-k
right singular vectors of A and select

r = O(k log(k)/ε2)

columns from ZT with the randomized technique of
Section III-A. One can replace the first step in Algorithm 1
with the exact SVD of A [16]. The result that is obtained
from this approach is asymptotically the same as the one we
will present in Theorem 1.2 Working with Z though gives a
considerably faster algorithm.

Theorem 1: Let A ∈ R
m×n and k be inputs of the

k-means clustering problem. Let ε ∈ (0, 1/3) and, by using
Algorithm 1 in O(mnk/ε + k ln(k)/ε2 log(k ln(k)/ε)) time
construct features C ∈ R

m×r with r = O(k log(k)/ε2).
Run any γ -approximation k-means algorithm with fail-
ure probability δγ on C, k and construct Xγ̃ . Then, w.p.

2The main theorem of [16] states a (1 + (1 + ε)γ )-approximation bound
but the corresponding proof has a bug, which is fixable and leads to a
(1 + (2 + ε)γ )-approximation bound. One can replicate the corresponding
(fixable) proof in [16] by replacing Z = Vk in the proof of Theorem 1
of our work.
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at least 0.2 − δγ ,

‖A − Xγ̃ XT
γ̃ A‖2

F ≤ (1 + (2 + ε)γ ) ‖A − XoptXT
optA‖2

F.
In words, given any set of points in some n-dimensional

space and the number of clusters k, it suffices to select roughly
O(k log k) actual features from the given points and then
run some k-means algorithm on this subset of the input.
The theorem formally argues that the clustering it would
be obtained in the low-dimensional space will be close to
the clustering it would have been obtained after running the
k-means method in the original high-dimensional data. We also
state the result of the theorem in the notation we introduced
in Section I,

F(P,Sγ̃ ) ≤ (1 + (2 + ε)γ )F(P,Sopt ).

Here, Sγ̃ is the partition obtained after running the
γ -approximation k-means algorithm on the low-dimensional
space. The approximation factor is (1 + (2 + ε)γ ). The term
γ > 1 is due to the fact that the k-means method that we run
in the low-dimensional space does not recover the optimal
k-means partition. The other factor 2 + ε is due to the fact
that we run k-means in the low-dimensional space.

Proof (of Theorem 1): We start by manipulating the term
‖A − Xγ̃ XT

γ̃
A‖2

F. Notice that

A = AZZT + E,

(from Lemma 2). Also,
((

Im − Xγ̃ XT
γ̃

)
AZZT

) ((
Im − Xγ̃ XT

γ̃

)
E
)T = 0m×m ,

because

ZTET = 0k×m ,

by construction. Now, using Matrix Pythagoras (see
Lemma 1),

‖A − Xγ̃ XT
γ̃ A‖2

F = ‖(Im − Xγ̃ XT
γ̃ )AZZT‖2

F
︸ ︷︷ ︸

θ2
1

+ ‖(Im − Xγ̃ XT
γ̃ )E‖2

F
︸ ︷︷ ︸

θ2
2

. (1)

We first bound the second term of Eqn. (1). Since Im −Xγ̃ XT
γ̃

is a projection matrix, it can be dropped without increasing
the Frobenius norm (see Section III). Applying Markov’s
inequality on the equation of Lemma 2, we obtain that
w.p. 0.99,

‖E‖2
F ≤ (1 + 100ε)‖A − Ak‖2

F. (2)

(See the Appendix for a short proof of this statement.) Note
also that XoptXT

optA has rank at most k; so, from the optimality
of the SVD, overall,

θ2
2 ≤ (1 + 100ε)‖A − Ak‖2

F

≤ (1 + 100ε)‖A − XoptXT
optA‖2

F

= (1 + 100ε)Fopt.

We now bound the first term in Eqn. (1),

θ1 ≤ ‖(Im − Xγ̃ XT
γ̃ )A�S(ZT�S)†ZT‖F + ‖Ẽ‖F (3)

≤ ‖(Im − Xγ̃ XT
γ̃ )A�S‖F‖(ZT�S)†‖2 + ‖Ẽ‖F (4)

≤ √
γ ‖(Im − XoptXT

opt)A�S‖F‖(ZT�S)†‖2 + ‖Ẽ‖F (5)

In Eqn. (3), we used Lemma 5 (for an unspecified failure
probability δ; also, Ẽ ∈ R

m×n is from that lemma), the
triangle inequality, and the fact that Im −Xγ̃ XT

γ̃ is a projection
matrix and can be dropped without increasing the Frobenius
norm. In Eqn. (4), we used spectral submultiplicativity and
the fact that ZT can be dropped without changing the spectral
norm. In Eqn. (5), we replaced Xγ̃ by Xopt and the factor√

γ appeared in the first term. To better understand this step,
notice that Xγ̃ gives a γ -approximation to the optimal k-means
clustering of C = A�S, so any other m × k indicator matrix
(e.g. Xopt) satisfies,

‖
(

Im − Xγ̃ XT
γ̃

)
A�S‖2

F ≤ γ min
X∈X

‖(Im − XXT)A�S‖2
F

≤ γ ‖
(

Im − XoptXT
opt

)
A�S‖2

F.

By using Lemma 4 with δ = 3/4 and Lemma 3 (for an
unspecified failure probability δ),

‖(Im − XoptXT
opt)A�S‖F‖(ZT�S)†‖2 ≤

√
4

3 − 3ε
Fopt.

We are now in position to bound θ1. In Lemmas 5 and 3, let
δ = 0.01. Assuming 1 ≤ γ,

θ1 ≤
(√

4

3 − 3ε
+ 1.6ε

√
1 + 100ε√
0.01

)
√

γ
√

Fopt

≤
(√

2 + 94ε
)√

γ
√

Fopt.

The last inequality follows from our choice of ε < 1/3 and
elementary algebra. Taking squares on both sides,

θ2
1 ≤

(√
2 + 94ε

)2
γ Fopt ≤ (2 + 3900ε)γ Fopt.

Overall (assuming 1 ≤ γ ),

‖A − Xγ̃ XT
γ̃ A‖2

F ≤ θ2
1 + θ2

2

≤ (2 + 3900ε)γ Fopt + (1 + 100ε)Fopt

≤ Fopt + (2 + 4 · 103ε)γ Fopt.

Rescaling ε accordingly (c1 = 16 ·106) gives the bound in the
Theorem. The failure probability follows by a union bound on
Lemma 4 (with δ = 3/4), Lemma 5 (with δ = 0.01), Lemma 3
(with δ = 0.01), Lemma 2 (followed by Markov’s inequality
with δ = 0.01), and Definition 2 (with failure probability δγ ).
Indeed, 0.75 + 3 · 0.01 + 0.01 + 0.01 + δγ = 0.8 + δγ is
the overall failure probability, hence the bound in the theorem
holds w.p. 0.2 − δγ . �

V. FEATURE EXTRACTION WITH RANDOM PROJECTIONS

We prove that any set of m points in n dimensions
(rows in a matrix A ∈ R

m×n) can be projected into
r = O(k/ε2) dimensions in O(mn�ε−2k/ log(n)�) time
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Algorithm 2 Randomized Feature Extraction for k-Means
Clustering

Input: Dataset A ∈ R
m×n , number of clusters k,

and 0 < ε < 1
3 .

Output: C ∈ R
m×r with r = O(k/ε2) artificial

features.
1: Set r = c2 · k/ε2, for a sufficiently large

constant c2 (see proof).
2: Compute a random n × r matrix R as follows.

For all i = 1, . . . , n, j = 1, . . . , r (i.i.d.)

Ri j =
{

+1/
√

r, w.p. 1/2,

−1/
√

r, w.p. 1/2.

3: Compute C = AR with the Mailman Algorithm
(see text).

4: Return C ∈ R
m×r .

such that, with constant probability, the objective value of the
optimal k-partition of the points is preserved within a factor
of 2 + ε. The projection is done by post-multiplying A with
an n × r random matrix R having entries +1/

√
r or −1/

√
r

with equal probability.
The algorithm needs O(mk/ε2) time to generate R; then,

the product AR can be naively computed in O(mnk/ε2).
However, one can employ the so-called mailman algorithm
for matrix multiplication [25] and compute the product AR in
O(mn�ε−2k/ log(n)�). Indeed, the mailman algorithm com-
putes (after preprocessing) a matrix-vector product of any
n-dimensional vector (row of A) with an n × log(n) sign
matrix in O(n) time. Reading the input n × log n sign
matrix requires O(n log n) time. However, in our case we
only consider multiplication with a random sign matrix,
therefore we can avoid the preprocessing step by directly
computing a random correspondence matrix as discussed
in [25, Preprocessing Section]. By partitioning the columns
of our n × r matrix R into �r/ log(n)� blocks, the desired
running time follows.

Theorem 2 is our quality-of-approximation result regarding
the clustering that can be obtained with the features returned
from Algorithm 2. Notice that if γ = 1, the distortion is at
most 2 + ε, as advertised in Table I. If the γ -approximation
algorithm is [7] the overall approximation factor would be
(1 + (1 + ε)2) = 2 + O(ε) with running time of the order
O(mn�ε−2k/ log(n)� + 2(k/ε)O(1)

mk/ε2).
Theorem 2: Let A ∈ R

m×n and k be the inputs of the
k-means clustering problem. Let ε ∈ (0, 1/3) and construct
features C ∈ R

m×r with r = O(k/ε2) by using Algorithm 2
in O(mn�ε−2k/ log(n)�) time. Run any γ -approximation
k-means algorithm with failure probability δγ on C, k and
construct Xγ̃ . Then, w.p. at least 0.96 − δγ ,

‖A − Xγ̃ XT
γ̃ A‖2

F ≤ (1 + (1 + ε)γ ) ‖A − XoptXT
optA‖2

F.
In words, given any set of points in some n-dimensional

space and the number of clusters k, it suffices to create (via
random projections) roughly O(k) new features and then run
some k-means algorithm on this new input. The theorem

formally argues that the clustering it would be obtained in
the low-dimensional space will be close to the clustering it
would have been obtained after running the k-means method
in the original high-dimensional data. We also state the result
of the theorem in the notation we introduced in Section I,

F(P,Sγ̃ ) ≤ (1 + (1 + ε)γ )F(P,Sopt).

Here, Sγ̃ is the partition obtained after running the
γ -approximation k-means algorithm on the low-dimensional
space. The approximation factor is (1 + (1 + ε)γ ). The term
γ > 1 is due to the fact that the k-means method that we run
in the low-dimensional space does not recover the optimal
k-means partition. The other factor 1 + ε is due to
the fact that we run k-means in the low-dimensional
space.

Proof (of Theorem 2): We start by manipulating the
term ‖A − Xγ̃ XT

γ̃ A‖2
F. Notice that A = Ak + Aρ−k .

Also,
((

Im − Xγ̃ XT
γ̃

)
Ak

) ((
Im − Xγ̃ XT

γ̃

)
Aρ−k

)T = 0m×m ,

because AkAT
ρ−k = 0m×m , by the orthogonality of the corre-

sponding subspaces. Now, using Lemma 1,

‖A − Xγ̃ XT
γ̃ A‖2

F = ‖(Im − Xγ̃ XT
γ̃ )Ak‖2

F
︸ ︷︷ ︸

θ2
3

+ ‖(Im − Xγ̃ XT
γ̃ )Aρ−k‖2

F
︸ ︷︷ ︸

θ2
4

. (6)

We first bound the second term of Eqn. (6). Since Im −Xγ̃ XT
γ̃

is a projection matrix, it can be dropped without increasing the
Frobenius norm. So, by using this and the fact that XoptXT

optA
has rank at most k,

θ2
4 ≤ ‖Aρ−k‖2

F = ‖A − Ak‖2
F ≤ ‖A − XoptXT

optA‖2
F. (7)

We now bound the first term of Eqn. (6),

θ3 ≤ ‖(Im − Xγ̃ XT
γ̃ )AR(VkR)†VT

k ‖F + ‖Ẽ‖F (8)

≤ ‖(Im − Xγ̃ XT
γ̃ )AR‖F‖(VkR)†‖2 + ‖Ẽ‖F (9)

≤ √
γ ‖(Im − XoptXT

opt)AR‖F‖(VkR)†‖2 + ‖Ẽ‖F (10)

≤ √
γ
√

1 + ε‖(Im − XoptXT
opt)A‖F

1

1 − ε
+ 3ε‖A − Ak‖F (11)

≤ √
γ (1 + 2.5ε)‖(Im − XoptXT

opt)A‖F

+ 3ε
√

γ ‖(Im − XoptXT
opt)A‖F (12)

= √
γ (1 + 5.5ε)‖(Im − XoptXT

opt)A‖F (13)

In Eqn. (8), we used the second statement of Lemma 7,
the triangle inequality for matrix norms, and the fact that
Im −Xγ̃ XT

γ̃
is a projection matrix and can be dropped without

increasing the Frobenius norm. In Eqn. (9), we used spectral
submultiplicativity and the fact that VT

k can be dropped with-
out changing the spectral norm. In Eqn. (10), we replaced Xγ̃

by Xopt and the factor
√

γ appeared in the first term. To better
understand this step, notice that Xγ̃ gives a γ -approximation
to the optimal k-means clustering of the matrix C, and any
other m × k indicator matrix (for example, the matrix Xopt)
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satisfies,

‖
(

Im − Xγ̃ XT
γ̃

)
C‖2

F ≤ γ min
X∈X

‖(Im − XXT)C‖2
F

≤ γ ‖
(

Im − XoptXT
opt

)
C‖2

F.

In Eqn. (11), we used the first statement of Lemma 7 and
Lemma 6 with Y = (I − XoptXT

opt)A. In Eqn. (12), we used
the fact that γ ≥ 1, the optimality of SVD, and that for any
ε ∈ (0, 1/3),

√
1 + ε/(1 − ε) ≤ 1 + 2.5ε. Taking squares in

Eqn. (13) we obtain,

θ2
3 ≤ γ (1 + 5.5ε)2 ‖(Im − XoptXT

opt)A‖2
F

≤ γ (1 + 15ε)‖(Im − XoptXT
opt)A‖2

F.

Rescaling ε accordingly gives the approximation bound in the
theorem (c2 = 3330 · 152). The failure probability 0.04 + δγ

follows by a union bound on the failure probability δγ of the
γ -approximation k-means algorithm (Definition 2), Lemma 6,
and Lemma 7. �

A. Disscusion

As we mentioned in Section I-A, one can project the
data down to O(log(m)/ε2) dimensions and guarantee a
clustering error which is not more than (1 + ε) times the
optimal clustering error. This result is straightforward using the
Johnson-Lindenstrauss lemma, which asserts that after such a
dimension reduction all pairwise (Euclidian) distances of the
points would be preserved by a factor (1+ε) [15]. If distances
are preserved, then all clusterings - hence the optimal one -
are preserved by the same factor.

Our result here extends the Johnson-Lindenstrauss result in
a remarkable way. It argues that much less dimensions suffice
to preserve the optimal clustering in the data. We do not prove
that pairwise distances are preserved. Our proof uses the linear
algebraic formulation of the k-means clustering problem and
shows that if the spectral information of certain matrices is
preserved then the k-means clustering is preserved as well.
Our bound is worse than the relative error bound obtained
with O(log(m)/ε2) dimensions; we believe though that it is
possible to obtain a relative error bound and the (2+ε) bound
might be an artifact of the analysis.

VI. FEATURE EXTRACTION WITH APPROXIMATE SVD

Finally, we present a feature extraction algorithm that
employs the SVD to construct r = k artificial features.
Our method and proof techniques are the same with those
of [12] with the only difference being the fact that we
use a fast approximate (randomized) SVD via Lemma 2 as
opposed to the expensive exact deterministic SVD. In fact,
replacing Z = Vk reproduces the proof in [12]. Our choice
gives a considerably faster algorithm with approximation error
comparable to the error in [12].

Theorem 3: Let A ∈ R
m×n and k be inputs of the k-means

clustering problem. Let ε ∈ (0, 1) and construct features
C ∈ R

m×k by using Algorithm 3 in O(mnk/ε) time. Run any
γ -approximation k-means algorithm with failure probability

Algorithm 3 Randomized Feature Extraction for k-Means
Clustering

Input: Dataset A ∈ R
m×n , number of clusters k,

and 0 < ε < 1.
Output: C ∈ R

m×k with k artificial features.

1: Let Z = FastFrobeniusSVD(A, k, ε); Z ∈ R
n×k

(via Lemma 2).
2: Return C = AZ ∈ R

m×k .

δγ on C, k and construct Xγ̃ . Then, w.p. at least 0.99 − δγ ,

‖A − Xγ̃ XT
γ̃ A‖2

F ≤ (1 + (1 + ε)γ ) ‖A − XoptXT
optA‖2

F.
In words, given any set of points in some n-dimensional

space and the number of clusters k, it suffices to create
exactly k new features (via an approximate Singular Value
Decomposition) and then run some k-means algorithm on this
new dataset. The theorem formally argues that the clustering it
would be obtained in the low-dimensional space will be close
to the clustering it would have been obtained after running the
k-means method in the original high-dimensional data. We also
state the result of the theorem in the notation we introduced
in Section I: F(P,Sγ̃ ) ≤ (1 + (1 + ε)γ )F(P,Sopt). Here,
Sγ̃ is the partition obtained after running the γ -approximation
k-means algorithm on the low-dimensional space. The approx-
imation factor is (1 + (1 + ε)γ ). The term γ > 1 is due
to the fact that the k-means method that we run in the
low-dimensional space does not recover the optimal k-means
partition. The other factor 1 + ε is due to the fact that we run
k-means in the low-dimensional space.

Proof (of Theorem 3): We start by manipulating the
term ‖A − Xγ̃ XT

γ̃ A‖2
F. Notice that A = AZZT + E.

Also,
((

Im − Xγ̃ XT
γ̃

)
AZZT

) ((
Im − Xγ̃ XT

γ̃

)
E
)T = 0m×m ,

because ZTET = 0k×m , by construction. Now, using the
Matrix Pythagorean theorem (see Lemma 1 in Section III),

‖A − Xγ̃ XT
γ̃ A‖2

F = ‖(Im − Xγ̃ XT
γ̃ )AZZT‖2

F
︸ ︷︷ ︸

θ2
1

+ ‖(Im − Xγ̃ XT
γ̃ )E‖2

F
︸ ︷︷ ︸

θ2
2

. (14)

We first bound the second term of Eqn. (14). Since
Im − Xγ̃ XT

γ̃
is a projection matrix, it can be dropped without

increasing the Frobenius norm (see Section III). Applying
Markov’s inequality on the equation of Lemma 2, we obtain
that w.p. 0.99,

‖E‖2
F ≤ (1 + 100ε)‖A − Ak‖2

F. (15)

(This is Eqn. 2, of which we provided a short proof in the
Appendix.) Note also that XoptXT

optA has rank at most k; so,
from the optimality of the SVD, overall,

θ2
2 ≤ (1 + 100ε)‖A − Ak‖2

F

≤ (1 + 100ε)‖A − XoptXT
optA‖2

F = (1 + 100ε)Fopt.
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Hence, it follows that w.p. 0.99,

θ2
2 ≤ (1 + 100ε)Fopt.

We now bound the first term in Eqn. (14),

θ1 ≤ ‖(Im − Xγ̃ XT
γ̃ )AZ‖F (16)

≤ √
γ ‖(Im − XoptXT

opt)AZ‖F (17)

≤ √
γ ‖(Im − XoptXT

opt)A‖F (18)

In Eqn. (16), we used spectral submultiplicativity and the
fact that ‖ZT‖2 = 1. In Eqn. (17), we replaced Xγ̃ by
Xopt and the factor

√
γ appeared in the first term (similar

argument as in the proof of Theorem 1). In Eqn. (18), we
used spectral submultiplicativity and the fact that ‖Z‖2 = 1.
Overall (assuming γ ≥ 1),

‖A − Xγ̃ XT
γ̃ A‖2

F ≤ θ2
1 + θ2

2 ≤ γ Fopt + (1 + 100ε)Fopt

≤ Fopt + (1 + 102ε)γ Fopt.

The failure probability is 0.01 + δγ , from a union bound on
Lemma 2 and Definition 2. Finally, rescaling ε accordingly
gives the approximation bound in the theorem. �

VII. EXPERIMENTS

This section describes a preliminary experimental evaluation
of the feature selection and feature extraction algorithms pre-
sented in this work. We implemented the proposed algorithms
in MATLAB [26] and compared them against a few other
prominent dimensionality reduction techniques such as the
Laplacian scores [27]. Laplacian scores is a popular feature
selection method for clustering and classification. We per-
formed all the experiments on a Mac machine with a dual
core 2.8 Ghz processor and 8 GB of RAM.

Our empirical findings are far from exhaustive, however
they indicate that the feature selection and feature extrac-
tion algorithms presented in this work achieve a satisfac-
tory empirical performance with rather small values of r
(far smaller than the theoretical bounds presented here).
We believe that the large constants that appear in our theorems
(see Theorem 2) are artifacts of our theoretical analysis and
can be certainly improved.

A. Dimensionality Reduction Methods

Given m points described with respect to n features and
the number of clusters k, our goal is to select or con-
struct r features on which we execute Lloyd’s algorithm for
k-means on this constructed set of features. In this section, we
experiment with various methods for selecting or constructing
the features. The number of features to be selected or extracted
is part of the input as well. In particular, in Algorithm 1
we do not consider ε to be part of the input. We test the
performance of the proposed algorithms for various values
of r , and we compare our algorithms against other feature
selection and feature extraction methods from the literature,
that we summarize below:

1) Randomized Sampling with Exact SVD (Sampl/SVD).
This corresponds to Algorithm 1 with the following

modification. In the first step of the algorithm, the matrix
Z is calculated to contain exactly the top k right singular
vectors of A.

2) Randomized Sampling with Approximate SVD
(Sampl/ApproxSVD). This corresponds to Algorithm 1
with ε fixed to 1/3.

3) Random Projections (RP). Here we use Algorithm 2.
However, in our implementation we use the naive
approach for the matrix-matrix multiplication in the third
step (not the Mailman algorithm [25]).

4) SVD. This is Algorithm 3 with the following modifi-
cation. In the first step of the algorithm, the matrix Z
is calculated to contain exactly the top k right singular
vectors of A.

5) Approximate SVD (ApprSVD). This corresponds to
Algorithm 3 with ε fixed to 1/3.

6) Laplacian Scores (LapScores). This corresponds to the
feature selection method described in [27]. We use the
MATLAB code from [28] with the default parameters.
In particular, in MATLAB notation we executed the
following commands,

W = constructW(A); Scores = LaplacianScore(A, W);
Finally, we also compare all these methods against evalu-

ating the k-means algorithm in the full dimensional dataset
which we denote by kMeans.

B. k-Means Method

Although our theorems allow the use of any
γ -approximation algorithm for k-means, in practice the
Lloyd’s algorithm performs very well [2]. Hence, we
employ the Lloyd’s algorithm in our experiments. Namely,
every time we mention “we run k-means”, we mean
that we run 500 iterations of the Lloyd’s algorithm with
5 different random initializations and return the best outcome
over all repetitions, i.e., in MATLAB notation we run the
following command, kmeans (A, k, ‘Replicates’,
5, ‘Maxiter’, 500).

C. Datasets

We performed experiments on a few real-world and syn-
thetic datasets. For the synthetic dataset, we generated a
dataset of m = 1000 points in n = 2000 dimensions as
follows. We chose k = 5 centers uniformly at random from the
n-dimensional hypercube of side length 2000 as the ground
truth centers. We then generated points from a Gaussian
distribution of variance one, centered at each of the real
centers. To each of the 5 centers we generated 200 points
(we did not include the centers in the dataset). Thus, we obtain
a number of well separated Gaussians with the real centers
providing a good approximation to the optimal clustering.
We will refer to this dataset as Synth.

For the real-world datasets we used five datasets that we
denote by USPS, COIL20, ORL, PIE and LIGHT. The
USPS digit dataset contains grayscale pictures of handwritten
digits and can be downloaded from the UCI repository [29].
Each data point of USPS has 256 dimensions and there are
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Fig. 1. Plot of running time (a), (b), objective value (c), (d) and accuracy (e), (f) versus the number of projected dimensions for several dimensionality
reduction approaches. Left column corresponds to the Synth dataset, whereas the right column corresponds to the USPS dataset.

1100 data points per digit. The coefficients of the data points
have been normalized between 0 and 1. The COIL20 dataset
contains 1400 images of 20 objects (the images of each
objects were taken 5 degrees apart as the object is rotated
on a turntable and each object has 72 images) and can be
downloaded from [30]. The size of each image is

32×32 pixels, with 256 grey levels per pixel. Thus, each
image is represented by a 1024-dimensional vector. ORL
contains ten different images each of 40 distinct subjects and
can be located at [31]. For few subjects, the images were
taken at different times, varying the lighting, facial expres-
sions and facial details. All the images were taken against
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Fig. 2. Plot of running time (a), (b), objective value (c), (d) and accuracy (e), (f) versus the number of projected dimensions for several dimensionality
reduction approaches. Left column corresponds to the COIL20 dataset, whereas the right column corresponds to the LIGHT dataset.

a dark homogeneous background with the subjects in an
upright, frontal position (with tolerance for some side move-
ment). There are in total 400 different objects having 4096
dimensions.
PIE is a database of 41,368 images of 68 people, each

person under 13 different poses, 43 different illumination

conditions, and with 4 different expressions [32]. Our dataset
contains only five near frontal poses (C05, C07, C09,
C27, C29) and all the images under different illuminations
and expressions. Namely, there are in total 2856 data points
with 1024 dimensions. The LIGHT dataset is identical with
the dataset that has been used in [27], the data points of
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Fig. 3. Plot of running time (a), (b), objective value (c), (d) and accuracy versus (e), (f) the number of projected dimensions for several
dimensionality reduction approaches. Left column corresponds to the PIE dataset, whereas the right column corresponds to the ORL dataset.

LIGHT is 1428 containing 1014 features. For each real-world
dataset we fixed k to be equal to the cardinality of their
corresponding label set.

D. Evaluation Methodology

As a measure of quality of all methods we measure
and report the objective function F of the k-means cluster-
ing problem. In particular, we report a normalized version

of F , i.e. F = F/‖A‖2
F. In addition, we report the mis-

classification accuracy of the clustering result based on the
labelled information of the input data. We denote this number
by P (0 ≤ P ≤ 1), where P = 0.9, for example, implies that
90% of the points were assigned to the “correct cluster”/label
after the application of the clustering algorithm. Finally, we
report running times (in seconds). It is important to highlight
that we report the running time of both the dimensionality
reduction procedure and the k-means algorithm applied on the
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low-dimensional projected space for all proposed algorithms.
All the reported quantities correspond to the average values of
five independent executions.

E. Results

We present the results of our experiments in Figs. 1–3.
We experimented with relative small values for the number
of dimensions:

r = 5, 10, 15, . . . , 100.

In the synthetic dataset, we observe that all dimension-
ality reduction methods for k-means clustering are clearly
more efficient compared to naive k-means clustering. More
importantly, the accuracy plots of Figure 1 demonstrate that
the dimensionality reduction approach is also accurate in this
case even for relatively (with respect to k) small values of r,
i.e., ≈ 20. Recall that in this case the clusters of the
dataset are well-separated between each other. Hence, these
observations suggest that dimensionality reduction for k-means
clustering is effective when applied to well-separated data
points.

The behavior of the dimensionality reduction methods for
k-means clustering for the real-world datasets is similar with
the synthetic dataset, see Figures 2 and 3. That is, as the
number of projecting dimensions increases, the normalized
objective value of the resulting clustering decreases. Moreover,
in all cases the normalized objective value of the proposed
methods converge to the objective value attained by the naive
k-means algorithm (as the number of dimensions increases).
In all cases but the PIE and COIL20 dataset, the proposed
dimensionality reduction methods have superior performance
compared to Laplacian Scores [27] both in terms of accuracy
and normalized k-means objective value. In the PIE and
COIL20 datasets, the Laplacian Scores approach is superior
compared to all other approaches in terms of accuracy. How-
ever, notice that in these two datasets the naive k-means algo-
rimhm performs poorly in terms of accuracy which indicates
that the data might not be well-separated.

Regarding the running times of the algorithms notice that in
some cases the running time does not necessarily increased by
increasing the number of dimensions. This happens because
after the dimensionality reduction step the k-means method
might take a different number of iterations to converge. We did
not investigated this behavior further since this is not the focus
of our experimental evaluation.

Our experiments indicate that running our algorithms with
small values of r , e.g., r = 20 or r = 30, achieves nearly
optimal separation of a mixture of Gaussians and does well
in several real-world clustering problems. Although a more
thorough experimental evaluation of our algorithms would
have been far more informative, our preliminary experimental
findings are quite encouraging with respect to the performance
of our algorithms in practice.

VIII. CONCLUSIONS

We studied the problem of dimensionality reduction for
k-means clustering. Most of the existing results in this topic

consist of heuristic approaches, whose excellent empirical
performance can not be explained with a rigorous theoretical
analysis. In this paper, our focus was on dimensionality reduc-
tion methods that work well in theory. We presented three
such approaches, one feature selection method for k-means
and two feature extraction methods. The theoretical analysis of
the proposed methods is based on the fact that dimensionality
reduction for k-means has deep connections with low-rank
approximations to the data matrix that contains the points
one wants to cluster. We explained those connections in the
text and employed modern fast algorithms to compute such
low rank approximations and designed fast algorithms for
dimensionality reduction in k-means.

Despite our focus on the theoretical foundations of the
proposed algorithms, we tested the proposed methods in
practice and concluded that the experimental results are very
encouraging: dimensionality reduction for k-means using the
proposed techniques leads to faster algorithms that are almost
as accurate as running k-means on the high dimensional
data.

All in all, our work describes the first provably efficient
feature selection algorithm for k-means clustering as well as
two novel provably efficient feature extraction algorithms.
An interesting path for future research is to design provably
efficient (1 + ε)-error dimensionality reduction methods for
k-means.

APPENDIX

TECHNICAL LEMMATA

The following technical lemma is useful in the proof of
Lemma 5 and the proof of Lemma 7.

Lemma 8: Let Q ∈ R
n×k with n > k and QTQ = Ik . Let 

be any n×r matrix (r > k) satisfying 1−ε ≤ σ 2
i (QT) ≤ 1+ε

for every i = 1, . . . , k and 0 < ε < 1/3. Then,

‖(QT)† − (QT)T‖2 ≤ ε√
1 − ε

≤ 1.5ε.

Proof: Let X = QT ∈ R
k×r with SVD X = UX
XVT

X.
Here, UX ∈ R

k×k, 
X ∈ R
k×k, and VX ∈ R

r×k, since r > k.
Consider taking the SVD of (QT)† and (QT)T,

‖(QT)† − (QT)T‖2 = ‖VX
−1
X UT

X − VX
XUT
X‖2

= ‖VX(
−1
X − 
X)UT

X‖2

= ‖
−1
X − 
X‖2,

since VX and UT
X can be dropped without changing the spectral

norm. Let Y = 
−1
X −
X ∈ R

k×k be a diagonal matrix. Then,

for all i = 1, . . . , k, Yii = 1−σ 2
i (X)

σi (X) . Since Y is diagonal,

‖Y‖2 = max
1≤i≤k

|Yii |

= max
1≤i≤k

∣
∣
∣
∣
∣

1 − σ 2
i (X)

σi (X)

∣
∣
∣
∣
∣

= max
1≤i≤k

∣
∣1 − σ 2

i (X)
∣
∣

σi (X)

≤ ε√
1 − ε

≤ 1.5ε.
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The first equality follows since the singular values are positive
(from our choice of ε and the left hand side of the bound for
the singular values). The first inequality follows by the bound
for the singular values of X. The last inequality follows by
the assumption that 0 < ε < 1/3.

Proof of Lemma 5: We begin with the analysis of a
matrix-multiplication-type term involving the multiplication
of the matrices E, Z. The sampling and rescaling matrices
�, S indicate the subsampling of the columns and rows of
E, Z, respectively. [33, Lemma 4, eq. (4)] gives a bound
for such �, S constructed with randomized sampling with
replacement and any set of probabilities p1, p2, . . . , pn (over
the columns of E - rows of Z),

E ‖EZ − E�SST�TZ‖2
F ≤

n∑

i=1

‖E(i)‖2
2‖Z(i)‖2

2

r pi
− 1

r
‖EZ‖2

F .

Notice that EZ = 0m×k , by construction (see Lemma 2).

Now, for every i = 1, . . . , n replace the values pi = ‖Z(i)‖2
2

k
(in Definition 3) and rearrange,

E ‖E�SST�TZ‖2
F ≤ k

r
‖E‖2

F . (19)

Observe that Lemma 3 and our choice of r , implies that
w.p. 1 − δ,

1 − ε ≤ σ 2
i (ZT�S) ≤ 1 + ε, for all i = 1, . . . , k. (20)

For what follows, condition on the event of Ineq. (20).
First, σk(ZT�S) > 0. So, rank(ZT�S) = k and
(ZT�S)(ZT�S)† = Ik .3 Now, AZZT −
AZZT�S(ZT�S)†ZT = AZZT − AZIkZT = 0m×n. Next, we
manipulate the term θ = ‖AZZT − A�S(ZT�S)†ZT‖F as
follows (recall, A = AZZT + E),

θ = ‖ AZZT − AZZT�S(ZT�S)†ZT
︸ ︷︷ ︸

0m×n

−E�S(ZT�S)†ZT‖F

= ‖E�S(ZT�S)†ZT‖F.

Finally, we manipulate the latter term as follows,

‖E�S(ZT�S)†ZT‖F ≤ ‖E�S(ZT�S)†‖F

≤ ‖E�S(ZT�S)T‖F + ‖E�S‖F‖(ZT�S)† − (ZT�S)T‖2

≤
√

k

δr
‖E‖F + 1√

δ
‖E‖F

ε√
1 − ε

≤
(√

k

δr
+ ε√

δ
√

1 − ε

)

‖E‖F

≤
(

ε

2
√

δ

1√
ln(2k/δ)

+ ε√
δ
√

1 − ε

)

‖E‖F

≤
(

ε

2 ln(4)
√

δ
+ ε√

δ
√

1 − ε

)

‖E‖F ≤ 1.6ε√
δ

‖E‖F .

The first inequality follows by spectral submultiplicativity and
the fact that ‖ZT‖2 = 1. The second inequality follows by the

3To see this, let B = ZT�S ∈ R
k×r with SVD B = UB
BVT

B.
Here, UB ∈ R

k×k, 
B ∈ R
k×k, and VB ∈ R

r×k, since r > k. Finally,
(ZT�S)(ZT�S)† = UB
B VT

BVB
︸ ︷︷ ︸

Ik


−1
B UT

B = UB 
B
−1
B︸ ︷︷ ︸

Ik

UT
B = Ik .

triangle inequality for matrix norms. In the third inequality, the
bound for the term ‖E�S(ZT�S)T‖F follows by applying to
it Markov’s inequality together with Ineq. (19); also, ‖E�S‖F
is bounded by (1/

√
δ)‖E‖F w.p. 1 − δ (Lemma 4), while

we bound ‖(ZT�S)† − (ZT�S)T‖2 using Lemma 8 (set
Q = Z and  = �S ). So, by the union bound, the failure
probability is 3δ. The rest of the argument follows by our
choice of r , assuming k ≥ 2, ε < 1/3 and simple algebraic
manipulations. �

Proof of Lemma 6: First, define the random variable
Y = ‖YR‖2

F. It is easy to see that E Y = ‖Y‖2
F and

moreover an upper bound for the variance of Y is available
in [18, Lemma 8]: Var [Y ] ≤ 2‖Y‖4

F/r .4 Now, Chebyshev’s
inequality tells us that,

P(|Y − E Y | ≥ ε‖Y‖2
F) ≤ Var [Y ]

ε2‖Y‖4
F

≤ 2‖Y‖4
F

rε2‖Y‖4
F

≤ 2

c0k
≤ 0.01.

The last inequality follows by assuming c0 ≥ 100 and the fact
that k > 1. Finally, taking square root on both sides concludes
the proof. �

Proof of Lemma 7: We start with the definition of the
Johnson-Lindenstrauss transform.

Definition 4: (Johnson-Lindenstrauss Transform): A ran-
dom matrix R ∈ R

n×r forms a Johnson-Lindenstrauss
transform if, for any (row) vector x ∈ R

n,

P

(
(1 − ε) ‖x‖2

2 ≤ ‖xR‖2
2 ≤ (1 + ε) ‖x‖2

2

)
≥ 1 − e−Cε2r

where C > 0 is an absolute constant.
Notice that in order to achieve failure probability

at most δ, it suffices to take r = O(log(1/δ)/ε2).
We continue with [24, Th. 1.1] (properly stated to fit
our notation and after minor algebraic manipulations),
which indicates that a (rescaled) sign matrix R corre-
sponds to a Johnson-Lindenstrauss transform as defined
above.

Theorem 4 ([24]):5 Let A ∈ R
m×n and 0 < ε < 1. Let

R ∈ R
n×r be a rescaled random sign matrix with

r = 36
ε2 log(m) log(1/δ). Then for all i, j = 1, . . . , m and w.p.

at least 1 − δ,

(1 − ε)‖A(i) − A( j )‖2
2 ≤ ‖ (

A(i) − A( j )
)

R‖2
2

≤ (1 + ε)‖A(i) − A( j )‖2
2.

In addition, we will use a matrix multiplication bound which
follows from [18, Lemma 6]. The second claim of this lemma
says that for any X ∈ R

m×n and Y ∈ R
n×p, if R ∈ R

n×r

4 [18] assumes that the matrix R has i.i.d rows, each one containing
four-wise independent zero-mean {1/

√
r ,−1/

√
r} entries. The claim in our

lemma follows because our rescaled sign matrix R satisfies the four-wise
independence assumption, by construction.

5This theorem is proved by first showing that a rescaled random sign matrix
is a Johnson-Lindenstrauss transform [24, Lemma 5.1] with constant C = 36.
Then, setting an appropriate value for r and applying the union bound over
all pairs of row indices of A concludes the proof.
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is a matrix with i.i.d rows, each one containing four-wise
independent zero-mean {1/

√
r ,−1/

√
r} entries, then,

E ‖XY − XRRTY‖2
F ≤ 2

r
‖X‖2

F‖Y‖2
F. (21)

Our random matrix R uses full independence, hence the above
bound holds by dropping the limited independence condition.

1) Statement 1: The first statement in our lemma has
been proved in [18, Corollary 11], see also [34, Th. 1.3]
for a restatement. More precisely, repeat the proof of
[18, Corollary 11] paying attention to the constants. That is,
set C = VT

k RTRVk − Ik and ε0 = 1/2 in [18, Lemma 10],
and apply our JL transform with (rescaled) accuracy ε/4 on
each vector of the set T ′ := {VT

k x | x ∈ T } (which is of size
at most ≤ ek ln(18), see [35, Lemma 4] for this bound). So,

P

(
∀i = 1, . . . , k : 1 − ε ≤ σ 2

i (VT
k R) ≤ 1 + ε

)

≥ 1 − ek ln(18)e−ε2r/(36·16). (22)

Setting r such that the failure probability is atmost 0.01 indi-
cates that r should be at least r ≥ 576(k ln(18)+ ln(100))/ε2.
So, c0 = 3330 is a sufficiently large constant for the
lemma.

2) Statement 2: Consider the following three events (w.r.t.
the randomness of the random matrix R): E1 := {1 − ε ≤
σ 2

i (VT
k R) ≤ 1 + ε}, E2 := {‖Aρ−kR‖2

F ≤ (1 + ε)‖Aρ−k‖2
F}

and E3 := {‖Aρ−kRRTVk‖2
F ≤ ε2‖Aρ−k‖2

F}. Ineq. (22)
and Lemma 6 with Y = Aρ−k imply that P(E1) ≥ 0.99,
P(E2) ≥ 0.99, respectively. A crucial observation for bounding
the failure probability of the last event E3 is that Aρ−kVk =
Uρ−k
ρ−kV�

ρ−kVk = 0m×k by orthogonality of the columns
of Vk and Vρ−k . This event can now be bounded by applying
Markov’s Inequality on Ineq. (21) with X = Aρ−k and Y = Vk

and recalling that ‖Vk‖2
F = k and r = c0k/ε2. Assuming

c0 ≥ 200, it follows that P(E3) ≥ 0.99 (hence, setting
c0 = 3330 is a sufficiently large constant for both state-
ments). A union bound implies that these three events happen
w.p. 0.97. For what follows, condition on these three
events.

Let Ẽ = Ak − (AR)(VT
k R)†VT

k ∈ R
m×n . By setting

A = Ak + Aρ−k and using the triangle inequality,

‖Ẽ‖F ≤ ‖Ak − AkR(VT
k R)†VT

k ‖F + ‖Aρ−kR(VT
k R)†VT

k ‖F.

The event E1 implies that rank(VT
k R) = k thus,6

(VT
k R)(VT

k R)† = Ik .

Replacing Ak = Uk
kVT
k and setting (VT

k R)(VT
k R)† = Ik ,

we obtain that

‖Ak − AkR(VT
k R)†VT

k ‖F

= ‖Ak − Uk
k VT
k R(VT

k R)†

︸ ︷︷ ︸
Ik

VT
k ‖F

= ‖Ak − Uk
kVT
k ‖F = 0.

6To see this, let B = VT
k R ∈ R

k×r with SVD B = UB
BVT
B.

Here, UB ∈ R
k×k, 
B ∈ R

k×k, and VB ∈ R
r×k, since r > k. Finally,

(VT
k R)(VT

k R)† = UB
B VT
BVB

︸ ︷︷ ︸
Ik


−1
B UT

B = UB 
B
−1
B︸ ︷︷ ︸

Ik

UT
B = Ik .

To bound the second term above, we drop VT
k , add and subtract

Aρ−kR(VT
k R)T, and use the triangle inequality and spectral

sub-multiplicativity,

‖Aρ−kR(VT
k R)†VT

k ‖F

≤ ‖Aρ−kR(VT
k R)T‖F + ‖Aρ−kR((VT

k R)† − (VT
k R)T)‖F

≤ ‖Aρ−kRRTVk‖F + ‖Aρ−kR‖F‖(VT
k R)† − (VT

k R)T‖2.

Now, we will bound each term individually. We bound the
first term using E3. The second term can be bounded using
E1 and E2 together with Lemma 8 (set Q = Vk and  = R).
Hence,

‖Ẽ‖F ≤ ‖Aρ−kRRTVk‖F + ‖Aρ−kR‖F‖(VT
k R)† − (VT

k R)T‖2

≤ ε‖Aρ−k‖F + √
(1 + ε)‖Aρ−k‖F · 1.5ε

≤ ε‖Aρ−k‖F + 2ε‖Aρ−k‖F

= 3ε · ‖Aρ−k‖F.

The last inequality holds by our choice of ε ∈ (0, 1/3). �
Proof of Eqn. (2): E ‖E‖2

F ≤ (1 + ε)‖A − Ak‖2
F →

E ‖E‖2
F − ‖A − Ak‖2

F ≤ ε‖A − Ak‖2
F. Now, apply Markov’s

inequality on the random variable Y = ‖E‖2
F −‖A−Ak‖2

F ≥ 0.
(Y ≥ 0 because E = A − AZZT and rank(AZZT) = k). This
gives ‖E‖2

F − ‖A − Ak‖2
F ≤ 100ε‖A − Ak‖2

F w.p. 0.99; so,
‖E‖2

F ≤ ‖A − Ak‖2
F + 100ε‖A − Ak‖2

F. �
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